WO2001002004A1 - Peritoneal dialysis solution containing antioxidant for treating renal failure - Google Patents
Peritoneal dialysis solution containing antioxidant for treating renal failure Download PDFInfo
- Publication number
- WO2001002004A1 WO2001002004A1 PCT/KR2000/000654 KR0000654W WO0102004A1 WO 2001002004 A1 WO2001002004 A1 WO 2001002004A1 KR 0000654 W KR0000654 W KR 0000654W WO 0102004 A1 WO0102004 A1 WO 0102004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peritoneal dialysis
- dialysis solution
- renal failure
- antioxidant
- peritoneal
- Prior art date
Links
- 239000000385 dialysis solution Substances 0.000 title claims abstract description 47
- 239000003963 antioxidant agent Substances 0.000 title claims abstract description 26
- 230000003078 antioxidant effect Effects 0.000 title claims abstract description 21
- 208000001647 Renal Insufficiency Diseases 0.000 title claims description 10
- 201000006370 kidney failure Diseases 0.000 title claims description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 25
- 235000006708 antioxidants Nutrition 0.000 claims abstract description 25
- 239000008103 glucose Substances 0.000 claims abstract description 25
- 239000003642 reactive oxygen metabolite Substances 0.000 claims abstract description 18
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims abstract description 18
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 16
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 claims abstract description 16
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 claims abstract description 15
- 102000016938 Catalase Human genes 0.000 claims abstract description 12
- 108010053835 Catalase Proteins 0.000 claims abstract description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229940087168 alpha tocopherol Drugs 0.000 claims abstract description 9
- 239000000872 buffer Substances 0.000 claims abstract description 9
- 229960000984 tocofersolan Drugs 0.000 claims abstract description 9
- 239000002076 α-tocopherol Substances 0.000 claims abstract description 9
- 235000004835 α-tocopherol Nutrition 0.000 claims abstract description 9
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 claims abstract description 8
- 102000019197 Superoxide Dismutase Human genes 0.000 claims abstract description 8
- 108010012715 Superoxide dismutase Proteins 0.000 claims abstract description 8
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229960005070 ascorbic acid Drugs 0.000 claims abstract description 8
- 235000010323 ascorbic acid Nutrition 0.000 claims abstract description 8
- 239000011668 ascorbic acid Substances 0.000 claims abstract description 8
- 239000003792 electrolyte Substances 0.000 claims abstract description 8
- 229960003180 glutathione Drugs 0.000 claims abstract description 8
- 235000003969 glutathione Nutrition 0.000 claims abstract description 8
- 229960003080 taurine Drugs 0.000 claims abstract description 8
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 claims abstract description 7
- 108010024636 Glutathione Proteins 0.000 claims abstract description 7
- 208000020832 chronic kidney disease Diseases 0.000 claims abstract description 7
- 235000019136 lipoic acid Nutrition 0.000 claims abstract description 7
- 229960002663 thioctic acid Drugs 0.000 claims abstract description 7
- 239000002357 osmotic agent Substances 0.000 claims abstract description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims abstract description 5
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims abstract description 5
- 229960004308 acetylcysteine Drugs 0.000 claims abstract description 5
- 150000001413 amino acids Chemical class 0.000 claims abstract description 3
- 229940105657 catalase Drugs 0.000 claims abstract description 3
- 229920001184 polypeptide Polymers 0.000 claims abstract description 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 3
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 208000009304 Acute Kidney Injury Diseases 0.000 claims description 5
- 208000033626 Renal failure acute Diseases 0.000 claims description 5
- 201000011040 acute kidney failure Diseases 0.000 claims description 5
- 208000012998 acute renal failure Diseases 0.000 claims description 5
- 208000022831 chronic renal failure syndrome Diseases 0.000 claims description 5
- 230000003204 osmotic effect Effects 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 3
- 239000001110 calcium chloride Substances 0.000 claims description 3
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 238000000502 dialysis Methods 0.000 abstract description 17
- 230000006378 damage Effects 0.000 abstract description 6
- 230000036542 oxidative stress Effects 0.000 abstract description 4
- 208000028208 end stage renal disease Diseases 0.000 abstract description 2
- 201000000523 end stage renal failure Diseases 0.000 abstract description 2
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 208000027418 Wounds and injury Diseases 0.000 abstract 1
- 208000014674 injury Diseases 0.000 abstract 1
- 230000000638 stimulation Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 7
- 210000003245 peritoneal mesothelial cell Anatomy 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 6
- 238000001631 haemodialysis Methods 0.000 description 6
- 230000000322 hemodialysis Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- 210000004303 peritoneum Anatomy 0.000 description 5
- 239000008055 phosphate buffer solution Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 208000033679 diabetic kidney disease Diseases 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 241000700159 Rattus Species 0.000 description 3
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 229940109239 creatinine Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 230000003907 kidney function Effects 0.000 description 3
- 229940001447 lactate Drugs 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 108010005094 Advanced Glycation End Products Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 102000003923 Protein Kinase C Human genes 0.000 description 2
- 108090000315 Protein Kinase C Proteins 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- 102000016912 Aldehyde Reductase Human genes 0.000 description 1
- 108010053754 Aldehyde reductase Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 108010066671 Enalaprilat Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 206010018367 Glomerulonephritis chronic Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010063897 Renal ischaemia Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229960002680 enalaprilat Drugs 0.000 description 1
- LZFZMUMEGBBDTC-QEJZJMRPSA-N enalaprilat (anhydrous) Chemical compound C([C@H](N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 LZFZMUMEGBBDTC-QEJZJMRPSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 239000000819 hypertonic solution Substances 0.000 description 1
- 229940021223 hypertonic solution Drugs 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000003584 mesangial cell Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 201000001474 proteinuria Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7004—Monosaccharides having only carbon, hydrogen and oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/28—Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
- A61M1/287—Dialysates therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/44—Oxidoreductases (1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/44—Oxidoreductases (1)
- A61K38/446—Superoxide dismutase (1.15)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y111/00—Oxidoreductases acting on a peroxide as acceptor (1.11)
- C12Y111/01—Peroxidases (1.11.1)
- C12Y111/01006—Catalase (1.11.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y115/00—Oxidoreductases acting on superoxide as acceptor (1.15)
- C12Y115/01—Oxidoreductases acting on superoxide as acceptor (1.15) with NAD or NADP as acceptor (1.15.1)
- C12Y115/01001—Superoxide dismutase (1.15.1.1)
Definitions
- the present invention relates to peritoneal dialysis solutions containing
- peritoneal dialysis solutions for patients with end-stage renal failure undergoing peritoneal dialysis, containing electrolytes including Na + , Mg 2+ , Ca 2+
- a buffer an osmotic agent; and at least one antioxidant that inhibits the
- Kidneys which exist symmetrically with respect to the spine behind
- peritoneum are important organs that remove metabolic wastes and unnecessary
- Renal failure refers to a state where renal function is decreased or completely lost, and can be categorized into acute renal failure and chronic renal failure.
- Acute renal failure refers to a state where renal function is temporarily lost, and typically results from renal ischemia, sepsis, or drug toxicity.
- kidneys of patients suffering from the acute renal failure recover to normal state.
- the renal damage continues, however, due to diabetes, chronic glomerulonephritis, high blood pressure, congenital polycystic renal disease, renal failure progresses to chronic renal failure.
- Chronic renal failure refers to a state where renal function is lost permanently. For some serious cases, it can ultimately result in death.
- the dialytic therapy As one method for the treatment of patients suffering from acute or chronic renal failure, the dialytic therapy has been in application for a long time.
- the dialysis therapy is divided into hemodialysis and peritoneal dialysis.
- Hemodialysis which is widely used is effected by drawing the patient's blood out of body, introducing the blood into an artificial kidney equipped with artificial dialysis membranes, allowing metabolic wastes (for instance, urea and creatinine) to diffuse through the artificial membrane and pass into a dialysis solution, and removing excess water through ultrafiltration utilizing a negative pressure.
- the hemodialysis provides satisfactory results in treating the renal failure.
- the hemodialysis has inherent disadvantages because it is an extracorporeal treatment that requires special machinery, and it also has a disadvantage that it requires patients' regular visits to hospital (usually, three times a week or more than 12 hours a week).
- Peritoneal dialysis is effected by directly infusing dialysis solution into the patient's abdominal peritoneal cavity in which a peritoneal catheter is pre- implanted, allowing the dialysis solution to dwell for 4-6 hours such that metabolic wastes (for instance, urea and creatinine) diffuse from capillary blood into the peritoneal cavity and passed into the dialysis solution, and removing excess water by virtue of the difference in the osmotic pressure produced between the
- hemodialysis is not suitable. Peritoneal dialysis, however, is increasingly used
- hypertonic solution containing: electrolytes represented by Na + , Ca 2+ , Mg 2+ or CI " ,
- buffer typified by lactate; and osmotic agents including glucose and polyglucose.
- peritoneum may result from high concentration of glucose used in the dilaysis solution to obtain osmotic gradient across peritoneum and that a peritoneal
- oxidative stress refers to a tissue or
- an objective of the present invention is to provide a new
- the objective of the present invention can be
- At least one antioxidant that inhibits reactive oxygen species.
- the peritoneal dialysis solution according to the present invention comprises 1) electrolytes, 2) buffer, 3) osmotic pressure regulating agent and 4) at least one antioxidant.
- the electrolytes include Na + , Mg 2+ , Ca 2+ and CI " , and can be supplied by sodium chloride, magnesium chloride and/or calcium chloride.
- the buffer that controls the pH of the dialysis solution to an appropriate range is selected from the group consisting of bicarbonate and lactate. Bicarbonate is preferred buffer.
- the osmotic agent used to remove excess water from the blood into the dialysis solution includes glucose, polyglucose, and glycerol, but are not limited thereto. Amino acids and polypeptides can also be used as an osmotic agent in the present invention.
- the antioxidant used in the present invention for the inhibition of the generation of reactive oxygen species is preferably selected from the group
- glutathione glutathione, ⁇ -lipoic acid, superoxide dismutase, or combinations thereof.
- Ruiz-Munoz LM et al have reported that high concentration of glucose increases the generation of hydrogen peroxide in the mesangial cells, but this has been inhibited by the combination of catalase, an enzyme that catalyze the decomposition of hydrogen peroxide into water and oxygen, with enalaprilat used for the treatment of diabetic renal disease (Nephrol Dial Transplant 12:456-464, 1997).
- Ha H et al have reported that long-term administration of taurine to diabetic rats results in a decrease of proteinuria, an indicator of diabetic nephropathy, and a meaningful decrease in the gene expression of transforming
- growth factor- ⁇ that is a fibrosis enhancing growth factor and fibronectin that is a
- nephropathy can be reduced by administering ⁇ -tocopherol to the diabetes-
- Hofmann MA et al have shown that NF-kappaB that alters the transcription of many genes as one of the results of oxidative stress in the tissue is related to diabetic nephropathy, and the activity of NF-kappaB can be inhibited
- Nishikawa T et al have reported that an increase in the concentration of the reactive oxygen species mediated by high concentration of glucose originates from the increase in the glucose metabolism in mitochondria. They have also showed that the activation of protein kinase C, known as the mechanism of tissue damage due to high glucose level, the procudtion of AGE (Advanced glycosylation end product) and the activation of aldose reductase can be significantly reduced by inhibiting the superoxide production by superoxide dismutase (Nature 404:787-790, 2000).
- the amount of antioxidants contained in the dialytic solution depends on the kind of antioxidant used, since the inhibition ability against reactive oxygen species is different for each antioxidant.
- the preferable amount for each antioxidant used is as follows: based on 100 ml of dialysis solution, catalase 10000 - 50000 unit; taurine 0.001 - 0.1 g;
- the peritoneal dialysis solution of the present invention is administered 4 times a day and 2 L for a single dose.
- the solution is administered to the patients suffering from renal failure according to the commonly used method. More particularly, the solution is administered to the peritoneum through the pre-implanted catheter in the peritoneum. About 4-6 hours are generally required for removing metabolic wastes including urea and creatinine as well as excess water.
- Example 1 The invention will be further illustrated by the following examples, but the scope of the present invention is not limited to the examples given.
- Example 1
- Peritoneal dialysis solutions were prepared by adding water up to 100ml to a mixture of glucose 1.5 g, sodium chloride 358 mg, sodium lactate 446 mg,
- peritoneal dialysis solutions were prepared except that the different amount of glucose was added.
- the amount of glucose used in the peritoneal dialysis solution is shown in Table 2 below.
- the human peritoneal mesothelial cells were added at the concentration 5
- Second culture medium was replaced with the third culture medium as below, and cells were cultured for an hour.
- antioxidant (will be refered to as "control group” hereinafter);
- the relative fluorescence refers to the ratio of the sample's fluorescence to the control group's fluorescence, In other words, it means relative values calculated by setting the fluorescence of the control group to 1)
- Table 3 shows that the fluorescence increases as the glucose concentration increases, but the fluorescence of the sample containing catalase, an antioxidant, is virtually identical to that of the control group. That is, results shows that the generation of the reactive oxygen species increases proportionally to the amount of glucose added, but this increase can be inhibited by the addition of antioxidant.
- Sample 10 ml of unused commercially available peritoneal dialysis solution containing 4.25 % glucose and 10 ml of each drained dialysis solutions from the patient immediately after injection (time 0) and after 15, 30, 60, 120 and 240 minutes
- phosphate buffer solution were added and standed for 15 min at room temperature. Using Ca 2+ and Mg 2+ -containing phosphate buffer solution, the excess reagent that was not taken up by the cells were washed out such that samples were obtained.
- Table 4 shows that not only the commercially available peritoneal dialysis solution itself but also the drained dialysis solutions obtained from the dialysis patient during the dialysis process stimulate the generation of the reactive oxygen species from the peritoneal mesothelial cells.
- Example 3 shows that high concentration of glucose increases the generation of the reactive oxygen species, whereas catalase, an antioxidant, reduces the generation of the reactive oxygen species. It is well
- the peritoneal dialysis solution additionally containing at least one antioxitant selected from the group consisting of catalase,
- taurine taurine, ascorbic acid, ⁇ -tocopherol, N-acetylcysteine, glutathione, ⁇ -lipoic acid,
- superoxide dismutase can also prohibit the damage of the peritoneal mesothelial cells and the loss of the function of the peritoneal membranes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Anesthesiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Vascular Medicine (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- External Artificial Organs (AREA)
Abstract
The present invention relates to peritoneal dialysis solutions containing antioxidant(s) for patients with end-stage renal failure undergoing peritoneal dialysis. More specifically, the present invention relates to peritoneal dialysis solutions containing electrolyte (Na?+, Mg2+, Ca2+ and C1-¿), buffer (lactate and/or bicarbonate), osmotic agent(s) (glucose, polyglucose, amino acid, glycerol, polypeptide, or combinations thereof) and antioxidant(s) (catalase, taurine, ascorbic acid, α-tocopherol, N-acetylcysteine, glutathione, α-lipoic acid, superoxide dismutase, or combinations thereof) that inhibits reactive oxygen species. By inhibiting reactive oxygen species that may be generated by the stimulation of high concentration of glucose contained in peritoneal dialysis solutions, the peritoneal dialysis solution of the present invention, unlike the currently used peritoneal dialysis solutions, can prevent oxidative stress and subsequent peritoneal injury.
Description
PERITONEAL DIALYSIS SOLUTION CONTAINING ANTIOXIDANT FOR TREATING RENAL FAILURE
Technical Field of the invention
The present invention relates to peritoneal dialysis solutions containing
antioxidants for treating renal failures. More specifically, the present invention
relates to peritoneal dialysis solutions for patients with end-stage renal failure undergoing peritoneal dialysis, containing electrolytes including Na+, Mg2+, Ca2+
and CI"; a buffer; an osmotic agent; and at least one antioxidant that inhibits the
generation of the reactive oxygen species
Background of the Invention
Kidneys which exist symmetrically with respect to the spine behind
peritoneum are important organs that remove metabolic wastes and unnecessary
excess water, that control the blood concentrations of calcium and phosphorus, that enhance the absorption of calcium from intestines by activating vitamin D
produced in the body, that control blood pressure by regulating sodium excretion and by renin-angiotensin, and that produces hemoglobin by secreting
erythropoietin.
Renal failure refers to a state where renal function is decreased or completely lost, and can be categorized into acute renal failure and chronic renal failure. Acute renal failure refers to a state where renal function is temporarily lost,
and typically results from renal ischemia, sepsis, or drug toxicity. Generally, kidneys of patients suffering from the acute renal failure recover to normal state. When the renal damage continues, however, due to diabetes, chronic glomerulonephritis, high blood pressure, congenital polycystic renal disease, renal failure progresses to chronic renal failure.
Chronic renal failure refers to a state where renal function is lost permanently. For some serious cases, it can ultimately result in death.
As one method for the treatment of patients suffering from acute or chronic renal failure, the dialytic therapy has been in application for a long time. The dialysis therapy is divided into hemodialysis and peritoneal dialysis.
Hemodialysis which is widely used is effected by drawing the patient's blood out of body, introducing the blood into an artificial kidney equipped with artificial dialysis membranes, allowing metabolic wastes (for instance, urea and creatinine) to diffuse through the artificial membrane and pass into a dialysis solution, and removing excess water through ultrafiltration utilizing a negative pressure. The hemodialysis provides satisfactory results in treating the renal failure. However, The hemodialysis has inherent disadvantages because it is an extracorporeal treatment that requires special machinery, and it also has a disadvantage that it requires patients' regular visits to hospital (usually, three times a week or more than 12 hours a week).
Peritoneal dialysis is effected by directly infusing dialysis solution into the patient's abdominal peritoneal cavity in which a peritoneal catheter is pre- implanted, allowing the dialysis solution to dwell for 4-6 hours such that metabolic wastes (for instance, urea and creatinine) diffuse from capillary blood into the peritoneal cavity and passed into the dialysis solution, and removing excess
water by virtue of the difference in the osmotic pressure produced between the
infused hypertonic dialysis solution and the body fluid.
In the past, peritoneal dialysis has been selectively adopted in which
hemodialysis is not suitable. Peritoneal dialysis, however, is increasingly used
since the continuous ambulatory peritoneal dialysis (CAPD) has been developed.
These new peritoneal dialysis has advantages that it can be carried out by the
patient oneself at 3 to 4 times a day, the cost involved is low, and the time
required for the therapy can be changed depending on the patient's daily life.
Patients receiving peritoneal dialysis have equal or better chance of survival
when compared to patients receiving hemodialysis during the first 3-5 years of
dialysis.
Conventional dialysis solution used for peritoneal dialysis is an acidic,
hypertonic solution containing: electrolytes represented by Na+, Ca2+, Mg2+ or CI",
buffer typified by lactate; and osmotic agents including glucose and polyglucose.
Recently, to avoid the problems caused by acidic solution, neutral dialysis
solution containing bicarbonate instead of lactate has been developed.
However, there are many reports that diabetiform changes in the
peritoneum may result from high concentration of glucose used in the dilaysis solution to obtain osmotic gradient across peritoneum and that a peritoneal
membrane damage may result from oxidative stress which are caused by high concentration of glucose and a long-term administration of peritoneal dialysis solution. In the current invention, the term "oxidative stress" refers to a tissue or
cell damage induced by reactive oxygen species (examples: superoxide anion,
hydrogen peroxide, hydroxyl radical). Accordingly, patients administered with peritoneal dialysis solution
containing high concentration of glucose for a long time are subjected to a
peritoneal membrane damage leading to a failure to remove water and metabolic
waste products which requires more peritoneal dialysis solution containing higher
concentration of glucose. By the repeated vicious cycles, the peritoneal
membrane damage becomes worse, and finally peritoneal dialysis should be stopped in the end.
Summary of the Invention
Therefore, an objective of the present invention is to provide a new
peritoneal dialysis solution to solve the problems caused by the conventional
peritoneal dialysis solutions. The objective of the present invention can be
achieved by providing peritoneal dialysis solutions containing antioxidants, more
specifically by providing the peritoneal dialysis solution containing electrolytes
including Na+, Mg2+, Ca2+ and CI", buffer, osmotic pressure regulating agent, and
at least one antioxidant that inhibits reactive oxygen species.
Detailed Description of the Present Invention
Inventors of the present invention have been working on the effects of
high glucose on the peritoneal mesothelial cell biology and found that reactive oxygen species mediate peritoneal tissue injury and that reactive oxygen species can be satisfactorily inhibited by a peritoneal dialysis solution containing antioxidants, without separately administering drugs to the patient suffering from
renal failure.
The peritoneal dialysis solution according to the present invention comprises 1) electrolytes, 2) buffer, 3) osmotic pressure regulating agent and 4) at least one antioxidant.
The electrolytes include Na+, Mg2+, Ca2+ and CI", and can be supplied by sodium chloride, magnesium chloride and/or calcium chloride.
The buffer that controls the pH of the dialysis solution to an appropriate range is selected from the group consisting of bicarbonate and lactate. Bicarbonate is preferred buffer.
The osmotic agent used to remove excess water from the blood into the dialysis solution includes glucose, polyglucose, and glycerol, but are not limited thereto. Amino acids and polypeptides can also be used as an osmotic agent in the present invention.
The antioxidant used in the present invention for the inhibition of the generation of reactive oxygen species is preferably selected from the group
consisting of catalase, taurine, ascorbic acid, α-tocopherol, N-acetylcysteine,
glutathione, α-lipoic acid, superoxide dismutase, or combinations thereof.
Ruiz-Munoz LM et al have reported that high concentration of glucose increases the generation of hydrogen peroxide in the mesangial cells, but this has been inhibited by the combination of catalase, an enzyme that catalyze the decomposition of hydrogen peroxide into water and oxygen, with enalaprilat used for the treatment of diabetic renal disease (Nephrol Dial Transplant 12:456-464, 1997).
Ha H et al have reported that long-term administration of taurine to diabetic rats results in a decrease of proteinuria, an indicator of diabetic
nephropathy, and a meaningful decrease in the gene expression of transforming
growth factor-β that is a fibrosis enhancing growth factor and fibronectin that is a
cell metrix protein (Free Biol Med 26:944-950, 1999).
King GL et al have reported for the first time that diabetic retinopathy or
nephropathy can be reduced by administering α-tocopherol to the diabetes-
mellitus patients (Diabetes Care, 1999). Also, Craven PA et al have shown that
a long-term administration of ascorbic acid or α-tocopherol to diabetic rats
caused a significant reduction of the indicators of diabetic nephropathy (J Am Soc Nephrol 8:1405-1411 , 1997). Studer RK et al have also reported that administration of an antioxidant such as N-acetylcystein to diabetic rats significantly inhibited activation of protein kinase C that mediates tissue damage and reduced the generation of
transforming growth factor-β (Metabolism 46:918-925, 1997).
Marocutti A et al have reported that the growth of fibroblast separated from the skin of the patient suffering from diabetic nephropathy has been inhibited, but it returned to normal state by addition of glutathion or superoxide dismutase (J Am Soc Nephro 9:1060-1066, 1998).
Hofmann MA et al have shown that NF-kappaB that alters the transcription of many genes as one of the results of oxidative stress in the tissue is related to diabetic nephropathy, and the activity of NF-kappaB can be inhibited
by administration of α-lipoic acid (Diabetologia 42:222-232, 1999).
Nishikawa T et al have reported that an increase in the concentration of the reactive oxygen species mediated by high concentration of glucose originates from the increase in the glucose metabolism in mitochondria. They
have also showed that the activation of protein kinase C, known as the mechanism of tissue damage due to high glucose level, the procudtion of AGE (Advanced glycosylation end product) and the activation of aldose reductase can be significantly reduced by inhibiting the superoxide production by superoxide dismutase (Nature 404:787-790, 2000).
The amount of antioxidants contained in the dialytic solution depends on the kind of antioxidant used, since the inhibition ability against reactive oxygen species is different for each antioxidant.
The preferable amount for each antioxidant used is as follows: based on 100 ml of dialysis solution, catalase 10000 - 50000 unit; taurine 0.001 - 0.1 g;
ascorbic acid 0.02 - 0.2 g; α-tocopherol 0.004 - 0.04 g; N-acetylcystein 0.008 -
0.32 g; glutathione 0.016 - 0.031 g; α-lipoic acid 0.021 - 0.042 g; or superoxide
dismutase 10 - 100 unit.
Generally, the peritoneal dialysis solution of the present invention is administered 4 times a day and 2 L for a single dose. The solution is administered to the patients suffering from renal failure according to the commonly used method. More particularly, the solution is administered to the peritoneum through the pre-implanted catheter in the peritoneum. About 4-6 hours are generally required for removing metabolic wastes including urea and creatinine as well as excess water.
The invention will be further illustrated by the following examples, but the scope of the present invention is not limited to the examples given.
Example 1
Peritoneal dialysis solutions were prepared by adding water up to 100ml to a mixture of glucose 1.5 g, sodium chloride 358 mg, sodium lactate 446 mg,
calcium chloride - 2H20 25.7 mg, magnesium chloride - 6H20 5.08 mg and
antioxidant described in the Table 1. Table 1
Example 2
In the same manner described in Example 1 , peritoneal dialysis solutions were prepared except that the different amount of glucose was added. The amount of glucose used in the peritoneal dialysis solution is shown in Table 2 below.
Table 2
Changes in the Concentration of the Reactive Oxygen Species according to the Changes in the Glucose Concentration and Effect of Antioxidants 3-a) Preparation of peritoneal mesothelial cell solution
To the M199 culture medium containing 10 % bovine fetal serum (GIBCO, USA), the human peritoneal mesothelial cells were added at the concentration 5
x 104 cell/2 ml/well. The cells were attached onto a slide glass pre-treated with
poly-L-lysine and cultured at 37 °C. When the human peritoneal mesothelial
cells were ca. 80 % confluent, the medium was exchanged with a serum-free medium and cultured again (2nd culture) at the same temperature for 24 hours.
3-b) Preparation of Samples
Second culture medium was replaced with the third culture medium as below, and cells were cultured for an hour.
1. culture medium containing 30 mM glucose;
2. culture medium containing 100 mM glucose;
3. culture medium containing 30 mM glucose and 500 unit/ml catalase; and,
4. culture medium containing normal 5.6 mM glucose, but not containing
antioxidant (will be refered to as "control group" hereinafter);
After each culture product was washed with Ca2+ and Mg2+-containing
phosphate buffer solution, a reagent (obtained by dissolving 2.69 μg of 5-
chloromethyl-2,7-dichloro dihydro fluorescein in 5 μl dimethyl sulfoxide) and 1 ml
phosphate buffer solution were added and left standing for 15 min at room temperature. Using Ca2+ and Mg2+-containing phosphate buffer solution, the excess reagent that was not taken up by the cells were washed out such that 4 samples were obtained.
3-c) Evaluation of Fluorescence Level
Using a laser scanning confocol microscope (Leica TSC NT, Germany), the fluorescence level for 4 samples obtained from 3-b) was calculated and the results were summarized in Table 3.
Table 3
(The relative fluorescence refers to the ratio of the sample's fluorescence to the control group's fluorescence, In other words, it means relative values calculated by setting the fluorescence of the control group to 1) The above Table 3 shows that the fluorescence increases as the glucose concentration increases, but the fluorescence of the sample containing catalase, an antioxidant, is virtually identical to that of the control group. That is, results shows that the generation of the reactive oxygen species increases proportionally to the amount of glucose added, but this increase can be inhibited by the addition of antioxidant.
Example 4
Generation of the Reactive Oxygen Species by the Commercially Available Peritoneal Dialysis Solutions
4-a) Preparation of peritoneal mesothelial cells Peritoneal mesothelial cells were prepared in the same manner described in Example 3-a).
4-b) Preparation of the samples
Sample: 10 ml of unused commercially available peritoneal dialysis solution containing 4.25 % glucose and 10 ml of each drained dialysis solutions from the patient immediately after injection (time 0) and after 15, 30, 60, 120 and 240 minutes
After washing the peritoneal mesothelial cells treated with serum-free medium for 24 hours, 1 ml of the samples were added, and cells were cultured
for 1 hour in the cell incubator. A reagent obtained by dissolving 2.69 μg of 5-
chloromethyl-2,7-dichloro dihydro fluorescein in 5 μl dimethyl sulfoxide and 1 ml
phosphate buffer solution were added and standed for 15 min at room temperature. Using Ca2+ and Mg2+-containing phosphate buffer solution, the excess reagent that was not taken up by the cells were washed out such that samples were obtained.
4-c) Evaluation of Fluorescence Level
Using a laser scanning confocol microscope (Leica TSC NT, Germany), the fluorescence level for 4 samples obtained from 3-b) was calculated and the
results were summarized in Table 4.
Table 4
Table 4 shows that not only the commercially available peritoneal dialysis solution itself but also the drained dialysis solutions obtained from the dialysis patient during the dialysis process stimulate the generation of the reactive oxygen species from the peritoneal mesothelial cells.
The above Example 3 shows that high concentration of glucose increases the generation of the reactive oxygen species, whereas catalase, an antioxidant, reduces the generation of the reactive oxygen species. It is well
known to the skilled person that taurine, ascorbic acid, α-tocopherol, N-
acetylcysteine, glutathione, α-lipoic acid, superoxide dismutase, or their mixures
as well as catalase can inhibit the generation of the reactive oxygen species. Therefore, it is expected that the peritoneal dialysis solution additionally containing at least one antioxitant selected from the group consisting of catalase,
taurine, ascorbic acid, α-tocopherol, N-acetylcysteine, glutathione, α-lipoic acid,
superoxide dismutase, or combinations thereof, unlike the currently used peritoneal dialysis solutions, can also prohibit the damage of the peritoneal mesothelial cells and the loss of the function of the peritoneal membranes.
Claims
1. A peritoneal dialysis solution for the treatment of renal failure, comprising
electrolytes including Na+, Mg2+, Ca2+ and CI", buffer, osmotic agent and at
least one antioxidant that inhibits the generation of the reactive oxygen
species.
2. The peritoneal dialysis solution according to claim 1 wherein the antioxidant
is selected from the group comprising catalase, taurine, ascorbic acid, α-
tocopherol, N-acetylcysteine, glutathione, α-lipoic acid, superoxide
dismutase, or combinations thereof.
3. The peritoneal dialysis solution according to claim 2 wherein the antioxidant
is catalase.
4. The peritoneal dialysis solution according to claim 2, wherein the amount of
antioxidant use is, based on 100 ml of the peritoneal dialysis solution,
catalase 10000 - 50000 unit, taurine 0.001 - 0.1 g, ascorbic acid 0.02 - 0.2 g,
α-tocopherol 0.004 - 0.04 g, N-acetylcystein 0.008 - 0.32 g, glutathione
0.016 - 0.031 g, α-lipoic aicd 0.021 - 0.042 g or superoxide dismutase 10 -
100 unit.
5. The peritoneal dialysis solution according to claim 1 , wherein the buffer is
bicarbonate or lactate.
6. The peritoneal dialysis solution according to claim 1 , wherein the osmotic pressure regulating agent is selected from the group consisting of glucose, polyglucose, glycerol, amino acid, polypeptide and combinations thereof.
7. The peritoneal dialysis solution according to claim 1 , wherein the electrolytes are supplied by sodium chloride, magnesium chloride and/or calcium chloride.
8. The peritoneal dialysis solution according to claim 1 , wherein the renal failure includes acute renal failure and chronic renal failure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0026583A KR100390630B1 (en) | 1999-07-02 | 1999-07-02 | Peritoneal dialysis solutions containing antioxidants |
KR1999/26583 | 1999-07-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001002004A1 true WO2001002004A1 (en) | 2001-01-11 |
Family
ID=19598968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2000/000654 WO2001002004A1 (en) | 1999-07-02 | 2000-06-21 | Peritoneal dialysis solution containing antioxidant for treating renal failure |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100390630B1 (en) |
WO (1) | WO2001002004A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10159245A1 (en) * | 2001-12-03 | 2003-06-18 | Degussa | Stable, acidic, aqueous solution containing alpha-lipoic acid (derivatives), process for their preparation and their use |
WO2006019855A1 (en) * | 2004-07-26 | 2006-02-23 | Baxter International Inc. | Compositions capable of inhibiting reactive oxygen and carbonyl species |
US7081476B2 (en) | 2001-08-21 | 2006-07-25 | Galileo Pharmaceuticals, Inc. | Tocopherol enriched compositions for reducing IL6 levels |
EP1889635A1 (en) * | 2006-06-08 | 2008-02-20 | Unipharm AD | Haemodialysis concentrates |
WO2007147590A3 (en) * | 2006-06-22 | 2008-03-13 | Gambro Inc | Solution and method to reduce, treat and/or prevent oxidative stress and cell activation |
WO2007116428A3 (en) * | 2006-04-10 | 2008-03-13 | Bio3 Res Srl | Oral pharmaceutical composition containing cystine or cysteine with glutathione against oxidative stress resulting from haemodialysis |
WO2010016806A1 (en) | 2008-08-08 | 2010-02-11 | Agency For Science, Technology And Research (A*Star) | Vhz for diagnosis and treatment of cancers |
WO2011144777A1 (en) * | 2010-05-17 | 2011-11-24 | Fundació Institut D'investigació Biomédica De Bellvitge (Idibell) | Combination of n-acetylcysteine and lipoic acid for the treatment of a disease with axonal damage and concomitant oxidative lesions |
CN102596982A (en) * | 2009-03-31 | 2012-07-18 | Cci有限公司 | Agent for inhibiting thickening of peritoneal membrane |
CN104666338A (en) * | 2013-11-27 | 2015-06-03 | 天津金耀集团有限公司 | Preparation method of peritoneal dialysis fluid (lactate) composition |
CN107184987A (en) * | 2017-04-06 | 2017-09-22 | 上海长海医院 | A kind of nanometer polypeptide carriers of targeted integration element α v β 3 of lipoic acid modification and its preparation method and application |
US9931369B2 (en) | 2007-03-02 | 2018-04-03 | Zytoprotec Gmbh | Carbohydrate-based peritoneal dialysis fluid comprising glutamine residue |
CN108676771A (en) * | 2018-05-28 | 2018-10-19 | 温州医科大学附属第医院 | The separation method and separating obtained PMCs of a kind of primary Peritoneal Mesothelial Cells |
WO2019099946A1 (en) * | 2017-11-17 | 2019-05-23 | Renovion, Inc. | Stable ascorbic acid compositions and methods of using the same |
US11129433B2 (en) | 2013-04-19 | 2021-09-28 | Adidas Ag | Shoe |
WO2021257084A1 (en) * | 2020-06-19 | 2021-12-23 | Hewlett-Packard Development Company, L.P. | Born-on date |
US12097238B2 (en) | 2022-01-04 | 2024-09-24 | Renovion, Inc. | Aqueous solution comprising a glutathione salt |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100855097B1 (en) | 2006-12-18 | 2008-08-29 | 이정상 | Acetylcysteine-containing anti-helicobacter pylori composition |
-
1999
- 1999-07-02 KR KR10-1999-0026583A patent/KR100390630B1/en not_active Expired - Fee Related
-
2000
- 2000-06-21 WO PCT/KR2000/000654 patent/WO2001002004A1/en active Search and Examination
Non-Patent Citations (6)
Title |
---|
CHEMICAL ABSTRACTS, 1994, Columbus, Ohio, US; abstract no. 121:221898, BREBOROWICZ A. ET AL.: "The glycosaminoglycan chondroitin sulfate prevents loss of ultrafiltration during peritoneal dialysis in rats" * |
CHEMICAL ABSTRACTS, 1996, Columbus, Ohio, US; abstract no. 125:238606, WIECZOROWSKA-TOBIS K. ET AL.: "Effect of vitamin E on peroxidation and permeability of the peritoneum" * |
CHEMICAL ABSTRACTS, 1998, Columbus, Ohio, US; abstract no. 129:117804, MOBERLY JAMES B. ET AL.: "Elevation of whole-blood glutathione in peritoneal dialysis patients by L-2-oxothiazolidine-4-carboxylate, a cysteine prodrug (procysteine)" * |
J. AM. SOC. NEPHROL., vol. 9, no. 6, 1998, pages 1093 - 1099 * |
J. PHYSIOL. PHARMACOL., vol. 47, no. 3, 1996, pages 535 - 543 * |
NEPHRON, vol. 67, no. 3, 1994, pages 346 - 350 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7081476B2 (en) | 2001-08-21 | 2006-07-25 | Galileo Pharmaceuticals, Inc. | Tocopherol enriched compositions for reducing IL6 levels |
US7119117B2 (en) | 2001-08-21 | 2006-10-10 | Galileo Pharmaceuticals, Inc. | Tocopherol enriched compositions and amelioration of inflammatory symptoms |
DE10159245A1 (en) * | 2001-12-03 | 2003-06-18 | Degussa | Stable, acidic, aqueous solution containing alpha-lipoic acid (derivatives), process for their preparation and their use |
WO2006019855A1 (en) * | 2004-07-26 | 2006-02-23 | Baxter International Inc. | Compositions capable of inhibiting reactive oxygen and carbonyl species |
US7384558B2 (en) | 2004-07-26 | 2008-06-10 | Baxter International Inc. | Compositions capable of inhibiting reactive oxygen and carbonyl species |
WO2007116428A3 (en) * | 2006-04-10 | 2008-03-13 | Bio3 Res Srl | Oral pharmaceutical composition containing cystine or cysteine with glutathione against oxidative stress resulting from haemodialysis |
EP1889635A1 (en) * | 2006-06-08 | 2008-02-20 | Unipharm AD | Haemodialysis concentrates |
WO2007147590A3 (en) * | 2006-06-22 | 2008-03-13 | Gambro Inc | Solution and method to reduce, treat and/or prevent oxidative stress and cell activation |
US9931369B2 (en) | 2007-03-02 | 2018-04-03 | Zytoprotec Gmbh | Carbohydrate-based peritoneal dialysis fluid comprising glutamine residue |
US11534475B2 (en) | 2007-03-02 | 2022-12-27 | Zytoprotec Gmbh | Carbohydrate-based peritoneal dialysis fluid comprising glutamine residue |
WO2010016806A1 (en) | 2008-08-08 | 2010-02-11 | Agency For Science, Technology And Research (A*Star) | Vhz for diagnosis and treatment of cancers |
EP2415775A4 (en) * | 2009-03-31 | 2012-10-17 | Cci Corp | MEANS OF INHIBITING THICKNESS OF THE PERITONEAL MEMBRANE |
US8841262B2 (en) | 2009-03-31 | 2014-09-23 | Cci Corporation | Agent for inhibiting peritoneal membrane thickening |
CN102596982B (en) * | 2009-03-31 | 2015-03-18 | Cci有限公司 | Agent for inhibiting thickening of peritoneal membrane |
CN102596982A (en) * | 2009-03-31 | 2012-07-18 | Cci有限公司 | Agent for inhibiting thickening of peritoneal membrane |
WO2011144777A1 (en) * | 2010-05-17 | 2011-11-24 | Fundació Institut D'investigació Biomédica De Bellvitge (Idibell) | Combination of n-acetylcysteine and lipoic acid for the treatment of a disease with axonal damage and concomitant oxidative lesions |
US11129433B2 (en) | 2013-04-19 | 2021-09-28 | Adidas Ag | Shoe |
CN104666338A (en) * | 2013-11-27 | 2015-06-03 | 天津金耀集团有限公司 | Preparation method of peritoneal dialysis fluid (lactate) composition |
CN107184987B (en) * | 2017-04-06 | 2021-02-02 | 上海长海医院 | A lipoic acid-modified targeting integrin αvβ3 nano-polypeptide carrier and its preparation method and application |
CN107184987A (en) * | 2017-04-06 | 2017-09-22 | 上海长海医院 | A kind of nanometer polypeptide carriers of targeted integration element α v β 3 of lipoic acid modification and its preparation method and application |
WO2019099946A1 (en) * | 2017-11-17 | 2019-05-23 | Renovion, Inc. | Stable ascorbic acid compositions and methods of using the same |
CN111615395A (en) * | 2017-11-17 | 2020-09-01 | 莱诺翁股份有限公司 | Stabilized ascorbic acid composition and method of use |
JP2021503497A (en) * | 2017-11-17 | 2021-02-12 | レノビオン インコーポレイテッド | Stable ascorbic acid composition and how to use it |
US11497786B2 (en) | 2017-11-17 | 2022-11-15 | Renovion, Inc. | Stable ascorbic acid compositions and methods of using the same |
JP7339955B2 (en) | 2017-11-17 | 2023-09-06 | レノビオン インコーポレイテッド | Stable Ascorbic Acid Compositions and Methods of Using The Same |
US11890315B2 (en) | 2017-11-17 | 2024-02-06 | Renovion, Inc. | Stable ascorbic acid compositions and methods of using same |
JP7617179B2 (en) | 2017-11-17 | 2025-01-17 | レノビオン インコーポレイテッド | Stable ascorbic acid compositions and methods of using same - Patents.com |
CN108676771A (en) * | 2018-05-28 | 2018-10-19 | 温州医科大学附属第医院 | The separation method and separating obtained PMCs of a kind of primary Peritoneal Mesothelial Cells |
WO2021257084A1 (en) * | 2020-06-19 | 2021-12-23 | Hewlett-Packard Development Company, L.P. | Born-on date |
US12097238B2 (en) | 2022-01-04 | 2024-09-24 | Renovion, Inc. | Aqueous solution comprising a glutathione salt |
Also Published As
Publication number | Publication date |
---|---|
KR20010008659A (en) | 2001-02-05 |
KR100390630B1 (en) | 2003-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001002004A1 (en) | Peritoneal dialysis solution containing antioxidant for treating renal failure | |
EP0456806B1 (en) | Histidine buffered peritoneal dialysis solution | |
US6214802B1 (en) | Peritoneal dialysis fluid | |
NL194909C (en) | Process for the preparation of polymerized hemoglobin and cell-free replacement for red blood cells on the basis thereof. | |
Grollman et al. | Intermittent peritoneal lavage in nephrectomized dogs and its application to the human being | |
Feriani et al. | Randomized long-term evaluation of bicarbonate-buffered CAPD solution | |
AU701724B2 (en) | Biochemically balanced peritoneal dialysis solutions | |
JP4882054B2 (en) | Peritoneal dialysate and preparation method thereof | |
JP3262620B2 (en) | Peritoneal dialysate that can be used to minimize injury and physiological side effects caused by peritonitis | |
AP1185A (en) | Novel pharmaceutical composition for the use in emergency treatment and preparation method thereof. | |
Ouriel et al. | Protection of the kidney after temporary ischemia: free radical scavengers | |
EP1458371A1 (en) | Pyruvate cardioplegia solutions for administration to the heart during cardiopulmonary surgery and methods of use thereof | |
EP0643969B1 (en) | Dialysis solution for extracorporeal hemodialysis | |
Feriani et al. | Short term clinical study with bicarbonate-containing peritoneal dialysis solution | |
EP0869788B1 (en) | Compositions for the treatment of renal failure, comprising l-carnosine | |
JPH10505322A (en) | Dialysate containing casein-derived peptide as osmotic agent and bicarbonate ion as buffer | |
JP4061775B2 (en) | Albumin-containing peritoneal dialysis solution | |
US7029906B2 (en) | Carbonyl stress-ameliorating agents | |
RU2077883C1 (en) | Composition for intravenous administration for kidney protection against toxic effect of nephrotoxic cytostatics and immunosuppressors | |
Walter et al. | Red blood cell sodium transport and phosphate release in uremia | |
Casati et al. | Haemodialysis efficiency after long-term treatment with recombinant human erythropoietin | |
CN102438625A (en) | Pharmaceutical composition comprising citicoline and uric acid for neuroprotective treatment in patients with ictus | |
Litwin et al. | Sodium o-iodobenzoate and hemoglobin-oxygen affinity: in vivo effects | |
Eiselt et al. | Oxidative stress: the effect of erythropoietin and the dialysis membrane | |
RU2195169C2 (en) | Method for counterbalancing blood loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN IN JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10019609 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |