+

WO2001098661A1 - Scrawl compressor - Google Patents

Scrawl compressor Download PDF

Info

Publication number
WO2001098661A1
WO2001098661A1 PCT/JP2001/005243 JP0105243W WO0198661A1 WO 2001098661 A1 WO2001098661 A1 WO 2001098661A1 JP 0105243 W JP0105243 W JP 0105243W WO 0198661 A1 WO0198661 A1 WO 0198661A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
wall
orbiting
end plate
pressure chamber
Prior art date
Application number
PCT/JP2001/005243
Other languages
French (fr)
Japanese (ja)
Inventor
Takahide Itoh
Chikako Sasakawa
Susumu Matsuda
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to DE60108871T priority Critical patent/DE60108871T2/en
Priority to EP01941106A priority patent/EP1293674B1/en
Publication of WO2001098661A1 publication Critical patent/WO2001098661A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face

Definitions

  • the present invention relates to a scroll compressor provided in an air conditioner, a refrigeration system, and the like.
  • a fixed scroll and an orbiting scroll are arranged in combination with spiral-shaped walls, and the volume of the compression chamber formed between the walls by revolving the orbiting scroll with respect to the fixed scroll. Is gradually reduced to compress the fluid in the compression chamber.
  • the design compression ratio of the scroll compressor is as follows: The maximum volume of the compression chamber (the volume immediately before the compression chamber disappears due to the disengagement of the walls and the compression chamber disappears) (The volume at the time when the chamber was formed), and is expressed by the following formula (I).
  • ⁇ ( ⁇ ) is a function that represents the cross-sectional area parallel to the revolving surface of the compression chamber whose volume changes according to the revolving angle of the orbiting scroll ⁇ , and ⁇ sue is when the compression chamber has the maximum volume.
  • ⁇ top is the turning angle of the turning scroll when the compression chamber has the minimum volume, and L is the wrap (overlap) length between the walls.
  • Japanese Patent Publication No. 60-17956 proposes the following technology.
  • the fixed scroll 50 shown in FIG. 12A is provided with an end plate 50 a and a spiral wall 50 b erected on one side of the end plate 50 a. I have.
  • the orbiting scroll 51 is shown in FIG. 12B. Similarly to the fixed scroll 50, the orbiting scroll 51 also includes an end plate 51a, and a spiral wall 51b provided on one side of the end plate 51a.
  • the fixed scroll 50 and the orbiting scroll 51 are located on the side of the end plates 50a, 51a, ⁇ (rad) from the outer peripheral edge of the spiral of the wall bodies 50b, 51b, and the center side is
  • a step 52 is formed that is high and the outer end is low.
  • the center of the scroll 50a and 51b is provided on the spiral upper edges of the walls 50b and 51b.
  • a step portion 53 that is low and has a high outer peripheral end side is formed.
  • Tip seals 54 and 56 for improving airtightness are provided on the upper edges of the walls 50b and 51b.
  • Fig. 13B is a sectional view of the compression chamber P along the spiral direction.
  • the wrap length L 1 on the outer peripheral end side of the step portion 52 is longer than the inner wrap length Ls. For this reason, it can be seen that the maximum volume of the compression chamber P is increased by the length of the wrap outside the step 52 as compared with the case where the wrap length is uniform. Therefore, it is possible to improve the design compression ratio without increasing the number of windings of the wall.
  • the tip seal 56 near the step 53 is fixed to the end plate 50a of the fixed scroll 50. (Part indicated by reference symbol a in the figure). Similarly, the tip seal 54 on the fixed scroll 50 side is also separated from the end plate 51 a of the orbiting scroll 51 in the vicinity of the step 52.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a scroll compressor that can prevent fluid leakage. Disclosure of the invention
  • the scroll compressor according to the present invention includes: a fixed scroll having a spiral wall provided upright on one side surface of an end plate; and a spiral wall body provided upright on one side surface of the end plate.
  • a back-pressure chamber is formed on the other side of the scroll, and the fluid compressed by the two scrolls is introduced into the back-pressure chamber, whereby the one scroll is pressed against the other scroll.
  • the end plate of at least one of the fixed scroll and the orbiting scroll has, on one side surface, a height that is higher at a center portion side along a vortex of a wall body.
  • a step formed so as to be lower on the peripheral end side is provided, and an upper edge of a wall of the other scroll of the fixed scroll or the orbiting scroll corresponds to a step of the end plate. It is characterized in that it is divided into portions and has a stepped shape in which the height of the portion is lower at the center of the vortex and higher at the outer peripheral end.
  • an elastic body for pressing at least one of the fixed scroll and the orbiting scroll against the other scroll may be provided.
  • the back pressure chamber may be formed on the other side of the fixed scroll.
  • the compression chamber is sealed by pressing the fixed scroll toward the orbiting scroll.
  • the back pressure chamber may be formed on the other side of the orbiting scroll.
  • the compression chamber is sealed by pressing the orbiting scroll toward the fixed scroll.
  • a bearing member is provided for revolving orbiting by being fitted to the other side of the end plate of the orbiting scroll, and the back pressure chamber is provided between the orbiting scroll and the bearing member. May be formed between them.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a scroll compressor shown as a first embodiment of the present invention.
  • FIG. 2 is a perspective view of a fixed scroll used in the scroll compressor.
  • FIG. 3 is a perspective view of an orbiting scroll used in the scroll compressor.
  • FIG. 4 is a cross-sectional view along the vortex of the fixed scroll or the orbiting scroll.
  • FIG. 5 is a diagram showing a process of fluid compression when the scroll compressor is driven.
  • FIG. 6 is a diagram showing a process of fluid compression when the scroll compressor is driven.
  • FIG. 7 is a diagram showing a process of fluid compression when the scroll compressor is driven.
  • FIG. 8 is a diagram showing a process of fluid compression when the scroll compressor is driven.
  • FIGS. 9A to 9D are views showing shapes of expanded compression chambers of the scroll compressor.
  • FIG. 10 is a cross-sectional view showing the overall configuration of a scroll compressor shown as the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the overall configuration of a scroll compressor shown as the third embodiment of the present invention.
  • Figures 128 and 12B show fixed scrolls used in conventional scroll compressors. And a perspective view of the orbiting scroll.
  • FIGS. 13 and 13B are diagrams showing a compression chamber at the maximum capacity in a conventional scroll compressor.
  • FIG. 14 is a cross-sectional view showing a sliding state of a tip seal in the vicinity of a step portion of a conventional scroll compressor.
  • FIGS. 1 to 9A to 9D An embodiment of a scroll compressor according to the present invention will be described with reference to FIGS. 1 to 9A to 9D.
  • FIG. 1 shows a configuration of a back-pressure scroll compressor shown as one embodiment of the present invention.
  • This back-pressure scroll compressor has a sealed housing 1, a discharge cover 2, which separates a housing 1 ⁇ into a high-pressure chamber HR and a low-pressure chamber LR, a frame 5, a suction pipe 6, a discharge pipe 7, and a motor 8 , Rotating shaft 9, rotation prevention mechanism 10, fixed scroll 12, and orbiting scroll 13 meshing with fixed scroll 12.
  • the fixed scroll 12 has a configuration in which a spiral wall 12b is erected on one side surface of an end plate 12a.
  • the orbiting scroll 13 has a structure in which a spiral wall 13b is erected on one side of the end plate 13a, and particularly the wall 13b. Has substantially the same shape as the wall 1 2b on the fixed scroll 12 side.
  • the orbiting scrolls 13 are mutually eccentric with respect to the fixed scrolls 12 by the orbital revolving radius and shifted in phase by 180 °. And assembled. .
  • the fixed scroll 12 is not completely fixed to the frame 5 by a bonolet or the like, and is movable within a restricted range.
  • a cylindrical boss A is formed on the back side of the orbiting scroll 13, and an eccentric pin 9 a provided at the upper end of a rotary shaft 9 driven by a motor 8 and orbiting is inserted into the boss A. ing. As a result, the orbiting scroll 1 3 becomes the fixed scroll 1 2 In addition to the turning motion, the rotation is prevented by the action of the rotation preventing mechanism 10.
  • the fixed scroll 12 is supported by the frame 5 fixed to the housing 1 via a supporting panel (elastic body) 11 so as to float freely, and is pressed against the orbiting scroll 13. .
  • a discharge port 15 for compressed fluid is provided at the center of the back surface of the end plate 3a.
  • a seal structure using a seal member 18 is employed.
  • This seal member 15 has a U-shaped cross section.
  • the high-pressure chamber HR in this case also functions as a back-pressure chamber for applying a high-pressure discharge pressure to the back of the fixed
  • the end plate 1 2a of the fixed scroll 1 2 has one side on which the wall 1 2b is erected, and is high at the center and low at the outer end along the vortex direction of the wall 1 2b.
  • the step portion 42 is formed.
  • the end plate 13a on the orbiting scroll 13 side is on one side where the wall body 13b is erected, and at the center side along the vortex direction of the wall body 13b.
  • a step 43 is formed so as to be higher and lower on the outer peripheral end side.
  • the steps 42 and 43 are located at positions ⁇ (rad) ahead of the outer edges of the walls 1 2 b and 13 b with reference to the center of the spiral of the walls 12 b and 13 b, respectively. It is provided in.
  • the bottom surface of the end plate 1 2a has a shallow bottom surface 12 f provided from the center portion and a deep bottom surface 12 g provided from the outer peripheral edge due to the formation of the step portion 42. Is divided into two parts. Between the adjacent bottom surfaces 12 f and 12 g, there is a stepped portion 42, and there is a connecting wall surface 12 h which connects the bottom surfaces 12 f and 12 g and is vertically cut. Similarly to the end plate 1a, the bottom surface of the end plate 1a is provided with a shallow bottom surface 13f provided from the center and the outer peripheral end due to the formation of the step 43. The deep bottom of the shaved bottom is divided into two parts of 13 g. Between the adjacent bottom surfaces 13 f and 13 g, there is a step portion 43, and there is a connecting wall surface 13 h that connects the bottom surfaces 13 f and 13 g and is vertically cut.
  • the wall 12b of the fixed scroll 12 corresponds to the step 43 of the orbiting scroll 13, and the upper edge of the spiral is divided into two parts, and is lower at the center of the vortex. It has a high stepped shape on the outer peripheral end side.
  • the orbiting scroll 1 3 side wall 1 3b also corresponds to the stepped portion 42 of the fixed scroll 1 2 and the spiral upper edge is divided into two portions, and The shape is low at the center and high at the outer edge.
  • the upper edge of the wall 1 2b is divided into two parts: a lower upper edge 1 2c provided near the center and a higher upper edge 1 2d provided near the outer edge.
  • a connecting edge 12 e that is perpendicular to the turning surface exists between the adjacent upper edges 12 c and 12 d.
  • the upper edge of the wall 13b is also composed of a lower upper edge 13c near the center and a higher upper edge 13d near the outer edge. It is divided into parts, and between the adjacent upper edges 13c and 13d, there is a connection edge 13e that connects the two and is perpendicular to the turning surface.
  • the connecting edge 1 2 e When viewed from the direction of the orbiting scroll 13, the connecting edge 1 2 e is a half having a diameter that is smoothly continuous with the inner and outer sides of the wall 1 2 b when viewed from the direction of the orbiting scroll 13 and has a wall thickness equal to the wall 1 2 b.
  • the connecting edge 13e like the connecting edge 12e, has a semicircular shape that smoothly continues to the inner and outer sides of the wall 13b and has a diameter equal to the wall thickness of the wall 13b. Has made.
  • the connecting wall surface '12h has an arc that matches the envelope drawn by the connecting edge 13e with the turning of the orbiting scroll.
  • the 13h has an arc corresponding to the envelope drawn by the connecting edge 12e.
  • the upper edge 12c and the connection edge 12e of the wall 12b abut each other.
  • the ribs are provided with ribs 1 2 i at the bottom.
  • the rib 12 i is formed integrally with the wall 12 b to form a concave surface that smoothly connects the upper edge 12 c and the connecting edge 12 e to avoid stress concentration.
  • a rib 13i of the same shape is also provided at a portion where the upper edges 13c and 13e abut on the wall 13b for the same reason.
  • a rib 12j is also provided on the end plate 12a at the portion where the bottom surface 12g and the connecting wall surface 12h abut, as if they were overlaid.
  • the rib 12j is formed integrally with the wall 12b as a concave curved surface that smoothly connects the bottom surface 12g and the connecting wall surface 12h to avoid stress concentration.
  • a rib 13 j of the same shape is also provided at a portion of the end plate 13 a where the bottom surface 13 g and the connecting wall surface 13 h meet the force S for the same reason.
  • the part of the wall 1 2b where the upper edge 1 2d and the connecting edge 1 2e meet, and the part of the wall 1 3b where the upper ⁇ 13 d and the connecting edge 13 e match, are ribs 1 during assembly. They are chamfered to avoid interference with 3 j and 1 2 j.
  • the compression chamber C moves from the outer peripheral end toward the center with the orbital movement of the orbiting scroll 13, but the connecting edge 12 e is connected to the contact edge of the walls 12 b and 13 b by the connecting edge 1 2 While it is closer to the outer peripheral edge than e, it slides against the connecting wall 13h so that fluid does not leak between the adjacent compression chambers C (one is not in a sealed state) with the wall 12 interposed.
  • the compression chambers C both in a sealed state adjacent to each other with the wall 12 interposed therebetween. In order to equalize the pressure, it does not come into sliding contact with the connecting wall surface for 13 h.
  • the outer peripheral end of the wall 1 2b contacts the outer surface of the wall 13b, and the outer peripheral end of the wall 13b contacts the outer surface of the wall 12b.
  • Fluid is sealed between the end plates 12a and 13a and the walls 12b and 13b, and two compression chambers C with the maximum capacity are located directly opposite each other across the center of the scroll compression mechanism. It is formed.
  • the connecting edge 12 e and the connecting wall 13 h are in sliding contact with each other, and the connecting edge 13 e and the connecting wall 12 h are in sliding contact with each other, but immediately separate.
  • the compression chamber C moves toward the center while maintaining the sealed state, and gradually reduces the volume.
  • the fluid is compressed, and the compression chamber C0 preceding the compression chamber C also advances toward the center while maintaining a sealed state, and gradually reduces the volume to compress the fluid.
  • the sliding contact between the connecting edge 12 e and the connecting wall 13 h and between the connecting edge 13 e and the connecting wall 12 h are eliminated, and the two adjacent compression chambers C are equalized.
  • the compression chamber C advances toward the center while maintaining the closed state, and the volume gradually decreases to further reduce the volume.
  • the fluid is compressed, and the compression chamber C0 also moves toward the center while maintaining the sealed state, and gradually reduces the volume to compress the fluid continuously.
  • the connecting edge 12e starts sliding contact with the connecting wall 13h, and the connecting edge 13e starts sliding contact with the connecting wall 12h.
  • an open space C1 which later becomes a compression chamber, is formed between the inner surface of the wall 1 2b near the outer peripheral end and the outer surface of the wall 13b located inside the wall.
  • an open space C1 which will later become a compression chamber, is formed between the inner surface of the wall 13b near the outer peripheral end and the outer surface of the wall 13b located inside the wall 13b.
  • a low-pressure fluid flows into the space C1 from the low-pressure chamber LR.
  • the open space C1 expands toward the center of the scroll compression mechanism while expanding, and is opened.
  • the compression chamber C preceding the space C1 also moves toward the center, and gradually reduces the volume to compress the fluid.
  • the space C1 further increases in size toward the center of the scroll compressor mechanism.
  • the compression chamber C preceding the space C1 also moves toward the center while maintaining the sealed state, and gradually reduces the volume to compress the fluid.
  • the compression chamber C shown in FIG. 8 corresponds to the compression chamber CO shown in FIG. 5
  • the space C1 shown in FIG. 8 corresponds to the compression chamber C shown in FIG. .
  • the compression chamber C becomes the minimum volume, and the fluid is discharged from the compression chamber C.
  • the discharged fluid is introduced into the high-pressure chamber HR.
  • the fixed scroll 12 receives the high back pressure and is pressed against the orbiting scroll 13 side.
  • the seal member 15 the high pressure fluid is introduced into the U-shaped portion to cause the differential pressure.
  • the sealing is performed between the high-pressure chamber HR and the low-pressure chamber LR by pressing the sealing surfaces toward the vertical surfaces of the cylindrical flanges 16 and 17.
  • the change in the size of the compression chamber C from the maximum volume to the minimum volume can be regarded as the compression chamber C in FIG. 5 ⁇ the compression chamber C in FIG. 7 ⁇ the compression chamber C 0 in FIG. 5 ⁇ the compression chamber C 0 in FIG.
  • the expanded shapes of the compression chambers in each state are shown in FIGS. 9A to 9D.
  • the compression chamber is shaped like a strip with a narrow width in the direction of the pivot axis.
  • the width is the height of the wall 1 2b from the bottom 12 g to the upper edge 12 d on the outer peripheral end side of the scroll compression mechanism (or the wall 1 from the bottom 13 g to the upper edge 13 d).
  • Lap length L 1 which is approximately equal to the height of 3 b), and the height from the bottom 12 f to the upper edge 12 d at the center (or the height from the bottom 13 f to the upper edge 13 d)
  • the wrap length L s ( ⁇ L 1) is approximately equal to the height of the wall 13 b.
  • the compression chamber has an irregular short shape whose width in the direction of Form a book.
  • the width is the wrap length L s on the outer peripheral end of the scroll compression mechanism, and the height from the bottom 12 f to the upper edge 12 c (or from the bottom 13 f to the upper edge 13 c) on the center.
  • the wrap length Lss is approximately equal to the height of the wall 13b.
  • the compression chamber has a uniform wrap length L s s as shown in FIG. 9C.
  • the compression chamber has the minimum volume by minimizing its length.
  • the change in the volume of the compression chamber is caused not only by the decrease in the cross-sectional area parallel to the turning surface as in the conventional case, but also in the direction of the turning axis as shown in FIGS. 9A to 9D. It is caused synergistically by a decrease in width and a decrease in cross-sectional area.
  • the walls 12b, 13b are stepped, and the wrap length of the walls 12b, 13b is changed between the outer peripheral end and the center of the scroll compression mechanism, and the compression chamber C
  • the compression ratio can be improved as compared with a conventional scroll compressor in which the wrap length between the walls is constant.
  • the compression chamber C is sealed without using a tip seal, and efficient compression can be performed without dropping or breaking the tip seal.
  • FIG. 10 shows a scroll compressor according to this example.
  • This scroll compressor has a closed housing 2, a suction pipe 23 at the lower part, and a discharge pipe 25 at the upper part.
  • the driving section 27 includes a rotor 27 a fixed to the main shaft 28 and a stator 27 b fixed to the housing 21.
  • the main shaft 28 is rotatably supported by the main bearing 30, and current flows through the stator 27 b Thus, rotational power is given to the main shaft 28 via the rotor 27a.
  • the compressor section 29 includes a fixed scroll 31 and an orbiting scroll 32.
  • the end plate of the fixed scroll 31 is fixed to the housing 21.
  • a discharge port 33 for compressed fluid is provided at the center of the end plate of the orbiting scroll 32.
  • the fixed scroll 31 has a discharge port ( (Refer to reference numeral 15 in Fig. 1) is not provided).
  • a cylindrical boss A is formed surrounding the opening of the discharge port 33, and the eccentric portion 28a of the main shaft 28 is inserted into the boss A.
  • a communication hole 34 is provided in the main shaft 28 so as to penetrate in the axial direction, and connects the discharge port 33 and the discharge pipe 25.
  • annular sealing member 35 for separating the inside of the housing 21 into a high-pressure chamber (back pressure chamber) HR and a low-pressure chamber LR. ing.
  • the high-pressure chamber HR is formed around the opening of the discharge port 33 on the back side of the orbiting scroll 32.
  • the compression chamber C moves from the outer peripheral end toward the center, and gradually reduces the volume to compress the fluid.
  • the compression stroke of the fluid is the same as that of the first embodiment, but the compressed fluid is introduced into the high-pressure chamber HR formed on the back side of the orbiting scroll 32 via the discharge port 33. Then, the orbiting scroll 32 is pressed against the fixed scroll 31 with the high back pressure.
  • the change in the volume of the compression chamber is not caused only by the decrease in the cross-sectional area parallel to the swivel surface as in the conventional case, but as shown in Figs. 9A to 9D. It is caused synergistically by a reduction in the width in the direction and a reduction in the cross-sectional area. Therefore, the walls 12b and 13b are stepped, and the wrap lengths of the walls 12b and 13b are changed between the outer peripheral end and the center of the scroll compression mechanism, and the compression chamber C By increasing the maximum volume or decreasing the minimum volume, the compression ratio can be improved as compared with a conventional scroll compressor in which the wrap length between the walls is constant.
  • the orbiting scroll 3 2 is pressed against the fixed scroll 3 1 by introducing the back pressure into the high pressure chamber HR.
  • the compression chamber C is sealed without using a tip seal, and efficient compression can be performed without dropping or breaking the tip seal.
  • FIG. 11 shows a scroll compressor according to the present example.
  • This scroll compressor has an orbiting scroll 13 combined with a fixed scroll 12.
  • the orbiting scroll 13 ' is composed of a terminal 13a' and a wall 13b standing upright on one side of the end plate 13a '. Except for the end plate 13a ', the configuration is the same as that of the orbiting scroll 13 of the first embodiment.
  • the end plate 13a 'of the orbiting scroll 13 has an annular groove 45 on the back side (the other side of the end plate 13a').
  • a bearing member 46 is fitted in the annular groove 45.
  • An annular protrusion 46 a corresponding to the annular groove 45 is formed on the bearing member 46, and the annular protrusion 46 a is fitted into the annular groove 45.
  • a seal member 47 is provided on the seal surface between the annular protrusion 46a and the annular groove 45, so that a gap between the turning scale 13 'and the bearing member 46 is reduced. It is separated into a high pressure chamber (back pressure chamber) HR 'on the center side and a low pressure chamber LR on the outside.
  • the end plate 13a ' has a communication hole 48 communicating the high-pressure chamber HR' and the compression chamber C.
  • a cylindrical boss A is formed on the bearing member 46 and extends in a direction opposite to the annular projection 46 a.
  • An eccentric pin 9 a provided at the upper end of the rotating shaft 9 and rotating is inserted into the boss A. .
  • the bearing member 46 is supported in a state where its rotation is prevented by the rotation preventing mechanism 10.
  • the bearing member 46 is revolved orbitally by the rotation of the rotary shaft 9, and the motion is transmitted to the orbiting scroll 13 ', so that the orbiting scrolls 13 and revolve.
  • the compression chamber C moves from the outer peripheral end toward the center, and gradually reduces the volume to compress the fluid.
  • the compression stroke of the fluid is the same as that of the first embodiment, but the compressed fluid is discharged from the discharge port 15 and introduced into the high-pressure chamber H R ′ through the communication hole 48.
  • the high-pressure fluid introduced into the high-pressure chamber HR exerts pressure so as to separate the orbiting scroll 13 'and the bearing member 46 from each other, whereby the orbiting scrolls 13 and 13 are pressed against the fixed scroll 12 Can be
  • the change in the volume of the compression chamber is not caused only by the decrease in the cross-sectional area parallel to the orbital surface as in the conventional case, but as shown in Figs. 9A to 9D. It is caused synergistically by the reduction of the width in the direction and the reduction of the cross-sectional area.
  • the walls 12b and 13b are stepped, and the wrap lengths of the walls 12b and 13b are changed between the outer peripheral end and the center of the scroll compression mechanism, and the compression chamber C
  • the compression ratio can be improved as compared with a conventional scroll compressor in which the wrap length between the walls is constant.
  • the compression chamber C is sealed without using a tip seal, and efficient compression can be performed without dropping or breaking the tip seal.
  • the connecting edges 12 e and 13 e are formed perpendicular to the turning surface of the orbiting scroll 13, and the connecting walls 12 h and 13 h are correspondingly perpendicular to the turning surface. It is formed, but the connecting edges 12 e and 13 6 and the connecting walls 12 and 13 h do not need to be perpendicular to the turning surface as long as they keep their correspondence, for example, with respect to the turning surface. It may be formed so as to be inclined.
  • the connecting edges 1 2 e and 13 e do not have to be semicircular, It may be. In this case, the envelope drawn by the connecting edges 12 e and 13 e does not become an arc, so that the connecting walls 12 h and 13 h also do not become arcs.
  • step portions 42 and 43 are not limited to one, and may be provided at a plurality of portions.
  • the compressed fluid introduced into the back pressure chamber, and therefore c the one scroll is pressed against the other scroll, compressed without using a conventional tip seal Since the chamber is sealed, the tip seal does not fall or break, preventing leakage of fluid and enabling efficient compression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

A scroll compressor comprising a back pressure chamber (HR) formed at the other side of an end plate (12a) of a stationary scroll (12), the stationary scroll (12) being pressed against a revolving scroll (13) by introducing a compressed fluid into the back pressure chamber (HR), wherein a level difference is provided between end plates (12a, 13a) of the stationary and revolving scrolls (12, 13) and the upper edges of the walls (12b, 13b) of the stationary and revolving scrolls (12, 13) are of stepped shape to prevent leakage of the fluid.

Description

明細書  Specification
スクロール圧縮機 技術分野  Scroll compressor Technical field
本発明は、 空気調和装置や冷凍装置等に具備されるスクロール圧縮機に関する。 背景技術  The present invention relates to a scroll compressor provided in an air conditioner, a refrigeration system, and the like. Background art
スクロール圧縮機は、 固定スクロールと旋回スクロールとを渦巻き状の壁体ど うしを組み合わせて配置し、 固定スクロールに対し旋回スクロールを公転旋回運 動させることで壁体間に形成される圧縮室の容積を漸次減少させて該圧縮室内の 流体の圧縮を行うものである。  In a scroll compressor, a fixed scroll and an orbiting scroll are arranged in combination with spiral-shaped walls, and the volume of the compression chamber formed between the walls by revolving the orbiting scroll with respect to the fixed scroll. Is gradually reduced to compress the fluid in the compression chamber.
スクロール圧縮機の設計上の圧縮比は、 圧縮室の最小容積 (壁体どうしのかみ 合いが外れて圧縮室が消滅する直前の容積) に対する、 圧縮室の最大容積 (壁体 どうしがかみ合って圧縮室が形成された時点の容積) の比であり、 次式 (I) で 表される。  The design compression ratio of the scroll compressor is as follows: The maximum volume of the compression chamber (the volume immediately before the compression chamber disappears due to the disengagement of the walls and the compression chamber disappears) (The volume at the time when the chamber was formed), and is expressed by the following formula (I).
V i= { Α ( θ sue) · L } / { A ( Θ top) · L } = A ( Θ sue) / A ( Θ top) · ·· (I)V i = {Α (θ sue) · L} / {A (Θ top) · L} = A (Θ sue) / A (Θ top) ··· (I)
(I)式において、 Α ( θ )は旋回スクロールの旋回角 Θに応じて容積を変化させ る圧縮室の旋回面に平行な断面積を表す関数、 Θ sueは圧縮室が最大容積となる ときの旋回スクロールの旋回角、 Θ topは圧縮室が最小容積となるときの旋回ス クロールの旋回角、 Lは壁体どうしのラップ (重なり) 長である。 In equation (I), Α (θ) is a function that represents the cross-sectional area parallel to the revolving surface of the compression chamber whose volume changes according to the revolving angle of the orbiting scroll Θ, and Θ sue is when the compression chamber has the maximum volume. Θ top is the turning angle of the turning scroll when the compression chamber has the minimum volume, and L is the wrap (overlap) length between the walls.
従来、 スクロール圧縮機の圧縮比 V iの向上を図るには、 両スクロールの壁体 の巻き数を増やして最大容積時の圧縮室の断面積 A ( 0 )を大きくする手法が採ら れてきた。 しかしながら、 壁体の卷き数を増やす従来の手法ではスクロールの外 形が拡大して圧縮機自体が大型化するため、 大きさの制限が厳しい自動車用等の 空気調和装置には採用し難レ、という問題点があつた。  Conventionally, in order to increase the compression ratio V i of the scroll compressor, a method has been adopted in which the number of turns of the walls of both scrolls is increased to increase the cross-sectional area A (0) of the compression chamber at the maximum capacity. . However, in the conventional method of increasing the number of windings on the wall, the outer shape of the scroll is enlarged and the compressor itself is enlarged, so that it is difficult to adopt the method in an air conditioner for an automobile or the like whose size is severely restricted. There was a problem.
上記の問題点を解決すべく、 特公昭 60- 17956号には、 以下に示す技術が提案さ れている。 図 1 2 Aに示したものは固定スクロール 5 0であり、 端板 5 0 aと、 端板 5 0 aの一側面に立設された渦卷き状の壁体 5 0 bとを備えている。 また、 図 1 2 B に示したものは旋回スクロール 5 1である。 旋回スクロール 5 1も、 固定スクロ ール 5 0と同様に端板 5 1 aと、 端板 5 1 aの一側面に立設された渦巻き状の壁 体 5 1 bとを備えている。 In order to solve the above problems, Japanese Patent Publication No. 60-17956 proposes the following technology. The fixed scroll 50 shown in FIG. 12A is provided with an end plate 50 a and a spiral wall 50 b erected on one side of the end plate 50 a. I have. The orbiting scroll 51 is shown in FIG. 12B. Similarly to the fixed scroll 50, the orbiting scroll 51 also includes an end plate 51a, and a spiral wall 51b provided on one side of the end plate 51a.
固定スクロール 5 0および旋回スクロール 5 1の端板 5 0 a、 5 1 aの側面に、 壁体 5 0 b、 5 1 bの渦巻きの外周端から π (rad)に位置して、 中心部側が高く 外周端側が低い段差部 5 2が形成されている。 さらに、 この端板 5 0 a、 5 1 a の段差部 5 2に対応して、 両スクロール 5 0 , 5 1が備える壁体 5 0 b, 5 1 b の渦巻き状の上縁に中心部側が低く外周端側が高い段差部 5 3が形成されている。 また、 壁体 5 0 b、 5 1 bの上縁には、 気密性を高めるチップシール 5 4 , 5 6が配設されている。  The fixed scroll 50 and the orbiting scroll 51 are located on the side of the end plates 50a, 51a, π (rad) from the outer peripheral edge of the spiral of the wall bodies 50b, 51b, and the center side is A step 52 is formed that is high and the outer end is low. Further, corresponding to the steps 52 of the end plates 50a and 51a, the center of the scroll 50a and 51b is provided on the spiral upper edges of the walls 50b and 51b. A step portion 53 that is low and has a high outer peripheral end side is formed. Tip seals 54 and 56 for improving airtightness are provided on the upper edges of the walls 50b and 51b.
上記のようなスクロール圧縮機において、 固定スクロール 5 0と旋回スクロー ル 5 1のそれぞれの壁体 5 0 b、 5 1 bをかみ合わせ、 最大容積の圧縮室 Pが形 成された状態が図 1 3 Aであり、 圧縮室 Pについて、 渦巻き方向に沿った断面図 が図 1 3 Bである。  In the scroll compressor as described above, the fixed scroll 50 and the orbiting scroll 51 are engaged with the respective walls 50b and 51b to form the compression chamber P having the maximum volume. Fig. 13B is a sectional view of the compression chamber P along the spiral direction.
図 1 3 Bからわかるように、 段差部 5 2よりも外周端側におけるラップ長 L 1 は内側のラップ長 L sより長く形成されている。 このため、 ラップ長が一様であ る場合と比較すると、 段差部 5 2より外側のラップ長が長い分だけ圧縮室 Pの最 大容積が大きくなることがわかる。 したがって、 壁体の卷き数を増やさなくても、 設計上の圧縮比を向上させることが可能である。  As can be seen from FIG. 13B, the wrap length L 1 on the outer peripheral end side of the step portion 52 is longer than the inner wrap length Ls. For this reason, it can be seen that the maximum volume of the compression chamber P is increased by the length of the wrap outside the step 52 as compared with the case where the wrap length is uniform. Therefore, it is possible to improve the design compression ratio without increasing the number of windings of the wall.
しかしながら、 上記従来のスクロール圧縮機においては、 図 1 4に示すように、 旋回スクロール 5 1の位相によっては、 段差部 5 3近傍のチップシール 5 6が固 定スクロール 5 0の端板 5 0 aから離間してしまう (図の符号 aで示した部位) 。 固定スクロール 5 0側のチップシール 5 4も同様に、 段差部 5 2の近傍において、 旋回スクロール 5 1の端板 5 1 aから離間してしまう。  However, in the conventional scroll compressor, as shown in FIG. 14, depending on the phase of the orbiting scroll 51, the tip seal 56 near the step 53 is fixed to the end plate 50a of the fixed scroll 50. (Part indicated by reference symbol a in the figure). Similarly, the tip seal 54 on the fixed scroll 50 side is also separated from the end plate 51 a of the orbiting scroll 51 in the vicinity of the step 52.
このため、 チップシール 5 4 , 5 6がそれぞれ壁体 5 0 b、 5 1 bから落下し てしまったり、 チッブシール 5 4 , 5 6の折損を招き、 段差部分で流体の漏れが 発生してしまうという問題点があった。 本発明は上記の事情に鑑みてなされたものであり、 流体の漏れを防止すること ができるスクロール圧縮機を提供することを目的とする。 発明の開示 For this reason, the chip seals 54 and 56 may fall from the walls 50b and 51b, respectively, or the chip seals 54 and 56 may be broken, causing fluid leakage at the step. There was a problem. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a scroll compressor that can prevent fluid leakage. Disclosure of the invention
本発明のスクロール圧縮機は、 端板の一側面に立設された渦巻き状の壁体を有 する固定スクロールと、 端板の一側面に立設された渦巻き状の壁体を有し、 前記 各壁体どうしを嚙み合わせて自転を阻止されつつ公転旋回運動可能に支持された 旋回スクロールとを備えたスクロール圧縮機において、 前記固定スクロールと旋 回スクロールの少なくともいずれか一方のスクロールの端板の他側面側に背圧室 が形成され、 該背圧室に前記両スクロールにより圧縮された流体が導入されるこ とにより前記一方のスクロールが他方のスクロール側に押しつけられる構成とさ れ、 さらに、 前記固定スクロールと旋回スクロールの少なくともいずれか一方の スクロールの端板には、 前記一側面に、 その高さが壁体の渦に沿ってその中心部 側で高く外周端側で低くなるよう形成された段差部が設けられ、 前記固定スクロ ールと旋回スクロールのいずれか他方のスクロールの壁体の上縁は、 前記端板の 段差部に対応し、 複数の部位に分割されかつ該部位の高さが渦の中心部側で低く 外周端側で高くなる段付き形状とされたことを特徴とする。  The scroll compressor according to the present invention includes: a fixed scroll having a spiral wall provided upright on one side surface of an end plate; and a spiral wall body provided upright on one side surface of the end plate. An end plate of at least one of the fixed scroll and the orbiting scroll, wherein the scroll compressor includes a orbiting scroll supported so as to be capable of revolving orbit while being prevented from rotating by combining the respective wall bodies. A back-pressure chamber is formed on the other side of the scroll, and the fluid compressed by the two scrolls is introduced into the back-pressure chamber, whereby the one scroll is pressed against the other scroll. The end plate of at least one of the fixed scroll and the orbiting scroll has, on one side surface, a height that is higher at a center portion side along a vortex of a wall body. A step formed so as to be lower on the peripheral end side is provided, and an upper edge of a wall of the other scroll of the fixed scroll or the orbiting scroll corresponds to a step of the end plate. It is characterized in that it is divided into portions and has a stepped shape in which the height of the portion is lower at the center of the vortex and higher at the outer peripheral end.
このスクロール圧縮機においては、 背圧室に導入された圧縮流体によって、 一 方のスクロールが他方のスクロールに押しつけられる。 このため、 従来のように チップシールを用いずとも圧縮室がシールされ、 圧縮室内の流体の漏れを防止す ることができる。 したがって、 チップシールと端板が離間することによって生ず るチップシールの落下、 折損等の問題が発生することもない。  In this scroll compressor, one scroll is pressed against the other scroll by the compressed fluid introduced into the back pressure chamber. For this reason, the compression chamber is sealed without using a tip seal as in the related art, and leakage of fluid in the compression chamber can be prevented. Therefore, problems such as dropping and breakage of the tip seal caused by separation of the tip seal from the end plate do not occur.
また、 本発明のスクロール圧縮機において、 前記固定スクロールと旋回スクロ ールの少なくともいずれか一方のスクロールを他方のスクロールに押しつけるた めの弾性体が設けられていてもよい。  Further, in the scroll compressor of the present invention, an elastic body for pressing at least one of the fixed scroll and the orbiting scroll against the other scroll may be provided.
このスクロール圧縮機においては、 弾性体により一方のスクロールが他方のス クロールに押しつけられるため、 流体の漏れが防止される。  In this scroll compressor, one scroll is pressed against the other scroll by the elastic body, so that leakage of fluid is prevented.
また、 本発明のスクロール圧縮機において、 前記背圧室は、 前記固定スクロー ルの前記他側面側に形成されていてもよい。 このスクロール圧縮機においては、 固定スクロールが旋回スクロール側に押し つけられることにより、 圧縮室がシールされる。 Further, in the scroll compressor according to the present invention, the back pressure chamber may be formed on the other side of the fixed scroll. In this scroll compressor, the compression chamber is sealed by pressing the fixed scroll toward the orbiting scroll.
また、 本発明のスクロール圧縮機において、 前記背圧室は、 前記旋回スクロー ルの前記他側面側に形成されていてもよい。  In the scroll compressor of the present invention, the back pressure chamber may be formed on the other side of the orbiting scroll.
このスクロール圧縮機においては、 旋回スクロールが固定スクロール側に押し つけられることにより、 圧縮室がシールされる。  In this scroll compressor, the compression chamber is sealed by pressing the orbiting scroll toward the fixed scroll.
また、 上記スクロール圧縮機において、 前記旋回スクロールの端板の前記他側 面側に嵌合して公転旋回運動するベアリング部材が設けられ、 前記背圧室は、 前 記旋回スクロールと前記ベアリング部材との間に形成されていてもよい。  Further, in the scroll compressor, a bearing member is provided for revolving orbiting by being fitted to the other side of the end plate of the orbiting scroll, and the back pressure chamber is provided between the orbiting scroll and the bearing member. May be formed between them.
このスクロール圧縮機においては、 背圧室に導入された圧縮流体が、 旋回スク 'ロールとベアリング部材との間を押し広げようとする圧力を作用する。 これによ り、 旋回スクロールが固定スクロール側に押しつけられる。 図面の簡単な説明  In this scroll compressor, the compressed fluid introduced into the back pressure chamber exerts pressure to push and spread between the orbiting scroll and the bearing member. As a result, the orbiting scroll is pressed against the fixed scroll. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態として示したスクロール圧縮機の全体構成を '示す断面図である。  FIG. 1 is a cross-sectional view showing the overall configuration of a scroll compressor shown as a first embodiment of the present invention.
図 2は、 同スクロール圧縮機に用いられる固定スクロールの斜視図である。  FIG. 2 is a perspective view of a fixed scroll used in the scroll compressor.
図 3は、 同スクロール圧縮機に用いられる旋回スクロールの斜視図である。  FIG. 3 is a perspective view of an orbiting scroll used in the scroll compressor.
図 4は、 同固定スクロールまたは旋回スクロールの渦に沿った断面図である。 図 5は、 同スクロール圧縮機の駆動時における流体圧縮の過程を示す図である。 図 6は、 同スクロール圧縮機の駆動時における流体圧縮の過程を示す図である。 図 7は、 同スクロール圧縮機の駆動時における流体圧縮の過程を示す図である。 図 8は、 同スクロール圧縮機の駆動時における流体圧縮の過程を示す図である。 図 9 A〜9 Dは、 同スクロール圧縮機の圧縮室を展開した形状を示す図である。 図 1 0は、 本発明の第 2の実施形態として示したスクロール圧縮機の全体構成 を示す断面図である。  FIG. 4 is a cross-sectional view along the vortex of the fixed scroll or the orbiting scroll. FIG. 5 is a diagram showing a process of fluid compression when the scroll compressor is driven. FIG. 6 is a diagram showing a process of fluid compression when the scroll compressor is driven. FIG. 7 is a diagram showing a process of fluid compression when the scroll compressor is driven. FIG. 8 is a diagram showing a process of fluid compression when the scroll compressor is driven. FIGS. 9A to 9D are views showing shapes of expanded compression chambers of the scroll compressor. FIG. 10 is a cross-sectional view showing the overall configuration of a scroll compressor shown as the second embodiment of the present invention.
図 1 1は、 本発明の第 3の実施形態として示したスクロール圧縮機の全体構成 を示す断面図である。  FIG. 11 is a cross-sectional view showing the overall configuration of a scroll compressor shown as the third embodiment of the present invention.
図 1 2八及び1 2 Bは、 従来のスクロール圧縮機に用いられる固定スクロ ル 及び旋回スクロールの斜視図である。 Figures 128 and 12B show fixed scrolls used in conventional scroll compressors. And a perspective view of the orbiting scroll.
図 1 3 及び1 3 Bは、 従来のスクロール圧縮機において、 最大容積時の圧縮 室を示す図である。  FIGS. 13 and 13B are diagrams showing a compression chamber at the maximum capacity in a conventional scroll compressor.
図 1 4は、 従来のスクロール圧縮機の段差部近傍におけるチップシールの摺接 状態を示す断面図である。 発明を実施するための最良の形態  FIG. 14 is a cross-sectional view showing a sliding state of a tip seal in the vicinity of a step portion of a conventional scroll compressor. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係るスクロール圧縮機の実施形態を図 1ないし図 9 A〜9 Dに示して 説明する。  An embodiment of a scroll compressor according to the present invention will be described with reference to FIGS. 1 to 9A to 9D.
図 1は、 本発明の一実施形態として示した背圧型のスクロール圧縮機の構成を 示している。 この背圧型のスクロール圧縮機は、 密閉状態のハウジング 1、 ハウ ジング 1內を高圧室 H Rと低圧室 L Rとに分離するデイスチャージカバー 2、 フ レーム 5、 吸入管 6、 吐出管 7、 モータ 8、 回転シャフ ト 9、 自転阻止機構 1 0、 固定スクロール 1 2、 固定スクロール 1 2にかみ合う旋回スクロール 1 3から構 成される。  FIG. 1 shows a configuration of a back-pressure scroll compressor shown as one embodiment of the present invention. This back-pressure scroll compressor has a sealed housing 1, a discharge cover 2, which separates a housing 1 內 into a high-pressure chamber HR and a low-pressure chamber LR, a frame 5, a suction pipe 6, a discharge pipe 7, and a motor 8 , Rotating shaft 9, rotation prevention mechanism 10, fixed scroll 12, and orbiting scroll 13 meshing with fixed scroll 12.
図 2に示すように、 固定スクロール 1 2は端板 1 2 aの一側面に渦巻き状の壁 体 1 2 bが立設された構成となっている。 旋回スクロール 1 3は、 固定スクロー ル 1 2と同様に端板 1 3 aの一側面に渦卷き状の壁体 1 3 bが立設された構成と なっており、 特に壁体 1 3 bは固定スクロール 1 2側の壁体 1 2 bと実質的に同 —形状をなしている。  As shown in FIG. 2, the fixed scroll 12 has a configuration in which a spiral wall 12b is erected on one side surface of an end plate 12a. Like the fixed scroll 12, the orbiting scroll 13 has a structure in which a spiral wall 13b is erected on one side of the end plate 13a, and particularly the wall 13b. Has substantially the same shape as the wall 1 2b on the fixed scroll 12 side.
図 3に示すように、 旋回スクロール 1 3は固定スクロール 1 2に対して相互に 公転旋回半径だけ偏心しかつ 1 8 0 ° だけ位相をずらした状態で、 壁体 1 2 b, 1 3 bどうしをかみ合わせて組み付けられている。 .  As shown in FIG. 3, the orbiting scrolls 13 are mutually eccentric with respect to the fixed scrolls 12 by the orbital revolving radius and shifted in phase by 180 °. And assembled. .
このような背圧型のスクロール型流体機械では、 固定スクロール 1 2がボノレト 等によりフレーム 5に完全に固定されておらず、 規制された範囲内において可動 である。  In such a back-pressure scroll type fluid machine, the fixed scroll 12 is not completely fixed to the frame 5 by a bonolet or the like, and is movable within a restricted range.
旋回スクロール 1 3の背面側には円筒状のボス Aが形成され、 ボス Aには、 モ ータ 8で駆動される回転シャフト 9の上端に設けられて旋回運動する偏心ピン 9 aが挿入されている。 これにより、 旋回スクロール 1 3は固定スクロール 1 2に 対して旋回運動されるとともに、 自転阻止機構 1 0の作用によりその自転が阻止 されている。 A cylindrical boss A is formed on the back side of the orbiting scroll 13, and an eccentric pin 9 a provided at the upper end of a rotary shaft 9 driven by a motor 8 and orbiting is inserted into the boss A. ing. As a result, the orbiting scroll 1 3 becomes the fixed scroll 1 2 In addition to the turning motion, the rotation is prevented by the action of the rotation preventing mechanism 10.
一方、 固定スクロール 1 2は、 ハウジング 1に固定されたフレーム 5に対して 支持パネ (弾性体) 1 1を介して浮上自在に支持されているとともに旋回スクロ ール 1 3側に押しつけられている。 端板 3 aの背面中央には圧縮された流体の吐 出ポート 1 5が設けられている。 また、 吐出ポート 1 5の周囲には、 固定スクロ ール 1 2の端板 1 2 aの背面より突出する円筒フランジ 1 6が設けられ、 該円简 フランジ 1 6はデイスチャージカバー 2側の円筒フランジ 1 7に嵌合している。 これらの円筒フランジ 1 6 , 1 7が嵌合する部分には、 高圧室 H Rと低圧室 L R とを分離し、 固定スクロール 1 2の背面に高い圧力 (背圧) をかけて押し下げる 必要があるため、 シール部材 1 8によるシール構造が採用されている。 このシー ル部材 1 5は、 U字形の断面形状を有している。 この場合の高圧室 H Rは、 固定 スクロール 1 2の背面に高圧の吐出圧力を作用させる背圧室としても機能してい る。 '  On the other hand, the fixed scroll 12 is supported by the frame 5 fixed to the housing 1 via a supporting panel (elastic body) 11 so as to float freely, and is pressed against the orbiting scroll 13. . A discharge port 15 for compressed fluid is provided at the center of the back surface of the end plate 3a. Around the discharge port 15, there is provided a cylindrical flange 16 protruding from the back surface of the end plate 12 a of the fixed scroll 12, and the circular flange 16 is a cylinder on the discharge charge cover 2 side. Mated with flange 17. It is necessary to separate the high-pressure chamber HR and the low-pressure chamber LR at the part where these cylindrical flanges 16 and 17 are fitted, and apply high pressure (back pressure) to the back of the fixed scroll 12 to push it down. A seal structure using a seal member 18 is employed. This seal member 15 has a U-shaped cross section. The high-pressure chamber HR in this case also functions as a back-pressure chamber for applying a high-pressure discharge pressure to the back of the fixed scroll 12. '
固定スクロール 1 2の端板 1 2 aには、 壁体 1 2 bが立設された一側面に、 壁 体 1 2 bの渦方向に沿って中心部側で高く外周端側で低くなるよう形成された段 差部 4 2を備えている。  The end plate 1 2a of the fixed scroll 1 2 has one side on which the wall 1 2b is erected, and is high at the center and low at the outer end along the vortex direction of the wall 1 2b. The step portion 42 is formed.
旋回スクロール 1 3側の端板 1 3 aも端板 1 2 aと同様に、 壁体 1 3 bが立設 された一側面に、 壁体 1 3 bの渦方向に沿って中心部側で高く外周端側で低くな るよう形成された段差部 4 3を備えている。  Similarly to the end plate 1a, the end plate 13a on the orbiting scroll 13 side is on one side where the wall body 13b is erected, and at the center side along the vortex direction of the wall body 13b. A step 43 is formed so as to be higher and lower on the outer peripheral end side.
各段差部 4 2, 4 3は、 それぞれ壁体 1 2 b、 壁体 1 3 bの渦巻き中心を基準 として、 各壁体 1 2 b、 1 3 bの外周端から π (rad)進んだ位置に設けられてい る。  The steps 42 and 43 are located at positions π (rad) ahead of the outer edges of the walls 1 2 b and 13 b with reference to the center of the spiral of the walls 12 b and 13 b, respectively. It is provided in.
端板 1 2 aの底面は、 段差部 4 2が形成されていることにより、 中心部よりに 設けられた底の浅い底面 1 2 f と外周端よりに設けられた底の深い底面 1 2 gの 2つの部位に分けられている。 隣り合う底面 1 2 f , 1 2 g間には、 段差部 4 2 を構成し、 前記底面 1 2 f , 1 2 gを繋いで垂直に切り立つ連結壁面 1 2 hが存 在している。 端板 1 3 aの底面も端板 1 2 aと同様に、 段差部 4 3が形成されて いることにより、 中心部よりに設けられた底の浅い底面 1 3 f と外周端よりに設 けられた底の深い底面 1 3 gの 2つの部位に分けられている。 隣り合う底面 1 3 f , 1 3 g間には、 段差部 4 3を構成し、 前記底面 1 3 f , 1 3 gを繋いで垂直 に切り立つ連結壁面 1 3 hが存在している。 The bottom surface of the end plate 1 2a has a shallow bottom surface 12 f provided from the center portion and a deep bottom surface 12 g provided from the outer peripheral edge due to the formation of the step portion 42. Is divided into two parts. Between the adjacent bottom surfaces 12 f and 12 g, there is a stepped portion 42, and there is a connecting wall surface 12 h which connects the bottom surfaces 12 f and 12 g and is vertically cut. Similarly to the end plate 1a, the bottom surface of the end plate 1a is provided with a shallow bottom surface 13f provided from the center and the outer peripheral end due to the formation of the step 43. The deep bottom of the shaved bottom is divided into two parts of 13 g. Between the adjacent bottom surfaces 13 f and 13 g, there is a step portion 43, and there is a connecting wall surface 13 h that connects the bottom surfaces 13 f and 13 g and is vertically cut.
また、 固定スクロール 1 2側の壁体 1 2 bは、 旋回スクロール 1 3の段差部 4 3に対応し、 その渦巻き状の上縁が 2つの部位に分割され、 かつ渦の中心部側で 低く外周端側で高い段付き形状となっている。 旋回スクロール 1 3側の壁体 1 3 bも壁体 1 2 bと同様に、 固定スクロール 1 2の段差部 4 2に対応し、 渦巻き状 の上縁が 2つの部位に分割され、 かつ渦の中心部側で低く外周端側で高い段付き 形状となっている。  The wall 12b of the fixed scroll 12 corresponds to the step 43 of the orbiting scroll 13, and the upper edge of the spiral is divided into two parts, and is lower at the center of the vortex. It has a high stepped shape on the outer peripheral end side. Similarly to the wall 1 2b, the orbiting scroll 1 3 side wall 1 3b also corresponds to the stepped portion 42 of the fixed scroll 1 2 and the spiral upper edge is divided into two portions, and The shape is low at the center and high at the outer edge.
具体的には、 壁体 1 2 bの上縁は、 中心部寄りに設けられた低位の上縁 1 2 c と外周端寄りに設けられた高位の上縁 1 2 dの 2つの部位に分けられ、 隣り合う 上縁 1 2 c, 1 2 d間には、 両者を繋いで旋回面に垂直な連結縁 1 2 eが存在し ている。 壁体 1 3 bの上縁も壁体 1 2 bと同様に、 中心部寄りに設けられた低位 の上縁 1 3 cと外周端寄りに設けられた高位の上縁 1 3 dの 2つの部位に分けら れ、 隣り合う上縁 1 3 c, 1 3 d間には、 両者を繋いで旋回面に垂直な連結縁 1 3 eとが存在している。  Specifically, the upper edge of the wall 1 2b is divided into two parts: a lower upper edge 1 2c provided near the center and a higher upper edge 1 2d provided near the outer edge. A connecting edge 12 e that is perpendicular to the turning surface exists between the adjacent upper edges 12 c and 12 d. Like the wall 1 2b, the upper edge of the wall 13b is also composed of a lower upper edge 13c near the center and a higher upper edge 13d near the outer edge. It is divided into parts, and between the adjacent upper edges 13c and 13d, there is a connection edge 13e that connects the two and is perpendicular to the turning surface.
連結縁 1 2 eは、 壁体 1 2 bを旋回スクロール 1 3の方向から見ると壁体 1 2 bの内外両側面に滑らかに連続し壁体 1 2 bの肉厚に等しい直径を有する半円形 をなしており、 連結縁 1 3 eも連結縁 1 2 eと同様に、 壁体 1 3 bの内外両側面 に滑らかに連続し壁体 1 3 bの肉厚に等しい直径を有する半円形をなしている。 また、 連結壁面' 1 2 hは、 端板 1 2 aを旋回軸方向から見ると旋回スクロール の旋回に伴って連結縁 1 3 eが描く包絡線に一致する円弧をなしており、 連結壁 面 1 3 hも連結壁面 1 2 hと同様に、 連結縁 1 2 eが描く包絡線に一致する円弧 をなしている。  When viewed from the direction of the orbiting scroll 13, the connecting edge 1 2 e is a half having a diameter that is smoothly continuous with the inner and outer sides of the wall 1 2 b when viewed from the direction of the orbiting scroll 13 and has a wall thickness equal to the wall 1 2 b. The connecting edge 13e, like the connecting edge 12e, has a semicircular shape that smoothly continues to the inner and outer sides of the wall 13b and has a diameter equal to the wall thickness of the wall 13b. Has made. When the end plate 12a is viewed from the direction of the turning axis, the connecting wall surface '12h has an arc that matches the envelope drawn by the connecting edge 13e with the turning of the orbiting scroll. Similarly to the connecting wall 12h, the 13h has an arc corresponding to the envelope drawn by the connecting edge 12e.
なお、 本例の固定スクロール 1 2の壁体 1 2 b及ぴ旋回スクロール 1 3の壁体 1 3 bの上縁には、 チップシールが設けられておらず、 壁体 1 2 b、 1 3 bの端 面が端板 1 2 a、 1 3 aに押圧されることにより後述の圧縮室 Cの密閉が行われ る。  Note that, in the present example, no tip seal is provided on the upper edge of the wall 1 2 b of the fixed scroll 1 2 and the wall 13 b of the orbiting scroll 13, and the walls 1 2 b, 1 3 The compression chamber C, which will be described later, is sealed by pressing the end face of b against the end plates 12a and 13a.
図 4に示すように、 壁体 1 2 bにおいて上縁 1 2 cと連結縁 1 2 eとが突き合 う部分には、 肉盛りしたようにリブ 1 2 iが設けられている。 リブ 1 2 iは、 応 力集中を避けるため上縁 1 2 cと連結縁 1 2 eとを滑らかに連続する凹曲面をな して壁体 1 2 bと一体に形成されている。 壁体 1 3 bにおいて上縁 1 3 c, 1 3 eが突き合う部分にも、 同様の理由で同形状のリブ 1 3 iが設けられている。 端板 1 2 aにおいて底面 1 2 gと連結壁面 1 2 hとが突き合う部分にも、 肉盛 りしたようにリブ 1 2 jが設けられている。 リブ 1 2 jは、 応力集中を避けるた め底面 1 2 gと連結壁面 1 2 hとを滑らかに連続する凹曲面をなして壁体 1 2 b と一体に形成されている。 端板 1 3 aにおいて底面 1 3 gと連結壁面 1 3 hと力 S 突き合う部分にも、 同様の理由で同形状のリブ 1 3 jが設けられている。 As shown in FIG. 4, the upper edge 12c and the connection edge 12e of the wall 12b abut each other. The ribs are provided with ribs 1 2 i at the bottom. The rib 12 i is formed integrally with the wall 12 b to form a concave surface that smoothly connects the upper edge 12 c and the connecting edge 12 e to avoid stress concentration. A rib 13i of the same shape is also provided at a portion where the upper edges 13c and 13e abut on the wall 13b for the same reason. A rib 12j is also provided on the end plate 12a at the portion where the bottom surface 12g and the connecting wall surface 12h abut, as if they were overlaid. The rib 12j is formed integrally with the wall 12b as a concave curved surface that smoothly connects the bottom surface 12g and the connecting wall surface 12h to avoid stress concentration. A rib 13 j of the same shape is also provided at a portion of the end plate 13 a where the bottom surface 13 g and the connecting wall surface 13 h meet the force S for the same reason.
壁体 1 2 bにおいて上縁 1 2 dと連結縁 1 2 eが突き合う部分、 および壁体 1 3 bにおいて上緣 1 3 dと連結縁 1 3 eが突き合う部分は、 組み付け時にリブ 1 3 j , 1 2 j との干渉を避けるためにそれぞれ面取りされている。  The part of the wall 1 2b where the upper edge 1 2d and the connecting edge 1 2e meet, and the part of the wall 1 3b where the upper 緣 13 d and the connecting edge 13 e match, are ribs 1 during assembly. They are chamfered to avoid interference with 3 j and 1 2 j.
固定スクロール 1 2に旋回スクロール 1 3を組み付けると、 低位の上縁 1 3 c が底の浅い底面 1 2 f に当接し、 高位の上縁 1 3 dが底の深い底面 1 2 gに当接 する。 同時に、 低位の上縁 1 2 cが底の浅い底面 1 3 f に当接し、 高位の上縁 1 2 dが底の深い底面 1 3 gに当接する。 これにより、 両スクロール間には向かい 合う端板 1 2 a , 1 3 aと壁体 1 2 b , 1 3 bとに区画されて圧縮室 Cが形成さ れる。  When the orbiting scroll 1 3 is assembled to the fixed scroll 1 2, the lower upper edge 1 3 c abuts the shallow bottom 1 2 f, and the upper upper edge 1 3 d abuts the deep bottom 1 2 g I do. At the same time, the lower upper edge 1 2c abuts the shallow bottom 13 f and the higher upper edge 1 2d abuts the deep bottom 13 g. As a result, a compression chamber C is formed between the two scrolls by being divided into end plates 12a and 13a and wall bodies 12b and 13b facing each other.
圧縮室 Cは旋回スクロール 1 3の公転旋回運動に伴い外周端から中心部に向け て移動するが、 連結縁 1 2 eは、 壁体 1 2 b , 1 3 bの当接点が連結縁 1 2 eよ りも外周端寄りに存在する間は壁体 1 2を挟んで隣接する圧縮室 C (一方は密閉 状態にない) 間で流体の漏れが生じないように連結壁面 1 3 hに摺接し、 壁体 1 2 b , 1 3 bの当接点が連結縁 1 2 eよりも外周端寄りに存在しない間は壁体 1 2を挾んで隣接する圧縮室 C (共に密閉状態にある) 間で均圧を図るべく連結壁 面 1 3 hには摺接しないようになつている。  The compression chamber C moves from the outer peripheral end toward the center with the orbital movement of the orbiting scroll 13, but the connecting edge 12 e is connected to the contact edge of the walls 12 b and 13 b by the connecting edge 1 2 While it is closer to the outer peripheral edge than e, it slides against the connecting wall 13h so that fluid does not leak between the adjacent compression chambers C (one is not in a sealed state) with the wall 12 interposed. As long as the contact points of the walls 12b and 13b are not closer to the outer peripheral end than the connecting edge 12e, the compression chambers C (both in a sealed state) adjacent to each other with the wall 12 interposed therebetween. In order to equalize the pressure, it does not come into sliding contact with the connecting wall surface for 13 h.
連結縁 1 3 eも同様に、 壁体 1 2 b , 1 3 bの当接点が連結縁 1 3 eよりも外 周端寄りに存在する間は壁体 1 3を挟んで隣接する圧縮室 C (一方は密閉状態に ない) 間で流体の漏れが生じないように連結壁面 1 2 hに摺接し、 壁体 1 2 b , 1 3 の当接点が連結縁 1 3 eよりも外周端寄りに存在しない間は壁体 1 3を挟 んで隣接する圧縮室 C (共に密閉状態にある) 間で均圧を図るべく連結壁面 1 2 hには摺接しないようになつている。 なお、 連結縁 1 2 eと連結壁面 1 3 h、 お よび連結縁 1 3 eと連結壁面 1 2 hの摺接は、 旋回スクロール 1 3が 1ノ2回転 する間で同期して起こる。 Similarly, the compression chamber C adjacent to the connecting edge 13 e with the wall 13 interposed therebetween while the contact point of the walls 1 2 b and 13 b is closer to the outer peripheral end than the connecting edge 13 e. (One side is not in a sealed state) so that the fluid does not leak between the connecting wall 12h and the contact point of the wall 12b, 13 is closer to the outer edge than the connecting edge 13e. While it does not exist, sandwich the wall 1 3 In order to equalize the pressure between the adjacent compression chambers C (both in a sealed state), they do not slide on the connecting wall 12h. The sliding contact between the connecting edge 12 e and the connecting wall surface 13 h and between the connecting edge 13 e and the connecting wall surface 12 h occur synchronously while the orbiting scroll 13 makes one or two rotations.
上記のように構成されたスクロール圧縮機の駆動時における流体圧縮の過程を 図 5ないし図 8に示して順に説明する。  The process of fluid compression when the scroll compressor configured as described above is driven will be described in order with reference to FIGS.
図 5に示す状態では、 壁体 1 2 bの外周端が壁体 1 3 bの外側面に当接すると ともに、 壁体 1 3 bの外周端が壁体 1 2 bの外側面に当接し、 端板 1 2 a, 1 3 a、 壁体 1 2 b , 1 3 b間に流体が封入され、 スクロール圧縮機構の中心を挟ん で正対した位置に、 最大容積の圧縮室 Cが 2つ形成される。 この時点では、 連結 縁 1 2 eと連結壁面 1 3 h、 連結縁 1 3 eと連結壁面 1 2 hは摺接しているが、 直後に離間する。  In the state shown in FIG. 5, the outer peripheral end of the wall 1 2b contacts the outer surface of the wall 13b, and the outer peripheral end of the wall 13b contacts the outer surface of the wall 12b. Fluid is sealed between the end plates 12a and 13a and the walls 12b and 13b, and two compression chambers C with the maximum capacity are located directly opposite each other across the center of the scroll compression mechanism. It is formed. At this point, the connecting edge 12 e and the connecting wall 13 h are in sliding contact with each other, and the connecting edge 13 e and the connecting wall 12 h are in sliding contact with each other, but immediately separate.
図 5の状態から旋回スクロール 1 3力 S π / 2だけ旋回し図 6に示す状態に至る 過程では、 圧縮室 Cが密閉状態を保ちながら中心部に向けて進行し、 漸次容積を 減少させて流体を圧縮し、 圧縮室 Cに先行する圧縮室 C 0も密閉状態を保ちなが ら中心部に向けて進行し、 漸次容積を減少させて引き続き流体を圧縮する。 この 過程において、 連結縁 1 2 eと連結壁面 1 3 h、 連結縁 1 3 eと連結壁面 1 2 h それぞれの摺接が解消され、 隣接する二つの圧縮室 Cが均圧される。 In the process of turning from the state in Fig. 5 by the orbiting scroll 13 force S π / 2 to the state shown in Fig. 6, the compression chamber C moves toward the center while maintaining the sealed state, and gradually reduces the volume. The fluid is compressed, and the compression chamber C0 preceding the compression chamber C also advances toward the center while maintaining a sealed state, and gradually reduces the volume to compress the fluid. In this process, the sliding contact between the connecting edge 12 e and the connecting wall 13 h and between the connecting edge 13 e and the connecting wall 12 h are eliminated, and the two adjacent compression chambers C are equalized.
図 6の状態から旋回スクロール 1 3が π / 2だけ旋回し図 7に示す状態に至る 過程では、 圧縮室 Cが密閉状態を保ちながら中心部に向けて進行し、 漸次容積を 減少させてさらに流体を圧縮し、 圧縮室 C 0も密閉状態を保ちながら中心部に向 けて進行し、 漸次容積を減少させて引き続き流体を圧縮する。 この過程において、 連結縁 1 2 eは連結壁面 1 3 hに、 連結縁 1 3 eは連結壁面 1 2 hにそれぞれに 摺接を開始する。  In the process in which the orbiting scroll 13 orbits by π / 2 from the state in Fig. 6 to the state shown in Fig. 7, the compression chamber C advances toward the center while maintaining the closed state, and the volume gradually decreases to further reduce the volume. The fluid is compressed, and the compression chamber C0 also moves toward the center while maintaining the sealed state, and gradually reduces the volume to compress the fluid continuously. In this process, the connecting edge 12e starts sliding contact with the connecting wall 13h, and the connecting edge 13e starts sliding contact with the connecting wall 12h.
図 7に示す状態では、 外周端に近い壁体 1 2 bの内側面とその内方に位置する 壁体 1 3 bの外側面との間には後に圧縮室となる開放空間 C 1が形成され、 同じ く外周端に近い壁体 1 3 bの内側面とその内方に位置する壁体 1 2 bの外側面と の間にも後に圧縮室となる開放空間 C 1が形成され、 開放空間 C 1には低圧室 L Rから低圧の流体が流入する。 図 7の状態から旋回スクロール 1 3が π / 2だけ旋回し図 8に示す状態に至る 過程では、 開放空間 C 1が大きさを拡大しながらスクロール圧縮機構の中心部に 向けて進行し、 開放空間 C 1に先行する圧縮室 Cも中心部に向けて進行し、 漸次 容積を減少させて流体を圧縮する。 In the state shown in FIG. 7, an open space C1, which later becomes a compression chamber, is formed between the inner surface of the wall 1 2b near the outer peripheral end and the outer surface of the wall 13b located inside the wall. Similarly, an open space C1, which will later become a compression chamber, is formed between the inner surface of the wall 13b near the outer peripheral end and the outer surface of the wall 13b located inside the wall 13b. A low-pressure fluid flows into the space C1 from the low-pressure chamber LR. In the process of turning the orbiting scroll 13 from the state of Fig. 7 by π / 2 and reaching the state shown in Fig. 8, the open space C1 expands toward the center of the scroll compression mechanism while expanding, and is opened. The compression chamber C preceding the space C1 also moves toward the center, and gradually reduces the volume to compress the fluid.
図 8の状態から旋回スクロール 1 3がさらに 7: 2だけ旋回し再び図 5に示す 状態に至る過程では、 空間 C 1がさらに大きさを拡大しながらスクロール圧縮機 構の中心部に向けて進行し、 空間 C 1に先行する圧縮室 Cも密閉状態を保ちなが ら中心部に向けて進行し、 漸次容積を減少させて流体を圧縮する。 そして、 図 5 の状態に至ると、 図 8に示す圧縮室 Cが図 5に示す圧縮室 C Oに相当し、 図 8に 示す空間 C 1が図 5に示す圧縮室 Cに相当することとなる。  In the process in which the orbiting scroll 13 turns from the state in Fig. 8 further by 7: 2 and returns to the state shown in Fig. 5, the space C1 further increases in size toward the center of the scroll compressor mechanism. However, the compression chamber C preceding the space C1 also moves toward the center while maintaining the sealed state, and gradually reduces the volume to compress the fluid. When the state shown in FIG. 5 is reached, the compression chamber C shown in FIG. 8 corresponds to the compression chamber CO shown in FIG. 5, and the space C1 shown in FIG. 8 corresponds to the compression chamber C shown in FIG. .
その後圧縮を続けることにより、 圧縮室 Cは最小容積となり、 流体は圧縮室 C から吐出される。  Thereafter, by continuing compression, the compression chamber C becomes the minimum volume, and the fluid is discharged from the compression chamber C.
吐出した流体は、 高圧室 H Rに導入される。 そして固定スクロール 1 2が高圧 の背圧を受けて旋回スクロール 1 3側に押しつけられ、 また、 シール部材 1 5に おいては、 高圧の流体が U字部の内側に導入されることにより差圧で拡幅され、 シール面が円筒フランジ 1 6, 1 7の垂直面に向けて押圧されることにより高圧 室 H Rと低圧室 L Rのシールが行われる。  The discharged fluid is introduced into the high-pressure chamber HR. Then, the fixed scroll 12 receives the high back pressure and is pressed against the orbiting scroll 13 side. In the seal member 15, the high pressure fluid is introduced into the U-shaped portion to cause the differential pressure. The sealing is performed between the high-pressure chamber HR and the low-pressure chamber LR by pressing the sealing surfaces toward the vertical surfaces of the cylindrical flanges 16 and 17.
次に、 圧縮室 Cの形状変化について説明する。  Next, a change in the shape of the compression chamber C will be described.
最大容積から最小容積に至る圧縮室 Cの大きさの変遷は、 図 5における圧縮室 C→図 7における圧縮室 C→図 5における圧縮室 C 0→図 8における圧縮室 C 0 と見なせる。 ここで、 それぞれの状態における圧縮室を展開した形状を図 9 A〜 9 Dに示す。  The change in the size of the compression chamber C from the maximum volume to the minimum volume can be regarded as the compression chamber C in FIG. 5 → the compression chamber C in FIG. 7 → the compression chamber C 0 in FIG. 5 → the compression chamber C 0 in FIG. Here, the expanded shapes of the compression chambers in each state are shown in FIGS. 9A to 9D.
最大容積となる図 9 Aの状態では、 圧縮室は旋回軸方向の幅が途中で狭くなる 異形の短冊状をなす。 その幅は、 スクロール圧縮機構の外周端側では底面 1 2 g から上縁 1 2 dまでの壁体 1 2 bの高さ (もしくは底面 1 3 gから上縁 1 3 dま での壁体 1 3 bの高さ) にほぼ等しいラップ長 L 1となり、 中心部側では底面 1 2 f から上縁 1 2 dまでの高さ (もしく'は底面 1 3 f から上縁 1 3 dまでの壁体 1 3 bの高さ) にほぼ等しいラップ長 L s ( < L 1 ) となる。  In the state shown in Fig. 9A where the maximum volume is reached, the compression chamber is shaped like a strip with a narrow width in the direction of the pivot axis. The width is the height of the wall 1 2b from the bottom 12 g to the upper edge 12 d on the outer peripheral end side of the scroll compression mechanism (or the wall 1 from the bottom 13 g to the upper edge 13 d). Lap length L 1 which is approximately equal to the height of 3 b), and the height from the bottom 12 f to the upper edge 12 d at the center (or the height from the bottom 13 f to the upper edge 13 d) The wrap length L s (<L 1) is approximately equal to the height of the wall 13 b.
図 9 Bの状態においても、 圧縮室は旋回軸方向の幅が途中で狭くなる異形の短 冊状をなす。 その幅は、 スクロール圧縮機構の外周端側ではラップ長 L sとなり、 中心部側では底面 1 2 f から上縁 1 2 cまでの高さ (もしくは底面 1 3 f から上 縁 1 3 cまでの壁体 1 3 bの高さ) にほぼ等しいラップ長 L s s (く L s ) とな る。 Even in the state shown in Fig. 9B, the compression chamber has an irregular short shape whose width in the direction of Form a book. The width is the wrap length L s on the outer peripheral end of the scroll compression mechanism, and the height from the bottom 12 f to the upper edge 12 c (or from the bottom 13 f to the upper edge 13 c) on the center. The wrap length Lss is approximately equal to the height of the wall 13b.
さらに圧縮が進むと、 図 9 Cに示すように圧縮室はその幅が均一のラップ長 L s sとなる。  As the compression further proceeds, the compression chamber has a uniform wrap length L s s as shown in FIG. 9C.
そして図 9 Dに示すようにその長さが最小となることにより、 圧縮室は最小容 積となる。  Then, as shown in Fig. 9D, the compression chamber has the minimum volume by minimizing its length.
上記スクロール圧縮機においては、 圧縮室の容積変化が、 従来のように旋回面 に平行な断面積の減少のみによって引き起こされるのではなく、 図 9 A〜9 Dに 示したように旋回軸方向の幅の減少と断面積の減少とによつて相乗的に引き起こ される。  In the scroll compressor described above, the change in the volume of the compression chamber is caused not only by the decrease in the cross-sectional area parallel to the turning surface as in the conventional case, but also in the direction of the turning axis as shown in FIGS. 9A to 9D. It is caused synergistically by a decrease in width and a decrease in cross-sectional area.
したがって、 壁体 1 2 b , 1 3 bを段付き形状とし、 スクロール圧縮機構の外 周端寄りと中心部寄りとで壁体 1 2 b , 1 3 bのラップ長を変化させ、 圧縮室 C の最大容積を大きくしたり最小容積を小さくしたりすることで、 壁体どうしのラ ップ長が一定である従来のスクロール圧縮機に比べて圧縮比を向上させることが できる。  Therefore, the walls 12b, 13b are stepped, and the wrap length of the walls 12b, 13b is changed between the outer peripheral end and the center of the scroll compression mechanism, and the compression chamber C By increasing the maximum volume or decreasing the minimum volume, the compression ratio can be improved as compared with a conventional scroll compressor in which the wrap length between the walls is constant.
そして、 背圧を高圧室 H Rに導入することで、 固定スクロール 1 2を旋回スク 口一ル 1 3に押しつける。 このため、 チップシールを用いずとも圧縮室 Cのシー ルが行われ、 チップシールの落下や折損が発生することもなく、 効率のよい圧縮 を行うことができる。  Then, by introducing the back pressure into the high-pressure chamber HR, the fixed scroll 1 2 is pressed against the orbiting scroll 13. For this reason, the compression chamber C is sealed without using a tip seal, and efficient compression can be performed without dropping or breaking the tip seal.
次に、 本発明の第 2の実施形態について説明する。 なお、 上記第 1の実施形態 と同一の構成については、 同一の符号を用いてその説明を省略する。  Next, a second embodiment of the present invention will be described. In addition, about the same structure as the said 1st Embodiment, the description is abbreviate | omitted using the same code | symbol.
図 1 0に示したものは本例にかかるスクロール圧縮機である。 このスクロール 圧縮機は密閉状のハウジング 2を有し、 下部に吸入管 2 3、 上部に吐出管 2 5を 有している。 ハウジング 2 1内には、 上部 ίこ駆動部 2 7が、 下部に圧縮機部 2 9 がそれぞれ設けられている。 駆動部 2 7は、 主軸 2 8に固着されたロータ 2 7 a と、 ハウジング 2 1に固着されたステータ 2 7 bとを備えている。 主軸 2 8は、 主軸受け 3 0により回転自在に支持されており、 ステ一タ 2 7 bに電流が流れる ことでロータ 2 7 aを介して前記主軸 2 8に回転動力が与えられるようになって いる。 FIG. 10 shows a scroll compressor according to this example. This scroll compressor has a closed housing 2, a suction pipe 23 at the lower part, and a discharge pipe 25 at the upper part. Inside the housing 21, an upper lever drive unit 27 is provided, and a compressor unit 29 is provided at a lower portion. The driving section 27 includes a rotor 27 a fixed to the main shaft 28 and a stator 27 b fixed to the housing 21. The main shaft 28 is rotatably supported by the main bearing 30, and current flows through the stator 27 b Thus, rotational power is given to the main shaft 28 via the rotor 27a.
圧縮機部 2 9は固定スクロール 3 1と旋回スクロール 3 2とからなっている。 固定スクロール 3 1の端板は、 ハウジング 2 1に固定されている。  The compressor section 29 includes a fixed scroll 31 and an orbiting scroll 32. The end plate of the fixed scroll 31 is fixed to the housing 21.
旋回スクロール 3 2の端板中央には圧縮された流体の吐出ポート 3 3が設けら れている (なお、 本例は上記第 1の実施形態とは異なり、 固定スクロール 3 1に は吐出ポート (図 1の符号 1 5参照) は設けられていない) 。 旋回スクロール 3 2の背面側には、 吐出ポート 3 3開口部を取り囲んで円筒状のボス Aが形成され、 このボス Aに主軸 2 8の偏心部 2 8 aが挿入されている。  At the center of the end plate of the orbiting scroll 32, a discharge port 33 for compressed fluid is provided. (In this example, unlike the first embodiment, the fixed scroll 31 has a discharge port ( (Refer to reference numeral 15 in Fig. 1) is not provided). On the back side of the orbiting scroll 32, a cylindrical boss A is formed surrounding the opening of the discharge port 33, and the eccentric portion 28a of the main shaft 28 is inserted into the boss A.
固定スクロール 3 1と旋回スクロール 3 2のその他の構成は、 上記第 1の実施 形態における固定スクロール 1 2及び旋回スクロール 1 3と同様であり、 端板に 段差部 4 2, 4 3が形成され、 また、 段付き形状の壁体 1 2 b, 1 3 bを備えて レヽる。  Other configurations of the fixed scroll 31 and the orbiting scroll 32 are the same as those of the fixed scroll 12 and the orbiting scroll 13 in the first embodiment, and the end plates are formed with step portions 42, 43, In addition, it is equipped with stepped walls 12b and 13b.
主軸 2 8には、 連通孔 3 4が軸方向に貫通状態に設けられており、 吐出ポート 3 3と吐出管 2 5とを連通している。  A communication hole 34 is provided in the main shaft 28 so as to penetrate in the axial direction, and connects the discharge port 33 and the discharge pipe 25.
また、 旋回スクロール 3 2と主軸受け 3 0との間には、 ハウジング 2 1内を高 圧室 (背圧室) H Rと低圧室 L Rとに分離 'シールする環状のシール部材 3 5が 設けられている。 高圧室 H Rは、 旋回スクロール 3 2背面側の吐出ポート 3 3開 口周囲に形成される。  Between the orbiting scroll 32 and the main bearing 30, there is provided an annular sealing member 35 for separating the inside of the housing 21 into a high-pressure chamber (back pressure chamber) HR and a low-pressure chamber LR. ing. The high-pressure chamber HR is formed around the opening of the discharge port 33 on the back side of the orbiting scroll 32.
このスクロール圧縮機においては、 旋回スクロール 3 2を公転旋回運動させる と、 圧縮室 Cが外周端から中心部に向けて移動しつつ、 漸次容積を減少させて流 体を圧縮する。 流体の圧縮行程は上記第 1の実施形態と同一であるが、 圧縮され た流体は、 吐出ポート 3 3を介して旋回スクロール 3 2の背面側に形成された高 圧室 H Rに導入される。 そして旋回スクロール 3 2が高圧の背圧を受けて固定ス クロール 3 1側に押し当てられる。  In this scroll compressor, when the orbiting scroll 32 is revolved orbiting, the compression chamber C moves from the outer peripheral end toward the center, and gradually reduces the volume to compress the fluid. The compression stroke of the fluid is the same as that of the first embodiment, but the compressed fluid is introduced into the high-pressure chamber HR formed on the back side of the orbiting scroll 32 via the discharge port 33. Then, the orbiting scroll 32 is pressed against the fixed scroll 31 with the high back pressure.
本例のスクロール圧縮機においては、 圧縮室の容積変化が、 従来のように旋回 面に平行な断面積の減少のみによって引き起こされるのではなく、 図 9 A〜 9 D に示したように旋回軸方向の幅の減少と断面積の減少とによって相乗的に引き起 こされる。 したがって、 壁体 1 2 b , 1 3 bを段付き形状とし、 スクロール圧縮機構の外 周端寄りと中心部寄りとで壁体 1 2 b, 1 3 bのラップ長を変化させ、 圧縮室 C の最大容積を大きくしたり最小容積を小さくしたりすることで、 壁体どうしのラ ップ長が一定である従来のスクロール圧縮機に比べて圧縮比を向上させることが できる。 - そして、 背圧を高圧室 H Rに導入することで、 旋回スクロール 3 2を固定スク ロール 3 1に押しつける。 このため、 チップシールを用いずとも圧縮室 Cのシー ルが行われ、 チップシールの落下や折損が発生することもなく、 効率のよい圧縮 を行うことができる。 In the scroll compressor of this example, the change in the volume of the compression chamber is not caused only by the decrease in the cross-sectional area parallel to the swivel surface as in the conventional case, but as shown in Figs. 9A to 9D. It is caused synergistically by a reduction in the width in the direction and a reduction in the cross-sectional area. Therefore, the walls 12b and 13b are stepped, and the wrap lengths of the walls 12b and 13b are changed between the outer peripheral end and the center of the scroll compression mechanism, and the compression chamber C By increasing the maximum volume or decreasing the minimum volume, the compression ratio can be improved as compared with a conventional scroll compressor in which the wrap length between the walls is constant. -Then, the orbiting scroll 3 2 is pressed against the fixed scroll 3 1 by introducing the back pressure into the high pressure chamber HR. For this reason, the compression chamber C is sealed without using a tip seal, and efficient compression can be performed without dropping or breaking the tip seal.
次に、 本発明の第 3の実施形態について説明する。 なお、 上記第 1の実施形態 と同一の構成については、 同一の符号を用いてその説明を省略する。  Next, a third embodiment of the present invention will be described. In addition, about the same structure as the said 1st Embodiment, the description is abbreviate | omitted using the same code | symbol.
図 1 1に示したものは、 本例にかかるスクロール圧縮機である。 このスクロー ル圧縮機は、 固定スクロール 1 2に嚙み合わせられた旋回スクロール 1 3を有す る。 旋回スクロール 1 3 ' は端扳 1 3 a ' と、 端板 1 3 a ' の一側面に立設され た壁体 1 3 bとにより構成されている。 端板 1 3 a ' 以外.は上記第 1の実施形態 の旋回スクロール 1 3と同一の構成である。  FIG. 11 shows a scroll compressor according to the present example. This scroll compressor has an orbiting scroll 13 combined with a fixed scroll 12. The orbiting scroll 13 'is composed of a terminal 13a' and a wall 13b standing upright on one side of the end plate 13a '. Except for the end plate 13a ', the configuration is the same as that of the orbiting scroll 13 of the first embodiment.
旋回スクロール 1 3, の端板 1 3 a ' には、 背面側 (端板 1 3 a ' の他側面 側) に環状溝 4 5が形成されている。 この環状溝 4 5には、 ベアリング部材 4 6 が嵌合している。 ベアリング部材 4 6には、 環状溝 4 5に対応する環状突起 4 6 aが形成されており、 この環状突起 4 6 aが環状溝 4 5に嵌合している。 環状突 起 4 6 aと環状溝 4 5とのシール面にはシール部材 4 7が設けられていることに より、 旋回スク口ール 1 3 ' とべァリング部材 4 6との間の隙間を、 中心部側の 高圧室 (背圧室) H R ' と外側の低圧室 L Rとに分離している。 そして、 端板 1 3 a ' には、 高圧室 H R ' と圧縮室 Cとを連通する連通孔 4 8が形成されてい る。  The end plate 13a 'of the orbiting scroll 13 has an annular groove 45 on the back side (the other side of the end plate 13a'). A bearing member 46 is fitted in the annular groove 45. An annular protrusion 46 a corresponding to the annular groove 45 is formed on the bearing member 46, and the annular protrusion 46 a is fitted into the annular groove 45. A seal member 47 is provided on the seal surface between the annular protrusion 46a and the annular groove 45, so that a gap between the turning scale 13 'and the bearing member 46 is reduced. It is separated into a high pressure chamber (back pressure chamber) HR 'on the center side and a low pressure chamber LR on the outside. The end plate 13a 'has a communication hole 48 communicating the high-pressure chamber HR' and the compression chamber C.
ベアリング部材 4 6には環状突起 4 6 aと逆側に延びる円筒状のボス Aが形成 され、 このボス Aに回転シャフト 9の上端に設けられて旋回運動する偏心ピン 9 aが挿入されている。 また、 ベアリング部材 4 6は自転阻止機構 1 0によりその 自転が阻止された状態で支持されている。 これにより、 ベアリング部材 4 6は回転シャフト 9の回転により公転旋回運動 され、 その運動が旋回スクロール 1 3 ' に伝達して旋回スクロール 1 3, が公転 旋回運動するようになっている。 A cylindrical boss A is formed on the bearing member 46 and extends in a direction opposite to the annular projection 46 a. An eccentric pin 9 a provided at the upper end of the rotating shaft 9 and rotating is inserted into the boss A. . The bearing member 46 is supported in a state where its rotation is prevented by the rotation preventing mechanism 10. Thus, the bearing member 46 is revolved orbitally by the rotation of the rotary shaft 9, and the motion is transmitted to the orbiting scroll 13 ', so that the orbiting scrolls 13 and revolve.
このスクロール圧縮機においては、 旋回スクロール 1 3 ' を公転旋回運動させ ると、 圧縮室 Cが外周端から中心部に向けて移動しつつ、 漸次容積を減少させて 流体を圧縮する。 流体の圧縮行程は上記第 1の実施形態と同一であるが、 圧縮さ れた流体は吐出ポート 1 5から吐出されると共に、 連通孔 4 8を介して高圧室 H R ' に導入される。 高圧室 H R に導入された高圧流体は、 旋回スクロール 1 3 ' とベアリング部材 4 6とを互いに離間させるように圧力を作用し、 これによ り旋回スクロール 1 3, が固定スクロール 1 2に押し当てられる。  In this scroll compressor, when the orbiting scroll 13 ′ is made to revolve orbit, the compression chamber C moves from the outer peripheral end toward the center, and gradually reduces the volume to compress the fluid. The compression stroke of the fluid is the same as that of the first embodiment, but the compressed fluid is discharged from the discharge port 15 and introduced into the high-pressure chamber H R ′ through the communication hole 48. The high-pressure fluid introduced into the high-pressure chamber HR exerts pressure so as to separate the orbiting scroll 13 'and the bearing member 46 from each other, whereby the orbiting scrolls 13 and 13 are pressed against the fixed scroll 12 Can be
本例のスクロール圧縮機においては、 圧縮室の容積変化が、 従来のように旋回 面に平行な断面積の減少のみによって引き起こされるのではなく、 図 9 A〜9 D に示したように旋回軸方向の幅の減少と断面積の減少とによつて相乗的に引き起 こされる。  In the scroll compressor of the present example, the change in the volume of the compression chamber is not caused only by the decrease in the cross-sectional area parallel to the orbital surface as in the conventional case, but as shown in Figs. 9A to 9D. It is caused synergistically by the reduction of the width in the direction and the reduction of the cross-sectional area.
したがって、 壁体 1 2 b, 1 3 bを段付き形状とし、 スクロール圧縮機構の外 周端寄りと中心部寄りとで壁体 1 2 b, 1 3 bのラップ長を変化させ、 圧縮室 C の最大容積を大きくしたり最小容積を小さくしたりすることで、 壁体どうしのラ ップ長が一定である従来のスクロール圧縮機に比べて圧縮比を向上させることが できる。  Therefore, the walls 12b and 13b are stepped, and the wrap lengths of the walls 12b and 13b are changed between the outer peripheral end and the center of the scroll compression mechanism, and the compression chamber C By increasing the maximum volume or decreasing the minimum volume, the compression ratio can be improved as compared with a conventional scroll compressor in which the wrap length between the walls is constant.
そして、 背圧を高圧室 H R ' に導入することで、 固定スクロール 1 2と旋回ス クロール 1 3 ' とが互いに押しつけられる。 このため、 チップシールを用いずと も圧縮室 Cのシールが行われ、 チップシールの落下や折損が発生することもなく、 効率のよい圧縮を行うことができる。  Then, by introducing the back pressure into the high-pressure chamber H R ′, the fixed scroll 12 and the orbiting scroll 13 ′ are pressed against each other. Therefore, the compression chamber C is sealed without using a tip seal, and efficient compression can be performed without dropping or breaking the tip seal.
なお、 上記実施形態においては連結縁 1 2 e, 1 3 eが旋回スクロール 1 3の 旋回面に垂直に形成され、 これ 対応して連結壁面 1 2 h , 1 3 hも旋回面に垂 直に形成されているが、 連結縁 1 2 e , 1 3 6、 連結壁面1 2 , 1 3 hは互い の対応関係を守っていれば旋回面に垂直である必要はなく、 例えば旋回面に対し て傾斜するように形成しても構わない。  In the above embodiment, the connecting edges 12 e and 13 e are formed perpendicular to the turning surface of the orbiting scroll 13, and the connecting walls 12 h and 13 h are correspondingly perpendicular to the turning surface. It is formed, but the connecting edges 12 e and 13 6 and the connecting walls 12 and 13 h do not need to be perpendicular to the turning surface as long as they keep their correspondence, for example, with respect to the turning surface. It may be formed so as to be inclined.
また、 連結縁 1 2 e, 1 3 eは半円形をなしている必要はなく、 いかなる形状 であってもよい。 この場合、 連結縁 1 2 e, 1 3 eが描く包絡線は円弧とはなら ないので、 連結壁面 1 2 h、 1 3 hも円弧にはならなくなる。 The connecting edges 1 2 e and 13 e do not have to be semicircular, It may be. In this case, the envelope drawn by the connecting edges 12 e and 13 e does not become an arc, so that the connecting walls 12 h and 13 h also do not become arcs.
さらにまた、 段差部 4 2 , 4 3の形成箇所もそれぞれ 1箇所でなくてもよく、 それぞれ複数箇所に設けられていてよい。 産業上の利用可能性  Furthermore, the formation portions of the step portions 42 and 43 are not limited to one, and may be provided at a plurality of portions. Industrial applicability
以上説明したように、 本発明のスクロール圧縮機においては、 背圧室に導入さ れた圧縮流体によって、 一方のスクロールが他方のスクロールに押しつけられる c このため、 従来のチップシールを用いずとも圧縮室がシールされるから、 チップ シールの落下、 折損が発生することもなく、 流体の漏れを防止しして効率よく圧 縮を行うことができる。 As described above, in the scroll compressor of the present invention, the compressed fluid introduced into the back pressure chamber, and therefore c the one scroll is pressed against the other scroll, compressed without using a conventional tip seal Since the chamber is sealed, the tip seal does not fall or break, preventing leakage of fluid and enabling efficient compression.

Claims

請求の範囲 The scope of the claims
1 . 端板の一側面に立設された渦巻き状の壁体を有する固定スクロールと、 端板の一側面に立設された渦卷き状の壁体を有し、 前記各壁体どうしを嚙み合 わせて自転を阻止されつつ公転旋回運動可能に支持された旋回スクロールとを備 えたスクロール圧縮機において、 1. A fixed scroll having a spiral wall provided on one side of the end plate, and a spiral wall provided on one side of the end plate. In a scroll compressor having a revolving scroll supported to be capable of revolving revolving motion while being prevented from rotating in combination,
前記固定スクロールと旋回スクロールの少なくともいずれか一方のスクロール の端板の他側面側に背圧室が形成され、 該背圧室に前記両スクロールにより圧縮 された流体が導入されることにより前記一方のスクロールが他方のスクロール側 に押しつけられる構成とされ、  A back pressure chamber is formed on the other side surface of the end plate of at least one of the fixed scroll and the orbiting scroll, and the fluid compressed by the two scrolls is introduced into the back pressure chamber so that the one of the scrolls is introduced. The scroll is pressed against the other scroll,
さらに、 前記固定スクロールと旋回スクロールの少なくともいずれか一方のス クロールの端板には、 前記一側面に、 その高さが壁体の渦に沿ってその中心部側 で高く外周端側で低くなるよう形成された段差部が設けられ、 前記固定スクロー ルと旋回スクロールのいずれか他方のスクロールの壁体の上縁は、 前記端板の段 差部に対応し、 複数の部位に分割されかつ該部位の高さが渦の中心部側で低く外 周端側で高くなる段付き形状とされるスクロール圧縮機。  Further, the end plate of the scroll of at least one of the fixed scroll and the orbiting scroll has a height on the one side surface along the vortex of the wall body, which is higher on the center side and lower on the outer peripheral end side. The upper edge of the wall of the other scroll of the fixed scroll and the orbiting scroll corresponds to the step of the end plate, and is divided into a plurality of portions. A scroll compressor with a stepped shape in which the height of the part is lower at the center of the vortex and higher at the outer peripheral end.
2 . 請求の範囲第 1項記載のスクロール圧縮機において、 2. The scroll compressor according to claim 1,
前記固定スクロールと旋回スクロールの少なくともいずれか一方のスクロール を他方のスク口一ルに押しっける弾性体が設けられているスクロール圧縮機。  A scroll compressor provided with an elastic body that presses at least one of the fixed scroll and the orbiting scroll against the other scroll.
3 . 請求の範囲第 1項記載のスクロール圧縮機において、 3. The scroll compressor according to claim 1,
前記背圧室は、 前記固定スクロールの前記他側面側に形成されているスクロー ル型圧縮機。  The back pressure chamber is a scroll-type compressor formed on the other side of the fixed scroll.
4 . 請求の範囲第 1項記載のスクロール圧縮機において、 4. The scroll compressor according to claim 1,
前記背圧室は、 前記旋回スクロールの前記他側面側に形成されているスクロー ル型圧縮機。 The scroll type compressor in which the back pressure chamber is formed on the other side of the orbiting scroll.
5 . 請求の範囲第 4項記載のスクロール圧縮機において、 5. The scroll compressor according to claim 4, wherein
前記旋回スクロールの端板の前記他側面側に嵌合して公転旋回運動するベアリ ング部材が設けられ、 前記背圧室は、 前記旋回スクロールと前記ベアリング部材 との間に形成されているスクロール圧縮機。  A bearing member is provided for revolving orbiting by being fitted to the other side of the end plate of the orbiting scroll, and the back pressure chamber is a scroll compression formed between the orbiting scroll and the bearing member. Machine.
PCT/JP2001/005243 2000-06-22 2001-06-20 Scrawl compressor WO2001098661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60108871T DE60108871T2 (en) 2000-06-22 2001-06-20 SPIRAL COMPRESSOR
EP01941106A EP1293674B1 (en) 2000-06-22 2001-06-20 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-188198 2000-06-22
JP2000188198A JP2002005046A (en) 2000-06-22 2000-06-22 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2001098661A1 true WO2001098661A1 (en) 2001-12-27

Family

ID=18688032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005243 WO2001098661A1 (en) 2000-06-22 2001-06-20 Scrawl compressor

Country Status (7)

Country Link
US (1) US20020114719A1 (en)
EP (1) EP1293674B1 (en)
JP (1) JP2002005046A (en)
KR (1) KR100436221B1 (en)
CN (1) CN1159529C (en)
DE (1) DE60108871T2 (en)
WO (1) WO2001098661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585501B2 (en) 2000-11-06 2003-07-01 Mitsubishi Heavy Industries, Ltd. Scroll compressor sealing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076652A (en) * 2002-08-19 2004-03-11 Daikin Ind Ltd Scroll type fluid machine
JP4939239B2 (en) * 2007-01-22 2012-05-23 三菱重工業株式会社 Crankshaft
JP5166803B2 (en) 2007-09-13 2013-03-21 三菱重工業株式会社 Scroll compressor
KR101803872B1 (en) * 2011-01-11 2017-12-04 엘지전자 주식회사 Scroll compressor with split type fixed scroll
US8579614B2 (en) * 2011-02-04 2013-11-12 Danfoss Scroll Technologies Llc Scroll compressor with three discharge valves, and discharge pressure tap to back pressure chamber
KR101882713B1 (en) * 2012-02-27 2018-07-27 엘지전자 주식회사 Scroll compressor
CN107575380B (en) * 2016-07-05 2020-05-05 艾默生环境优化技术(苏州)有限公司 Scroll compressor having a plurality of scroll members
JP6661520B2 (en) * 2016-11-30 2020-03-11 三菱重工業株式会社 Scroll compressor and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380088A (en) * 1986-08-22 1988-04-11 コ−プランド・コ−ポレ−シヨン Scroll type machine
JPH04121483A (en) * 1990-09-12 1992-04-22 Toshiba Corp Scroll type compressor
JPH04166689A (en) * 1990-10-31 1992-06-12 Toshiba Corp Scroll type compressor
JPH04311693A (en) * 1991-04-11 1992-11-04 Toshiba Corp Scroll compressor
JPH06101666A (en) * 1992-09-09 1994-04-12 Hitachi Ltd Scroll compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874827A (en) * 1973-10-23 1975-04-01 Niels O Young Positive displacement scroll apparatus with axially radially compliant scroll member
US4477238A (en) * 1983-02-23 1984-10-16 Sanden Corporation Scroll type compressor with wrap portions of different axial heights
US5192202A (en) * 1990-12-08 1993-03-09 Gold Star Co., Ltd. Scroll-type compressor with an apparatus for restraining compressed fluid from being leaked
US5256044A (en) * 1991-09-23 1993-10-26 Carrier Corporation Scroll compressor with improved axial compliance
KR960014083B1 (en) * 1993-12-03 1996-10-12 엘지전자 주식회사 Scroll compressor
JPH09112456A (en) * 1995-10-20 1997-05-02 Sanden Corp Scroll type compressor
JP3608268B2 (en) * 1995-10-23 2005-01-05 松下電器産業株式会社 Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380088A (en) * 1986-08-22 1988-04-11 コ−プランド・コ−ポレ−シヨン Scroll type machine
JPH04121483A (en) * 1990-09-12 1992-04-22 Toshiba Corp Scroll type compressor
JPH04166689A (en) * 1990-10-31 1992-06-12 Toshiba Corp Scroll type compressor
JPH04311693A (en) * 1991-04-11 1992-11-04 Toshiba Corp Scroll compressor
JPH06101666A (en) * 1992-09-09 1994-04-12 Hitachi Ltd Scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1293674A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585501B2 (en) 2000-11-06 2003-07-01 Mitsubishi Heavy Industries, Ltd. Scroll compressor sealing

Also Published As

Publication number Publication date
CN1159529C (en) 2004-07-28
DE60108871T2 (en) 2005-12-29
CN1383472A (en) 2002-12-04
DE60108871D1 (en) 2005-03-17
JP2002005046A (en) 2002-01-09
EP1293674A1 (en) 2003-03-19
KR20020025231A (en) 2002-04-03
KR100436221B1 (en) 2004-06-12
US20020114719A1 (en) 2002-08-22
EP1293674A4 (en) 2003-08-06
EP1293674B1 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP4301713B2 (en) Scroll compressor
WO2001098662A1 (en) Scroll compressor
JP3881861B2 (en) Scroll compressor
WO2001098661A1 (en) Scrawl compressor
JP4410392B2 (en) Scroll compressor
JP4301714B2 (en) Scroll compressor
JP4475749B2 (en) Scroll compressor
JP4512479B2 (en) Scroll compressor
JP4709400B2 (en) Scroll compressor
JPH09303277A (en) Scroll compressor
JP4088567B2 (en) Scroll compressor
JP4709402B2 (en) Scroll compressor
JP4410726B2 (en) Scroll compressor
JP2005061295A (en) Scroll compressor
JPH08319960A (en) Scroll compressor
JP2002138975A (en) Scroll compressor
JP3913072B2 (en) Scroll compressor
WO2022176487A1 (en) Scroll compressor and apparatus
US8939741B2 (en) Scroll compressor
EP2096310B1 (en) Scroll compressor
JPH11264387A (en) Scroll fluid machine
JP2653266B2 (en) Scroll compressor
JPH05202864A (en) Scroll type compressor
US20200248692A1 (en) Scroll compressor
JP2004076652A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027002197

Country of ref document: KR

Ref document number: 018017401

Country of ref document: CN

Ref document number: 10049903

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001941106

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027002197

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001941106

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027002197

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001941106

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载