+

WO2001004975A1 - Positive plate active material, method for producing the same, and secondary cell - Google Patents

Positive plate active material, method for producing the same, and secondary cell Download PDF

Info

Publication number
WO2001004975A1
WO2001004975A1 PCT/JP2000/004544 JP0004544W WO0104975A1 WO 2001004975 A1 WO2001004975 A1 WO 2001004975A1 JP 0004544 W JP0004544 W JP 0004544W WO 0104975 A1 WO0104975 A1 WO 0104975A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2000/004544
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Noda
Akihiko Shirakawa
Joseph Gaze
Yoshiaki Yamauchi
Fumiyoshi Ono
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to AU58502/00A priority Critical patent/AU5850200A/en
Publication of WO2001004975A1 publication Critical patent/WO2001004975A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention includes a positive active material for a primary battery, a secondary battery using a manufacturing method and a cathode active material.
  • lithium manganese composite oxides As a positive electrode active material for lithium ion secondary batteries, lithium manganese composite oxides (hereinafter referred to as i-Mn-based composite oxides), which are excellent in safety and have abundant resources, are attracting attention.
  • the Li_Mn-based composite oxide has a lower capacity per active material than the lithium-cobalt composite oxide (abbreviated as Li-Co-based composite oxide), and has many voids in the secondary particles. Since the secondary particles are light, the amount of active material that can be charged into a battery whose size is limited due to its light weight and large oil absorption is reduced. As a result, there is a problem that the electric capacity per unit battery is small.
  • the above-mentioned publication discloses the average particle diameter of the secondary particles in which the primary particles of the Li-Mn-based composite oxide are aggregated, but the secondary particles have an interaction between the primary particles. Even if it is used to improve the filling property, the agglomeration disappears at the stage of coating (electrode base) during the preparation process of the electrode material, and it is not an essential improvement measure.
  • a method for producing a Li-Mn-based composite oxide having a spinel structure there is a method in which a mixture of a manganese compound and a lithium compound is calcined at a high temperature (for example, at a temperature of 250 to 850 ° C).
  • the secondary particles after crushing have a large average porosity (15% or more) and low tap density (1. Therefore, it is not possible to increase the mass by increasing the mass of the positive electrode active material charged to the electrode to achieve high capacity.
  • Japanese Patent Application Laid-Open No. 147152/1991 discloses the use of a manganese-based oxide obtained by mixing titanium oxide with a spinel-type lithium manganese oxide and sintering it as a positive electrode active material. (If the temperature is not higher than 1000 ° C, it reacts with lithium and manganese to form no melt, and if only 10% by mass of titanium oxide is not added, the tap density is only 1.60 g / m1. There was a problem that it was not possible.
  • An object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery having excellent filling properties, a high initial capacity, and a small decrease in capacity upon repeated charge / discharge (high capacity retention rate), a method for producing the same, and a method for producing the same.
  • An object of the present invention is to provide a lithium ion secondary battery using a positive electrode active material.
  • the present invention provides the following positive electrode active material for a lithium ion secondary battery, a method for producing the same, an electrode paste containing the positive electrode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery .
  • a positive electrode active material for lithium ion secondary batteries mainly composed of Li i Mn-based composite oxide particles having a spinel structure has the following formula:
  • Porosity (%) (A / B) X 100 (1) (A is the total cross-sectional area of the pores included in the cross section of one secondary particle, and B is the cross-sectional area of one secondary particle.
  • the cathode active material is mainly composed of a Li-Mn-based composite oxide having a spinel structure, and the oxide can be an oxide or an oxide that melts at a temperature of 550 ° C to 900 ° C or Compound containing element, or lithium or manganese
  • the lithium ion secondary battery according to the above [1] which is an active material which is formed of an oxide or a compound containing an element or an element which can be converted into an oxide or an oxide which can be dissolved by reacting with and is granulated and sintered.
  • Positive electrode active material for secondary batteries is mainly composed of a Li-Mn-based composite oxide having a spinel structure, and the oxide can be an oxide or an oxide that melts at a temperature of 550 ° C to 900 ° C or Compound containing element, or lithium or manganese
  • the lithium ion secondary battery according to the above [1] which is an active material which is formed of an oxide or a compound containing an element or an element which can be converted into
  • a pulverized product of the Li-Mn-based composite oxide having a spinel structure is An element or a compound containing an element that can become an oxide or oxide that melts at a temperature of 550 ° C to 900 ° C, or an oxide or oxide that dissolves or reacts with lithium or manganese to melt.
  • the granulated material is heated from the sintering shrinkage initiation temperature to a temperature at least 100 ° C or higher at a rate of at least 100 ° C Zmin and raised to that temperature for 1 minute to 10 minutes.
  • an acrylic resin as a granulation auxiliary, an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropylcellulose, methylcellulose, corn starch
  • an acrylic resin as a granulation auxiliary, an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropylcellulose, methylcellulose, corn starch
  • a positive electrode active material for a lithium ion secondary battery obtained by the method according to any one of the above [9] to [18].
  • a positive electrode for a lithium ion secondary battery comprising the positive electrode active material for a lithium ion secondary battery according to any one of [1] to [8] or [19].
  • FIG. 1 is a scanning electron micrograph (X15,000 magnification) of an example (Example 14) of a positive electrode active material granulated, fired, and sized according to the present invention.
  • FIG. 2 is a particle size distribution of an example (Example 14) of the positive electrode active material granulated, fired, and sized according to the present invention. Detailed description of the invention
  • the present invention relates to a Li-Mn-based composite oxide positive electrode active material having a spinel structure, in which the porosity of secondary particles is significantly reduced to 15% or less as compared with conventional products.
  • the present invention also relates to a Li-Mn-based composite oxide having a spinel structure in which the average porosity of the secondary particles is 10% or less and the cycle characteristics thereof are particularly excellent as compared with conventional products.
  • the positive electrode active material of the lithium-manganese (L i -Mn) -based composite oxide having a spinel structure according to the present invention has a chemical formula of i Mn 2 ⁇ 4 , L i 1 + X M n 2 — x 0 4 x is in the range of 0 ⁇ x ⁇ 0.2) or Mn is a group consisting of chromium, cobalt, aluminum, nickel, iron, and magnesium.
  • the positive electrode active material for a lithium ion secondary battery is mainly composed of a Li-Mn-based composite oxide having the spinel structure, and the porosity of one secondary particle is as follows. Equation (1)
  • Porosity (%) (A / B) X 100 (1) (A is the total cross-sectional area of the pores included in the cross section of one secondary particle, and B is the cross-sectional area of one secondary particle. ) Is used and the average porosity is 15% or less.
  • the Li-Mn-based composite oxide preferably has an average porosity of the positive electrode active material of 10% or less and an average primary particle diameter of 0.2 to 3 m. Is done.
  • the average porosity of the secondary particles must be 15% or less so that the tap density of the positive electrode active material exceeds 1.9 g nomL.
  • the average porosity of the secondary particles is preferably 13% or less, more preferably 10% or less.
  • the primary particles are sintered. Grain growth accompanies shrinkage and the size increases, and when this material is used as a battery positive electrode active material, the capacity retention rate decreases. As a result, the battery characteristics after battery assembly are deteriorated.
  • the present inventors have conducted intensive studies on a method of suppressing sintering by suppressing grain growth, and as a result, the temperature has been increased to at least 1001 higher than the sintering shrinkage onset temperature measured by a thermo-mechanical analysis. After raising the temperature at a rate of at least 100 ° C Zmin, holding for 1 to 10 minutes, reduce the temperature to the sintering shrinkage starting temperature. It has been found that by lowering the temperature at a rate of at least 100 ° C.Zin, grain growth can be suppressed and sintering shrinkage can be achieved.
  • the sintering shrinkage onset temperature means the shrinkage onset temperature determined by a thermomechanical tester.
  • the holding temperature needs to be at least 100 ° C. higher than the sintering shrinkage starting temperature. If the holding temperature is set to be lower than 100 ° C below the sintering start temperature, the sintering shrinkage rate is slow, so that a long sintering time is required, and as a result, the grain grows and the primary particle diameter becomes 0.5 / It will be larger than m.
  • the primary particle diameter is 0.2 m or more and 0.5 m or less, and excellent.
  • the retention time for obtaining the battery characteristics is at least 1 minute and within 10 minutes. If the holding time is less than 1 minute, the heat transfer time is too short and the primary particle size is as small as less than 0.2 m, crystallization is insufficient, and the initial capacity is small. If the holding time exceeds 10 minutes, the grain growth proceeds even after sintering shrinkage, so that the primary particles become large and the capacity retention rate decreases.
  • the retention time is preferably from 2 minutes to 8 minutes, more preferably from 2 minutes to 5 minutes.
  • the reason why the heating rate and the cooling rate are limited to at least 100 ° CZ in the temperature range from the sintering start temperature to the holding temperature is to minimize the holding time in the temperature range where grain growth proceeds. This is because only sintering shrinkage proceeds to suppress grain growth.
  • the average porosity of the secondary particles must be 10% or less, preferably 7% or less, and more preferably 7% or less. It is preferably at most 5%.
  • the crystallite size of the positive electrode active material in the present invention is preferably from 400 to 960 angstroms.
  • the crystallite size is less than 400 angstroms In this case, the initial capacity of the battery is low due to insufficient crystallinity, and the capacity retention rate is low.
  • the crystallite size exceeds 960 angstroms, the capacity retention rate drops sharply. More specifically, the preferred crystallite size is from 500 to 900 angstroms, more preferably from 700 to 900 angstroms.
  • the positive electrode active material of the Li-Mn-based composite oxide having a spinel structure according to the present invention preferably has a lattice constant of 8.240 angstroms or less. If the lattice constant exceeds 8.240 angstroms, the capacity retention of the battery will be significantly reduced. Therefore, a preferable range of the lattice constant is 8.235 angstroms or less, and more preferably 8.233 angstroms or less.
  • the cathode active material of the present invention which is mainly composed of a Li-Mn-based composite oxide having a spinel structure, is obtained by pulverizing a calcined product of the Li-Mn-based composite oxide having a spinel structure, (This is a secondary particle in which primary particles are aggregated, and preferably has an average particle diameter of 0 or less.)
  • a sintering accelerator granulation accelerator
  • Dense granulated particles are used.
  • the dense granulated particles mean that there are no or few voids between the primary particles of the oxide.
  • the positive electrode active material of the present invention is the above-described dense granulated particles, and is formed by using a sintering promoting agent described later.
  • the method for producing a Li-Mn-based composite oxide having a spinel structure is based on a method in which a mixture of a manganese compound and a lithium compound, or a mixture containing a compound containing a different element that can be substituted for manganese, is added to the atmosphere or oxygen.
  • firing may be performed at a temperature of 300 to 850 ° C. for at least one hour.
  • the crystallinity of the Li-Mn-based composite oxide having a spinel structure there is no particular limitation on the crystallinity of the Li-Mn-based composite oxide having a spinel structure, and there may be residual unreacted lithium compound and manganese oxide. I don't know.
  • the lattice constant there is no particular limitation on the lattice constant.However, if it is used for a positive electrode active material whose lattice constant is 8.240 on dastroms or less. In addition, a decrease in the capacity retention rate can be suppressed.
  • the raw material of the Li-Mn-based composite oxide having a spinel structure is not particularly limited, but is preferably a known manganese compound, for example, manganese dioxide, manganese trioxide, manganese tetraoxide, hydrated manganese oxide.
  • a known manganese compound for example, manganese dioxide, manganese trioxide, manganese tetraoxide, hydrated manganese oxide.
  • Substances, manganese carbonate, manganese nitrate and the like can be used, and as the lithium compound, lithium hydroxide, lithium carbonate and lithium nitrate can be used.
  • the manganese compound is manganese carbonate, which easily reacts at low temperature with a lithium compound having excellent battery characteristics when adapted to a positive electrode active material.
  • L i 1 + x M n 2 - x _ y M y ⁇ 4 represented by L i - M n - M for the preparation of (different element) composite oxides, the lithium compound and the manganese compound At least one element selected from the group consisting of chromium, cobalt, aluminum, nickel, iron, and magnesium is used together with the raw material.
  • the compound containing the different element M may be any compound capable of forming the oxide by a heating reaction, and may be added together with a lithium compound or a manganese compound during the heating reaction.
  • the method for crushing and crushing the secondary particles of the Li-Mn-based composite oxide having the spinel structure is not particularly limited, and a known crusher or crusher can be used.
  • a medium stirring type mill, a pole mill, a paint shaker, a jet mill, a roller mill and the like can be mentioned.
  • the crushing and crushing method may be a dry method or a wet method.
  • the solvent that can be used in the wet process For example, water, alcohol, and the like are used.
  • the particle size of the Li-Mn-based composite oxide is important.
  • the particle size is preferably such that the average particle size measured by a laser type particle size distribution analyzer is 5 m or less. More preferably, the average particle diameter is 2 m or less without containing 5 or more coarse particles. More preferably, it does not contain coarse particles exceeding 3 m and has an average particle diameter of 1.5 m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.3 / xm or less, and particularly preferably 0 / m or less. Less than 2 m.
  • the method of mixing the crushed and pulverized Li-Mn-based composite oxide particles with the sintering aid includes the above-described medium stirring type pulverizer, pole mill, paint shearer, and mixing mixer. Can be used.
  • the mixing method may be either a dry method or a wet method.
  • a sintering accelerator may be added and mixing may be performed simultaneously.
  • the sintering accelerator may be any compound capable of sintering the crushed and pulverized particles of the Li-Mn-based composite oxide particles for granulation, and more preferably a compound that melts at a temperature of 900 or less.
  • a compound that melts at a temperature of 900 or less oxides or oxides that can be melted at a temperature of 550 ° C to 900 ° C, or oxides or oxides that dissolve or react with lithium or manganese to melt. Any compound can be used.
  • the sintering promoting aid examples include compounds containing elements such as Bi, B, W, Mo, and Pb, and these compounds may be used in any combination. Furthermore, compounds that combine B 2 0 3 and L i compound combines F or MnF 2 and L i F is also used. Among them, compounds containing the elements Bi, B, and W are preferable because of their large sintering shrinkage effect.
  • Bi compound examples include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, and bismuth hydroxide. Further, as the B compound, boron trioxide, Boron carbide, boron nitride, boric acid and the like. w Compounds include tungsten dioxide and tungsten trioxide.
  • the addition amount of the sintering accelerator is preferably in the range of 0.001 to 0.05 mol per mol of Li-Mn-based composite oxide in terms of the added metal element. . If the added amount in terms of the added metal element is less than 0.001 mol, no sintering shrinkage effect can be obtained, and if it exceeds 0.05 mol, the initial capacity of the active material becomes small.
  • the preferred addition amount is from 0.005 to 0.03 mol.
  • the sintering accelerator may be used in a powder state or in a liquid state dissolved in a solvent.
  • the average particle size of the sintering accelerator is preferably 50 m or less, more preferably 10 or less, and even more preferably 3 m or less.
  • the sintering promoting aid is preferably added before granulation and sintering, but after granulation, the granulated material may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted.
  • the sintering promoting aid often remains in the positive electrode material used for the battery after firing.
  • the sintering promoting aid used in the production method of the present invention remains in the positive electrode active material. Is detected by analysis.
  • Examples of the granulation method include a spray granulation method, a fluid granulation method, a compression granulation method, and a stirring granulation method using the sintering promoting aid. May be used in combination.
  • dense secondary particles including granulated particles
  • Agitation granulation and compression granulation are particularly preferable because the density of secondary particles is high, and spray granulation is because the granulated particles have a true spherical shape.
  • Examples of agitation granulators include Palec Co., Ltd.'s Vital Cardara Yule One-Yu-Ichi and Fuji Padal Co., Ltd.'s Spartan Riuser, and examples of compression granulators are Kurimoto Roller-Compactor-MRCP-200 type manufactured by Iron Works Co., Ltd.
  • spray granulators examples include Ashizanilot Myza-ichi Co., Ltd. Mobile minor type spray dryer.
  • size of the secondary particles to be granulated There is no particular limitation on the size of the secondary particles to be granulated. If the average particle size of the granulated secondary particles is too large, it may be adjusted to a desired particle size immediately after granulation or after sintering by lightly crushing, pulverizing and classifying. Generally, secondary particles having a mean particle size of 10 to 20 m are preferred.
  • an organic granulation aid may be added.
  • Such granulation aids include acrylic resins, copolymers of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinylpyrrolidene, hydroxypropylcellulose, methylcellulose, corn starch, gelatin, lignin, etc. Is mentioned.
  • the method of adding the granulation aid it is more efficient to add and granulate by dissolving in water or an organic solvent such as alcohol and spraying than adding in a powder state.
  • the addition amount of the granulation assistant is preferably 5 parts by mass or less, more preferably 2 parts by mass, based on 100 parts by mass of the Li-Mn-based composite oxide having a spinel structure and 100 parts by mass of the sintering accelerator. Not more than parts by mass.
  • the method of degreasing the granulated particles is performed by keeping the granulated particles in the air or in a gas flow containing oxygen at a temperature in the range of 300 to 550 ° C for 10 minutes or more.
  • the defatted granules preferably have a carbon residue of 0.1% or less.
  • the calcination of the degreased granulated particles is performed in the temperature range of 550 ° C to 900 ° C in air or in a gas flow containing oxygen in order to suppress grain growth and promote sintering shrinkage.
  • the sintering accelerator can be held in a molten state on the surface of the Li-Mn-based composite oxide particles to cause sintering shrinkage and densification of the secondary particles.
  • the sintering of the degreased granulated particles was measured by a thermomechanical tester in the air or in a gas flow containing oxygen in order to suppress grain growth and promote sintering shrinkage.
  • the temperature is reduced to the sintering shrinkage starting temperature at a rate of at least 100 ° CZmin, and the sintering is reduced to densify the secondary particles.
  • the heating rate and the cooling rate between the room temperature and the sintering shrinkage initiation temperature may be 10 ° CZmin or less as in the conventional case.
  • the sintering of the particles of the granulated material without using the above-described organic-based granulation aid is also performed by shrinking the sintering in the air or in a gas flow atmosphere containing oxygen to reduce the densification of the secondary particles. Can be measured.
  • the positive electrode active material of the present invention and the positive electrode active material obtained from the production method of the present invention are processed into a positive electrode for a lithium ion secondary battery according to the same method as the conventional Li-Mn-based composite oxide, and To be evaluated.
  • the positive electrode active material of the present invention is used as a positive electrode material of a nonaqueous secondary battery.
  • a solution for example, N-methylpyrrolidone, etc.
  • a conductive agent such as a pump rack or graphite
  • a binder binding material
  • the mixture is kneaded at a certain ratio, applied as an electrode paste to a current collector, and then dried and pressed by a roll press or the like.
  • a known metal current collector such as aluminum, stainless steel, or titanium is used.
  • a known lithium salt containing fluorine can be used as the electrolyte salt in the electrolytic solution used in the nonaqueous secondary battery of the present invention.
  • a known lithium salt containing fluorine can be used.
  • L i PF 6 , L i BF 4 , L i N (CF 3 S ⁇ 2 ) 2 , L i As F 6 , L i CF 3 S 0 3 , L i C 4 F 9 S ⁇ 3 etc. can be used.
  • the electrolyte for the non-aqueous secondary battery at least one electrolyte of the known lithium salt containing fluorine is used by dissolving it in a non-aqueous electrolyte.
  • an aprotic solvent that is chemically and electrochemically stable can be used.
  • Oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether; aliphatic esters such as methyl propionate and methyl formate; aromatic nitriles such as benzonitrile and tolitolitol; dimethylformamide; Examples thereof include amides, sulfoxides such as dimethyl sulfoxide, lactones such as carboxylactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphate esters. Among them, carbonates, aliphatic esters and ethers are preferred.
  • the negative electrode used in the non-aqueous secondary battery of the present invention is not particularly limited as long as it is a material capable of inserting and extracting lithium ions reversibly.
  • a material capable of inserting and extracting lithium ions reversibly for example, lithium metal, lithium alloy, carbon material (including graphite) And metal chalcogens can be used.
  • a separator made of polypropylene is used as the separator, and silica fiber filter paper (for example, QR-100 manufactured by Advantech Toyo Co., Ltd.) is used as a reinforcing material for the purpose of preventing micro short circuit caused by dendrite formation of the negative electrode. Also used together. Using these positive electrode, negative electrode, electrolyte, separator and reinforcing material,
  • a 201-type coin battery is manufactured, and a charge / discharge cycle test is performed 500 times in a thermostat set at 60 ° C.
  • the measurement conditions are: constant current constant voltage charge-constant current discharge, charge and discharge rate 1 C (charge pause 2.5 hours after the start of charge), and scan voltage 3.1 V to 4.3 V.
  • the positive electrode active material and the thermosetting resin are mixed and cured to embed the positive electrode active material in the resin, cut with a microtome, mirror-polished, and photograph the polished surface with a scanning electron microscope (SEM). Taken.
  • SEM scanning electron microscope
  • the cross-sectional area B of one secondary particle in the obtained SEM photograph and the total cross-sectional area A of all the pores included in the cross-section of the secondary particle were measured with an image analyzer.
  • the porosity C (%) of the particles was calculated, and the average value of the porosity of 50 randomly selected secondary particles was defined as the average porosity.
  • the value obtained by calculating the spread of the diffraction line according to the crystallite size from the half-value width was used.
  • a single crystal silicon was pulverized with a tungsten carbide sample mill and then sieved to 44 m or less.
  • Rig-type goniometer manufactured by Rigaku Denki Co., Ltd. Continuous measurement was performed as the measurement mode, and the size of crystallites was analyzed using the Rigaku Denki Co., Ltd. RI T2000 series application software as the analysis software.
  • the measurement conditions were as follows: X-ray (CuKo! Line), output 50 kV, 180 mA, slit width (3 locations) 1 to 2 , 1Z2 °, 0.15mm, 2 ⁇ method for scan method, scan speed / min, measurement range (20) 17-20 °, step 0.004 °.
  • the accuracy of the crystallite size obtained by this method is ⁇ 30 angstroms.
  • a very small amount of manganese trioxide other than Li-Mn-based composite oxides was detected by X-ray analysis (XRD) in the composite.
  • the average particle size of the synthesized product measured by a laser particle size distribution analyzer was 10 m, and the specific surface area was 7.7 m 2 Zg.
  • the obtained Li-Mn-based composite oxide having a spinel structure was dispersed in an ethanol solvent and pulverized with a wet pole mill to adjust the average particle diameter to 0.5 xm.
  • the pulverized powder did not contain more than 3 large particles, and the specific surface area was 27 Srr ⁇ Zg.
  • Bismuth oxide having an average particle size of 2; m was added and mixed with the pulverized powder so that the atomic ratio of BiZMn became 0.026, and the mixture was mixed with Spartan manufactured by Fuji Baudal Co., Ltd. The mixture was stirred and granulated with Luza-RMO-6H.
  • the obtained granules are kept in the air at 500 ° C for 2 hours, and after degreasing (decomposing polyvinyl alcohol), the temperature is raised in the air at 200 ° C / hr and the temperature is raised to 7500 ° C. After holding for 0 hour, a positive electrode active material was obtained. It was confirmed by the ICP-AES method (inductively coupled plasma emission spectroscopy) that the cathode active material produced here contained the Bi element of the bismuth oxide corresponding to the charged composition ratio.
  • the average porosity of the obtained positive electrode active material was 11.2%. Also, the positive electrode active material The tap density of the material was 1.96 gZm1, the crystallite size was 880 angstroms, and the lattice constant was 8.233 angstroms.
  • a coin-type battery was manufactured as follows.
  • the positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone are kneaded at a mass ratio of 80:10:10, applied on aluminum foil, and pressed under pressure.
  • a lithium foil having a predetermined thickness was used as the negative electrode.
  • the electrolyte used was 1 propylene carbonate and dimethyl carbonate at a volume ratio: a mixture in a mixing ratio of 2, was obtained by dissolving the L i PF 6 at a concentration of 1 mole Z liters.
  • a polypropylene separator, an electrolyte, and a glass filter a 2016 coin-type battery was fabricated.
  • the battery prepared by the above method was subjected to a charge / discharge cycle test at 60 at a charge / discharge rate of 1 C (2.5 hours after the start of charging) and a voltage range of 3.0 to 4.2 V for 100 cycles. Charge and discharge were repeated. Table 1 shows the initial discharge capacity and the capacity retention (%) after 100 cycles.
  • Example 2
  • Example 3 The operation was performed in the same manner as in Example 1 except that the manganese source in the synthesis conditions of the Li-Mn-based composite oxide was electrolytic manganese dioxide, and the porosity of secondary particles, tap density, crystallite size, lattice constant, The electrode characteristics were evaluated. The results are shown in Table 1.
  • Example 3 The results are shown in Table 1.
  • Example 4 The obtained Li-Mn-based composite oxide was pulverized to an average particle diameter of 0.5, and boron oxide was added so that the atomic ratio of BZ Mn became 0.0208, and the mixture was granulated. Next, the same operation as in Example 1 was performed except that the degreased granules were fired at 750 ° C for 0.5 hr. The results are shown in Table 1.
  • Example 4 The results are shown in Table 1.
  • Example 5 The same operation as in Example 3 was carried out, except that the atomic ratio of BZMn was 0.009, and the degreased granules were fired at 760 for 0.5 hr. The results are shown in Table 1.
  • Example 5 The same operation as in Example 3 was carried out, except that the atomic ratio of BZMn was 0.009, and the degreased granules were fired at 760 for 0.5 hr. The results are shown in Table 1.
  • Example 5 The same operation as in Example 3 was carried out, except that the atomic ratio of BZMn was 0.009, and the degreased granules were fired at 760 for 0.5 hr. The results are shown in Table 1.
  • Example 5 The same operation as in Example 3 was carried out, except that the atomic ratio of BZMn was 0.009, and the degreased granules were fired at 760 for 0.5 hr. The results are shown in Table 1.
  • Example 5 The same operation as in Example 3 was
  • Example 6 The same operation as in Example 3 was carried out except that the atomic ratio of BZMn was 0.006, and the degreased granules were fired at 770 ° for 0.5 hr. The results are shown in Table 1.
  • Example 6 The same operation as in Example 3 was carried out except that the atomic ratio of BZMn was 0.006, and the degreased granules were fired at 770 ° for 0.5 hr. The results are shown in Table 1. Example 6
  • Example 7 The same operation as in Example 1 was performed except that the degreased granules were fired at 760 ° C for 20 hours. The results are shown in Table 1.
  • Example 7 The same operation as in Example 1 was performed except that the degreased granules were fired at 760 ° C for 20 hours. The results are shown in Table 1.
  • Example 9 The Li-Mn-based composite oxide synthesized in Example 1 was further heated from room temperature to 750 ° C at an air heating rate of 200 ° C / hr, It was crystallized while keeping hr. Thereafter, the Li-Mn-based composite oxide crystallized in Example 1 was used, and bismuth oxide was changed to boron oxide. The procedure was performed in the same manner as in Example 1 except that the granules were added and the degreased granules were fired at 75 ° C. for 0.5 hr. The results are shown in Table 1.
  • Example 9 The results are shown in Table 1.
  • Example 10 Before granulation L i one Mn-based average particle diameter of 3. 5 m as a composite oxide, except that specific surface area was used as a 1 0 m 2 / g, was prepared as in Example 3. The results are shown in Table 1.
  • Example 10 Before granulation L i one Mn-based average particle diameter of 3. 5 m as a composite oxide, except that specific surface area was used as a 1 0 m 2 / g, was prepared as in Example 3. The results are shown in Table 1.
  • Example 10 Example 10
  • Example 3 was carried out in the same manner as in Example 3, except that the obtained Li-Mn-based composite oxide was used. The results are shown in Table 1. Positive electrode active material 60 ° C battery performance Sintering accelerator After degreasing ⁇ fcH says -r 100 cycle
  • Example 2 750 ° C X20hr 12.0 1.93 1.8 890 8.234 0.75 1.33 118 78
  • Example 3 750 ° C X 0.5hr 6.5 2.16 1.2 780 8.232 0.78 1.28 127 85
  • Example 7 750 ° C X20hr 6.1 2.18 1.1 800 8.239 0.78 1.28 124 76
  • Example 8 750 ° C X 0.5hr 9.8 2.02 1.5 820 8.240 0.76 1.30 128 80
  • Example 9 750 ° C X 0.5hr 8.5 2.07 1.3 750 8.233 0.79 1.31 126 85
  • Example 10 750 ° C X 0.5hr 6.3 2.15 1.2 750 8.228 0.76 1.29 116 89
  • Example 12 The same operation as in Example 1 was performed except that the degreased granules were fired at 830 ° C for 20 hours. The results are shown in Table 2.
  • Example 12 The same operation as in Example 1 was performed except that the degreased granules were fired at 830 ° C for 20 hours. The results are shown in Table 2.
  • Example 3 was carried out in the same manner as in Example 3, except that a Li-Mn-based composite oxide was used. The results are shown in Table 2.
  • Example 14 The procedure was performed in the same manner as in Example 3, except that the average particle diameter after granulation was adjusted to 65 im. The results are shown in Table 2.
  • Example 14 The procedure was performed in the same manner as in Example 3, except that the average particle diameter after granulation was adjusted to 65 im. The results are shown in Table 2.
  • Example 2 The operation was performed in the same manner as in Example 1 except that the atomic ratio of BiZMn was set to 0.0020. The results are shown in Table 2. Observation of the granulated, calcined, and sized positive electrode active material using a scanning electron microscope (X15,000 magnification) revealed that the particles were round particles as shown in Fig. 1. Figure 2 shows the particle size distribution of these particles. Comparative Example 1
  • Example 2 The same operation as in Example 1 was performed except that the average particle diameter of the Li-Mn-based composite oxide before granulation was 6.0 m. The results are shown in Table 2.
  • Comparative Example 2 A mixture of electrolytic manganese dioxide and lithium carbonate with an atomic ratio of Li of 0.51 and an average particle size of 20 zm is mixed with a ball mill, and the heating rate in the atmosphere is 100 ° C / hr up to 760 ° C. The temperature was raised and maintained at 760 ° C for 24 hours to synthesize a positive electrode active material. The obtained positive electrode active material was evaluated in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 3
  • Example 2 The procedure was performed in the same manner as in Example 3 except that the granulated product was fired at 750 ° C for 20 hours. The results are shown in Table 2.
  • Manganese carbonate, lithium carbonate and aluminum hydroxide were mixed in a pole mill so that the atomic ratio of Li / MnZA 1 was 1.02: 1.967: 0.013, and the heating rate in the atmosphere was 200.
  • the temperature was raised from room temperature to 650 ° C at a rate of ° C / hr, and kept at 650 ° C for 4 hours to synthesize a Li-Mn-based composite oxide.
  • a very small amount of manganese trioxide was detected by XRD in addition to the Li-Mn-based composite oxide.
  • the average particle size of the synthesized product measured by a laser set particle size distribution analyzer was 10 im.
  • the obtained granules were kept in the air at 500 ° C for 2 hours to be degreased (decompose polyvinyl alcohol).
  • the sintering shrinkage onset temperature of the degreased granulated powder was measured with a thermomechanical tester, and was 660 ° C.
  • the degreased granulated powder was sintered using a rotary kiln under the following conditions. Set the temperature in the soaking zone of the rotary kiln to 780 ° C, and set the supply speed of granulated powder, the rotation speed of the kiln and the inclination of the kiln so that the degreased granulated powder passes through the soaking zone in 3 minutes. did. The time required for the granulated powder to enter the soaking zone from the input port and the time required from exiting the soaking zone to the outlet of the rotary kiln were both 6.3 minutes. The average porosity of the obtained positive electrode active material was 2.1%. Further, when the longest diameter of 500 primary particles was measured from the SEM photograph, the average particle diameter was 0.40 m.
  • a coin-type battery was produced in the same manner as in Example 1.
  • a charge / discharge cycle test at 60 ° C. of the battery prepared by the above method was repeated at 100 charge / discharge cycles at a charge / discharge rate of 1 C and a voltage range of 3.0 to 4.2 V.
  • Table 3 shows the initial discharge capacity and the capacity retention rate (%) after 100 cycles.
  • the temperature of the soaking zone of the mouth-tally kiln is set at 780 ° C, and the supply speed of granulated powder, the rotation speed of the rotary kiln and the inclination are set so that the degreased granulated powder passes through the soaking zone in 9 minutes. Other than that, it carried out similarly to Example 15. The results are shown in Table 3.
  • the temperature was raised from room temperature to 650 ° C at an ambient heating rate of 200 ° C / hr, and the temperature was maintained at 650 ° C for 4 hours to synthesize a Li-Mn-based composite oxide.
  • a very small amount of manganese trioxide was detected by XRD in addition to the Li-Mn-based composite oxide.
  • the average particle size of the synthesized product measured by a laser type particle size distribution analyzer was 10 m 2.
  • Boron oxide is added to the obtained Li-Mn-based composite oxide so that the atomic ratio of BZMn becomes 0.0104, dispersed in ion-exchanged water, and pulverized by a medium stirring type pulverizer.
  • the average particle size was 0.18 xm.
  • Formed into the obtained pulverized slurry Granulation aid (Isoban 104, manufactured by Kuraray Co., Ltd.) was added in an amount of 1.5% by mass based on the Li-Mn-based composite oxide, and dried and granulated by a disk-rotating spray dryer.
  • the granulated product was spherical particles having an average particle size of 18.3, and the tap density was 1.54 gZm1.
  • the obtained granules were kept in the air at 500 at 2 hours for degreasing and then sintered under the same conditions as in Example 15 using a rotary kiln.
  • Example 18 The average porosity of the obtained positive electrode active material was 1.7%, the average particle size was 0.27 m, the tap density was 2.40 gZm1, and the specific surface area measured by the BET method was 0.8 m 2 / g. . Table 3 shows the characteristics of the coin-type battery manufactured using this positive electrode active material in the same manner as in Example 15.
  • Example 18 The average porosity of the obtained positive electrode active material was 1.7%, the average particle size was 0.27 m, the tap density was 2.40 gZm1, and the specific surface area measured by the BET method was 0.8 m 2 / g. . Table 3 shows the characteristics of the coin-type battery manufactured using this positive electrode active material in the same manner as in Example 15.
  • Example 18 The average porosity of the obtained positive electrode active material was 1.7%, the average particle size was 0.27 m, the tap density was 2.40 gZm1, and the specific surface area measured by the BET method was 0.8 m 2 / g. .
  • Table 3 shows the characteristics of the
  • Example 15 was carried out in the same manner as in Example 15 except that the temperature of the soaking zone of the mouth-to-mouth kiln was set to 850 ° C. The results are shown in Table 3.
  • Example 19 The results are shown in Table 3.
  • Example 17 was carried out in the same manner as in Example 17 except that the temperature in the soaking zone of the mouth-to-talry kiln was set to 850 ° C. The results are shown in Table 3. Comparative Example 5
  • the temperature of the degreased granules is increased from 650 ° C at a rate of 10 ° CZin, held at 750 ° C for 0.5 hr, sintered, and then cooled to 650 ° C at a rate of 10 ° CZmin. Except for this, the procedure was the same as in Example 15.
  • the obtained positive electrode active material was evaluated in the same manner as in Example 15. Table 3 shows the results. Comparative Example 6
  • the operation was performed in the same manner as in Comparative Example 5 except that the sintering was performed at 750 ° C. for 20 hours. Table 3 shows the results. Comparative Example 7
  • the temperature of the soaking zone in the mouth kiln is set at 780 ° C, and the supply speed of the granulated powder and the mouth soaking degreased granulated powder pass through the soaking zone in 0.5 minutes. And the time required for the granulated powder to enter the soaking zone from the input port, and the time required from exiting the soaking zone to the rotary kiln outlet are both 1.5 minutes. Except for this, the procedure was the same as in Example 15. The results are shown in Table 3.
  • the circularity (circularity 4 ⁇ [area ⁇ (perimeter) 2 ]) and needle ratio (needle ratio) of the secondary particles produced in Example 11 and Comparative Example 17 shown in Table 13
  • the positive electrode active material manufactured in the example based on the measurement result of the absolute length of the needle ( ⁇ diagonal width) may be characterized by a circularity of 0.7 or more and a needle ratio of 1.35 or less. I understand. Industrial applicability
  • the positive electrode active material of the present invention is essentially different in that it performs granulation and sintering as compared with the conventionally known secondary particles utilizing cohesive force, and is compared with the positive electrode active material obtained by the conventional method. Therefore, the particles are dense and spherical, and have excellent filling properties to the electrodes, and also have the effect of increasing the initial capacity and capacity retention rate even in a high-temperature environment as a secondary battery.
  • the secondary particles can be densified.
  • excellent battery performance can be obtained even when the conventional method is grown to a crystallite size that deteriorates the initial capacity and cycle characteristics.
  • the secondary particles of the conventional method are densified, the primary particle size grows larger than 0.5 m, and the initial capacity and the cycle characteristics deteriorate.
  • a sintering accelerator is added to the Li-Mn-based composite oxide, and a positive electrode active material having high filling properties and excellent battery performance can be obtained. Since the lithium ion secondary battery of the present invention uses a positive electrode active material having excellent filling properties, it has excellent initial capacity and capacity retention at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A positive plate active material for lithium ion secondary cells mainly containing an Li-Mn composite oxide particles having a spinel structure wherein the average of the porosity (A/B) x 100 (%) (1) (where A is the total cross sectional area of the pores included in a cross section of one secondary particle, and B is the cross sectional area of one secondary particle) of the particles is 15% or less, the tap density is 1.9 g/ml or more, the crystallite size is 400-900 A, and the lattice constant is 8.240 A or less. A method for producing the positive plate active material and a lithium ion secondary cell comprising the positive plate active material are also disclosed. The particles of the positive plate active material are dense and spherical. The packability of the particles in an electrode is excellent. The initial capacity and capacity maintenance factor of the secondary cell are high even in a high-temperature environment.

Description

明 細 書 正極活物質、 その製造法及び二次電池 技術分野  Description Positive electrode active material, manufacturing method and secondary battery technical field
本発明は、 1 次電池用正極活物質、 その製造方法及びその 正極活物質を用いた 二次電池に関する。 背景技術 The present invention includes a positive active material for a primary battery, a secondary battery using a manufacturing method and a cathode active material. Background art
リチウムイオン二次電池用正極活物質としては、 安全性に優れ、 かつ資源 も豊富なリチウムマンガン複合酸化物 (以下 i一 Mn系複合酸化物とい う。 ) が注目されている。 しかしながら、 L i _Mn系複合酸化物は、 リチ ゥムコバルト複合酸化物 (L i一 Co系複酸化物と略する。 ) と比較して活 物質当たりの容量が低く、 二次粒子内に多くの空隙を含むので、 二次粒子が 軽く、 吸油量が大きいために大きさが制限される電池内に仕込める活物質質 量が少なくなつてしまう。 その結果、 単位電池あたりの電気容量が小さいと いう問題がある。  As a positive electrode active material for lithium ion secondary batteries, lithium manganese composite oxides (hereinafter referred to as i-Mn-based composite oxides), which are excellent in safety and have abundant resources, are attracting attention. However, the Li_Mn-based composite oxide has a lower capacity per active material than the lithium-cobalt composite oxide (abbreviated as Li-Co-based composite oxide), and has many voids in the secondary particles. Since the secondary particles are light, the amount of active material that can be charged into a battery whose size is limited due to its light weight and large oil absorption is reduced. As a result, there is a problem that the electric capacity per unit battery is small.
その改善策として、 近年、 マンガン化合物とリチウム化合物との混合物を 500 k gZ cm2以上の圧力で加圧成形後、 加熱処理し解砕を行うことに より、 タップ密度 (一定の条件で容器を振動させて得られる粉末の見掛け密 度) が 1. 7 g/m l以上の L i—Mn複合酸化物を得ようとする提案があ る (米国特許第 5807646号, 特開平 9— 86933号) 。 しかしなが ら、 開示されている具体的なタップ密度は、 高々 1. 9 gZm 1に過ぎず満 足のいくレベルではなかった。 As a remedy, in recent years, after the mixture 500 k gZ cm 2 or more press molding at a pressure of between manganese compound and a lithium compound, more performing heat treatment was disintegrated, the container with tap density (certain conditions There is a proposal to obtain a Li-Mn composite oxide having an apparent density of 1.7 g / ml or more (viz., Powder obtained by vibration) (US Pat. No. 5,807,646, JP-A-9-86933). . However, the specific tap density disclosed was at most 1.9 gZm 1, not a satisfactory level.
また、 前記公報には、 L i一 Mn系複合酸化物の 1次粒子が凝集した二次 粒子の平均粒子径が開示されているが、 二次粒子は 1次粒子間の相互作用を 利用して充填性を向上させても、 電極材料の調合工程の際に塗料化 (電極べ —スト化) する段階でその凝集がなくなり、 本質的な改善策になっていない。 また、 スピネル構造を有する L i一 Mn系複合酸化物の製造方法としては、 マンガン化合物とリチウム化合物の混合物を高温 (例えば 250°Cから 85 0°Cの温度下) で焼成して製造する方法 (特開平 9一 86933号公報) や、 マンガン化合物とリチウム化合物にさらにマンガンと置換し得る硼素元素の 酸化物を混合し、 高温で焼成して Mnを Bで一部置換した L i _Mn— B系 酸化物の正極活物質を製造する方法 (特開平 4一 237970号公報) が開 示されている。 In addition, the above-mentioned publication discloses the average particle diameter of the secondary particles in which the primary particles of the Li-Mn-based composite oxide are aggregated, but the secondary particles have an interaction between the primary particles. Even if it is used to improve the filling property, the agglomeration disappears at the stage of coating (electrode base) during the preparation process of the electrode material, and it is not an essential improvement measure. In addition, as a method for producing a Li-Mn-based composite oxide having a spinel structure, there is a method in which a mixture of a manganese compound and a lithium compound is calcined at a high temperature (for example, at a temperature of 250 to 850 ° C). (Japanese Unexamined Patent Publication (Kokai) No. 9-186933) and Li_Mn—B in which a manganese compound and a lithium compound are further mixed with an oxide of a boron element that can be substituted for manganese, and baked at a high temperature to partially substitute Mn with B A method for producing a positive electrode active material of a system oxide (Japanese Patent Application Laid-Open No. 237970/1991) has been disclosed.
しかしながら、 これらの原料を大気中または酸素ガスフロー中、 高温で焼 成した場合には、 解砕後の二次粒子は、 平均空隙率が大きく (15%以上) 、 タップ密度が低く (1. 9 g/m l以下) 、 このため電極に仕込める正極活 物質の質量を多くして高容量化を図ることはできない。  However, when these raw materials are fired at high temperatures in the atmosphere or in an oxygen gas flow, the secondary particles after crushing have a large average porosity (15% or more) and low tap density (1. Therefore, it is not possible to increase the mass by increasing the mass of the positive electrode active material charged to the electrode to achieve high capacity.
また、 特開平 4一 14752号公報には、 スピネル型リチウムマンガン酸 化物に酸化チタンを配合、 焼結したマンガン系酸化物の正極活物質への使用 が開示されているが、 酸化チタンは 950° (:〜 1000°C以上でないとリチ ゥムとマンガンと反応して融液を生成せず、 さらには酸化チタンを 10質 量%も添加しないとタップ密度は 1. 60 g/m 1しか得られないとの問題 があった。 発明の開示  Japanese Patent Application Laid-Open No. 147152/1991 discloses the use of a manganese-based oxide obtained by mixing titanium oxide with a spinel-type lithium manganese oxide and sintering it as a positive electrode active material. (If the temperature is not higher than 1000 ° C, it reacts with lithium and manganese to form no melt, and if only 10% by mass of titanium oxide is not added, the tap density is only 1.60 g / m1. There was a problem that it was not possible.
本発明の課題は、 充填性に優れ、 初期容量が高く、 充放電を繰り返した時 の容量の低下が少ない (容量維持率が高い) リチウムイオン二次電池用正極 活物質、 その製造方法及びその正極活物質を用いたリチウムイオン二次電池 を提供することにある。  An object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery having excellent filling properties, a high initial capacity, and a small decrease in capacity upon repeated charge / discharge (high capacity retention rate), a method for producing the same, and a method for producing the same An object of the present invention is to provide a lithium ion secondary battery using a positive electrode active material.
本発明者らは、 鋭意検討した結果、 スピネル構造を有する L i一 Mn系複 合酸化物の焼成品を解砕後、 これらの粉砕粒子に焼結促進助剤を添加し、 造 粒及び焼成することにより粒子の緻密化を図ることに成功して前記課題を解 決した。 As a result of intensive studies, the present inventors have found that a Li-Mn composite having a spinel structure is obtained. After pulverizing the calcined product of the composite oxide, a sintering accelerator was added to the pulverized particles, and the particles were densified by granulation and firing, thereby solving the above problem.
すなわち、 本発明は、 以下のリチウムイオン二次電池用正極活物質、 その 製造方法、 その正極活物質を含む電極用ペースト及びリチウムイオン二次電 池用正極、 及びリチウムイオン二次電池を提供する。  That is, the present invention provides the following positive electrode active material for a lithium ion secondary battery, a method for producing the same, an electrode paste containing the positive electrode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery .
[1] スピネル構造を有する L i一 Mn系複合酸化物粒子を主体とするリチ ゥムイオン二次電池用正極活物質において、 下記式  [1] A positive electrode active material for lithium ion secondary batteries mainly composed of Li i Mn-based composite oxide particles having a spinel structure has the following formula:
空隙率 (%) = (A/B) X 100 (1) (Aは二次粒子 1個の断面に含まれるポアの総断面積であり、 Bは二次粒子 1個の断面積である。 ) で示される前記粒子の空隙率の平均値が 15%以下 であることを特徴とするリチウムィォン二次電池用正極活物質。  Porosity (%) = (A / B) X 100 (1) (A is the total cross-sectional area of the pores included in the cross section of one secondary particle, and B is the cross-sectional area of one secondary particle. The positive electrode active material for a lithium ion secondary battery, wherein the average value of the porosity of the particles is 15% or less.
[2] 前記平均空隙率の値が 10%以下であり、 かつ一次粒子の平均粒子径 が 0. 2〜3 zmである前記 [1] に記載のリチウムイオン二次電池用正極 活物質。  [2] The positive electrode active material for a lithium ion secondary battery according to [1], wherein the value of the average porosity is 10% or less, and the average particle size of the primary particles is 0.2 to 3 zm.
[3] 正極活物質のタップ密度が、 1. 9 g/m 1以上である前記 [1] に 記載のリチウムイオン二次電池用正極活物質。  [3] The positive electrode active material for a lithium ion secondary battery according to [1], wherein the positive electrode active material has a tap density of 1.9 g / m 1 or more.
[4] 正極活物質のタップ密度が、 2. 2 gZm 1以上である前記 [3] に 記載のリチウムイオン二次電池用正極活物質。  [4] The positive electrode active material for a lithium ion secondary battery according to [3], wherein the positive electrode active material has a tap density of 2.2 gZm 1 or more.
[5] 正極活物質の結晶子サイズが、 400〜960オングストロームであ る前記 [1] に記載のリチウムイオン二次電池用正極活物質。  [5] The positive electrode active material for a lithium ion secondary battery according to the above [1], wherein the crystallite size of the positive electrode active material is 400 to 960 Å.
[6] 正極活物質の格子定数が、 8. 240オングストローム以下である前 記 [1] に記載のリチウムイオン二次電池用正極活物質。  [6] The positive electrode active material for a lithium ion secondary battery according to the above [1], wherein the positive electrode active material has a lattice constant of 8.240 angstroms or less.
[7] 正極活物質が、 スピネル構造を有する L i一 Mn系複合酸化物を主体 とし、 その酸化物が 550°C〜900°Cの温度で溶融する酸化物または酸化 物になり得る元素または元素を含む化合物、 またはリチウムまたはマンガン と固溶するか反応して溶融する酸化物または酸化物になり得る元素または元 素を含む化合物からなり、 造粒及び焼結されている活物質である前記 [1] に記載のリチウムイオン二次電池用正極活物質。 [7] The cathode active material is mainly composed of a Li-Mn-based composite oxide having a spinel structure, and the oxide can be an oxide or an oxide that melts at a temperature of 550 ° C to 900 ° C or Compound containing element, or lithium or manganese The lithium ion secondary battery according to the above [1], which is an active material which is formed of an oxide or a compound containing an element or an element which can be converted into an oxide or an oxide which can be dissolved by reacting with and is granulated and sintered. Positive electrode active material for secondary batteries.
[8] 550°C〜900°Cの温度で溶融する酸化物または酸化物になり得る 元素または元素を含む化合物、 またはリチウムまたはマンガンと固溶するか 反応して溶融する酸化物または酸化物になり得る元素または元素を含む化合 物が、 B i、 B、 W、 Mo、 P bからなる群より選ばれる少なくとも 1種の 元素または元素を含む化合物、 または B23と L i Fを組み合わせた化合物 または Mn F2と L i Fを組み合わせた化合物である前記 [7] に記載のリ チウムイオン二次電池用正極活物質。 [8] An element or a compound containing an element that can become an oxide or an oxide that melts at a temperature of 550 ° C to 900 ° C, or an oxide or an oxide that solid-dissolves with or reacts with lithium or manganese to melt combinations compound containing it obtained element or elements, B i, B, W, Mo, a compound containing at least one element or element selected from the group consisting of P b, or B 23 and L i F compound or a positive electrode active material for lithium ion secondary battery according to Mn F 2 and L i F wherein a compound which is a combination of [7] was.
[9] スピネル構造を有する L i一 Mn系複合酸化物を主体とするリチウム イオン二次電池用正極活物質の製造方法において、 スピネル構造を有する L i一 Mn系複合酸化物の粉砕物に、 550°C〜900°Cの温度で溶融する酸 化物または酸化物になり得る元素または元素を含む化合物、 またはリチウム またはマンガンと固溶するか反応して溶融する酸化物または酸化物になり得 る元素または元素を含む化合物を添加し混合して造粒する工程を有すること を特徴とするリチウムイオン二次電池用正極活物質の製造方法。  [9] In the method for producing a positive electrode active material for a lithium ion secondary battery mainly composed of a Li-Mn-based composite oxide having a spinel structure, a pulverized product of the Li-Mn-based composite oxide having a spinel structure is An element or a compound containing an element that can become an oxide or oxide that melts at a temperature of 550 ° C to 900 ° C, or an oxide or oxide that dissolves or reacts with lithium or manganese to melt. A method for producing a positive electrode active material for a lithium ion secondary battery, comprising a step of adding, mixing and granulating an element or a compound containing the element.
[10] 造粒工程以外に、 前記造粒物を焼結する工程を有する前記 [9] に 記載のリチウムイオン二次電池用正極活物質の製造方法。  [10] The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], further comprising a step of sintering the granulated material in addition to the granulating step.
[1 1] 造粒工程以外に、 前記造粒物を焼結収縮開始温度から少なくとも 1 00°C以上高い温度まで少なくとも 100°CZm i nの速度で昇温してその 温度に 1分〜 10分間保持した後、 少なくとも 100°C/mi nの速度で焼 結開始温度まで降温して焼結させる工程を有する前記 [9] に記載のリチウ ムイオン二次電池用正極活物質の製造方法。  [11] In addition to the granulation step, the granulated material is heated from the sintering shrinkage initiation temperature to a temperature at least 100 ° C or higher at a rate of at least 100 ° C Zmin and raised to that temperature for 1 minute to 10 minutes. The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], comprising a step of lowering the temperature to a sintering start temperature at a rate of at least 100 ° C./min after the holding and sintering.
[12] 口一タリーキルンを用いて焼結させる前記 [1 1] に記載のリチウ '二次電池用正極活物質の製造方法。 [1 3] 前記焼結工程が、 L i一 Mn系複合酸化物粒子の表面で B i、 B、 W、 Mo、 P bからなる群より選ばれる少なくとも 1種の元素または元素を 含む化合物、 または B 203と L i Fを組み合わせた化合物または Mn F2と L i Fを組み合わせた化合物を溶融し焼結して行われる前記 [10] に記載 のリチウムイオン二次電池用正極活物質の製造方法。 [12] The method for producing a positive electrode active material for a lithium secondary battery according to the above [11], wherein the positive electrode active material is sintered using a single tally kiln. [13] In the sintering step, at least one element selected from the group consisting of Bi, B, W, Mo, and Pb on the surface of the Li-Mn-based composite oxide particles, or a compound containing an element, or positive electrode active material for a lithium ion secondary battery according to [10] that the B 2 0 3 and compound a combination of L i F or compounds that combine Mn F 2 and L i F is performed by melting and sintering Manufacturing method.
[14] スピネル構造を有する L i一 Mn系複合酸化物の粉砕物の平均粒子 径が、 5 m以下である前記 [9] に記載のリチウムイオン二次電池用正極 活物質の製造方法。  [14] The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], wherein the pulverized Li-Mn-based composite oxide having a spinel structure has an average particle diameter of 5 m or less.
[15] スピネル構造を有する L i一 Mn系複合酸化物の粉碎物の平均粒子 径が、 3 /zm以下である前記 [9] に記載のリチウムイオン二次電池用正極 活物質の製造方法。  [15] The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], wherein the average particle diameter of the ground material of the Li-Mn-based composite oxide having a spinel structure is 3 / zm or less.
[16] 前記造粒工程が、 噴霧造粒方法、 撹拌造粒方法、 圧縮造粒方法また は流動造粒方法で行われる前記 [9] に記載のリチウムイオン二次電池用正 極活物質の製造方法。  [16] The positive electrode active material for a lithium ion secondary battery according to [9], wherein the granulation step is performed by a spray granulation method, a stirring granulation method, a compression granulation method, or a fluidized granulation method. Production method.
[17] 前記造粒工程において、 造粒助剤として、 アクリル系樹脂、 イソブ チレンと無水マレイン酸との共重合物、 ポリビニルアルコール、 ポリエチレ ングリコ一ル、 ポリビニルピロリデン、 ハイドロキシプロピルセルロース、 メチルセルロース、 コーンスターチ、 ゼラチン、 リグニンからなる群より選 ばれる少なくとも 1種の有機化合物を使用する前記 [9] に記載のリチウム イオン二次電池用正極活物質の製造方法。  [17] In the granulation step, as a granulation auxiliary, an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropylcellulose, methylcellulose, corn starch The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], wherein at least one organic compound selected from the group consisting of gelatin, and lignin is used.
[18] 大気中または酸素を含有するガスフロー雰囲気中、 300°C〜55 0°Cの温度下で脱脂工程を有する前記 [17] に記載のリチウムイオン二次 電池用正極活物質の製造方法。  [18] The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [17], further comprising a degreasing step at a temperature of 300 ° C. to 550 ° C. in the air or in a gas flow atmosphere containing oxygen. .
[19] 前記 [9] 乃至 [18] のいずれかの項に記載の方法で得られたリ チウムイオン二次電池用正極活物質。  [19] A positive electrode active material for a lithium ion secondary battery obtained by the method according to any one of the above [9] to [18].
[20] 前記 [1] 乃至 [8] のいずれかの項に記載のリチウムイオン二次 電池用正極活物質を含む電極用ペースト。 [20] The lithium ion secondary according to any one of the above [1] to [8] An electrode paste containing a positive electrode active material for a battery.
[21] 前記 [1] 乃至 [8] のいずれかの項または前記 [19] に記載の リチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。  [21] A positive electrode for a lithium ion secondary battery, comprising the positive electrode active material for a lithium ion secondary battery according to any one of [1] to [8] or [19].
[22] 前記 [21] に記載のリチウムイオン二次電池用正極を備えたリチ ゥムイオン二次電池。  [22] A lithium ion secondary battery provided with the positive electrode for a lithium ion secondary battery according to the above [21].
[23] リチウムイオン二次電池が、 コイン型電池、 巻回型電池、 円筒型、 角型電池または積層型電池である前記 [22] に記載のリチウムイオン二次 電池。 図面の簡単な説明  [23] The lithium ion secondary battery according to the above [22], wherein the lithium ion secondary battery is a coin battery, a wound battery, a cylindrical battery, a square battery, or a stacked battery. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明により造粒 ·焼成 ·整粒された正極活物質の一例 (実施例 14) の走査電子顕微鏡写真 (X15,000倍) である。  FIG. 1 is a scanning electron micrograph (X15,000 magnification) of an example (Example 14) of a positive electrode active material granulated, fired, and sized according to the present invention.
図 2は、 本発明により造粒 ·焼成 ·整粒された正極活物質の一例 (実施例 14) の粒径分布である。 発明の詳細な説明  FIG. 2 is a particle size distribution of an example (Example 14) of the positive electrode active material granulated, fired, and sized according to the present invention. Detailed description of the invention
以下、 本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically.
本発明は、 二次粒子の空隙率を従来品に比べ大きく減少させ 15%以下と した、 スピネル構造を有する L i一 Mn系複合酸化物正極活物質に関する。 また、 本発明は、 二次粒子の平均空隙率が 10%以下であり、 従来品と比べ そのサイクル特性の特に優れたスピネル構造を有する L i一 Mn系複合酸化 物に関する。  The present invention relates to a Li-Mn-based composite oxide positive electrode active material having a spinel structure, in which the porosity of secondary particles is significantly reduced to 15% or less as compared with conventional products. The present invention also relates to a Li-Mn-based composite oxide having a spinel structure in which the average porosity of the secondary particles is 10% or less and the cycle characteristics thereof are particularly excellent as compared with conventional products.
すなわち、 本発明におけるスピネル構造を有するリチウム—マンガン (L i -Mn) 系複合酸化物の正極活物質は、 化学式 i Mn24、 L i 1 + XM n2x04 (式中 xは 0<x<0. 2の範囲である。 ) または前記 Mnを、 ク ロム、 コバルト、 アルミニウム、 ニッケル、 鉄、 マグネシウムからなる群よ り選ばれる少なくとも 1種の元素 (化学式では Mと略する) で置換した化学 式 L i 1+xMn2x_yMy04 (式中 xは 0 < x < 0. 2の範囲であり、 yは 0<y<0.4である。 ) で示される化合物を総称するものである。 That is, the positive electrode active material of the lithium-manganese (L i -Mn) -based composite oxide having a spinel structure according to the present invention has a chemical formula of i Mn 24 , L i 1 + X M n 2x 0 4 x is in the range of 0 <x <0.2) or Mn is a group consisting of chromium, cobalt, aluminum, nickel, iron, and magnesium. L i 1 + x Mn 2x _ y M y 0 4 (where x is in the range of 0 <x <0.2) substituted with at least one selected element (abbreviated as M in the chemical formula) And y is 0 <y <0.4.) This is a generic term for compounds represented by the formula:
本発明においては、 リチウムイオン二次電池用正極活物質は、 前記スピネ ル構造を有する L i一 Mn系複合酸化物を主体とするものであって、 二次粒 子 1個の空隙率が下記式 (1)  In the present invention, the positive electrode active material for a lithium ion secondary battery is mainly composed of a Li-Mn-based composite oxide having the spinel structure, and the porosity of one secondary particle is as follows. Equation (1)
空隙率 (%) = (A/B) X 100 (1) (Aは二次粒子 1個の断面に含まれるポアの総断面積であり、 Bは二次粒子 1個の断面積である。 ) で算出され、 その平均空隙率が 15%以下であるも のが使用される。  Porosity (%) = (A / B) X 100 (1) (A is the total cross-sectional area of the pores included in the cross section of one secondary particle, and B is the cross-sectional area of one secondary particle. ) Is used and the average porosity is 15% or less.
また、 前記 L i一 Mn系複合酸化物としては、 好ましくは前記正極活物質 の平均空隙率は 10%以下であって、 一次粒子の平均粒子径が 0. 2〜3 mであるものが使用される。  The Li-Mn-based composite oxide preferably has an average porosity of the positive electrode active material of 10% or less and an average primary particle diameter of 0.2 to 3 m. Is done.
すなわち、 正極活物質としてタップ密度が 1. 9 gノ m lを超えるために は、 二次粒子の平均空隙率が 15%以下であることが必要である。 二次粒子 の平均空隙率は好ましくは 13 %以下であり、 さらに好ましくは 10 %以下 である。  That is, the average porosity of the secondary particles must be 15% or less so that the tap density of the positive electrode active material exceeds 1.9 g nomL. The average porosity of the secondary particles is preferably 13% or less, more preferably 10% or less.
一般的に複合酸化物の製造方法において、 焼結温度を高くかつ焼結時間を 長くして焼結収縮させて二次粒子の平均空隙率をできるだけ低減しようとす ると、 一次粒子は焼結収縮に伴い粒成長して大きくなつてしまい、 この材料 を電池正極活物質に使用すると容量維持率が低下する。 その結果、 電池組立 後の電池特性が悪化してしまう。  In general, in a composite oxide production method, if the sintering temperature is increased and the sintering time is lengthened to reduce the average porosity of the secondary particles by sintering shrinkage, the primary particles are sintered. Grain growth accompanies shrinkage and the size increases, and when this material is used as a battery positive electrode active material, the capacity retention rate decreases. As a result, the battery characteristics after battery assembly are deteriorated.
本発明者らは、 粒成長を抑制して焼結収縮させる方法を鋭意研究した結果、 熱機械試験機 (Thermo-mechanical analysis) で測定した焼結収縮開始温度よ りも少なくとも 1001以上高い温度まで少なくとも 100 °CZm i nの速 度で昇温した後、 1分〜 10分の時間保持後、 該焼結収縮開始温度まで少な くとも 1 0 0 °CZm i nの速度で降温することにより粒成長を抑制して焼結 収縮できることを見出した。 The present inventors have conducted intensive studies on a method of suppressing sintering by suppressing grain growth, and as a result, the temperature has been increased to at least 1001 higher than the sintering shrinkage onset temperature measured by a thermo-mechanical analysis. After raising the temperature at a rate of at least 100 ° C Zmin, holding for 1 to 10 minutes, reduce the temperature to the sintering shrinkage starting temperature. It has been found that by lowering the temperature at a rate of at least 100 ° C.Zin, grain growth can be suppressed and sintering shrinkage can be achieved.
ここで、 焼結収縮開始温度とは、 熱機械試験機で求めた収縮開始温度をい う。 前記保持温度としては、 焼結収縮開始温度よりも少なくとも 1 0 0 °C以 上高い温度であることが必要である。 保持温度を焼結開始温度よりも 1 0 0 °C未満に高くした程度では、 焼結収縮速度が遅いため焼結時間が長く必要 となり、 その結果粒成長して一次粒子径が 0. 5 / mよりも大きくなつてし まう。  Here, the sintering shrinkage onset temperature means the shrinkage onset temperature determined by a thermomechanical tester. The holding temperature needs to be at least 100 ° C. higher than the sintering shrinkage starting temperature. If the holding temperature is set to be lower than 100 ° C below the sintering start temperature, the sintering shrinkage rate is slow, so that a long sintering time is required, and as a result, the grain grows and the primary particle diameter becomes 0.5 / It will be larger than m.
また、 前記焼結工程において該焼結収縮開始温度よりも少なくとも 1 0 0 °C以上の高い温度において、 一次粒子径が 0. 2 m以上、 かつ 0. 5 m 以下であって、 かつ優れた電池特性が得られる保持時間は、 少なくとも 1分 以上、 1 0分以内である。 保持時間が 1分未満では熱伝達時間が短すぎて一 次粒子径が 0. 2 m未満と小さく、 結晶化も不十分となり、 初期容量が小 さくなる。 保持時間が 1 0分を越えると、 焼結収縮後も粒成長が進行するの で、 一次粒子が大きくなり容量維持率が低下する。  In the sintering step, at a temperature higher than the sintering shrinkage starting temperature by at least 100 ° C. or more, the primary particle diameter is 0.2 m or more and 0.5 m or less, and excellent. The retention time for obtaining the battery characteristics is at least 1 minute and within 10 minutes. If the holding time is less than 1 minute, the heat transfer time is too short and the primary particle size is as small as less than 0.2 m, crystallization is insufficient, and the initial capacity is small. If the holding time exceeds 10 minutes, the grain growth proceeds even after sintering shrinkage, so that the primary particles become large and the capacity retention rate decreases.
本発明においては、 好ましくは保持時間は 2分から 8分、 さらに好ましく は 2分から 5分とする。  In the present invention, the retention time is preferably from 2 minutes to 8 minutes, more preferably from 2 minutes to 5 minutes.
焼結開始温度から保持温度までの温度領域において昇温速度と降温速度を 少なくとも 1 0 0 °CZ分と限定したのは、 粒成長が進行する温度領域での保 持時間をできるだけ短くすることにより焼結収縮のみを進行させて粒成長を 抑制するためである。  The reason why the heating rate and the cooling rate are limited to at least 100 ° CZ in the temperature range from the sintering start temperature to the holding temperature is to minimize the holding time in the temperature range where grain growth proceeds. This is because only sintering shrinkage proceeds to suppress grain growth.
また、 正極活物質のタップ密度が 2. 2 g /m 1を越えるためには、 二次 粒子の平均空隙率が 1 0 %以下であることが必要であり、 好ましくは 7 %以 下、 さらに好ましくは 5 %以下である。  Further, in order for the tap density of the positive electrode active material to exceed 2.2 g / m1, the average porosity of the secondary particles must be 10% or less, preferably 7% or less, and more preferably 7% or less. It is preferably at most 5%.
本発明における前記正極活物質の結晶子サイズは、 4 0 0〜9 6 0オング ストロームが好ましい。 結晶子サイズが 4 0 0オングストローム未満の場合 では、 結晶性が不十分のために電池における初期容量が低く、 容量維持率が 低くなる。 一方、 結晶子サイズが 9 6 0オングストロームを超える場合には、 容量維持率の低下が激しくなる。 さらに具体的に好ましい結晶子サイズは 5 0 0〜9 2 0オングストロ一ムであり、 さらに望ましくは 7 0 0〜 9 2 0ォ ングストロームである。 The crystallite size of the positive electrode active material in the present invention is preferably from 400 to 960 angstroms. When the crystallite size is less than 400 angstroms In this case, the initial capacity of the battery is low due to insufficient crystallinity, and the capacity retention rate is low. On the other hand, when the crystallite size exceeds 960 angstroms, the capacity retention rate drops sharply. More specifically, the preferred crystallite size is from 500 to 900 angstroms, more preferably from 700 to 900 angstroms.
また、 本発明のスピネル構造を有する L i 一 M n系複合酸化物の正極活物 質は、 その格子定数が 8 . 2 4 0オングストローム以下であることが好まし い。 格子定数が 8 . 2 4 0オングストロームを超えると電池の容量維持率の 低下が激しくなる。 従って、 格子定数の好ましい範囲は、 8. 2 3 5オング ストローム以下であり、 さらに好ましくは 8. 2 3 3オングストローム以下 である。  Further, the positive electrode active material of the Li-Mn-based composite oxide having a spinel structure according to the present invention preferably has a lattice constant of 8.240 angstroms or less. If the lattice constant exceeds 8.240 angstroms, the capacity retention of the battery will be significantly reduced. Therefore, a preferable range of the lattice constant is 8.235 angstroms or less, and more preferably 8.233 angstroms or less.
スピネル構造を有する L i 一 M n系複合酸化物を主体とする本発明の正極 活物質は、 スピネル構造を有する L i 一 M n系複合酸化物の焼成品を解碎後、 得られる粉碎粒子 (これは 1次粒子の集合した二次粒子であり、 好ましくは 平均粒子径が 0. 以下である。 ) に焼結促進助剤 (造粒促進剤) を添 加混合して造粒焼成した緻密な造粒粒子が使用される。 ここで、 緻密な造粒 粒子とは、 その酸化物の 1次粒子間に空隙がないか、 または少ないことを意 味する。 本発明の正極活物質は前記の緻密な造粒粒子であり、 後記する焼結 促進助剤を使用して形成される。  The cathode active material of the present invention, which is mainly composed of a Li-Mn-based composite oxide having a spinel structure, is obtained by pulverizing a calcined product of the Li-Mn-based composite oxide having a spinel structure, (This is a secondary particle in which primary particles are aggregated, and preferably has an average particle diameter of 0 or less.) A sintering accelerator (granulation accelerator) is added to the mixture, and the mixture is granulated and fired. Dense granulated particles are used. Here, the dense granulated particles mean that there are no or few voids between the primary particles of the oxide. The positive electrode active material of the present invention is the above-described dense granulated particles, and is formed by using a sintering promoting agent described later.
以下、 本発明の正極活物質の製造方法について説明する。  Hereinafter, the method for producing the positive electrode active material of the present invention will be described.
スピネル構造を有する L i 一 M n系複合酸化物の製造方法は、 マンガン化 合物とリチウム化合物の混合物、 またはさらにマンガンと置換し得る異種元 素を含む化合物を添加した混合物を大気中または酸素ガスフロー中において、 3 0 0〜8 5 0 °Cの温度で少なくとも 1時間以上焼成すればよい。  The method for producing a Li-Mn-based composite oxide having a spinel structure is based on a method in which a mixture of a manganese compound and a lithium compound, or a mixture containing a compound containing a different element that can be substituted for manganese, is added to the atmosphere or oxygen. In the gas flow, firing may be performed at a temperature of 300 to 850 ° C. for at least one hour.
スピネル構造を有する L i 一 M n系複合酸化物の結晶性については特に制 限はなく、 未反応のリチウム化合物とマンガン酸化物が残留していてもかま わない。 結晶性の高いスピネル構造を有する L i 一 M n系複合酸化物を使用 する場合、 格子定数について特に制約はないが、 格子定数が 8. 2 4 0オン ダストローム以下となる正極活物質に使用すると、 容量維持率の低下が抑え られる。 There is no particular limitation on the crystallinity of the Li-Mn-based composite oxide having a spinel structure, and there may be residual unreacted lithium compound and manganese oxide. I don't know. When using a Li-Mn-based composite oxide having a spinel structure with high crystallinity, there is no particular limitation on the lattice constant.However, if it is used for a positive electrode active material whose lattice constant is 8.240 on dastroms or less. In addition, a decrease in the capacity retention rate can be suppressed.
スピネル構造を有する L i 一 M n系複合酸化物の原料は、 特に制限を受け ないが、 好ましくは公知のマンガン化合物、 例えば二酸化マンガン、 三二酸 化マンガン、 四三酸化マンガン、 水和マンガン酸化物、 炭酸マンガン、 硝酸 マンガンなどが使用でき、 またリチウム化合物としては水酸化リチウム、 炭 酸リチウム、 硝酸リチウムなどが使用できる。  The raw material of the Li-Mn-based composite oxide having a spinel structure is not particularly limited, but is preferably a known manganese compound, for example, manganese dioxide, manganese trioxide, manganese tetraoxide, hydrated manganese oxide. Substances, manganese carbonate, manganese nitrate and the like can be used, and as the lithium compound, lithium hydroxide, lithium carbonate and lithium nitrate can be used.
また望ましくは、 前記マンガン化合物としては、 正極活物質に適応させた 時の電池特性が優れているリチウム化合物と低温で反応しやすい炭酸マンガ ンが好ましい。  Desirably, the manganese compound is manganese carbonate, which easily reacts at low temperature with a lithium compound having excellent battery characteristics when adapted to a positive electrode active material.
マンガン置換型の L i 1 + x M n 2x _ y M y4で示される L i - M n - M (異種元素) 系複合酸化物の製造には、 前記マンガン化合物と前記リチウム 化合物の原料と共にクロム、 コバルト、 アルミニウム、 ニッケル、 鉄、 マグ ネシゥムからなる群より選ばれる少なくとも 1種の元素が使用される。 そし て、 この異種元素 Mを含む化合物としては、 加熱反応によって前記酸化物を 形成し得る化合物なら何でもよく、 前記加熱反応の際にリチウム化合物やマ ンガン化合物と共に添加すればよい。 Manganese substitutional L i 1 + x M n 2 - x _ y M y 〇 4 represented by L i - M n - M for the preparation of (different element) composite oxides, the lithium compound and the manganese compound At least one element selected from the group consisting of chromium, cobalt, aluminum, nickel, iron, and magnesium is used together with the raw material. The compound containing the different element M may be any compound capable of forming the oxide by a heating reaction, and may be added together with a lithium compound or a manganese compound during the heating reaction.
前記のスピネル構造を有する L i 一 M n系複合酸化物の二次粒子の解碎 · 粉砕方法については特に制限はなく公知の解砕機や粉砕機が使用できる。 例 えば、 媒体撹拌式粉碎機、 ポールミル、 ペイントシェーカー、 ジェットミル、 ローラーミルなどが挙げられる。 解砕 ·粉砕方式は乾式でもよいし、 湿式で もよい。 湿式の際に使用できる溶媒についても特に制限はなく、 例えば水、 アルコールなどが使用される。  The method for crushing and crushing the secondary particles of the Li-Mn-based composite oxide having the spinel structure is not particularly limited, and a known crusher or crusher can be used. For example, a medium stirring type mill, a pole mill, a paint shaker, a jet mill, a roller mill and the like can be mentioned. The crushing and crushing method may be a dry method or a wet method. There is no particular limitation on the solvent that can be used in the wet process. For example, water, alcohol, and the like are used.
焼結収縮を促進させるという観点から、 解碎 ·粉砕後のスピネル構造を有 する L i一 Mn系複合酸化物の粒度が重要である。 From the viewpoint of promoting sintering shrinkage, it has a spinel structure after The particle size of the Li-Mn-based composite oxide is important.
粒度はレーザー式粒度分布測定器で測定した時の平均粒子径が 5 m以下 であることが好ましい。 さらに好ましくは、 5 以上の粗大粒子を含まず 平均粒子径が 2 m以下のものである。 さらに好ましくは、 3 ; mを越える 粗大粒子を含まず平均粒子径が 1. 5 m以下のもの、 さらには、 0. 5 ^m 以下、 さらに好ましくは 0. 3 /xm以下、 特に好ましくは 0. 2 m以下のも のである。  The particle size is preferably such that the average particle size measured by a laser type particle size distribution analyzer is 5 m or less. More preferably, the average particle diameter is 2 m or less without containing 5 or more coarse particles. More preferably, it does not contain coarse particles exceeding 3 m and has an average particle diameter of 1.5 m or less, more preferably 0.5 ^ m or less, still more preferably 0.3 / xm or less, and particularly preferably 0 / m or less. Less than 2 m.
解砕 ·粉砕した L i一 Mn系複合酸化物粒子と焼結促進助剤との混合方法 には特に制限はなく、 例えば前記した媒体撹拌式粉砕機、 ポールミル、 ペイ ントシエ一カー、 混合ミキサーなどが使用できる。 混合方式についても乾式、 湿式どちらでもよい。 L i一 Mn系複合酸化物を解砕 ·粉砕する際に焼結促 進助剤を添加して混合を同時に行ってもよい。  There is no particular limitation on the method of mixing the crushed and pulverized Li-Mn-based composite oxide particles with the sintering aid, and examples thereof include the above-described medium stirring type pulverizer, pole mill, paint shearer, and mixing mixer. Can be used. The mixing method may be either a dry method or a wet method. When disintegrating and pulverizing the Li-Mn-based composite oxide, a sintering accelerator may be added and mixing may be performed simultaneously.
焼結促進助剤は、 L i - Mn系複合酸化物粒子の解碎 ·粉砕粒子を造粒の ために焼結できるものであればよく、 より好ましくは、 900 :以下の温度 で溶融する化合物、 例えば 550°C〜900°Cの温度で溶融可能な酸化物ま たは酸化物になり得る前駆体、 もしくはリチウムまたはマンガンと固溶する かまたは反応して溶融する酸化物または酸化物になり得る化合物であればよ い。  The sintering accelerator may be any compound capable of sintering the crushed and pulverized particles of the Li-Mn-based composite oxide particles for granulation, and more preferably a compound that melts at a temperature of 900 or less. For example, oxides or oxides that can be melted at a temperature of 550 ° C to 900 ° C, or oxides or oxides that dissolve or react with lithium or manganese to melt. Any compound can be used.
焼結促進助剤としては、 例えば B i、 B、 W、 Mo、 Pbなどの元素を含 む化合物が挙げられ、 またこれらの化合物を任意に組み合わせて使用しても よい。 また、 B 203と L i Fを組み合わせた化合物または MnF2と L i F を組み合わせた化合物も使用される。 中でも、 B i、 B、 Wの元素を含む化 合物は焼結収縮効果が大きいので好ましい。 Examples of the sintering promoting aid include compounds containing elements such as Bi, B, W, Mo, and Pb, and these compounds may be used in any combination. Furthermore, compounds that combine B 2 0 3 and L i compound combines F or MnF 2 and L i F is also used. Among them, compounds containing the elements Bi, B, and W are preferable because of their large sintering shrinkage effect.
B i化合物としては、 例えば三酸化ビスマス、 硝酸ビスマス、 安息臭酸ビ スマス、 ォキシ酢酸ビスマス、 ォキシ炭酸ビスマス、 クェン酸ビスマス、 水 酸化ビスマスなどが挙げられる。 また、 B化合物としては、 三二酸化硼素、 炭化硼素、 窒化硼素、 硼酸などが挙げられる。 w化合物としては、 二酸化夕 ングステン、 三酸化タングステンなどが挙げられる。 Examples of the Bi compound include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, and bismuth hydroxide. Further, as the B compound, boron trioxide, Boron carbide, boron nitride, boric acid and the like. w Compounds include tungsten dioxide and tungsten trioxide.
焼結促進助剤の添加量は、 添加金属元素換算で L i 一 M n系複合酸化物中 の M n lモルに対して、 0. 0 0 0 1〜0. 0 5モルの範囲内が好ましい。 添 加金属元素換算での添加量が、 0 . 0 0 0 1モル未満では焼結収縮効果が得 られず、 0 . 0 5モルを超えると活物質の初期容量が小さくなる。 好ましい 添加量は 0. 0 0 5〜0. 0 3モルである。  The addition amount of the sintering accelerator is preferably in the range of 0.001 to 0.05 mol per mol of Li-Mn-based composite oxide in terms of the added metal element. . If the added amount in terms of the added metal element is less than 0.001 mol, no sintering shrinkage effect can be obtained, and if it exceeds 0.05 mol, the initial capacity of the active material becomes small. The preferred addition amount is from 0.005 to 0.03 mol.
焼結促進助剤は、 粉末状態で使用しても溶媒に溶解した液体状態で使用し ても構わない。 粉末状態で添加する場合、 焼結促進助剤の平均粒子径は 5 0 m以下が好ましく、 さらに 1 0 以下が好ましく、 3 m以下が一層好 ましい。 焼結促進助剤は造粒 焼結前に添加することが好ましいが、 造粒後 焼結促進助剤が溶融できる温度で造粒物に含浸させ、 焼結させても構わない。 焼結促進助剤は、 焼成後において電池に使用される正極材料中に残存され ることが多く、 例えば本発明における製造方法において使用される前記焼結 促進助剤が正極活物質に残存していることが分析により検知される。  The sintering accelerator may be used in a powder state or in a liquid state dissolved in a solvent. When added in the form of a powder, the average particle size of the sintering accelerator is preferably 50 m or less, more preferably 10 or less, and even more preferably 3 m or less. The sintering promoting aid is preferably added before granulation and sintering, but after granulation, the granulated material may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted. The sintering promoting aid often remains in the positive electrode material used for the battery after firing. For example, the sintering promoting aid used in the production method of the present invention remains in the positive electrode active material. Is detected by analysis.
次に造粒方法について説明する。  Next, a granulation method will be described.
造粒方法としては、 前記焼結促進助剤を使用して噴霧造粒方法、 流動造粒 方法、 圧縮造粒方法、 撹拌造粒方法などが挙げられ、 また媒体流動乾燥ゃ媒 体振動乾燥などの併用をしてもよい。  Examples of the granulation method include a spray granulation method, a fluid granulation method, a compression granulation method, and a stirring granulation method using the sintering promoting aid. May be used in combination.
本発明においては緻密な二次粒子 (造粒粒子も含む) が形成できればよく、 特に造粒の形成方法に制約はない。 撹拌造粒と圧縮造粒は、 二次粒子の密度 が高くなるため、 また噴霧造粒は造粒粒子形状が真球状となるため特に好ま しい。 撹拌造粒器の例としては、 パゥレック (株) 社製バ一チイカルダラ二 ユレ一夕一や不二パゥダル (株) 社製スパルタンリユーザーなどが挙げられ、 圧縮造粒器の例としては、 栗本鉄工 (株) 製ローラ一コンパクタ一 M R C P 一 2 0 0型などが挙げられる。 噴霧造粒器の例としては、 ァシザヮニロアト マイザ一 (株) モービルマイナー型スプレードライヤ一などが挙げられる。 造粒する二次粒子のサイズには特に制約はない。 造粒した二次粒子の平均 粒子径が大きすぎる場合には、 造粒直後または焼結後に軽く解砕 ·粉砕し分 級する等して整粒し、 希望する粒度にすればよい。 一般的には、 平均粒子径 1 0〜2 0 mのサイズの二次粒子が好まれる。 In the present invention, it is sufficient that dense secondary particles (including granulated particles) can be formed, and there is no particular limitation on the method of forming granules. Agitation granulation and compression granulation are particularly preferable because the density of secondary particles is high, and spray granulation is because the granulated particles have a true spherical shape. Examples of agitation granulators include Palec Co., Ltd.'s Vital Cardara Yule One-Yu-Ichi and Fuji Padal Co., Ltd.'s Spartan Riuser, and examples of compression granulators are Kurimoto Roller-Compactor-MRCP-200 type manufactured by Iron Works Co., Ltd. Examples of spray granulators include Ashizanilot Myza-ichi Co., Ltd. Mobile minor type spray dryer. There is no particular limitation on the size of the secondary particles to be granulated. If the average particle size of the granulated secondary particles is too large, it may be adjusted to a desired particle size immediately after granulation or after sintering by lightly crushing, pulverizing and classifying. Generally, secondary particles having a mean particle size of 10 to 20 m are preferred.
造粒効率を高めるためには、 有機物系の造粒助剤を添加してもよい。  In order to increase the granulation efficiency, an organic granulation aid may be added.
このような造粒助剤としては、 アクリル系樹脂、 イソプチレンと無水マレ イン酸との共重合体、 ポリビニルアルコール、 ポリエチレングリコール、 ポ リビニルピロリデン、 ハイドロキシプロピルセルロース、 メチルセルロース、 コーンスターチ、 ゼラチン、 リグニンなどが挙げられる。  Examples of such granulation aids include acrylic resins, copolymers of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinylpyrrolidene, hydroxypropylcellulose, methylcellulose, corn starch, gelatin, lignin, etc. Is mentioned.
造粒助剤の添加方法は、 粉末状態で添加するよりも、 水やアルコールなど の有機溶媒に溶解して噴霧するなどの方法で添加し造粒する方が効率がよい。 造粒助剤の添加量としては、 スピネル構造を有する L i 一 M n系複合酸化物 及び焼結促進助剤 1 0 0質量部に対して 5質量部以下が好ましく、 さらに好 ましくは 2質量部以下である。  As for the method of adding the granulation aid, it is more efficient to add and granulate by dissolving in water or an organic solvent such as alcohol and spraying than adding in a powder state. The addition amount of the granulation assistant is preferably 5 parts by mass or less, more preferably 2 parts by mass, based on 100 parts by mass of the Li-Mn-based composite oxide having a spinel structure and 100 parts by mass of the sintering accelerator. Not more than parts by mass.
次に造粒した二次粒子の焼成方法について説明する。  Next, a method of firing the granulated secondary particles will be described.
造粒した粒子の脱脂方法は、 大気中または酸素を含有するガスフロー中で 3 0 0〜5 5 0 °Cの温度範囲で 1 0分以上保持することにより行う。 脱脂し た造粒物のカーボン残留量は、 0. 1 %以下であることが好ましい。  The method of degreasing the granulated particles is performed by keeping the granulated particles in the air or in a gas flow containing oxygen at a temperature in the range of 300 to 550 ° C for 10 minutes or more. The defatted granules preferably have a carbon residue of 0.1% or less.
脱脂後の造粒粒子の焼成は、 粒成長を抑制して焼結収縮を進行させるため に、 大気中または酸素を含有するガスフロー中、 5 5 0 °C〜9 0 0 °Cの温度 範囲で 1分間以上、 焼結促進助剤が L i - M n系複合酸化物粒子表面で溶融 した状態で保持して焼結収縮させ二次粒子の緻密化をはかることができる。 また、 本発明では、 脱脂後の造粒粒子の焼成は、 粒成長を抑制して焼結収 縮を進行させるために大気中または酸素を含有するガスフロー中で熱機械試 験機で測定した焼結収縮開始温度よりも、 少なくとも 1 0 0 °C高い温度まで、 少なくとも 100 °CZm i nの速度で昇温して 1分〜 10分間保持した後、 少なくとも 100°CZm i nの速度で焼結収縮開始温度まで降温して焼結収 縮させ、 二次粒子の緻密化をはかる。 常温と焼結収縮開始温度との間の昇温 速度と降温速度については、 従来通り 10°CZm i n以下でも構わない。 また、 前述の有機物系の造粒助剤を使用しない造粒物の粒子の焼成も、 大 気中または酸素を含有するガスフロー雰囲気中で同様に焼結収縮させ、 二次 粒子の緻密化をはかることができる。 The calcination of the degreased granulated particles is performed in the temperature range of 550 ° C to 900 ° C in air or in a gas flow containing oxygen in order to suppress grain growth and promote sintering shrinkage. For more than 1 minute, the sintering accelerator can be held in a molten state on the surface of the Li-Mn-based composite oxide particles to cause sintering shrinkage and densification of the secondary particles. In the present invention, the sintering of the degreased granulated particles was measured by a thermomechanical tester in the air or in a gas flow containing oxygen in order to suppress grain growth and promote sintering shrinkage. Up to at least 100 ° C above the sintering shrinkage onset temperature After raising the temperature at a rate of at least 100 ° CZmin and holding it for 1 to 10 minutes, the temperature is reduced to the sintering shrinkage starting temperature at a rate of at least 100 ° CZmin, and the sintering is reduced to densify the secondary particles. Measure. The heating rate and the cooling rate between the room temperature and the sintering shrinkage initiation temperature may be 10 ° CZmin or less as in the conventional case. In addition, the sintering of the particles of the granulated material without using the above-described organic-based granulation aid is also performed by shrinking the sintering in the air or in a gas flow atmosphere containing oxygen to reduce the densification of the secondary particles. Can be measured.
本発明の正極活物質及び本発明の製造方法から得られる正極活物質は、 従 来の L i一 Mn系複合酸化物と同様の方法に準じてリチウムイオン二次電池 用正極に加工され、 電池の評価に供される。  The positive electrode active material of the present invention and the positive electrode active material obtained from the production method of the present invention are processed into a positive electrode for a lithium ion secondary battery according to the same method as the conventional Li-Mn-based composite oxide, and To be evaluated.
以下、 本発明の前記正極活物質を非水二次電池の正極材料として使用する 例について説明する。  Hereinafter, an example in which the positive electrode active material of the present invention is used as a positive electrode material of a nonaqueous secondary battery will be described.
先ず正極材料は、 前記正極活物質と力一ポンプラックまたは黒鉛などの導 電性付与剤、 及びポリフッ化ビニリデンなどのバインダー (結合材) を溶解 した溶液 (例えば、 N—メチルピロリドンなど) を所定割合で混練して、 電 極ペーストとして集電体に塗布し、 次いで乾燥後にロールプレスなどで加圧 して製造される。 集電体には、 アルミニウム、 ステンレス、 チタン等の公知 の金属製集電体が使用される。  First, for the positive electrode material, a solution (for example, N-methylpyrrolidone, etc.) in which the positive electrode active material and a conductive agent such as a pump rack or graphite, and a binder (binding material) such as polyvinylidene fluoride are dissolved is prescribed. The mixture is kneaded at a certain ratio, applied as an electrode paste to a current collector, and then dried and pressed by a roll press or the like. As the current collector, a known metal current collector such as aluminum, stainless steel, or titanium is used.
本発明の非水二次電池において使用される電解液中の電解質塩としては、 フッ素を含有する公知のリチウム塩が使用できる。 例えば、 L i PF6、 L i BF4、 L i N (CF3S〇2) 2、 L i As F6、 L i CF3S03、 L i C 4F9S〇3などが使用できる。 非水二次電池の電解液は、 前記フッ素を含有 する公知のリチウム塩の少なくとも 1種の電解質を非水系電解液に溶解して 用いる。 前記非水系電解液の非水溶媒には、 化学的及び電気化学的に安定な 非プロトン性のものが使用できる。 As the electrolyte salt in the electrolytic solution used in the nonaqueous secondary battery of the present invention, a known lithium salt containing fluorine can be used. For example, L i PF 6 , L i BF 4 , L i N (CF 3 S〇 2 ) 2 , L i As F 6 , L i CF 3 S 0 3 , L i C 4 F 9 S〇 3 etc. can be used. . As the electrolyte for the non-aqueous secondary battery, at least one electrolyte of the known lithium salt containing fluorine is used by dissolving it in a non-aqueous electrolyte. As the non-aqueous solvent of the non-aqueous electrolyte, an aprotic solvent that is chemically and electrochemically stable can be used.
例えば、 炭酸ジメチル、 炭酸プロピレン、 炭酸エチレン、 炭酸メチルェチ ル、 炭酸メチルプロピル、 炭酸メチルイソプロピル、 炭酸メチルプチル、 炭 酸ジェチル、 炭酸ェチルプロピル、 炭酸ジイソプロピル、 炭酸ジブチル、 炭 酸 1, 2—ブチレン、 炭酸ェチルイソプロピル、 炭酸ェチルブチル等の炭酸 エステル類が挙げられる。 また、 トリエチレングリコールメチルエーテル、 テトラエチレングリコールジメチルエーテル等のオリゴェ一テル類、 プロピ オン酸メチル、 蟻酸メチル等の脂肪族エステル類、 ベンゾニトリル、 トル二 トリル等の芳香族二トリル類、 ジメチルホルムアミド等のアミド類、 ジメチ ルスルホキシド等のスルホキシド類、 ァ—プチロラクトン等のラクトン類、 スルホラン等の硫黄化合物、 N _ビニルピロリドン、 N—メチルピロリドン、 リン酸エステル類等も例示できる。 中でも、 炭酸エステル類、 脂肪族エステ ル類、 エーテル類が好ましい。 For example, dimethyl carbonate, propylene carbonate, ethylene carbonate, methyl carbonate And methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, diisopropyl carbonate, dibutyl carbonate, 1,2-butylene carbonate, ethyl isopropyl carbonate, and ethyl butyl carbonate. Oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether; aliphatic esters such as methyl propionate and methyl formate; aromatic nitriles such as benzonitrile and tolitolitol; dimethylformamide; Examples thereof include amides, sulfoxides such as dimethyl sulfoxide, lactones such as carboxylactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphate esters. Among them, carbonates, aliphatic esters and ethers are preferred.
本発明の非水二次電池において使用される負極としては、 リチウムイオン を可逆的に吸蔵放出可能な材料であれば特に制限はなく、 例えば、 リチウム 金属、 リチウム合金、 炭素材料 (黒鉛を含む) 、 金属カルコゲン等が使用で きる。  The negative electrode used in the non-aqueous secondary battery of the present invention is not particularly limited as long as it is a material capable of inserting and extracting lithium ions reversibly. For example, lithium metal, lithium alloy, carbon material (including graphite) And metal chalcogens can be used.
次に、 電極特性の評価方法について説明する。  Next, a method for evaluating the electrode characteristics will be described.
正極活物質、 導電材としてキヤポット製バルカン X C— 7 2、 結着剤とし て四フッ化工チレン樹脂を質量比で、 5 0 : 3 4 : 1 6の割合で混合し、 そ の混合物をトルエンで 1 2時間膨潤する。 膨潤した混合物をアルミニウムェ キスバンドメタルからなる集電体上に塗り、 2 t Z c m2で加圧成形し、 ト ルェンを乾燥して正極とする。 一方、 負極としては、 リチウム箔を用いる。 電解液としては、 炭酸プロピレンと炭酸ジメチルを体積比で 1対 2の割合 で混合した混合液に L i P F 6を 1モルノリットルの濃度で溶解したものを 用いる。 セパレーターとしては、 ポリプロピレン製のものを用い、 負極のデ ンドライト生成が原因のマイクロショートを防止する目的で、 補強材として シリカ繊維ろ紙 (例えば、 アドバンテック東洋 (株) 製の Q R— 1 0 0 ) を も併用する。 これら正極、 負極、 電解液、 セパレーターと補強材を用いて、Mix the pot active material, Vulcan XC-72 made of Capot as a conductive material, and a tetrafluoroethylene resin as a binder in a mass ratio of 50:34:16 in a mass ratio, and the mixture is mixed with toluene. Swell for 12 hours. The swollen mixture is applied onto a current collector made of aluminum exci- band metal, pressed at 2 tZcm2, and dried to form a positive electrode. On the other hand, a lithium foil is used as the negative electrode. As an electrolytic solution, used after dissolving L i PF 6 at a concentration of 1 mole Bruno liter liquid mixture of dimethyl carbonate propylene carbonate at a ratio of 1: 2 volume ratio. A separator made of polypropylene is used as the separator, and silica fiber filter paper (for example, QR-100 manufactured by Advantech Toyo Co., Ltd.) is used as a reinforcing material for the purpose of preventing micro short circuit caused by dendrite formation of the negative electrode. Also used together. Using these positive electrode, negative electrode, electrolyte, separator and reinforcing material,
2 0 1 6型コイン電池を作製し、 6 0°Cに設定した恒温槽内で 5 0 0回の充 電 ·放電サイクル試験を行う。 測定条件は、 定電流定電圧充電 -定電流放電、 充電及び放電レート 1 C (充電開始から 2. 5時間で充電休止) 、 走査電圧 3. 1 V〜4. 3 Vである。 発明を実施するための最良の形態 A 201-type coin battery is manufactured, and a charge / discharge cycle test is performed 500 times in a thermostat set at 60 ° C. The measurement conditions are: constant current constant voltage charge-constant current discharge, charge and discharge rate 1 C (charge pause 2.5 hours after the start of charge), and scan voltage 3.1 V to 4.3 V. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例および比較例を挙げて本発明を説明するが、 本発明は下記の 記載により何ら限定されるものではない。  Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited by the following description.
なお、 下記の例及び表 1〜3に示す正極活物質の特性は以下の方法により 測定した。  The properties of the positive electrode active materials shown in the following examples and Tables 1 to 3 were measured by the following methods.
1) 平均粒子径及び比表面積  1) Average particle size and specific surface area
レーザ一式粒度測定器として CILAS社製 GRANULOMETER (HR850型) を使用して、 界面活性剤 (花王製デモール P) 0. 2 %水溶液中に超音波で 粉体を分散して粒度分布を測定して求めた。  Using a CRANAS GRANULOMETER (HR850) as a complete laser particle size analyzer, surfactant (Kao Demol P) was used to disperse the powder by ultrasonic wave in a 0.2% aqueous solution to measure the particle size distribution. I asked.
2) タップ密度  2) Tap density
(株) 蔵持科学機器製作所製タップピンダマシン (KRS-409型) を使用し て、 振幅 8 mmで 2 0 0 0回タッピング後測定した。  Using a tap pinda machine (KRS-409) manufactured by Kuramochi Scientific Instruments Co., Ltd., measurement was performed after tapping 200 times at an amplitude of 8 mm.
3) 空隙率  3) Porosity
正極活物質と熱硬化性樹脂と混合、 硬化することにより正極活物質を樹脂 中に埋め込み、 ミクロト一ムで切断し、 鏡面研磨して、 研磨面を走査電子顕 微鏡 (S EM) で写真撮影した。 得られた S EM写真中の二次粒子 1個の断 面積 Bとその二次粒子断面中に含まれる全ポアの総断面積 Aを画像解析装置 で計測し、 以下の式で二次粒子 1個の空隙率 C (%) を計算し、 ランダムに 選択した二次粒子 5 0個の空隙率の平均値を平均空隙率とした。  The positive electrode active material and the thermosetting resin are mixed and cured to embed the positive electrode active material in the resin, cut with a microtome, mirror-polished, and photograph the polished surface with a scanning electron microscope (SEM). Taken. The cross-sectional area B of one secondary particle in the obtained SEM photograph and the total cross-sectional area A of all the pores included in the cross-section of the secondary particle were measured with an image analyzer. The porosity C (%) of the particles was calculated, and the average value of the porosity of 50 randomly selected secondary particles was defined as the average porosity.
C (%) = (A/B) X 1 0 0 4) 結晶子サイズ C (%) = (A / B) X 1 0 0 4) Crystallite size
以下の条件にて測定した (1 1 1) 面の X線回折ピークから Scherrerの式 を用いて算出した。  It was calculated from the X-ray diffraction peak of the (1 1 1) plane measured under the following conditions using Scherrer's equation.
すなわち、 結晶子の外形が立方体で大きさの分布を持たないと仮定して、 結晶子の大きさによる回折線の広がりを半値幅より算出した値を使用した。 なお、 単結晶シリコンを炭化タングステン製サンプルミルで粉砕後、 44 m以下に篩い分けした粉末を外部標準として、 装置定数更正曲線を作成した。  That is, assuming that the outer shape of the crystallite is cubic and does not have a size distribution, the value obtained by calculating the spread of the diffraction line according to the crystallite size from the half-value width was used. In addition, a single crystal silicon was pulverized with a tungsten carbide sample mill and then sieved to 44 m or less.
[測定装置及び方法]  [Measurement device and method]
理学電機 (株) 製 R a dタイプゴニオメ一夕、 測定モードとして連続測定、 解析ソフトには理学電機 (株) RI T2000 シリーズのアプリケーションソフ トを使用し、 結晶子の大きさの解析を行った。  Rig-type goniometer manufactured by Rigaku Denki Co., Ltd. Continuous measurement was performed as the measurement mode, and the size of crystallites was analyzed using the Rigaku Denki Co., Ltd. RI T2000 series application software as the analysis software.
測定条件は、 X線 (CuKo!線) 、 出力 50 kV、 180mA, スリット 幅 (3ケ所) は 1ノ 2。 、 1Z2° 、 0. 15mm, スキャン方法には 2 Θ ΖΘ法、 スキャン速度は /m i n、 測定範囲 (20) は 17〜 20° 、 ステップは 0. 004° である。 なお、 この方法で得られる結晶子サイズの 精度は、 ±30オングストロームである。  The measurement conditions were as follows: X-ray (CuKo! Line), output 50 kV, 180 mA, slit width (3 locations) 1 to 2 , 1Z2 °, 0.15mm, 2 方法 method for scan method, scan speed / min, measurement range (20) 17-20 °, step 0.004 °. The accuracy of the crystallite size obtained by this method is ± 30 angstroms.
5) 格子定数  5) Lattice constant
J. B. Nelson, D. P. Rileyの方法 (Proc. Phys. So , 51, 160 (1945) ) で求め た。  It was determined by the method of J. B. Nelson and DP Riley (Proc. Phys. So, 51, 160 (1945)).
6) 比表面積 6) Specific surface area
BET法で測定した。  It was measured by the BET method.
7) 造粒粒子の形状  7) Shape of granulated particles
正極活物質の造粒品を SEMで写真撮影し、 画像解析して、 二次粒子の円 形度 (円形度 =4 π [面積 Ζ (周囲長さ) 2] ) と針状比 (針状比 ==針絶対 最大長 Ζ対角幅) を求めた。 各サンプルについて、 それぞれ二次粒子 200 個を計測し、 その平均値を求めた。 実施例 1 Photographs of the granulated positive electrode active material with SEM, image analysis, and analysis of secondary particle circularity (circularity = 4 π [area 面積 (perimeter) 2 ]) and needle ratio (needle shape) Ratio == needle absolute maximum length Ζ diagonal width). For each sample, 200 secondary particles were measured, and the average was calculated. Example 1
L i /Mn原子比が 0. 5 1の組成となるように、 比表面積 2 2m2Zgの 炭酸マンガン (中央電気工業 (株) 製、 C 2— 1 0) と炭酸リチウム (本庄 ケミカル (株) 製、 3N) をボールミルで混合し、 大気雰囲気中加熱速度 2 00°C/h rで室温から 6 5 0 °Cまで昇温してその温度に 4時間保持して L i 一 Mn系複合酸化物を合成した。 合成物中には、 L i 一 Mn系複合酸化物 以外にごく微量の三二酸化マンガンが X線解析装置 (XRD) で検出された。 レーザー式粒度分布測定器で測定した合成物の平均粒子径は 1 0 mであり、 比表面積は 7. 7m2Zgであった。 Manganese carbonate (C 2-10, Chuo Denki Kogyo Co., Ltd.) and lithium carbonate (Honjo Chemical Co., Ltd.) having a specific surface area of 22 m 2 Zg so that the composition ratio of Li / Mn is 0.51 3N) mixed in a ball mill, heated from room temperature to 650 ° C at a heating rate of 200 ° C / hr in the air atmosphere, and kept at that temperature for 4 hours to produce a Li-Mn composite oxidation. Was synthesized. A very small amount of manganese trioxide other than Li-Mn-based composite oxides was detected by X-ray analysis (XRD) in the composite. The average particle size of the synthesized product measured by a laser particle size distribution analyzer was 10 m, and the specific surface area was 7.7 m 2 Zg.
得られたスピネル構造を有する L i 一 Mn系複合酸化物をエタノール溶媒 に分散して湿式ポールミルで粉砕して、 平均粒子径を 0. 5 xmにした。 測 定の結果、 粉砕粉には 3 以上の大きな粒子は含まれておらず、 比表面積 は 2 7. Srr^Zgであった。 この粉砕粉に、 B i ZM nの原子比が 0. 0 0 2 6の割合となるように平均粒子径が 2; mの酸化ビスマスを添加混合して、 不二バウダル (株) 社製スパルタンリューザ一 RMO— 6 Hで撹拌造粒した。  The obtained Li-Mn-based composite oxide having a spinel structure was dispersed in an ethanol solvent and pulverized with a wet pole mill to adjust the average particle diameter to 0.5 xm. As a result of the measurement, the pulverized powder did not contain more than 3 large particles, and the specific surface area was 27 Srr ^ Zg. Bismuth oxide having an average particle size of 2; m was added and mixed with the pulverized powder so that the atomic ratio of BiZMn became 0.026, and the mixture was mixed with Spartan manufactured by Fuji Baudal Co., Ltd. The mixture was stirred and granulated with Luza-RMO-6H.
L i 一 Mn系複合酸化物と酸化ビスマスの混合粉 1 0 0質量部に対して造 粒助剤としてポリビニルアルコール 1. 5質量部を水溶液に溶かして添加し、 1 6分間造粒した。 得られた造粒物をミキサーで軽く解砕 '粉砕し、 風力分 級機で平均粒子径 1 5 / mに整粒した。 整粒後の造粒物のタップ密度は 1. 6 5 gZm lであった。  1.5 parts by mass of polyvinyl alcohol as a granulation auxiliary was dissolved in an aqueous solution and added to 100 parts by mass of the mixed powder of the Li-Mn-based composite oxide and bismuth oxide, and the mixture was granulated for 16 minutes. The obtained granules were lightly crushed and crushed by a mixer, and sized by an air classifier to an average particle diameter of 15 / m. The tap density of the granulated product after sizing was 1.65 gZml.
得られた造粒物を大気中 5 0 0°Cで 2時間保持して脱脂処理 (ポリビニル アルコールを分解) 後、 大気中 2 0 0°C/h rで昇温し 7 5 0°Cに 2 0時間 保持して正極活物質を得た。 ここで製造された正極活物質は、 I CP—AE S法 (誘導結合プラズマ発光分析法) により前記酸化ビスマスの B i元素を 仕込み組成比相当含むことが確認された。  The obtained granules are kept in the air at 500 ° C for 2 hours, and after degreasing (decomposing polyvinyl alcohol), the temperature is raised in the air at 200 ° C / hr and the temperature is raised to 7500 ° C. After holding for 0 hour, a positive electrode active material was obtained. It was confirmed by the ICP-AES method (inductively coupled plasma emission spectroscopy) that the cathode active material produced here contained the Bi element of the bismuth oxide corresponding to the charged composition ratio.
得られた正極活物質の平均空隙率は 1 1. 2 %であった。 また、 正極活物 質のタップ密度は 1. 96 gZm 1であり、 結晶子サイズは 880オングス トロームであり、 格子定数は 8. 233オングストロ一ムであった。 The average porosity of the obtained positive electrode active material was 11.2%. Also, the positive electrode active material The tap density of the material was 1.96 gZm1, the crystallite size was 880 angstroms, and the lattice constant was 8.233 angstroms.
上記の正極活物質を用いてコイン型電池を次のようにして作製した。 正極 活物質、 導電材であるカーボンブラック、 N—メチル _ 2—ピロリドンに溶 解したポリフッ化ビニリデンを質量比で 80 : 10 : 10の割合で混練し、 アルミニウム箔上に塗布し加圧プレスして正極とした。 負極としては所定厚 みのリチウム箔を用いた。 電解液としては、 炭酸プロピレンと炭酸ジメチル を体積比で 1 : 2の割合で混合した混合液に、 L i PF6を 1モル Zリット ルの濃度で溶解したものを用いた。 これらの正極と負極、 ポリプロピレン製 のセパレー夕一、 電解液及びガラスフィルタ一を用い、 2016型のコイン 型電池を作製した。 Using the positive electrode active material described above, a coin-type battery was manufactured as follows. The positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone are kneaded at a mass ratio of 80:10:10, applied on aluminum foil, and pressed under pressure. To make a positive electrode. A lithium foil having a predetermined thickness was used as the negative electrode. The electrolyte used was 1 propylene carbonate and dimethyl carbonate at a volume ratio: a mixture in a mixing ratio of 2, was obtained by dissolving the L i PF 6 at a concentration of 1 mole Z liters. Using these positive and negative electrodes, a polypropylene separator, an electrolyte, and a glass filter, a 2016 coin-type battery was fabricated.
上記方法で作製した電池の 60 での充放電サイクル試験を、 充放電レー ト 1 C (充電開始から 2. 5時間で充電休止) 、 電圧範囲 3. 0〜4. 2 Vの 条件で 100サイクル充放電を繰り返した。 初期の放電容量と 100サイク ル経過後の容量維持率 (%) を、 他の測定結果と共に表 1に示す。 実施例 2  The battery prepared by the above method was subjected to a charge / discharge cycle test at 60 at a charge / discharge rate of 1 C (2.5 hours after the start of charging) and a voltage range of 3.0 to 4.2 V for 100 cycles. Charge and discharge were repeated. Table 1 shows the initial discharge capacity and the capacity retention (%) after 100 cycles. Example 2
L i一 Mn系複合酸化物合成条件中のマンガン原料を電解二酸化マンガン としたこと以外は実施例 1と同様に操作を行い、 二次粒子の空隙率、 タップ 密度、 結晶子サイズ、 格子定数、 電極特性の評価を行った。 結果を表 1に示 す。 実施例 3  The operation was performed in the same manner as in Example 1 except that the manganese source in the synthesis conditions of the Li-Mn-based composite oxide was electrolytic manganese dioxide, and the porosity of secondary particles, tap density, crystallite size, lattice constant, The electrode characteristics were evaluated. The results are shown in Table 1. Example 3
L i /Mn/A 1の原子比が 1. 02 : 1. 967 : 0. 013の組成とな るように、 炭酸マンガンと炭酸リチウムと水酸化アルミニウムをポールミル で混合し、 大気雰囲気中加熱速度 200°C/h rで室温から 650°Cまで昇 温し、 650°Cに 4時間保持して、 L i一 Mn系複合酸化物を合成した。 合 成物中には、 L i一 Mn系複合酸化物以外にごく微量の三二酸化マンガンが XRDで検出された。 レーザー式粒度分布測定器で測定した合成物の平均粒 子径は 10 であった。 Mixing manganese carbonate, lithium carbonate and aluminum hydroxide with a pole mill so that the atomic ratio of Li / Mn / A1 becomes 1.02: 1.967: 0.013, and heating rate in air atmosphere Increase from room temperature to 650 ° C at 200 ° C / hr The mixture was heated and maintained at 650 ° C for 4 hours to synthesize a Li-Mn-based composite oxide. In the composite, a very small amount of manganese trioxide was detected by XRD in addition to the Li-Mn-based composite oxide. The average particle size of the synthesized product measured by a laser particle size distribution analyzer was 10.
得られた L i一 Mn系複合酸化物を平均粒子径 0. 5 に粉砕し、 BZ Mnの原子比が 0. 0208となるように酸化硼素を添加し造粒した。 次に、 脱脂後の造粒物を 750°Cで 0. 5 h r焼成したこと以外は、 実施例 1と同 様に実施した。 その結果を表 1に示す。 実施例 4  The obtained Li-Mn-based composite oxide was pulverized to an average particle diameter of 0.5, and boron oxide was added so that the atomic ratio of BZ Mn became 0.0208, and the mixture was granulated. Next, the same operation as in Example 1 was performed except that the degreased granules were fired at 750 ° C for 0.5 hr. The results are shown in Table 1. Example 4
BZMnの原子比を 0. 009にしたこと、 及び脱脂後の造粒物を 76 0 で0. 5 h r焼成したこと以外は、 実施例 3と同様に実施した。 その結 果を表 1に示す。 実施例 5  The same operation as in Example 3 was carried out, except that the atomic ratio of BZMn was 0.009, and the degreased granules were fired at 760 for 0.5 hr. The results are shown in Table 1. Example 5
BZMnの原子比を 0. 006にしたこと、 及び脱脂後の造粒物を 77 0°〇で0. 5 h r焼成したこと以外は、 実施例 3と同様に実施した。 その結 果を表 1に示す。 実施例 6  The same operation as in Example 3 was carried out except that the atomic ratio of BZMn was 0.006, and the degreased granules were fired at 770 ° for 0.5 hr. The results are shown in Table 1. Example 6
脱脂後の造粒物を 760°Cで 20 h r焼成したこと以外は、 実施例 1と同 様に実施した。 その結果を表 1に示す。 実施例 7  The same operation as in Example 1 was performed except that the degreased granules were fired at 760 ° C for 20 hours. The results are shown in Table 1. Example 7
酸化ビスマスを三酸化タングステンに変更して、 WZMnの原子比が 0. 0208の割合で三酸化タングステンを添加したこと、 及び脱脂後の造粒物 を 7 5 0°Cで 2 0 h r焼成したこと以外は、 実施例 1と同様に実施した。 そ の結果を表 1に示す。 実施例 8 Bismuth oxide was changed to tungsten trioxide, and tungsten trioxide was added at an atomic ratio of WZMn of 0.0208, and granulated material after degreasing Was carried out in the same manner as in Example 1 except that was fired at 750 ° C. for 20 hours. The results are shown in Table 1. Example 8
実施例 1で合成した L i 一 Mn系複合酸化物を、 さらに大気中加熱速度が 2 0 0°C/h rで室温から 7 5 0°Cまで昇温し、 7 5 0°Cで 2 0 h r保持し て結晶化した。 その後は、 実施例 1で結晶化した L i 一 Mn系複合酸化物を 使用したこと、 酸化ビスマスを酸化硼素に変更して、 BZMnの原子比が 0. 0 2 0 8の割合で酸化硼素を添加したこと、 及び脱脂後の造粒物を 7 5 0°C で 0. 5 h r焼成したこと以外は、 実施例 1と同様に実施した。 その結果を 表 1に示す。 実施例 9  The Li-Mn-based composite oxide synthesized in Example 1 was further heated from room temperature to 750 ° C at an air heating rate of 200 ° C / hr, It was crystallized while keeping hr. Thereafter, the Li-Mn-based composite oxide crystallized in Example 1 was used, and bismuth oxide was changed to boron oxide. The procedure was performed in the same manner as in Example 1 except that the granules were added and the degreased granules were fired at 75 ° C. for 0.5 hr. The results are shown in Table 1. Example 9
造粒前の L i 一 Mn系複合酸化物として平均粒子径が 3. 5 m、 比表面 積が 1 0m2/gのものを使用したこと以外は、 実施例 3と同様に実施した。 その結果を表 1に示す。 実施例 1 0 Before granulation L i one Mn-based average particle diameter of 3. 5 m as a composite oxide, except that specific surface area was used as a 1 0 m 2 / g, was prepared as in Example 3. The results are shown in Table 1. Example 10
L i ZMn/A 1の原子比が 1. 0 3 : 1. 9 6 7 : 0. 0 1 3の組成とな るように、 炭酸マンガンと炭酸リチウムと水酸化アルミニウムをポールミル で混合して合成した L i 一 Mn系複合酸化物を使用したこと以外は、 実施例 3と同様に実施した。 その結果を表 1に示す。 正極活物質 60°C電池性能 焼結促進助剤 脱脂後の ■fcH曰-r 100サイクノレSynthesized by mixing manganese carbonate, lithium carbonate, and aluminum hydroxide using a pole mill so that the atomic ratio of LiZMn / A1 is 1.03: 1.967: 0.013. Example 3 was carried out in the same manner as in Example 3, except that the obtained Li-Mn-based composite oxide was used. The results are shown in Table 1. Positive electrode active material 60 ° C battery performance Sintering accelerator After degreasing ■ fcH says -r 100 cycle
No. 格子定数 円形度 針状比 初期容量 No. Lattice constant Circularity Needle ratio Initial capacity
添加モル比 プ密度 比表面積  Additive molar ratio Density Specific surface area
焼成 空隙率 タッ  Firing porosity
条件 ノプ、  Condition nop,
ハ 畺雑 C miscellaneous
P ω % g/ ml m2/ g A A mAh/g % \ P ω% g / ml m 2 / g AA mAh / g% \
実施例 1 750°CX20hr 11.2 1.96 1.8 880 8.233 0.76 1.31 129 84 口 03 Example 1 750 ° C X20hr 11.2 1.96 1.8 880 8.233 0.76 1.31 129 84 Port 03
Bi/Mn  Bi / Mn
実施例 2 750°CX20hr 12.0 1.93 1.8 890 8.234 0.75 1.33 118 78 Example 2 750 ° C X20hr 12.0 1.93 1.8 890 8.234 0.75 1.33 118 78
0.0026  0.0026
B/Mn  B / Mn
実施例 3 750°CX0.5hr 6.5 2. 16 1.2 780 8.232 0.78 1.28 127 85 Example 3 750 ° C X 0.5hr 6.5 2.16 1.2 780 8.232 0.78 1.28 127 85
0.0208  0.0208
B/Mn  B / Mn
実施例 4 760°CX0.5hr 2.3 2.33 1.0 910 8.231 0.78 1.29 125 83 Example 4 760 ° C X 0.5hr 2.3 2.33 1.0 910 8.231 0.78 1.29 125 83
0.0090  0.0090
B/Mn  B / Mn
実施例 5 770。CX0.5hr 1.8 2.35 0.9 930 8.23 0.77 1.28 126 81 Example 5 770. CX0.5hr 1.8 2.35 0.9 930 8.23 0.77 1.28 126 81
0.0060  0.0060
Bi/Mn  Bi / Mn
実施例 6 760°CX20hr 9. 1 2.05 1.2 910 8.231 0.78 1.29 115 87 Example 6 760 ° C X20hr 9.1 2.05 1.2 910 8.231 0.78 1.29 115 87
0.0026  0.0026
W/Mn  W / Mn
実施例 7 750°CX20hr 6. 1 2. 18 1. 1 800 8.239 0.78 1.28 124 76 Example 7 750 ° C X20hr 6.1 2.18 1.1 800 8.239 0.78 1.28 124 76
0.0208  0.0208
B/Mn  B / Mn
実施例 8 750°CX0.5hr 9.8 2.02 1.5 820 8.240 0.76 1.30 128 80 Example 8 750 ° C X 0.5hr 9.8 2.02 1.5 820 8.240 0.76 1.30 128 80
0.0208  0.0208
B/Mn  B / Mn
実施例 9 750°CX0.5hr 8.5 2.07 1.3 750 8.233 0.79 1.31 126 85 Example 9 750 ° C X 0.5hr 8.5 2.07 1.3 750 8.233 0.79 1.31 126 85
0.0208  0.0208
B/Mn  B / Mn
実施例 10 750°CX0.5hr 6.3 2. 15 1.2 750 8.228 0.76 1.29 116 89 Example 10 750 ° C X 0.5hr 6.3 2.15 1.2 750 8.228 0.76 1.29 116 89
0.0208 0.0208
実施例 1 1 Example 1 1
脱脂後の造粒物を 830°Cで 20 h r焼成したこと以外は、 実施例 1と同 様に実施した。 その結果を表 2に示す。 実施例 12  The same operation as in Example 1 was performed except that the degreased granules were fired at 830 ° C for 20 hours. The results are shown in Table 2. Example 12
L i /Mn/A 1の原子比が 0. 99 : 1. 96 7 : 0. 0 1 3の組成とな るように、 炭酸マンガンと炭酸リチウムと水酸化アルミニウムをポールミル で混合して合成した L i一 Mn系複合酸化物を使用したこと以外は、 実施例 3と同様に実施した。 その結果を表 2に示す。 実施例 1 3  Manganese carbonate, lithium carbonate, and aluminum hydroxide were mixed using a pole mill so that the atomic ratio of Li / Mn / A1 was 0.99: 1.96: 0.013. Example 3 was carried out in the same manner as in Example 3, except that a Li-Mn-based composite oxide was used. The results are shown in Table 2. Example 13
造粒後の平均粒子径を 65 imに整粒したこと以外は、 実施例 3と同様に 実施した。 その結果を表 2に示す。 実施例 14  The procedure was performed in the same manner as in Example 3, except that the average particle diameter after granulation was adjusted to 65 im. The results are shown in Table 2. Example 14
B i ZMnの原子比が 0. 0020の割合にしたこと以外は、 実施例 1と 同様に実施した。 その結果を表 2に示す。 ここで得られた造粒 ·焼成 ·整粒 された正極活物質を走査電子顕微鏡 (X15,000倍) で観察した結果、 図 1に 示すように丸い形状の粒子であることがわかった。 この粒子の粒度分布を図 2に示す。 比較例 1  The operation was performed in the same manner as in Example 1 except that the atomic ratio of BiZMn was set to 0.0020. The results are shown in Table 2. Observation of the granulated, calcined, and sized positive electrode active material using a scanning electron microscope (X15,000 magnification) revealed that the particles were round particles as shown in Fig. 1. Figure 2 shows the particle size distribution of these particles. Comparative Example 1
造粒前の L i一 Mn系複合酸化物の平均粒子径を 6. 0 mとしたこと以 外は、 実施例 1と同様に実施した。 その結果を表 2に示す。 比較例 2 L i の原子比が0. 5 1の配合組成で、 平均粒子径が 20 zmの電 解二酸化マンガンと炭酸リチウムをボールミルで混合し、 大気中加熱速度 1 00°C/h rで 760°Cまで昇温し、 760°Cで 24 h r保持して正極活物 質を合成した。 得られた正極活物質について実施例 1と同様に評価した。 そ の結果を表 2に示す。 比較例 3 The same operation as in Example 1 was performed except that the average particle diameter of the Li-Mn-based composite oxide before granulation was 6.0 m. The results are shown in Table 2. Comparative Example 2 A mixture of electrolytic manganese dioxide and lithium carbonate with an atomic ratio of Li of 0.51 and an average particle size of 20 zm is mixed with a ball mill, and the heating rate in the atmosphere is 100 ° C / hr up to 760 ° C. The temperature was raised and maintained at 760 ° C for 24 hours to synthesize a positive electrode active material. The obtained positive electrode active material was evaluated in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 3
焼結促進剤を添加せずに造粒したこと以外は、 実施例 1と同様に実施した。 その結果を表 2示す。 比較例 4  The procedure was performed in the same manner as in Example 1 except that granulation was performed without adding a sintering accelerator. Table 2 shows the results. Comparative Example 4
造粒物を 750°Cで 20 h r焼成したこと以外は、 実施例 3と同様に実施 した。 その結果を表 2に示す。 The procedure was performed in the same manner as in Example 3 except that the granulated product was fired at 750 ° C for 20 hours. The results are shown in Table 2.
表 2 Table 2
Figure imgf000027_0001
Figure imgf000027_0001
実施例 1 5 Example 15
L i /MnZA 1の原子比が 1. 02 : 1. 967 : 0. 0 1 3の組成とな るように炭酸マンガンと炭酸リチウムと水酸化アルミニウムをポールミルで 混合し、 大気雰囲気中加熱速度 200°C/h rで室温から 6 50°Cまで昇温 し、 650°Cで 4時間保持して、 L i一 Mn系複合酸化物を合成した。 合成 物中には、 L i一 Mn系複合酸化物以外にごく微量の三二酸化マンガンが X RDで検出された。 レーザ一式粒度分布測定器で測定した合成物の平均粒子 径は 10 imであった。  Manganese carbonate, lithium carbonate and aluminum hydroxide were mixed in a pole mill so that the atomic ratio of Li / MnZA 1 was 1.02: 1.967: 0.013, and the heating rate in the atmosphere was 200. The temperature was raised from room temperature to 650 ° C at a rate of ° C / hr, and kept at 650 ° C for 4 hours to synthesize a Li-Mn-based composite oxide. In the compound, a very small amount of manganese trioxide was detected by XRD in addition to the Li-Mn-based composite oxide. The average particle size of the synthesized product measured by a laser set particle size distribution analyzer was 10 im.
得られた L i—Mn系複合酸化物に、
Figure imgf000028_0001
の原子比が0. 0208と なるように酸化硼素を添加してエタノール溶媒に分散し、 湿式ボールミルで 粉碎して、 平均粒子径を 0. にした。 得られた粉砕粉を用いて、 不二 バウダル (株) 社製スパルタンリユーザー RMO_ 6 Hで撹拌造粒した。
In the obtained Li-Mn-based composite oxide,
Figure imgf000028_0001
Boron oxide was added so that the atomic ratio became 0.0208, dispersed in an ethanol solvent, and pulverized with a wet ball mill to reduce the average particle diameter to 0.1. Using the obtained pulverized powder, stirring and granulation was performed with Spartan Reuser RMO_6H manufactured by Fuji Baudal Co., Ltd.
L i一 Mn系複合酸化物と酸化硼素の粉砕粉 100質量部に対して、 造粒 助剤のポリビニルアルコール 1. 5質量部を水溶液に溶かして添加し、 1 6 分間造粒した。 得られた造粒物をミキサーで軽く解砕 ·粉砕し、 風力分級機 で平均粒子径 1 5 mに整粒した。 整粒後の造粒物のタップ密度は、 1. 6 0 g/m 1であった。  To 100 parts by mass of the pulverized powder of the Li-Mn-based composite oxide and boron oxide, 1.5 parts by mass of polyvinyl alcohol as a granulation aid was dissolved in an aqueous solution and added, and the mixture was granulated for 16 minutes. The obtained granules were lightly crushed and crushed by a mixer, and sized by an air classifier to an average particle size of 15 m. The tap density of the granulated product after sizing was 1.60 g / m1.
得られた造粒物を、 大気中 500°Cで 2時間保持して脱脂処理 (ポリビニ ルアルコールを分解) した。 脱脂した造粒粉の焼結収縮開始温度を熱機械試 験機で測定したところ、 660 °Cであった。  The obtained granules were kept in the air at 500 ° C for 2 hours to be degreased (decompose polyvinyl alcohol). The sintering shrinkage onset temperature of the degreased granulated powder was measured with a thermomechanical tester, and was 660 ° C.
次に脱脂した造粒粉を、 以下の条件でロータリーキルンを用いて焼結した。 ロータリ一キルンの均熱ゾーンの温度を 780°Cとし、 脱脂した造粒粉が 均熱ゾーンを 3分で通過するように、 造粒粉の供給速度、 口夕リーキルンの 回転数及び傾斜を設定した。 造粒粉が投入口から均熱ゾーンに入るまでの所 用時間及び均熱ゾ一ンを出てからロータリーキルン出口までの所用時間は、 共に 6. 3分であった。 得られた正極活物質の平均空隙率は、 2. 1 %であった。 また、 S EM写 真より一次粒子 5 0 0個の最長径を計測したところ、 平均粒子径は 0. 40 mであった。 Next, the degreased granulated powder was sintered using a rotary kiln under the following conditions. Set the temperature in the soaking zone of the rotary kiln to 780 ° C, and set the supply speed of granulated powder, the rotation speed of the kiln and the inclination of the kiln so that the degreased granulated powder passes through the soaking zone in 3 minutes. did. The time required for the granulated powder to enter the soaking zone from the input port and the time required from exiting the soaking zone to the outlet of the rotary kiln were both 6.3 minutes. The average porosity of the obtained positive electrode active material was 2.1%. Further, when the longest diameter of 500 primary particles was measured from the SEM photograph, the average particle diameter was 0.40 m.
上記の正極活物質を用いて実施例 1と同様にコィン型電池を作製した。 上記方法で作製した電池の 6 0°Cでの充放電サイクル試験を、 充放電レー 卜 1 C、 電圧範囲 3. 0〜4. 2 Vの条件で 1 0 0サイクル充放電を繰り返し た。  Using the above-mentioned positive electrode active material, a coin-type battery was produced in the same manner as in Example 1. A charge / discharge cycle test at 60 ° C. of the battery prepared by the above method was repeated at 100 charge / discharge cycles at a charge / discharge rate of 1 C and a voltage range of 3.0 to 4.2 V.
表 3に初期の放電容量と 1 00サイクル経過後の容量維持率 (%) を示す。  Table 3 shows the initial discharge capacity and the capacity retention rate (%) after 100 cycles.
実施例 1 6 Example 16
口—タリーキルンの均熱ゾーンの温度を 7 8 0°Cとし、 脱脂した造粒粉が 均熱ゾーンを 9分で通過するように、 造粒粉の供給速度、 ロタリーキルンの 回転数及び傾斜を設定したこと以外、 実施例 1 5と同様に実施した。 その結 果を表 3に示す。  The temperature of the soaking zone of the mouth-tally kiln is set at 780 ° C, and the supply speed of granulated powder, the rotation speed of the rotary kiln and the inclination are set so that the degreased granulated powder passes through the soaking zone in 9 minutes. Other than that, it carried out similarly to Example 15. The results are shown in Table 3.
実施例 1 7 Example 17
L i /Mn/A 1の原子比が 1. 0 2 : 1. 9 6 7 : 0. 0 1 3の組成とな るように炭酸マンガンと炭酸リチウムと気相法アルミナを混合し、 大気雰囲 気中加熱速度 2 0 0°C/h rで室温から 6 5 0°Cまで昇温し、 6 5 0°Cで 4 時間保持して、 L i 一 Mn系複合酸化物を合成した。 合成物中には、 L i 一 Mn系複合酸化物以外に、 ごく微量の三二酸化マンガンが XRDで検出され た。 レーザ一式粒度分布測定器で測定した合成物の平均粒子径は、 1 0 m であった。  Mix manganese carbonate, lithium carbonate and vapor phase alumina so that the atomic ratio of Li / Mn / A1 becomes 1.02: 1.967: 0.013. The temperature was raised from room temperature to 650 ° C at an ambient heating rate of 200 ° C / hr, and the temperature was maintained at 650 ° C for 4 hours to synthesize a Li-Mn-based composite oxide. In the synthesized product, a very small amount of manganese trioxide was detected by XRD in addition to the Li-Mn-based composite oxide. The average particle size of the synthesized product measured by a laser type particle size distribution analyzer was 10 m 2.
得られた L i一 Mn系複合酸化物に BZMnの原子比が 0. 0 1 04とな るように酸化硼素を添加して、 イオン交換水に分散して媒体撹拌式微粉碎機 で粉碎して、 平均粒子径を 0. 1 8 xmにした。 得られた粉砕スラリーに造 粒助剤 (イソバン 104, クラレ (株) 製) を L i一 Mn系複合酸化物に対 して 1. 5質量%を添加し、 ディスク回転式のスプレードライヤーで乾燥造 粒を行った。 造粒物は、 平均粒子径 18. 3 の球状粒子で、 タップ密度 は 1. 54 gZm 1であった。 Boron oxide is added to the obtained Li-Mn-based composite oxide so that the atomic ratio of BZMn becomes 0.0104, dispersed in ion-exchanged water, and pulverized by a medium stirring type pulverizer. The average particle size was 0.18 xm. Formed into the obtained pulverized slurry Granulation aid (Isoban 104, manufactured by Kuraray Co., Ltd.) was added in an amount of 1.5% by mass based on the Li-Mn-based composite oxide, and dried and granulated by a disk-rotating spray dryer. The granulated product was spherical particles having an average particle size of 18.3, and the tap density was 1.54 gZm1.
得られた造粒物を大気中 500でで 2時間保持して脱脂処理後、 ロータリ —キルンを用いて実施例 15と同じ条件で焼結した。  The obtained granules were kept in the air at 500 at 2 hours for degreasing and then sintered under the same conditions as in Example 15 using a rotary kiln.
得られた正極活物質の平均空隙率は、 1. 7%、 平均粒子径は 0. 27 m、 タップ密度は 2.40 gZm 1、 B ET法で測定した比表面積 0. 8m2/g であった。 この正極活物質を用いて、 実施例 15と同様な方法で作製したコ ィン型電池の特性を表 3に示す。 実施例 18 The average porosity of the obtained positive electrode active material was 1.7%, the average particle size was 0.27 m, the tap density was 2.40 gZm1, and the specific surface area measured by the BET method was 0.8 m 2 / g. . Table 3 shows the characteristics of the coin-type battery manufactured using this positive electrode active material in the same manner as in Example 15. Example 18
口一タリーキルンの均熱ゾーンの温度を 850°Cとしたこと以外は、 実施 例 15と同様に実施した。 その結果を表 3に示す。 実施例 19  Example 15 was carried out in the same manner as in Example 15 except that the temperature of the soaking zone of the mouth-to-mouth kiln was set to 850 ° C. The results are shown in Table 3. Example 19
口一タリーキルンの均熱ゾーンの温度を 850°Cとしたこと以外は、 実施 例 17と同様に実施した。 その結果を表 3に示す。 比較例 5  Example 17 was carried out in the same manner as in Example 17 except that the temperature in the soaking zone of the mouth-to-talry kiln was set to 850 ° C. The results are shown in Table 3. Comparative Example 5
脱脂後の造粒物を 650°Cから 10°CZm i nの速度で昇温し、 750°C で 0. 5 h r保持して焼結後、 650°Cまで 10°CZm i nの速度で降温し たこと以外は、 実施例 15と同様に実施した。 また、 得られた正極活物質を 実施例 15と同様に評価した。 結果を表 3に示す。 比較例 6 7 5 0 °Cで 2 0 h r保持して焼結したこと以外は、 比較例 5と同様に実施 した。 結果を表 3に示す。 比較例 7 The temperature of the degreased granules is increased from 650 ° C at a rate of 10 ° CZin, held at 750 ° C for 0.5 hr, sintered, and then cooled to 650 ° C at a rate of 10 ° CZmin. Except for this, the procedure was the same as in Example 15. The obtained positive electrode active material was evaluated in the same manner as in Example 15. Table 3 shows the results. Comparative Example 6 The operation was performed in the same manner as in Comparative Example 5 except that the sintering was performed at 750 ° C. for 20 hours. Table 3 shows the results. Comparative Example 7
口一タリ一キルンの均熱ゾーンの温度を 7 8 0 °Cとし、 脱脂した造粒粉が 均熱ゾーンを 0. 5分で通過するように、 造粒粉の供給速度、 口タリ一キル ンの回転数及び傾斜を設定したこと、 及び造粒粉が投入口から均熱ゾーンに 入るまでの所用時間、 及び均熱ゾーンを出てからロータリーキルン出口まで の所用時間は共に 1. 5分であること以外は、 実施例 1 5と同様に実施した。 その結果を表 3に示す。 The temperature of the soaking zone in the mouth kiln is set at 780 ° C, and the supply speed of the granulated powder and the mouth soaking degreased granulated powder pass through the soaking zone in 0.5 minutes. And the time required for the granulated powder to enter the soaking zone from the input port, and the time required from exiting the soaking zone to the rotary kiln outlet are both 1.5 minutes. Except for this, the procedure was the same as in Example 15. The results are shown in Table 3.
表 3 Table 3
正極活物質 60°C電池性能 一次粒子 100サイクノレ Positive electrode active material 60 ° C battery performance Primary particles 100 cycles
No. 焼結条件 空隙率 タップ密度 比表面積 格子定数 円形度 針状比 初期容量 No. Sintering conditions Porosity Tap density Specific surface area Lattice constant Circularity Needle ratio Initial capacity
平均サイズ 容量維持率 % g/ ml μ m m2Z g A mAh/g %Average size Capacity retention% g / ml μ mm 2 Z g A mAh / g%
7800CX3分 780 0 CX3 minutes
実施例 15 120°C/分 2. 1 2.35 0.40 0.8 8.233 0.77 1.31 127 90 ロータリーキルン Example 15 120 ° C / min 2.1 2.35 0.40 0.8 8.233 0.77 1.31 127 90 Rotary kiln
780。CX9分  780. CX9 minutes
実施例 16 120°C//分 1.6 2.44 0.50 0.4 8.236 0.75 1.29 128 87 ロータリーキノレン Example 16 120 ° C // min 1.6 2.44 0.50 0.4 8.236 0.75 1.29 128 87 Rotary quinolene
780°CX3分  780 ° CX3min
実施例 17 120°C/分 1.7 2.40 0.28 0.8 8.235 0.99 1.02 127 91 ロータリーキルン Example 17 120 ° C / min 1.7 2.40 0.28 0.8 8.235 0.99 1.02 127 91 Rotary kiln
850°CX9分  850 ° C for 9 minutes
実施例 18 120°CZ分 1.4 2.51 2.66 0.3 8.237 0.73 1.29 128 86 ロータリーキルン Example 18 120 ° CZ min 1.4 2.51 2.66 0.3 8.237 0.73 1.29 128 86 Rotary kiln
850°CX9分  850 ° C for 9 minutes
実施例 19 120°C/分 1.3 2.52 2.41 0.2 8.237 0.75 1.29 128 87 ロータリーキルン Example 19 120 ° C / min 1.3 2.52 2.41 0.2 8.237 0.75 1.29 128 87 Rotary kiln
750°CX0.5hr  750 ° CX0.5hr
比較例 5 io°cZ分 6.5 2. 14 0.55 1.2 8.232 0.78 1.28 127 85 箱型炉 Comparative example 5 io ° cZ min 6.5 2.14 0.55 1.2 8.232 0.78 1.28 127 85 Box furnace
750°CX20hr  750 ° CX20hr
比較例 6 10°C/分 2.3 2.33 0.84 0.3 8.235 0.78 1.29 125 70 箱型炉 Comparative Example 6 10 ° C / min 2.3 2.33 0.84 0.3 8.235 0.78 1.29 125 70 Box furnace
780。CX0.5分  780. CX 0.5 min
比較例 7 lSCTCZ分 13. 1 1.92 0. 19 2. 1 8.233 0.77 1.28 118 81 ロータリ一キルン Comparative Example 7 lSCTCZ 13.1 1.92 0.19 2.1 8.233 0.77 1.28 118 81 Rotary kiln
造粒粒子の形状測定結果の解析 Analysis of shape measurement results of granulated particles
表 1 3に示す実施例 1 1 9及び比較例 1 7で製造された二次粒子の 円形度 (円形度 = 4 π [面積 Ζ (周囲長さ) 2 ] ) と針状比 (針状比 針絶 対最大長 Ζ対角幅) の測定結果から実施例で製造された正極活物質は、 円形 度が 0. 7以上で、 かつ針状比が 1 . 3 5以下に特徴があることが分かる。 産業上の利用可能性 The circularity (circularity = 4 π [area Ζ (perimeter) 2 ]) and needle ratio (needle ratio) of the secondary particles produced in Example 11 and Comparative Example 17 shown in Table 13 The positive electrode active material manufactured in the example based on the measurement result of the absolute length of the needle (Ζdiagonal width) may be characterized by a circularity of 0.7 or more and a needle ratio of 1.35 or less. I understand. Industrial applicability
本発明の正極活物質は、 従来既知の凝集力を利用する二次粒子と比べ、 造 粒及び焼結を行っている点で本質的に異なり、 従来方法で得られる正極活物 質に比較して粒子が緻密でありかつ球状であり、 電極への充填性に優れ、 ま た二次電池として高温環境の下においても初期容量及び容量維持率が高くな るという効果を奏する。  The positive electrode active material of the present invention is essentially different in that it performs granulation and sintering as compared with the conventionally known secondary particles utilizing cohesive force, and is compared with the positive electrode active material obtained by the conventional method. Therefore, the particles are dense and spherical, and have excellent filling properties to the electrodes, and also have the effect of increasing the initial capacity and capacity retention rate even in a high-temperature environment as a secondary battery.
本発明の正極活物質の製造方法によれば、 高温域で融液を生成する焼結促 進助剤を L i 一 M n系複合酸化物に添加することで、 二次粒子の緻密化を図 ると共に、 従来の方法では初期容量とサイクル特性が悪化してしまうような 結晶子サイズに成長させても優れた電池性能が得られる。 従来法の二次粒子 の緻密化を図る際に一次粒子サイズが 0. 5 mよりも大きく粒成長してし まい初期容量とサイクル特性が悪化するという問題が、 高温域で融液を生成 する焼結促進助剤を L i 一 M n系複合酸化物に添加する本発明の方法により 解決され、 高充填性でかつ優れた電池性能を有する正極活物質が得られる。 本発明のリチウムイオン二次電池は、 充填性に優れた正極活物質を使用し ているために、 高温での初期容量と容量維持率に優れている。  According to the method for producing a positive electrode active material of the present invention, by adding a sintering aid to the Li-Mn-based composite oxide that generates a melt in a high temperature region, the secondary particles can be densified. In addition, excellent battery performance can be obtained even when the conventional method is grown to a crystallite size that deteriorates the initial capacity and cycle characteristics. When the secondary particles of the conventional method are densified, the primary particle size grows larger than 0.5 m, and the initial capacity and the cycle characteristics deteriorate. This is solved by the method of the present invention in which a sintering accelerator is added to the Li-Mn-based composite oxide, and a positive electrode active material having high filling properties and excellent battery performance can be obtained. Since the lithium ion secondary battery of the present invention uses a positive electrode active material having excellent filling properties, it has excellent initial capacity and capacity retention at high temperatures.

Claims

請求の範囲 スピネル構造を有する L i一 Mn系複合酸化物粒子を主体とするリチウ 二次電池用正極活物質において、 下記式  Claims A positive electrode active material for a lithium secondary battery mainly composed of Li-Mn-based composite oxide particles having a spinel structure has the following formula:
空隙率 (%) = (AZB) X 100 (1) Porosity (%) = (AZB) x 100 (1)
(Aは二次粒子 1個の断面に含まれるポアの総断面積であり、 Bは二次粒子 1個の断面積である。 ) で示される前記粒子の空隙率の平均値が 15%以下 であることを特徴とするリチウムイオン二次電池用正極活物質。 2. 前記平均空隙率の値が 10%以下であり、 かつ一次粒子の平均粒子径が 0. (A is the total cross-sectional area of the pores included in the cross-section of one secondary particle, and B is the cross-sectional area of one secondary particle.) A positive electrode active material for a lithium ion secondary battery, characterized in that: 2. The value of the average porosity is 10% or less, and the average particle size of the primary particles is 0.
2〜 3 tmである請求の範囲 1に記載のリチウムイオン二次電池用正極 活物質。 2. The positive electrode active material for a lithium ion secondary battery according to claim 1, which has a thickness of 2 to 3 tm.
3. 正極活物質のタップ密度が、 1. 9 gZm l以上である請求の範囲 1に 記載のリチウムイオン二次電池用正極活物質。 3. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the tap density of the positive electrode active material is 1.9 gZml or more.
4. 正極活物質のタップ密度が、 2. 2 gZm 1以上である請求の範囲 3に 記載のリチウムイオン二次電池用正極活物質。 4. The positive electrode active material for a lithium ion secondary battery according to claim 3, wherein the positive electrode active material has a tap density of 2.2 gZm 1 or more.
5. 正極活物質の結晶子サイズが、 400〜960オングストロ一ムである 請求の範囲 1に記載のリチウムイオン二次電池用正極活物質。 5. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the positive electrode active material has a crystallite size of 400 to 960 angstroms.
6. 正極活物質の格子定数が、 8. 240オングストローム以下である請求 の範囲 1に記載のリチウムイオン二次電池用正極活物質。 6. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the lattice constant of the positive electrode active material is 8.240 angstroms or less.
7. 正極活物質が、 スピネル構造を有する L i一 Mn系複合酸化物を主体と し、 その酸化物が 550°C〜 900°Cの温度で溶融する酸化物または酸化物 になり得る元素または元素を含む化合物、 またはリチウムまたはマンガンと 固溶するか反応して溶融する酸化物または酸化物になり得る元素または元素 を含む化合物からなり、 造粒及び焼結されている活物質である請求の範囲 1 に記載のリチウムイオン二次電池用正極活物質。 7. The positive electrode active material is mainly composed of a Li-Mn-based composite oxide having a spinel structure. Or an element or a compound containing an element whose oxide can be an oxide or an oxide that melts at a temperature of 550 ° C to 900 ° C, or an oxide or a solid that dissolves or reacts with lithium or manganese or The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the positive electrode active material is a granulated and sintered active material comprising an element or a compound containing an element which can be an oxide.
8. 550°C〜900°Cの温度で溶融する酸化物または酸化物になり得る元 素または元素を含む化合物、 またはリチウムまたはマンガンと固溶するか反 応して溶融する酸化物または酸化物になり得る元素または元素を含む化合物 が、 B i、 B、 W、 Mo、 P bからなる群より選ばれる少なくとも 1種の元 素または元素を含む化合物、 または B203と L i Fを組み合わせた化合物ま たは MnF2と L i Fを組み合わせた化合物である請求の範囲 7に記載のリ チウムイオン二次電池用正極活物質。 8. Compounds containing elements or elements that can become oxides or oxides that melt at a temperature of 550 ° C to 900 ° C, or oxides or oxides that dissolve in or react with lithium or manganese in solid solution compounds containing it obtained element or element is, B i, B, W, Mo, a compound containing at least one of elemental or elements selected from the group consisting of P b, or B 2 0 3 and L i F 8. The positive electrode active material for a lithium ion secondary battery according to claim 7, which is a compound obtained by combining MnF 2 and Li F.
9. スピネル構造を有する L i—Mn系複合酸化物を主体とするリチウムィ オン二次電池用正極活物質の製造方法において、 スピネル構造を有する L i 一 Mn系複合酸化物の粉砕物に、 550° (:〜 900 °Cの温度で溶融する酸化 物または酸化物になり得る元素または元素を含む化合物、 またはリチウムま たはマンガンと固溶するか反応して溶融する酸化物または酸化物になり得る 元素または元素を含む化合物を添加し混合して造粒する工程を有することを 特徴とするリチウムイオン二次電池用正極活物質の製造方法。 9. In a method for producing a positive electrode active material for a lithium ion secondary battery mainly composed of a Li-Mn-based composite oxide having a spinel structure, the pulverized product of the Li-Mn-based composite oxide having a spinel structure has the following properties: ° (: an element or a compound containing an element that can become an oxide or oxide that melts at a temperature of up to 900 ° C, or an oxide or oxide that dissolves or reacts with lithium or manganese to melt. A method for producing a positive electrode active material for a lithium ion secondary battery, comprising a step of adding, mixing, and granulating the obtained element or a compound containing the element.
10. 造粒工程以外に、 前記造粒物を焼結する工程を有する請求の範囲 9に 記載のリチウムイオン二次電池用正極活物質の製造方法。 10. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 9, further comprising a step of sintering the granulated material in addition to the granulating step.
1 1. 造粒工程以外に、 前記造粒物を焼結収縮開始温度から少なくとも 10 0°C以上高い温度まで少なくとも 100°C/m i nの速度で昇温してその温 度に 1分〜 1 0分間保持した後、 少なくとも 100°CZm i nの速度で焼結 開始温度まで降温して焼結させる工程を有する請求の範囲 9に記載のリチウ 二次電池用正極活物質の製造方法。 1 1. In addition to the granulation process, the granulated material must be at least 10 Raise the temperature at a rate of at least 100 ° C / min to a temperature higher than 0 ° C, hold it at that temperature for 1 to 10 minutes, and then reduce the temperature to the sintering start temperature at a rate of at least 100 ° C Zmin. 10. The method for producing a positive electrode active material for a lithium secondary battery according to claim 9, comprising a step of sintering.
2. ロー夕リーキルンを用いて焼結させる請求の範囲 1 1に記載のリチウ 二次電池用正極活物質の製造方法。 2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 11, wherein the sintering is carried out using a Rho-Ea kiln.
13. 前記焼結工程が、 L i一 Mn系複合酸化物粒子の表面で B i、 B、 W、 Mo、 P bからなる群より選ばれる少なくとも 1種の元素または元素を含む 化合物、 または B 203と L i Fを組み合わせた化合物または MnF2とし i Fを組み合わせた化合物を溶融し焼結して行われる請求の範囲 10に記載の リチウムイオン二次電池用正極活物質の製造方法。 13. The sintering step comprises: at least one element selected from the group consisting of Bi, B, W, Mo, and Pb or a compound containing an element on the surface of the Li-Mn-based composite oxide particles; or 2 0 3 and L i the method for producing a positive electrode active material for a lithium ion secondary battery according to claim 10, wherein the F is a compound or MnF 2 which combines performed by sintering melting the compound in combination with i F.
14. スピネル構造を有する L i一 Mn系複合酸化物の粉砕物の平均粒子径 が、 5 P m以下である請求の範囲 9に記載のリチウムイオン二次電池用正極 活物質の製造方法。 14. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 9, wherein the average particle diameter of the ground material of the Li-Mn-based composite oxide having a spinel structure is 5 Pm or less.
15. スピネル構造を有する L i一 Mn系複合酸化物の粉砕物の平均粒子径 が、 3 m以下である請求の範囲 9に記載のリチウムイオン二次電池用正極 活物質の製造方法。 15. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 9, wherein the pulverized product of the Li-Mn-based composite oxide having a spinel structure has an average particle diameter of 3 m or less.
16. 前記造粒工程が、 噴霧造粒方法、 撹拌造粒方法、 圧縮造粒方法または 流動造粒方法で行われる請求の範囲 9に記載のリチウムイオン二次電池用正 極活物質の製造方法。 16. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 9, wherein the granulation step is performed by a spray granulation method, a stirring granulation method, a compression granulation method, or a fluidized granulation method. .
1 7 . 前記造粒工程において、 造粒助剤として、 アクリル系樹脂、 レンと無水マレイン酸との共重合物、 ポリビニルアルコール、 ポリエチレン グリコール、 ポリビニルピロリデン、 ハイドロキシプロピルセルロース、 メ チルセルロース、 コーンスターチ、 ゼラチン、 リグニンからなる群より選ば れる少なくとも 1種の有機化合物を使用する請求の範囲 9に記載のリチウム イオン二次電池用正極活物質の製造方法。 17. In the granulation step, as a granulation auxiliary, acrylic resin, copolymer of len and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinylpyrrolidene, hydroxypropylcellulose, methylcellulose, corn starch, 10. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 9, wherein at least one organic compound selected from the group consisting of gelatin and lignin is used.
1 8 . 大気中または酸素を含有するガスフロー雰囲気中、 3 0 0 °C〜5 5 0 °Cの温度下で脱脂工程を有する請求の範囲 1 7に記載のリチウムイオン二 次電池用正極活物質の製造方法。 18. The positive electrode active material for a lithium ion secondary battery according to claim 17, further comprising a degreasing step at a temperature of 300 ° C. to 550 ° C. in the air or in a gas flow atmosphere containing oxygen. The method of manufacturing the substance.
1 9 . 請求の範囲 9乃至 1 8のいずれかの項に記載の方法で得られたリチウ 二次電池用正極活物質。 19. A positive electrode active material for a lithium secondary battery obtained by the method according to any one of claims 9 to 18.
2 0 . 請求の範囲 1乃至 8のいずれかの項に記載のリチウムイオン二次電池 用正極活物質を含む電極用ペースト。 20. An electrode paste comprising the positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 8.
2 1 . 請求の範囲 1乃至 8のいずれかの項または請求の範囲 1 9に記載のリ チウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。 21. A positive electrode for a lithium ion secondary battery, comprising the positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 8 or claim 19.
2 2 . 請求の範囲 2 1に記載のリチウムイオン二次電池用正極を備えたリチ 二次電池。 22. A lithium secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 21.
2 3 . リチウムイオン二次電池が、 コイン型電池、 卷回型電池、 円筒型、 角 型電池または積層型電池である請求の範囲 2 2に記載のリチウムイオン二次 電池。 23. The lithium ion secondary battery according to claim 22, wherein the lithium ion secondary battery is a coin battery, a wound battery, a cylindrical battery, a square battery, or a stacked battery.
PCT/JP2000/004544 1999-07-07 2000-07-07 Positive plate active material, method for producing the same, and secondary cell WO2001004975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58502/00A AU5850200A (en) 1999-07-07 2000-07-07 Positive plate active material, method for producing the same, and secondary cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/193314 1999-07-07
JP19331499 1999-07-07
JP2000126494 2000-04-26
JP2000/126494 2000-04-26

Publications (1)

Publication Number Publication Date
WO2001004975A1 true WO2001004975A1 (en) 2001-01-18

Family

ID=26507802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004544 WO2001004975A1 (en) 1999-07-07 2000-07-07 Positive plate active material, method for producing the same, and secondary cell

Country Status (5)

Country Link
JP (2) JP2011049180A (en)
KR (1) KR100653170B1 (en)
CN (1) CN1179437C (en)
AU (1) AU5850200A (en)
WO (1) WO2001004975A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075365A (en) * 2000-08-31 2002-03-15 Matsushita Battery Industrial Co Ltd Positive electrode active material and lithium secondary battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
WO2003070642A1 (en) * 2002-02-21 2003-08-28 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP2005005105A (en) * 2003-06-11 2005-01-06 Hitachi Ltd Positive electrode material, its manufacturing method, and lithium secondary battery
JP2007149414A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and manufacturing method of its lithium compound oxide
JP2007238437A (en) * 2001-05-17 2007-09-20 Mitsubishi Chemicals Corp Method for producing lithium nickel manganese composite oxide
CN100379061C (en) * 2001-10-25 2008-04-02 松下电器产业株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery containing the material
WO2010032449A1 (en) * 2008-09-18 2010-03-25 戸田工業株式会社 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
WO2010101306A2 (en) 2009-06-25 2010-09-10 日本碍子株式会社 Positive electrode active material and lithium secondary battery
JP2011044364A (en) * 2009-08-21 2011-03-03 Nisshin Engineering Co Ltd Method of manufacturing positive electrode material for secondary battery
JP2011082133A (en) * 2009-09-09 2011-04-21 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte cell, and method of preparing positive electrode active material
WO2011086690A1 (en) * 2010-01-15 2011-07-21 トヨタ自動車株式会社 Method for evaluating positive electrode active material
JP2012051744A (en) * 2010-08-31 2012-03-15 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide, method for manufacturing the same, and application of the same
US8303927B2 (en) 2009-06-25 2012-11-06 Ngk Insulators, Ltd. Methods for manufacturing spinel-type lithium manganese and cathode active material for lithium secondary battery
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US9450228B2 (en) 2014-07-23 2016-09-20 Asahi Glass Company, Limited Cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017517847A (en) * 2014-05-27 2017-06-29 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide cathode materials and methods for their preparation
KR101904895B1 (en) * 2012-12-12 2018-10-05 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2019016428A (en) * 2017-07-03 2019-01-31 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2022065792A (en) * 2020-10-16 2022-04-28 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and secondary battery including the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779552B (en) * 2009-09-09 2018-11-30 株式会社村田制作所 Positive active material
JP6023587B2 (en) * 2011-03-29 2016-11-09 Jx金属株式会社 Method for producing positive electrode active material for lithium ion battery
JP5986573B2 (en) * 2011-09-16 2016-09-06 日本碍子株式会社 Method for producing positive electrode active material of lithium secondary battery
JP5872279B2 (en) * 2011-12-21 2016-03-01 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide
JP5844659B2 (en) * 2012-02-27 2016-01-20 京セラ株式会社 Electrode plate and secondary battery using the same
KR101539843B1 (en) * 2012-07-13 2015-07-27 주식회사 엘지화학 Anode Active Material of High Density and Methode for Preparation of The Same
WO2014133063A1 (en) 2013-02-28 2014-09-04 日産自動車株式会社 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP6358077B2 (en) * 2014-01-31 2018-07-18 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN105981210B (en) * 2014-02-28 2020-09-18 三洋电机株式会社 Nonaqueous electrolyte secondary battery
SE539560C2 (en) 2015-03-06 2017-10-10 Innventia Ab Electrode active coating for a lithium-ion battery and method of production therefore
CN112678877B (en) * 2016-01-06 2023-05-12 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
KR20180129884A (en) * 2016-04-04 2018-12-05 가부시키가이샤 지에스 유아사 Capacitor element
JP7052189B2 (en) * 2016-07-20 2022-04-12 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP6500001B2 (en) * 2016-08-31 2019-04-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2020127543A1 (en) * 2018-12-19 2020-06-25 Haldor Topsøe A/S Lithium positive electrode active material
JP7230515B2 (en) * 2019-01-10 2023-03-01 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for lithium ion secondary battery, and formed body
CN114041226B (en) * 2020-03-27 2024-08-06 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162860A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10302767A (en) * 1997-04-24 1998-11-13 Mitsubishi Cable Ind Ltd Cathode activating material of lithium secondary battery and production thereof
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11176441A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2835138B2 (en) * 1990-05-02 1998-12-14 東芝電池株式会社 Non-aqueous solvent secondary battery
JP3475480B2 (en) * 1994-03-31 2003-12-08 ソニー株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3036674B2 (en) * 1995-01-17 2000-04-24 日本電池株式会社 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JP3030764B2 (en) * 1995-02-23 2000-04-10 東ソー株式会社 Spinel-type lithium manganese oxide, method for producing the same, and use thereof
JPH09111310A (en) * 1995-10-20 1997-04-28 Mitsubishi Materials Corp Porous sintered metallic plate and its production
JPH10255793A (en) * 1997-03-07 1998-09-25 Sumitomo Metal Mining Co Ltd Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery
JP4124522B2 (en) * 1997-10-08 2008-07-23 日揮化学株式会社 Lithium / manganese composite oxide, production method and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162860A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10302767A (en) * 1997-04-24 1998-11-13 Mitsubishi Cable Ind Ltd Cathode activating material of lithium secondary battery and production thereof
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11176441A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075365A (en) * 2000-08-31 2002-03-15 Matsushita Battery Industrial Co Ltd Positive electrode active material and lithium secondary battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP4605175B2 (en) * 2001-05-17 2011-01-05 三菱化学株式会社 Method for producing lithium nickel manganese composite oxide
JP2007238437A (en) * 2001-05-17 2007-09-20 Mitsubishi Chemicals Corp Method for producing lithium nickel manganese composite oxide
CN100379061C (en) * 2001-10-25 2008-04-02 松下电器产业株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery containing the material
WO2003070642A1 (en) * 2002-02-21 2003-08-28 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
US7217406B2 (en) 2002-02-21 2007-05-15 Tosoh Corporation Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
CN100344543C (en) * 2002-02-21 2007-10-24 东曹株式会社 Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP2005005105A (en) * 2003-06-11 2005-01-06 Hitachi Ltd Positive electrode material, its manufacturing method, and lithium secondary battery
US7604898B2 (en) 2003-06-11 2009-10-20 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
KR101116764B1 (en) 2003-06-11 2012-03-13 가부시끼가이샤 히다치 세이사꾸쇼 Cathode material, preparing method thereof and lithium secondary battery
US8097363B2 (en) 2003-06-11 2012-01-17 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
KR101129333B1 (en) * 2003-06-11 2012-03-26 히타치 긴조쿠 가부시키가이샤 Cathode material, preparing method thereof and lithium secondary battery
US7910246B2 (en) 2003-06-11 2011-03-22 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
JP2007149414A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and manufacturing method of its lithium compound oxide
KR101593725B1 (en) 2008-09-18 2016-02-12 도다 고교 가부시끼가이샤 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
KR20110061565A (en) * 2008-09-18 2011-06-09 도다 고교 가부시끼가이샤 Method for producing lithium manganate particles powder and nonaqueous electrolyte secondary battery
JP2010095439A (en) * 2008-09-18 2010-04-30 Toda Kogyo Corp Process for producing lithium manganate particle powder and non-aqueous electrolyte secondary batter
WO2010032449A1 (en) * 2008-09-18 2010-03-25 戸田工業株式会社 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
EP2330079A4 (en) * 2008-09-18 2013-07-31 Toda Kogyo Corp Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
WO2010101306A2 (en) 2009-06-25 2010-09-10 日本碍子株式会社 Positive electrode active material and lithium secondary battery
US8303927B2 (en) 2009-06-25 2012-11-06 Ngk Insulators, Ltd. Methods for manufacturing spinel-type lithium manganese and cathode active material for lithium secondary battery
JP2011044364A (en) * 2009-08-21 2011-03-03 Nisshin Engineering Co Ltd Method of manufacturing positive electrode material for secondary battery
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP2011082133A (en) * 2009-09-09 2011-04-21 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8765007B2 (en) 2010-01-15 2014-07-01 Toyota Jidosha Kabushiki Kaisha Method of evaluating positive electrode active material
WO2011086690A1 (en) * 2010-01-15 2011-07-21 トヨタ自動車株式会社 Method for evaluating positive electrode active material
JP5696904B2 (en) * 2010-01-15 2015-04-08 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JPWO2011086690A1 (en) * 2010-01-15 2013-05-16 トヨタ自動車株式会社 Method for evaluating positive electrode active material
JP2012051744A (en) * 2010-08-31 2012-03-15 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide, method for manufacturing the same, and application of the same
KR101904895B1 (en) * 2012-12-12 2018-10-05 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2022008817A (en) * 2014-05-27 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide cathode materials and method to make them
JP2017517847A (en) * 2014-05-27 2017-06-29 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide cathode materials and methods for their preparation
JP7539358B2 (en) 2014-05-27 2024-08-23 チアンスー ホントロン ナノテック カンパニー リミテッド Improved lithium metal oxide cathode materials and methods for making them
US9450228B2 (en) 2014-07-23 2016-09-20 Asahi Glass Company, Limited Cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019016428A (en) * 2017-07-03 2019-01-31 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2022065792A (en) * 2020-10-16 2022-04-28 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and secondary battery including the same
JP7191071B2 (en) 2020-10-16 2022-12-16 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and secondary battery comprising the positive electrode active material

Also Published As

Publication number Publication date
CN1360739A (en) 2002-07-24
JP5464717B2 (en) 2014-04-09
AU5850200A (en) 2001-01-30
KR20020012295A (en) 2002-02-15
JP2012074390A (en) 2012-04-12
CN1179437C (en) 2004-12-08
KR100653170B1 (en) 2006-12-04
JP2011049180A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2001004975A1 (en) Positive plate active material, method for producing the same, and secondary cell
KR102191227B1 (en) Positive active material for all solid lithium secondary battery
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
US6890456B2 (en) Cathode electroactive material, production method therefor and secondary cell
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP3031546B1 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
US20100196761A1 (en) Granular powder of transition metal compound as raw material for cathode active material for lithium secondary battery, and method for its production
WO2012131881A1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20130061038A (en) Manufacturing method of lithium-titanium composite doped by different metal, and lithium-titanium composite doped with different metal made by same
KR20070047810A (en) Powdered compound of titanium and dense lithium composite oxide, method for preparing this compound and electrode comprising the mixture
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2006318929A (en) Positive electrode active material for lithium secondary battery and non-aqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP7648908B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same
WO2003083969A1 (en) Positive electrode material for lithium secondary cell and secondary cell using the same, and method for producing positive electrode material for lithium secondary cell
JP2004006277A (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JPH10255804A (en) Lithium secondary battery
JP2001206722A (en) Lithium manganese composite oxide, positive electrode material for lithium secondary battery, positive electrode, lithium secondary battery, and method for producing lithium manganese composite oxide
JP7473828B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for producing same
JP3407594B2 (en) Method for producing lithium nickel composite oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 509101

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017016631

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008099553

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020017016631

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020017016631

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载