+

WO2001094991A1 - Composite light dispersion for compensating device and method for compensating light dispersion using the device - Google Patents

Composite light dispersion for compensating device and method for compensating light dispersion using the device Download PDF

Info

Publication number
WO2001094991A1
WO2001094991A1 PCT/JP2001/004852 JP0104852W WO0194991A1 WO 2001094991 A1 WO2001094991 A1 WO 2001094991A1 JP 0104852 W JP0104852 W JP 0104852W WO 0194991 A1 WO0194991 A1 WO 0194991A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dispersion compensating
layers
compensating element
layer
Prior art date
Application number
PCT/JP2001/004852
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuro Kikuchi
Yuichi Takushima
Mark Kenneth Jablonski
Yuichi Tanaka
Haruki Kataoka
Kenji Furuki
Noboru Higashi
Kazunari Sato
Hiroshi Yaguchi
Shiro Yamashita
Hironori Tokita
Original Assignee
Oyokoden Lab Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000314297A external-priority patent/JP2005236336A/en
Application filed by Oyokoden Lab Co., Ltd. filed Critical Oyokoden Lab Co., Ltd.
Priority to AU2001264226A priority Critical patent/AU2001264226A1/en
Publication of WO2001094991A1 publication Critical patent/WO2001094991A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Definitions

  • the optical dispersion compensation is simply referred to as dispersion compensation
  • the optical dispersion compensation element is simply referred to as dispersion compensation element
  • the optical dispersion compensation method is also simply referred to as dispersion compensation method.
  • the composite type optical dispersion compensating element that is the dispersion compensating element of the present invention may be simply referred to as an optical dispersion compensating element or a dispersion compensating element.
  • the present invention relates to an optical communication using an optical fiber (hereinafter, also referred to simply as a fiber) for a transmission line and using, for example, light having a wavelength of about 1.55 m as signal light.
  • an element capable of compensating for the resulting second or higher order chromatic dispersion (hereinafter simply referred to as dispersion) (hereinafter, an element capable of compensating the secondary dispersion is an element capable of changing the secondary dispersion, Similarly, an element capable of compensating for a third-order dispersion, which will be described later, is also an element capable of changing a third-order dispersion, or a third-order dispersion compensating element. At least one pair of dispersion compensating elements having the light incident surfaces facing each other, a low-loss, composite light dispersion compensating element, and an element having the same configuration as described above are used. Dispersion compensation Law on.
  • a notable feature of the present invention is that a composite dispersion compensating element and a dispersion compensating method using the same as described below, which can compensate for the third-order dispersion with low loss, or A dispersion compensating element capable of performing second and third order dispersion compensation and a dispersion compensating method using the same.
  • the composite dispersion compensating element of the present invention may include only the third-order dispersion compensating element, and is configured to perform not only the third-order dispersion compensation but also the second-order dispersion compensation.
  • it may include a means for changing the incident position of incident light on the incident surface, which will be described later.
  • it may be mounted on a case, and may be a so-called chip or wafer not mounted on the case. It may be in the form of a letter.
  • the dispersion compensating element of the present invention includes all of these forms. It can take various forms depending on the purpose of selling.
  • the second-order dispersion compensation means “compensating for the slope of the temporal wavelength characteristic curve described later with reference to FIG. 12A”
  • the third-order dispersion compensation refers to “FIG. Is used to compensate for the bending of the wavelength-time characteristic curve described later.
  • FIG. 13 is a diagram illustrating the dispersion-wavelength characteristics of a single-mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensating fiber, and a dispersion-shifted fiber (hereinafter, also referred to as DSF).
  • SMF single-mode optical fiber
  • DSF dispersion-shifted fiber
  • reference numeral 601 is a graph showing the dispersion-wavelength characteristic of the SMF
  • 602 is a graph showing the dispersion-wavelength characteristic of the dispersion fiber
  • 603 is a graph showing the dispersion-wavelength characteristic of the DSF. Is a graph in which wavelength is plotted on the horizontal axis.
  • the dispersion increases as the wavelength of the light input to the fiber (hereinafter also referred to as “incident”) increases from 1.3 ⁇ to 1.8 ⁇ .
  • the dispersion decreases as the wavelength of the input light (hereinafter also referred to as the incident light) increases from 1.3 111 to 1.8 ⁇ .
  • the dispersion decreases as the wavelength of the input light increases from 1.2 111 to about 1.55 ⁇ , and the wavelength of the input light increases from about 1.55 ⁇ 111 to 1.8 ⁇ . Dispersion increases as it becomes.
  • DSF uses the conventional 2.5 Gb ps (2.5 Gb / s In optical communications of Tsu g) about communication bit rate, the wavelength of the input light is 1. 'in the vicinity of 55 w ⁇ , dispersion does not occur on the trouble optical communication.
  • FIGS. 12A to 12C are diagrams mainly illustrating a second-order dispersion compensation method.
  • FIG. 12A shows a wavelength-time characteristic and a light intensity-time characteristic
  • FIG. 12B shows a transmission line using an SMF.
  • FIG. 12C is a diagram illustrating a transmission example in which a second-order dispersion compensation is performed using a dispersion compensating fiber, and FIG.
  • reference numerals 501 and 511 denote graphs showing characteristics of signal light before input to the transmission line
  • reference numeral 530 denotes a transmission line configured by the SMF 531
  • reference numerals 502 and 512 denote graphs.
  • 501 and 511 are graphs showing the characteristics of signal light output from the transmission line 530 after transmission of the signal light having the characteristics shown in the transmission line 530.
  • 520 is a transmission line composed of the dispersion compensation fiber 521 and the SMF 522.
  • 503 and 513 are graphs showing the characteristics of the signal light output from the transmission line 520 after the signal light having the characteristics shown in the graphs 501 and 511 is transmitted through the transmission line 520.
  • Reference numerals 504 and 514 represent the case where the signal light having the characteristics shown in the graphs 501 and 511 is transmitted through the transmission line 520 and output from the transmission line 520, and the desired third-order dispersion compensation described below is performed by the present invention. It is a graph which shows the characteristic of signal light, and is almost in agreement with graphs 501 and 511.
  • Graphs 501, 502, 503, and 504 are graphs in which the vertical axis is wavelength and the horizontal axis is time (or time), respectively, and graphs 511, 512, 513, and 514 are light intensity on the vertical axis, respectively.
  • Reference numerals 524 and 534 are transmitters, and 525 and 535 are receivers.
  • the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1.3 ⁇ to 1.8, so that in high-speed communication and long-distance transmission, the group velocity delay due to dispersion increases. Is generated.
  • the signal light is greatly delayed on the long wavelength side compared to the short wavelength side during transmission, as shown in graphs 502 and 512.
  • the changed signal light may not be able to be distinguished from the preceding and succeeding signal lights, and may not be received as an accurate signal.
  • the dispersion is compensated (or called correction) using a dispersion compensating fiber.
  • the conventional dispersion compensating fiber solves the SMF problem that the dispersion increases as the wavelength increases from 1.3 ⁇ to 1.8 ⁇ .
  • the dispersion is designed to decrease as the length increases from 1.3 111 to 1.8 ⁇ .
  • the dispersion compensating fiber can be used, for example, by connecting the dispersion compensating fiber 521 to the SMF 522 as shown by the transmission line 520 in FIG.
  • the signal light is greatly delayed on the long wavelength side in the SMF 522 compared with the short wavelength side, and is significantly delayed in the dispersion compensation fiber 521 on the short wavelength side compared to the long wavelength side.
  • the amount of change can be suppressed smaller than the changes shown in the graphs 502 and 512.
  • the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before input to the transmission line, that is, as shown in FIG. It is not possible to compensate for dispersion up to the form of 01, but the limit is to compensate for the form of Darraf 503.
  • graph 503 in the conventional second-order chromatic dispersion compensation method using a dispersion compensation fiber, the light of the central wavelength of the signal light is compared with the light of the short wavelength side and the light of the long wavelength side. Without delay, only the light of the component on the shorter wavelength side or longer wavelength side than the light of the central wavelength component of the signal light is delayed. Then, as shown in the graph 513, a ripple may be generated in a part of the graph.
  • the third-order dispersion compensation is ideally performed, or the third-order dispersion compensation in multi-channel optical communication is performed.
  • a dispersion compensating element or dispersion compensating method capable of sufficiently compensating for second and third order dispersion in a wider wavelength range is desired.
  • a third-order dispersion compensator capable of adjusting the wavelength band of group velocity delay and the delay time of group velocity delay was proposed.
  • a wavelength-tunable dispersion compensator that is, selectable wavelengths for dispersion compensation
  • a third-order dispersion compensator suitable for the wavelength of each channel was proposed.
  • an element capable of performing dispersion compensation proposed by the present inventors is called a signal light.
  • the present invention has been made in view of such a point, and an object of the present invention is to perform sufficient dispersion compensation, especially third-order dispersion compensation, over a wide wavelength range that has not been practically used in the past.
  • an optical dispersion compensator with excellent group velocity delay time vs. wavelength characteristics that can be used in a compact, easy-to-use, low-loss, high-reliability, and suitable for mass production, at low cost.
  • a dispersion compensating element and a dispersion compensating method that enable a third-order dispersion compensation using a multilayer film element having a function of adjusting the wavelength band of the group velocity delay and the delay time.
  • a dispersion compensating element and a dispersion compensating method capable of performing the following dispersion compensation are provided. Disclosure of the invention
  • the present invention relates to a composite dispersion compensating element, and also relates to a dispersion compensating method for compensating dispersion by constructing a dispersion compensating element substantially equivalent to the composite type dispersion compensating element of the present invention. Therefore, in the following description, the content of the dispersion compensation element of the present invention will be described as the dispersion compensation element used in the dispersion compensation method of the present invention, and will also serve as the description of the dispersion compensation method.
  • the greatest feature of the composite dispersion compensation element used in the dispersion compensation method of the present invention is that a plurality of elements capable of performing third-order dispersion compensation using a multilayer film, or an element capable of performing dispersion compensation (Hereinafter referred to as the element that can perform dispersion compensation and the element that can perform dispersion compensation) ), which are connected in series with very low loss along the optical path of the signal light.
  • the composite type dispersion compensating element can be formed so as to perform not only the third-order dispersion compensation but also the second-order dispersion compensation.
  • the element capable of performing the dispersion compensation uses a group velocity delay time-wavelength characteristic of a multilayer film.
  • This is an optical dispersion compensating element that can perform dispersion compensation.
  • the group velocity delay time-one wavelength characteristic curve of the multilayer film is formed so as to have at least one extreme value in the wavelength band in or near the dispersion compensation target wavelength band.
  • the group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element used in the optical dispersion compensating method of the present invention and the optical dispersion compensating element used in the optical dispersion compensating method of the present invention is characterized by the group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element used in the optical dispersion compensating method of the present invention and the optical dispersion compensating element used in the optical dispersion compensating method of the present invention.
  • the group velocity delay time-wavelength characteristic curve of an element capable of performing each dispersion compensation usually has a different shape.
  • the composite type optical dispersion compensating element of the present invention having the multilayer film can basically be applied to any wavelength range.
  • the present invention relates to a composite type optical dispersion compensation element using a multilayer film having a group velocity delay time-one wavelength characteristic curve having at least one extreme value in a wavelength range of 1260 to 1700 nm which is currently being watched. A great effect can be achieved by using.
  • a composite dispersion compensator using a multilayer film having a group velocity delay time-one wavelength characteristic curve having at least one extreme value in a specific wavelength range within one wavelength band can be configured.
  • accurate dispersion compensation can be performed in each communication wavelength range.
  • a composite type optical dispersion compensating element of the present invention is an optical dispersion compensating element capable of compensating for dispersion as chromatic dispersion by using an optical fiber for communication using a communication transmission line.
  • a composite type optical dispersion compensating element combining: In the combined type optical dispersion compensating element, at least a part of the optical dispersion compensating elements constituting the optical dispersion compensating element has at least a part of a light incident surface on at least a part of the optical dispersion compensating elements.
  • a light-entering surface of a light-dispersion compensating element which is different from the light-dispersion compensating element, or a reflecting surface of a reflector, which is also referred to as a reflector A below, is disposed oppositely. .
  • an example of the composite type optical dispersion compensating element of the present invention includes at least a pair of the optical dispersion compensating elements which are arranged opposite to each other among the optical dispersion compensating elements constituting the composite type optical dispersion compensating element.
  • the light incident surface of one of the light dispersion compensating elements and the light incident surface of the other light dispersion compensating element, or the light incident surface of the opposing light dispersion compensating element and the reflection of the reflector A Between the incident surface of one of the optical dispersion compensating elements and the incident surface of the other optical dispersion compensating element, or It is arranged between the incident surface of the element and the reflecting surface of the reflector A so close that the light incident on the light dispersion compensating element can be incident and reflected several times. It is characterized by having.
  • an example of the compound type optical dispersion compensation element of the present invention is characterized in that there are a plurality of connection methods or connection paths of the plurality of elements capable of performing dispersion compensation.
  • An example of the compound type optical dispersion compensating element of the present invention is characterized in that a connection method or a connection path of the plurality of elements capable of performing dispersion compensation can be selected from outside the optical dispersion compensating element.
  • An example of the composite type optical dispersion compensating element of the present invention is a means for selecting a connection method or a connection path of the plurality of elements capable of performing dispersion compensation from outside the optical dispersion compensating element. It is characterized by:
  • An example of the composite type optical dispersion compensating element of the present invention is an element in which at least a part of the optical type dispersion compensating element constituting the composite type optical dispersion compensating element uses a multilayer film capable of compensating dispersion. It is characterized in that it is a light dispersion compensation element having a so-called multilayer film element.
  • An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element, which faces at least a part of the light incident surface constituting the composite type optical dispersion compensating element.
  • a light dispersion compensating element having a so-called multi-layer film element in which the light dispersion compensating element on which the incident surface of the compensating element or the reflecting surface of the reflector A is arranged is a device using a multilayer film capable of compensating for dispersion. It is characterized by being.
  • An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element, which faces at least a part of the light incident surface constituting the composite type optical dispersion compensating element.
  • One or both of the reflection surfaces of the body A are flat.
  • An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element, which faces at least a part of the light incident surface constituting the composite type optical dispersion compensating element.
  • the light incident surface of the compensating element or the light scattering surface on which the reflecting surface of the reflector A is disposed, and the light incident surface of the light of the compensating element and the incident surface of the another light dispersion compensating element disposed opposite thereto; Is characterized in that one or both of the reflection surfaces of the reflector A are curved surfaces.
  • An example of the composite type optical dispersion compensating element of the present invention is a multilayer optical element comprising the optical dispersion compensating element, wherein the multilayer film element includes at least three reflective layers, also referred to as a reflective layer, and at least two optically transparent layers. Wherein each of the one light transmission layers is formed so as to be sandwiched between two of the reflection layers, and the multilayer film has a wavelength of incident light;
  • the reflective layer has at least one reflective layer having a reflectance of 99.5% or more with respect to a central wavelength sometimes referred to as a central wavelength, and firstly, as the light proceeds from the incident surface in the thickness direction of the multilayer film.
  • the reflectivity of each of the reflective layers arranged up to the position of the reflective layer where the appearing reflectivity is 99.5% or more becomes larger as the flow proceeds from the incident surface side in the thickness direction of the multilayer film. It is characterized by having.
  • An example of the composite type optical dispersion compensating element according to the present invention is a method in which at least a part of the light incident surface of the optical dispersion compensating element is opposed to the optical dispersion compensating element, Light dispersion compensating element having a surface or a reflecting surface of the reflector A A reflector or a reflector different from the reflector A, hereinafter referred to as a reflector B, is provided at or near at least a part of the child.
  • the reflector B may be formed of any one of a pair of optical dispersion compensating elements having an incident surface opposed thereto, or facing the incident surface.
  • the light is output from one of the light dispersion compensating element on which the reflecting surface of the reflector A is disposed and the light reflector A.
  • the light dispersion compensating element or the light reflecting element reflects light referred to as light A. It is characterized by being arranged so that it can be incident on A.
  • the light A is incident as light referred to as reflected light B by the reflector B, but the light dispersion compensating element or the reflected light from which the light A is emitted. It is characterized by being body A.
  • An example of the compound type optical dispersion compensating element of the present invention is characterized in that the emission position of the light A and the incident position of the light B in the optical dispersion compensation element are different positions.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that the light A and the light B are parallel and the traveling directions are opposite.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that the reflector B has at least three reflecting surfaces.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that at least one reflecting surface of the reflector B is movable.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that the means for driving the movable reflecting surface of the reflector B is a manual means or an electric means.
  • An example of the composite type optical dispersion compensating element of the present invention is such that each of the reflectors B is also referred to as each optical dispersion compensating element alone of a pair of optical dispersion compensating elements in which the incident surfaces are opposed to each other. It is possible to reflect the light emitted from any one of the elements or the light emitted from either the reflecting surface of the reflector A and the incident surface of the optical dispersion compensating element which are arranged to face each other.
  • At least one pair of the light dispersion compensating element or the light dispersion compensating element and the light dispersion compensating element in which the incident surfaces are disposed to face each other are provided at the same end of the reflector A.
  • a pair of light beams whose incident surfaces are arranged to face each other It is characterized in that it is provided integrally on at least one of the dispersion compensating elements or on at least one of the optical dispersion compensating element and the reflector A arranged to face each other.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that the reflector B is a corner cube.
  • Examples of the composite type optical dispersion compensating element of the present invention include any one of a pair of optical dispersion compensating elements in which the light B is disposed with the incident surface facing each other, or The direction in which the light is incident on one of the dispersion compensating element and the reflector A and travels later is parallel to the traveling direction traveling in the light dispersion compensating element before the light A exits, and in the opposite direction. It is characterized by having.
  • Examples of the composite type optical dispersion compensating element of the present invention include: an end portion of a pair of optical dispersion compensating elements in which the incident surfaces are arranged opposing each other; or an optical dispersion compensating element arranged in opposition. And a reflector B is provided at a plurality of locations at the end of the reflector A.
  • Examples of the composite type optical dispersion compensating element of the present invention include: the incident surface of each of the individual optical dispersion compensating elements of the pair of optical dispersion compensating elements arranged to face each other; or the reflector A. At a position where the traveling direction of the signal light that is incident on the incident surface of the optical dispersion compensating element arranged oppositely and travels while undergoing dispersion compensation moves from one side of the incident surface to the other side, It is characterized by being in the opposite direction in turn.
  • An example of the composite type optical dispersion compensating element of the present invention is a multilayer film element in which each optical dispersion compensating element alone of a pair of optical dispersion compensating elements having the incident surfaces facing each other is formed on different substrates.
  • a composite type optical dispersion compensating element characterized by comprising: In an example of the composite type optical dispersion compensating element of the present invention, each of the optical dispersion compensating elements alone of at least a pair of the optical dispersion compensating elements whose incident surfaces are opposed to each other transmits incident light. It is characterized in that the incident surfaces are formed on the surfaces of the same substrate which are opposed to each other so that the incident surface is on the substrate side.
  • An example of the composite type optical dispersion compensating element of the present invention is that the reflectance of at least three reflective layers from the substrate side of a multilayer film constituting at least one of the optical dispersion compensating element and each of the optical dispersion compensating elements alone is The closer to the substrate, the farther from the reflective layer, the closer to the reflective layer. It is characterized by being large.
  • Examples of the composite type optical dispersion compensating element of the present invention include: a pair of optical dispersion compensating elements in which at least one pair of the incident surfaces are arranged to face each other; or an incident surface of the optical dispersion compensating element and a reflector A
  • the incident position and the outgoing position of the signal light of the light dispersion compensation element in which the reflection surfaces of the light dispersion compensation elements are opposed to each other are the same as those of the pair of light dispersion compensation elements in which the incidence surfaces are opposed to each other, or It is characterized by being on a different side of the optical dispersion compensating element arranged opposite to A.
  • Examples of the composite type optical dispersion compensating element of the present invention include: a pair of optical dispersion compensating elements in which at least one pair of the incident surfaces are arranged to face each other; or an incident surface of the optical dispersion compensating element and a reflector A
  • the incident position and the outgoing position of the signal light of the optical dispersion compensating element in which the reflecting surfaces of the optical dispersion compensating elements are opposed to each other are the same. It is characterized by being on the same side of the optical dispersion compensating element that is disposed opposite to the above.
  • An example of the composite type optical dispersion compensating element of the present invention is that at least one of the multilayer film elements has at least five kinds of laminated films having different optical properties, that is, optical properties such as light reflectance and film thickness.
  • the optical path length that is, the film thickness of each layer constituting the multilayer film when considered as the optical path length with respect to the central wavelength of the incident light
  • the film thickness has a value in the range of approximately 1%, which is approximately an integral multiple of ⁇ / 4, and the multilayer film is a layer having a higher refractive index of 1/4 times ⁇ 1% of the film thickness. It is composed of a plurality of layers combining the layer ⁇ and the layer L having a lower refractive index with a thickness of about% times ⁇ 1% of ⁇ and a thickness of about ⁇ .
  • the multilayer film ⁇ the five-layer laminated film, that is, the first to fifth layers, the thickness of the multilayer film
  • the first layer composed of three sets of HL layers, which are layers combined one by one in the order of layer H and layer L, in order from one side in the direction of movement, and a layer combining layer H and layer H
  • the second layer is formed by laminating 10 sets of HH layers
  • the third layer is formed by laminating 1 layer L and 7 sets of HL layers
  • 38 sets of HH layers A fourth layer composed of laminated layers, a layer L composed of a fifth layer composed of one layer L and a fifth layer composed of 13 sets of HL layers,
  • the second layer is a multilayer film having the same direction as that of the multilayer film A.
  • 3 sets of HH layers, 3 sets of LL layers, which is a layer combining layers L and L, 3 sets of HH layers, 2 sets of LL layers, and 2 sets of HH layers One set of layers is a multilayer film formed of a laminated film formed by laminating in this order, and a multilayer film C is formed by laminating 38 sets of HH layers of the multilayer film A or B.
  • the fourth layer is, in order from one side in the thickness direction of the film in the same direction as that of the multilayer film A, three sets of HH layers, three sets of LL layers, and three sets of HH layers. 3 sets of layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers are stacked in this order It is a multilayer film composed of a multilayer film,
  • the multilayer film D is a layer obtained by combining the five-layered film, that is, the first to fifth layers, in order from one side in the thickness direction of the multilayer film, and combining the layers one by one in the order of layer H.
  • the first layer composed of 5 sets of LH layers
  • the second layer composed of 7 sets of LL layers, 1 layer H and 7 sets of LH layers
  • the third layer is composed of 5 layers, composed of 57 sets of LL layers, the 5th layer composed of 1 layer of H and 13 sets of-layers of LH
  • the multilayer film E is defined as: a multilayer film E, wherein the five-layer laminated film, that is, the first to fifth layers, are arranged such that two layers of HL are sequentially arranged from one side in the thickness direction of the multilayer film.
  • the first layer is formed by stacking sets
  • the second layer is formed by stacking 14 sets of HH layers
  • the second layer is formed by stacking 1 set of layer L and 6 sets of HL layers.
  • 3 layers, HH layers 24 sets The constituted by a layer Four layers, one layer L and five layers of HL are laminated as a fifth layer composed of 13 sets,
  • the second layer has a film thickness in the same direction as that of the multilayer film E.
  • a set of HH layers is a multilayer film formed of a laminated film formed by laminating one set in this order,
  • the fourth layer is a film in the same direction as the multilayer film E. 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers in order from one side in the thickness direction of Set, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers, 1 set of LL layers, 1 set of HH layers It is a multilayer film that has been
  • the multilayer film H is formed by laminating four sets of layers L and LH in order of the five-layer laminated film, that is, the first to fifth layers, from one side in the thickness direction of the multilayer film.
  • the first layer, the second layer composed of 9 sets of LL layers, the third layer composed of 1 layer H and the 6 sets of LH layers, and the 3rd layer composed of 6 layers of LH layers When a multilayer film composed of a fourth layer composed of set laminations, a fifth layer composed of one layer H, and a fifth layer composed of 13 sets of LH layers,
  • At least one of the multilayer devices has at least one of the multilayer films A to H.
  • the film thickness of at least one laminated film constituting the multilayer film of at least one of the optical dispersion compensating elements is parallel to a light incident surface of the multilayer film. It is characterized in that it changes in the in-plane direction of the cross section, that is, in the direction of the incident plane, that is, the film thickness varies depending on the position in the laminated film.
  • An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element in which at least a pair of the incident surfaces constituting the composite type optical dispersion compensating element are arranged to face each other. It is characterized in that at least one light transmitting layer of the multilayer film of each light dispersion compensating element alone has a different thickness in different directions.
  • An example of the composite type optical dispersion compensating element of the present invention is a multilayer film of each optical dispersion compensating element alone of at least a pair of the optical dispersion compensating elements constituting the composite type optical dispersion compensating element.
  • the film thickness of at least one of the light transmitting layers is changed in opposite directions to each other.
  • Examples of the composite type optical dispersion compensating element of the present invention include adjusting means for engaging with the optical dispersion compensating element and adjusting the film thickness of at least one of the multilayer films, or It is characterized in that means for changing the incident position of light on the incident surface are provided.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that at least one of the multilayer film element elements is an optical dispersion compensating element capable of mainly compensating third-order dispersion.
  • An example of the composite type optical dispersion compensating element of the present invention is characterized in that at least one of the optical dispersion compensating elements is an optical dispersion compensating element capable of compensating for secondary dispersion.
  • the optical dispersion compensating method of the present invention uses a composite type optical dispersion compensating element having each of the above-mentioned features, or an optical dispersion substantially equivalent thereto. It is characterized by compensating for the dispersion of optical signals by using compensating elements obtained as some parts or the like.
  • An optical dispersion compensation method is a method for compensating for dispersion as wavelength dispersion in communication using an optical fiber for a communication transmission line, and comprises at least a part of a light incident surface on an optical dispersion compensating element. And an incident surface of a light dispersion compensating element different from the light dispersion compensating element, or a reflecting surface of a reflector which is also referred to as a reflector A below.
  • An optical path of incident light can be formed between the incident surfaces of both the optical dispersion compensating elements, or between the incident surface of the optical dispersion compensating element and the reflecting surface of the reflector A disposed opposite to each other.
  • At least one set comprising composite optical dispersion compensation element configured to allow bets The optical dispersion compensating element of the present invention is characterized in that the incident light travels along this optical path to perform dispersion compensation of the incident light.
  • An example of the optical dispersion compensation method of the present invention includes: at least one pair of the opposed optical dispersion compensating elements or at least a part or the vicinity of the optical dispersion compensating element and the reflector A, It is characterized in that a reflector or a reflector, also referred to as a reflector B, is arranged below to perform dispersion compensation of incident light.
  • the reflector B is provided with a pair of light dispersion compensating elements or a light dispersion compensating element arranged opposite to each other and the light output from the reflector A below. It is characterized by arranging so that light, also referred to as A, can be reflected and made incident on the optical dispersion compensating element to perform dispersion compensation of incident light.
  • An example of the light dispersion compensation method of the present invention is that the light A reflects the light reflected by the reflector B, which is also referred to as light B below, and reenters the light dispersion compensating element from which the light A is emitted.
  • the invention is characterized in that the light dispersion compensating element and the reflector are arranged to perform dispersion compensation of incident light.
  • An example of the optical dispersion compensation method according to the present invention is characterized in that the emission position of the light A and the incident position of the light B in the optical dispersion compensation element are different positions.
  • An example of the optical dispersion compensation method of the present invention is characterized in that the light A and the light B are parallel and the traveling directions are opposite.
  • An example of the optical dispersion compensation method of the present invention is characterized in that the reflector B has at least three reflecting surfaces.
  • An example of the optical dispersion compensation method of the present invention is characterized in that the reflector B is a corner cup.
  • optical dispersion compensation method is characterized in that at least one of the optical dispersion compensation elements is a multilayer element having a multilayer film capable of performing dispersion compensation.
  • An example of the optical dispersion compensation method according to the present invention is that the film thickness of at least one laminated film constituting at least one of the multilayer films is an in-plane direction, that is, an in-plane direction in a cross section parallel to a light incident surface of the multilayer film. It is characterized in that it changes in the in-plane direction.
  • An example of the optical dispersion compensating method of the present invention includes: 1260 to 1360 nm, 1360 to 1460 ⁇ m, 1460 to: 1530 ⁇ m, 1530 to 1565 nm, 1565 to 1625 ⁇ m , 1625-: 1675 ⁇ m is characterized by having a group velocity delay time-wavelength characteristic curve having at least one extreme value in at least one wavelength range.
  • An example of the optical dispersion compensation method according to the present invention is characterized in that a plurality of connection methods of elements capable of performing dispersion compensation in an optical path of signal light can be selected.
  • An example of the optical dispersion compensation method according to the present invention is the optical dispersion compensation method, wherein the dispersion compensation of the signal light is a dispersion compensation capable of performing at least tertiary dispersion compensation.
  • the composite type optical dispersion compensating element and the optical dispersion compensating method of the present invention can be obtained by appropriately combining the inventions having the various features as described above, or using the invention alone.
  • the present invention exerts a great effect in ultra-high-speed optical communication such as 4 OGb ps or 80 Gb ps.
  • FIG. 1 is a diagram illustrating optical dispersion compensation according to the present invention.
  • FIG. 2 is a cross-sectional view of the multilayer film of the present invention.
  • FIG. 3 is a perspective view of the multilayer film of the present invention.
  • FIG. 4 is a group velocity delay time-wavelength characteristic curve of the multilayer film of the present invention.
  • FIG. 5A is a graph showing a group velocity delay time-wavelength characteristic of one element capable of performing dispersion compensation, which is a basic element of the dispersion compensation element of the present invention.
  • FIG. 5B is a diagram illustrating a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention.
  • 5 is a graph showing a group velocity delay time versus wavelength characteristic of the optical dispersion compensating elements of the present invention connected in series.
  • FIG. 5C is a diagram illustrating a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention.
  • 5 is a graph showing a group velocity delay time versus wavelength characteristic of the optical dispersion compensating elements of the present invention connected in series.
  • FIG. 5D is a diagram for explaining a method of improving the group velocity delay time vs. wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention.
  • 5 is a graph showing a group velocity delay time versus wavelength characteristic of the optical dispersion compensating elements of the present invention connected in series.
  • FIG. 6A is a diagram for explaining the connection of the optical dispersion compensating elements, and is a diagram for explaining an example in which two elements capable of performing dispersion compensation are connected in series to constitute an optical dispersion compensating element.
  • FIG. 6B is a diagram illustrating the connection of the optical dispersion compensating element, and is a diagram illustrating an example in which three elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element.
  • Fig. 6C is a diagram illustrating the connection of the optical dispersion compensating element.
  • the multilayer film whose film thickness changes in the direction of the incident plane, two signal light incident positions are set along the signal light route.
  • FIG. 3 is a diagram for explaining an example in which the optical dispersion compensating elements are configured by being connected in series in a row.
  • FIG. 6D is a diagram illustrating an example of the optical dispersion compensating element, and is a diagram illustrating an example in which the optical dispersion compensating element is mounted in one case.
  • FIG. 7A is a side view illustrating the composite type optical dispersion compensating element of the present invention.
  • FIG. 7B is a diagram for explaining the composite type optical dispersion compensating element of the present invention, which is viewed from above.
  • FIG. 8 is a diagram for explaining another example of the composite type optical dispersion compensation element of the present invention.
  • FIG. 9 is a diagram illustrating a group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element of FIG. 7A.
  • FIG. 10A is a model cross-sectional view of a pair of optical dispersion compensating elements 900 in which the incident surfaces, which are one of the components of the composite type optical dispersion compensating element of the present invention, are arranged to face each other.
  • FIG. 10B shows a pair of optical dispersion compensating elements 900 in which the incident surfaces constituting the composite type optical dispersion compensating element of the present invention are arranged facing each other, viewed from the direction of arrow 941 in FIG. 1OA. See diagram.
  • FIG. 11A is a diagram showing a corner cube.
  • FIG. 11B is a diagram for explaining a corner cube.
  • Fig. 12A is a diagram for explaining the method of compensating the second and third order chromatic dispersion.
  • FIG. 4 is a diagram for explaining an inter-characteristic and a light intensity-one-hour characteristic.
  • FIG. 12B is a diagram for explaining a method of compensating for second and third order chromatic dispersion, and is a diagram for explaining a transmission path.
  • FIG. 12C is a diagram illustrating second-order and third-order chromatic dispersion, and is a diagram illustrating a transmission path.
  • FIG. 13 is a graph showing dispersion-wavelength characteristics of a conventional optical fiber.
  • Fig. 1 is a diagram illustrating a method of compensating dispersion generated in communication using an optical fiber as a transmission line with an optical dispersion compensating element, and reference numeral 1101 denotes a signal remaining after compensating for secondary dispersion.
  • the group velocity delay time-wavelength characteristic curve showing the third-order dispersion of light 1102 is the group velocity delay time-wavelength characteristic curve of the dispersion compensator, and 1103 is the dispersion characteristic of the curve 111 the dispersion of the chromatic signal light, curve 1 1 0 2 compensated wavelength band after To ⁇ dispersion compensating device having a dispersion characteristic; in group velocity delay wave characteristic curve between I ⁇ e 2, vertical
  • the axis is the group velocity delay time, and the horizontal axis is the wavelength.
  • FIGS. 2 to 4 show the respective optical dispersion compensating elements used in the present invention (in the present invention, the element itself capable of performing dispersion compensation and the element composed of them are widely referred to as an optical dispersion compensating element. Due to the above-mentioned necessity, for example, each element constituting the composite type optical dispersion compensating element of the present invention may be referred to as an optical dispersion compensating element. When it is not particularly necessary to distinguish the dispersion compensating element alone, the dispersion compensating element alone may be referred to as a light dispersion compensating element. When it is necessary to separately describe the compensating element alone, it may be referred to as an optical dispersion compensating element alone.
  • FIG. 2 is a view for explaining an example of an element which can perform dispersion compensation, which constitutes FIG. 2.
  • FIG. 2 is a cross-sectional view of a multilayer film described later
  • FIG. 3 is a perspective view of a multilayer film having a changed film thickness
  • FIG. 2 is a diagram schematically illustrating a cross section of a multilayer film used as an example of a third-order optical dispersion compensating element used in the present invention.
  • reference numeral 100 denotes a multilayer film as an example of a light-dispersing optical compensation element used in the present invention
  • 101 denotes an arrow indicating the direction of incident light
  • 102 denotes an arrow indicating the direction of emitted light
  • 103 and 104 denote arrows.
  • a reflective layer having a reflectivity of less than 100% (hereinafter also referred to as a reflective film or a light reflective layer), 105 is a reflective layer having a reflectivity of 98 to 100%, and 108 and 109 are a light transmissive layer (hereinafter simply referred to as a transmissive layer). Also, 1 1 1 and 1 1 2 are cavities.
  • Reference numeral 107 denotes a substrate, for example, made of BK-7 glass (trade name of Dokku Shot Co., Ltd.).
  • the reflectances R (103), R (104), and R (1.05) of each of the reflective layers 103, 104, and 105 in FIG. 2 are in the relationship of R (103) ⁇ R (1 04) ⁇ R (105) . It is preferable in terms of mass production that the reflectance of each reflective layer is set to be different from each other at least between the reflective layers adjacent to each other with the light transmitting layer interposed therebetween. That is, the reflective layer is formed so that the reflectance of each reflective layer with respect to the center wavelength ⁇ of the incident light gradually increases from the side where the incident light is incident toward the thickness direction of the multilayer film.
  • the reflectance of each reflective layer with respect to the light of the above wavelength is 60% R (103) ⁇ 77%, 96% ⁇ R (104) ⁇ 99.8%, 98% ⁇ R ( 105) and satisfying the magnitude relation of R (103), R (104), and R (105), the group as shown in FIG. 4 and FIG. A speed delay time-wavelength characteristic curve can be obtained. It is more preferable to set R (103) to R (104) to R (105), and it is more preferable to set R (105) closer to 100% or more preferably to 100%. The performance of the compensating element can be further improved.
  • each reflection layer it is necessary to select the formation conditions of each reflection layer so that the intervals when considered as the optical path length between the adjacent reflection layers are different.
  • the design conditions for the reflectance of each reflective layer can be relaxed, and the combination of unit films whose film thickness is a quarter of the wavelength (that is, a film whose film thickness is an integral multiple of ⁇ / 4) can be used.
  • a multilayer film used for the tertiary light dispersion compensating element used in the present invention can be formed, and a highly reliable tertiary light dispersion compensating element having excellent mass productivity can be provided at low cost.
  • the thickness of the unit film of the multilayer film is described as being a quarter of the wavelength; L, as described above, this is within the range of an allowable error in film formation in mass production.
  • / 4 means the current multilayer film forming technology, and generally means ⁇ / 4 ⁇ 1% in the present invention; L / 4 film thickness.
  • the invention has a particularly great effect.
  • a multilayer film capable of obtaining a group velocity delay time-wavelength characteristic curve described later as the entire multilayer film is the present invention. It can be said that it is a “multilayer film in which unit films each having a thickness of one quarter of the wavelength are stacked”.
  • the multilayer film is formed by stacking unit films each having a thickness of / 4, but this is achieved by forming one unit film and then forming the next unit film.
  • the method described above can be repeated to form a multilayer film.
  • the present invention is not limited to this. In general, a film having a thickness of an integral multiple of ⁇ / 4 is often formed continuously.
  • a multilayer film is also included in the multilayer film of the present invention.
  • some examples of the multilayer film of the present invention could be formed by using a film forming step of continuously forming the reflection layer and the transmission layer.
  • FIG. 3 is a front view of the multilayer film 100 in FIG.
  • FIG. 4 is a diagram illustrating an example in which the thickness of the multilayer film 100 is changed.
  • reference numeral 200 denotes a multilayer film as an example of a light dispersion compensating element used in the present invention
  • 201 denotes a first reflective layer
  • 202 denotes a second reflective layer
  • 203 denotes a third reflective layer
  • 205 denotes a substrate.
  • 206 is the first light transmitting layer
  • 207 is the second light transmitting layer
  • 211 is the first cavity
  • 212 is the second cavity
  • 220 is the light incident surface
  • 230 is the arrow indicating the direction of the incident light
  • 240 is an arrow indicating the direction of the emitted light
  • 250 is an arrow indicating the first thickness change direction
  • 260 is an arrow indicating the second thickness change direction
  • 270 and 271 are directions for moving the incident position of the incident light. It is an arrow showing.
  • a third reflective layer 203, a second light transmitting layer 207, and a second reflective layer 202 are formed on a substrate 205 made of, for example, BK-7 glass (trade name of Schott, Germany).
  • the first light transmitting layer 206 and the first reflecting layer 201 are sequentially formed.
  • the thickness of the first light transmitting layer 206 changes in the direction indicated by the arrow 250 in FIG. 3 (the thickness gradually increases from right to left in the figure), and the thickness of the second light transmitting layer 207 changes.
  • the multilayer film is formed so that the thickness changes in the direction indicated by arrow 260 (the thickness gradually increases from the front of the figure to the other side).
  • the thicknesses of the first to third reflective layers are defined as first, second, and third when the resonance wavelength of the first and second cavities coincides with the center wavelength L of the incident light.
  • the reflectance of each of the reflective layers of R (10 3), R (104) and R (105) is in accordance with the magnitude relation of R (103), that is, the reflectance of the reflective layers 201, 202, and 203 is R (20 1), R (202), R (203) are formed so as to satisfy R (20 1) ⁇ R (202) ⁇ R (203) .
  • FIG. 4 shows a case where incident light is incident from the direction of an arrow 230 in FIG. 3 on an incident surface 220 of a multilayer film (hereinafter, also simply referred to as a light dispersion compensation element) 200 as an example of the light dispersion compensation element of the present invention.
  • Fig. 4 shows the group velocity delay time vs. wavelength characteristic curve when incident light with a center wavelength is incident on the incident positions 280 to 282 in Fig. 3, the vertical axis represents the group velocity delay time, and the horizontal axis represents the wavelength. It is.
  • the band center wavelengths at the curves 2801, 2811, and 2812 in FIG. 4; L 0 is set at an appropriate wavelength in the graph of FIG. 4 according to the purpose of dispersion compensation. Alternatively, it may be set to approximately the center value of the wavelength range of the curve shown in FIG. 4, or may be appropriately determined according to the purpose of dispersion compensation. Also, the wavelength of each characteristic point of the curve, such as the extreme wavelength between the curve 280 1 to 281 2, the curve 280 1 to 281 1, and the curve 281 1 to 281 2 It is a matter of course that the correspondence such as the shape of the curve and the shape of the curve should be checked beforehand, even if it is not described here.
  • the center wavelength of the band corresponding to the center wavelength of the incident light to be dispersion-compensated is moved in the direction of arrow 270 in FIG. 3 so as to match, and the content of the guarantee to be dispersion-compensated, that is, the dispersion situation of the incident light, is adapted to the dispersion compensation.
  • the shape of the group velocity delay time-wavelength characteristic curve to be used is selected, for example, from each curve in FIG. 4, and correspondingly, the incident position is indicated in the direction indicated by the arrow 271 in FIG. By selecting such points as indicated by 0 to 282, the dispersion compensation required for the signal light can be effectively performed.
  • third-order dispersion compensation is performed using the optical dispersion compensating element of the present invention, for example, using the curve 2801.
  • the second-order minute dispersion compensation can be performed by using a portion of the curve 2811 or 2812 that is relatively close to a linear component.
  • the “element capable of performing dispersion compensation” which is a part of the dispersion compensation element” used in the present invention, is referred to as the “element capable of performing dispersion compensation”. It is clear from the explanation of each curve in FIG. 4 that the third-order dispersion can be compensated for in a certain wavelength range by using “”.
  • the wavelength bandwidth of the dispersion compensation that can be compensated by the “element that can perform dispersion compensation” alone is around 1.5 nm for the signal light whose wavelength is around 1.55 ⁇ , and the group velocity delay time Is often around 3 ps (picoseconds), and if the wavelength bandwidth of dispersion compensation is widened to support multi-channel optical communication, the group velocity delay is large enough to achieve sufficient dispersion compensation. It is difficult to gain time, and further improvements are desirable for widespread use in real-world communications. Therefore, the present invention will be described in more detail with reference to FIGS. 5A to 5D, FIGS. 6A to 6D, and FIGS.
  • FIGS. 5A to 5D illustrate a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation using a multilayer film as described with reference to FIGS. 2 to 4.
  • Fig. 5A shows the group velocity delay time vs. wavelength characteristic with one element capable of performing dispersion compensation used in the present invention
  • Fig. 5B shows the shape of the group velocity delay time vs. wavelength characteristic curve which is almost the same.
  • the two elements that can perform dispersion compensation at different wavelengths hereinafter also referred to as extreme values
  • giving the peak value hereinafter also referred to as extreme values
  • FIG. 5C Wavelength characteristic of the optical dispersion compensating element of the present invention is shown in FIG. 5C.
  • Three elements that can perform dispersion compensation with different group extremal wavelengths having substantially the same group velocity delay time-wavelength characteristic curve are shown.
  • Figure 5D shows the optical dispersion compensation used in the optical dispersion compensation method of the present invention in which three elements capable of performing dispersion compensation differing in the shape of the group velocity delay time vs. wavelength characteristic curve and the extremal wavelength are connected in series.
  • 5 is a graph showing a group velocity delay time-wavelength characteristic of an element, wherein the vertical axis represents the group velocity delay time and the horizontal axis represents the wavelength.
  • the basic principle of the optical dispersion compensation method of the present invention is to use, for example, an optical dispersion compensating element having the characteristics shown in FIGS. 5A to 5D, for example, by using FIGS. 7, 8, and 10.
  • a composite type optical dispersion compensating element as described later is constructed, and the optical type Appropriate place in an optical transmission line, for example, in a signal light path such as connected to an optical fiber in series, or in an amplifier, receiver, wavelength demultiplexer, or various devices of a relay station installed in the transmission line And compensating the dispersion of the signal light by making the signal light incident on the light dispersion compensating element.
  • reference numerals 301 to 309 denote the group velocity delay time-wavelength characteristic curves of one element capable of performing dispersion compensation used in the present invention
  • 310 denotes the present invention.
  • the group velocity delay time vs. wavelength characteristic curve when two devices that can perform dispersion compensation and have different extremal wavelengths with almost the same shape of the group velocity delay time vs. wavelength characteristic curve are connected in series
  • Reference numeral 311 denotes a group velocity when three elements capable of performing dispersion compensation with substantially the same shape of the group velocity delay time-wavelength characteristic curve used in the present invention and having different extreme wavelengths are connected in series.
  • the symbol a is the wavelength band for dispersion compensation
  • b is the extreme value of the group velocity delay time.
  • the extreme values of the bandwidth and the group velocity delay time of the wavelength bands to be compensated for the curves 302 to 307 and 309 are almost the same, and the curve 308 is more dispersion than the curves 307 and 309.
  • This is a group velocity delay time-wavelength characteristic curve in which the bandwidth of the compensation target wavelength band is narrow and the extreme value of the group velocity delay time is large.
  • the extreme wavelengths of the curves 301 to 309 are different from each other as shown in the drawing.
  • the extremum of the group velocity delay time of the group velocity delay time vs. wavelength characteristic curve 310 is 1.6 times that of a single element capable of performing dispersion compensation
  • the wavelength band to be compensated is about 1.8 times
  • the extremum of group velocity delay time vs. wavelength characteristic curve 3 1 1 is about 2.3 times that of a single group velocity delay time.
  • the bandwidth is about 2.5 times that of a single element that can perform dispersion compensation.
  • the extremum of the group velocity delay time in the curve of the group velocity delay time-wavelength characteristic 312 is about three times that of a single element that can perform dispersion compensation.
  • the bandwidth is about 2.3 times that of a single device that can perform dispersion compensation.
  • the extreme value of the group velocity delay time of the group velocity delay time-wavelength characteristic curve of the element and the wavelength band to be dispersion-compensated vary depending on the configuration conditions of each reflection layer and each light transmission layer of the multilayer film. As shown in the curve 3108 of the group velocity delay time vs. wavelength characteristic curve where the wavelength band for dispersion compensation is relatively wide but the extreme value of the group velocity delay time is not so large as shown by the curve 3107 in Fig. 5D.
  • An element capable of performing dispersion compensation having various characteristics, such as a group velocity delay time-wavelength characteristic curve, in which the wavelength band for dispersion compensation is narrow but the extreme value of the group velocity delay time is large can be realized.
  • Examples of the multilayer film used for an element capable of performing such dispersion compensation include the multilayer films A to H described in the section of the above “Disclosure of the Invention”.
  • the extreme value of the group velocity delay time was 3 ps for signal light with a wavelength of about 1.55 ⁇ m. (Picoseconds), it was possible to realize a group velocity delay time-wavelength characteristic curve with a dispersion compensation wavelength band of 1.3 to 2.0 nm.
  • Each of the multilayer films A to H has two light transmission layers (cavities, that is, resonators for incident light) sandwiched between reflection layers in the thickness direction of the film from the incident surface, that is, two layers.
  • the present invention is a two-cavity multilayer film, the present invention is not limited to this, and it is possible to use a multilayer film having various configurations such as three-cavity and four-cavity.
  • the multilayer film of the present invention is a multilayer film having two or more cavities, and can obtain a group velocity delay time-one wavelength characteristic completely different from a multilayer film having one cavity.
  • a plurality of devices capable of performing this dispersion compensation are connected in series, and a dispersion compensation wavelength band having a group velocity delay-one wavelength characteristic capable of compensating for dispersion due to optical fiber transmission is 15 nm. Can be realized.
  • This optical dispersion compensating element is used as a third-order dispersion compensating element for a 30-channel communication system with a wavelength bandwidth of 0.5 nm and a channel wavelength of 0.5 nm near 1.55 ⁇ , equivalent to 1 OOG bps. When optical communication was performed for 60 km transmission, communication could be performed without any harm from third-order dispersion.
  • Elements that can be used in series to perform dispersion compensation such as the group velocity delay time-wavelength characteristic curve in Fig. 4 and the combination of group velocity delay time-wavelength characteristic curves of different shapes in Fig. 5D Group delay time vs. wavelength characteristics By doing so, not only third-order dispersion but also second-order dispersion can be compensated.
  • the light dispersion compensating element in which at least two elements capable of performing dispersion compensation according to the present invention are connected in series for example, a light having a group velocity, a delay time, and a wavelength characteristic required to compensate for the third-order dispersion.
  • the thicknesses of the light-transmitting layer and the reflecting layer of the multilayer film are changed in the in-plane direction of the incident plane (that is, in the direction parallel to the incident plane of the element).
  • the relative incident position of the signal light in the device that can perform dispersion compensation and changing the group velocity delay time-wavelength characteristic of the device that can perform dispersion compensation, Is raised.
  • the light dispersion compensating element 200 or at least one of the incident positions of the incident light itself is moved with respect to the position of the incident light. It was realized.
  • the light dispersion compensating element or the means for moving the incident light can be variously selected depending on the circumstances, such as the circumstances in which the light dispersion compensating element is used, the cost, and the characteristics. For example, due to the cost or the circumstances of the equipment, it is possible to use a method that is performed by manual means such as screws, and it is also possible to make adjustments for accurate adjustment or when manual adjustment is not possible. In order to achieve this, it is effective to use, for example, an electromagnetic step motor or continuous drive motor, and it is also effective to use a piezoelectric motor using PZT (lead zirconate titanate). It is a target.
  • PZT lead zirconate titanate
  • the group velocity delay time-wavelength characteristic can be changed.
  • each layer of the multilayer film of the element capable of performing dispersion compensation used for optical dispersion compensation device of the present invention the thickness created by the wave of S I_ ⁇ 2 of ion-assisted deposition of 4 minutes film (hereinafter, Ion'ashisu a layer formed by preparative layer also referred to as) a thickness that is composed of a layer H formed in Ion'ashisu preparative layer of T i 0 2 of a quarter wavelength.
  • a combination layer of the above-mentioned one SiO 2 ion-assisted film (layer L) and one Ti 2 ion-assisted film (layer H) is referred to as one set of LH layers.
  • set and stack means "layer L, layer H, layer L 'layer H, layer L, layer H, layer L. layer H, layer H, layer H, layer H in order. It means that.
  • the LL layer is referred to as a set of LL layers formed by laminating two layers L composed of a SiO 2 ion-assist film having a quarter wavelength thickness. Therefore, for example, “three layers of LL are stacked” means “formed by stacking six layers L”.
  • the present invention is not limited thereto, other T i 0 2 as the same dielectric material as T i 0 2 a, T a 2 ⁇ 5, N b 2 ⁇ 5 or the like can be used, further, in addition to the dielectric material, it is also possible to form a layer H with S i and G e.
  • the layer H is formed using Si or Ge, there is an advantage that the layer H can be formed thinner than the optical properties.
  • the present invention is not limited thereto If the layer L is formed of a material having a lower refractive index than the refractive index of the layer H, a light dispersion compensating element exhibiting the above effects of the present invention can be realized. Further, in the present embodiment, the layer L and the layer H constituting the multilayer film are formed by ion-assisted vapor deposition, but the present invention is not limited to this, and ordinary vapor deposition, sputtering, ion plating, and the like are performed. Even if a multilayer film formed by the above method is used, the present invention exhibits a great effect.
  • the light dispersion compensating element of the present invention can be used by appropriately holding a wafer-like element such as a multilayer film 200 as a light dispersion compensating element shown in FIG.
  • a wafer-like element such as a multilayer film 200
  • the chip is cut into small pieces.
  • the form has various possibilities, for example, it can be used as a compensating element. In any case, the main effects described in the present invention can be obtained.
  • FIG. 6 is a diagram for explaining a method of connecting a plurality of elements capable of performing dispersion compensation in series to realize a group velocity delay time-wavelength characteristic curve as in the example described in FIG. A shows an example in which two elements capable of performing the dispersion compensation are connected in series to form a light dispersion compensation element, and FIG. 6B shows three elements capable of performing the dispersion compensation connected in series.
  • Figure 6C shows an example in which the optical dispersion compensating element is configured as shown in Fig. 6C. In the multilayer film, the thickness of which changes in the plane of incidence, two signal light incident positions are connected in series along the signal light path.
  • FIG. 6D is a diagram showing an example in which the optical dispersion compensating element having the same configuration as that of FIG. 6A is mounted in one case. ,
  • reference numerals 410, 420, 430, and 440 denote an optical dispersion compensating element configured by connecting a plurality of elements capable of performing dispersion compensation as described above in series, 411, 412, 421 to 421.
  • 423, 431, 442, and 443 are elements capable of performing dispersion compensation
  • 416 is a multilayer film used for an element capable of performing dispersion compensation
  • 415, 415 1 to 4154, 426, 4261, and 4262 , 436, 436 1, 4362, 446, 4461, 4462 are optical fibers
  • 413, 413 1, 414, 4141, 424, 425, 434, 435, 444, 445 are arrows indicating the direction of signal light travel
  • 417 is a lens
  • 418 is a two-core collimator composed of the lens 41 7 and optical fibers 41 51 and 41 52, 441 is a case
  • 43.1 is a multilayer film whose film thickness changes in the incident plane direction.
  • reference numerals 415, 4152, 426, 436, and 446 are optical fibers as internal connection parts, and reference numerals 4151, 4153, 4154, 4261, 4262, 4361, 4362, 4461, and 4462 are An optical fiber as an external connection part.
  • the signal light that has entered the element 41 1 capable of performing dispersion compensation from the optical fiber 41 53 in the direction of the arrow 413 is subjected to dispersion compensation to the element 411 capable of performing dispersion compensation.
  • the optical fiber 41 54 is transmitted in the direction.
  • Reference numeral 4112 denotes a portion surrounded by a broken line 4111 of the element 411 capable of performing dispersion compensation, and is a diagram for explaining the internal structure thereof.
  • the optical fibers 4151 and 4152 and the lens 4117 constitute a two-core collimator 418, and the signal light that has traveled along the optical fiber 4151 in the direction of the arrow 413 enters the multilayer film 416 through the lens 417.
  • the multilayer film 416 has, for example, a group velocity delay time-wavelength characteristic as shown in FIG. 5A, and the signal light incident on the multilayer film 416 through the optical fiber 4151 and the lens 417 is:
  • the third-order dispersion compensation is performed, and the light exits from the multilayer film 416, passes through the lens 417 again, enters the optical fiber 4152, proceeds in the direction of arrow 4141, and enters the element 412 capable of performing dispersion compensation.
  • the optical fiber 4152 and the optical fiber 4.15 are substantially the same fiber, and the optical fiber 4151 and the optical fiber 4153 are also substantially the same.
  • the signal light that has been further subjected to dispersion compensation by the element 41 2 capable of performing dispersion compensation emits from the element 412 capable of performing dispersion compensation, and the optical fiber 41 54 passes in the direction indicated by the arrow 414. proceed.
  • the optical dispersion compensating element 410 shown in FIG. 6A has the group velocity delay time-wavelength characteristic shown in FIG. 5B, and the signal light incident on the optical dispersion compensating element 410 is shown in FIG.
  • the signal light traveling along the optical fiber 4151 in the direction of the arrow 4131 is incident on the multilayer film 416 via, for example, a 2-core collimator 418 to be subjected to dispersion compensation.
  • the optical fiber 4 151 travels in the direction of the arrow 4
  • the outgoing light of the optical dispersion compensating element 4 10 traveling in the direction of the arrow 4 1 4 1 through the optical fiber 4 15 2 is approximately smaller than the incident light. It receives coupling loss of 0.3 to 0.5 dB or more (also called coupling loss).
  • This loss is extremely small compared to dispersion compensation using a conventional fiber grating.However, when dispersion compensation is required with less loss in a wide wavelength band of 15 nm and 30 nm. In this case, since the number of elements connected in series and capable of performing dispersion compensation described in FIG. 5 increases, this coupling loss is accumulated and becomes a large loss. For example, if 10 elements capable of performing dispersion compensation are connected in series by the above connection method, a power coupling loss of 3 to 30 dB is generated. This loss becomes a serious problem when constructing an optical dispersion compensator having a wide wavelength bandwidth of 15 nm or 30 nm.
  • An object of the present invention is to provide an optical dispersion compensation element and an optical dispersion compensation method capable of performing dispersion compensation with a small loss even in such a wide wavelength band. This will be described later with reference to FIG.
  • the dispersion compensation will be described in more detail in order to further understand the present invention.
  • the signal light incident on the optical dispersion compensating element 420 from the direction of the arrow 424 through the optical fiber 422 is firstly dispersed.
  • the element which can perform compensation is input to the element 4 21 which can perform compensation, and is emitted after being subjected to dispersion compensation, and is sequentially transmitted to the element 4 22 to 4 23 which can perform dispersion compensation via the optical fiber 4 26.
  • dispersion compensation is performed according to the group velocity delay time-wavelength characteristic curve as shown in FIG. In the direction indicated by the arrow 4 25.
  • Fig. 6C shows the part of the element 431 that can perform dispersion compensation formed on the same wafer instead of the elements 411 and 412 that can perform dispersion compensation in Fig. 6A.
  • Figure 4 shows an example of an optical dispersion compensating element 430 in which ⁇ 4 3 2 and 4 3 3 '' are connected in series along the path of signal light using an optical fiber 4 36. It is the same as described for A.
  • Fig. 6D shows an example in which the same dispersion compensating elements 4 4 2 and 4 4 3 as those in Fig. 6 A are incorporated in the same case 4 4 1 to provide a signal light communication path via an optical fiber 4 4 6.
  • a light dispersion compensating element 440 is connected in series along the line, and although not shown, the element 443 capable of performing dispersion compensation is a multilayer film described with reference to FIG. It uses a multilayer film whose film thickness changes in the direction of the incident plane, and has means for adjusting the incident position.
  • the incident position adjusting means is not shown, the incident position can be adjusted by using a control circuit provided in the case 441 and an incident position adjusting means driving circuit controlled by the control circuit. Has become.
  • the signal light enters the optical dispersion compensating element 4440 via the optical fiber 4461, and exits from the optical dispersion compensating element 4440 via the optical fiber 4446.
  • a multilayer film is used as described above.
  • a plurality of elements capable of performing dispersion compensation can be connected in series in the optical path to form a dispersion compensation element having the purpose described with reference to FIGS. 5A to 5D. What is necessary is just to compensate dispersion using a dispersion compensation element.
  • FIG. 7A and 7B are views for explaining the composite type optical dispersion compensating element of the present invention.
  • FIG. 7A is a side view
  • FIG. 7B is a view seen from above.
  • the dotted line in Figure 7B is above it This is shown for convenience of explanation of a part that cannot be seen.
  • reference numeral 701 denotes a composite type optical dispersion compensating element
  • reference numerals 703 and 704 denote optical dispersion compensating elements used in the present invention constituting the composite type optical dispersion compensating element 701.
  • Plate, 7 11 and 7 2 1 are formed on the substrate and have a group velocity delay time-wavelength characteristic as described above with respect to incident light
  • 7 30 is a later-described film shown in FIG.
  • 7 4 1 to 7 4 7, 7 5 0, 7 6 0 to 7 6 7 are the optical paths of the incident light
  • 7 8 1 and 7 8 2 are the optical fibers
  • 7 8 Reference numerals 3 and 784 denote lenses
  • reference numerals 708 and 709 denote arrows indicating the direction in which the thickness of the light transmitting layer forming the multilayer film changes.
  • d 1 and d 2 are the intervals at the illustrated positions of the optical dispersion compensating elements 703 and 704, respectively.
  • the composite type optical dispersion compensating element 701 is composed of optical dispersion compensating elements 703 and 704 provided to face each other as shown in the figure.
  • the signal light transmitted through the optical fiber 781 passes through the lens 783, and from the optical path 741 to the light dispersion compensating element 703 constituting the light dispersion compensating element 701.
  • the light is subjected to dispersion compensation at the incident point of the multilayer film 711 (an intersection point of the optical path 740 and the multilayer film 711) as an element capable of performing dispersion compensation by being incident, and is reflected.
  • the light reaches the dispersion compensating element 704, is subjected to dispersion compensation at the incident point of the multilayer S 721 as an element capable of performing dispersion compensation, is reflected, and then passes through the optical path 743 to 747.
  • Each of the multilayer films 711 and 721 as elements capable of performing dispersion compensation is alternately subjected to dispersion compensation at the point of incidence and reflected, and furthermore, the optical paths 750, 760 to 766 are formed.
  • the light is reflected after being subjected to dispersion compensation at the incident point of the multilayer film 721 or 711, and is emitted from the composite optical dispersion compensation element 701 through the optical path 676.
  • Te incident from the lens 7 8 4 to the optical fiber 7 8 2
  • the optical dispersion compensating elements 703 and 704 can perform dispersion compensation at each signal light incident point (this incident point is both an incident point and a reflection point). It is a light dispersion compensating element in which elements are connected in series along the optical path of incident light, that is, signal light. As shown in FIG. 7A, the optical dispersion compensating elements 703 and 704 constituting the composite type optical dispersion compensating element 701 have an interval d1 on the upper side of the figure and an interval d2 on the lower side of the figure. And are arranged facing each other.
  • the interval dl is formed to be narrower than the interval d2, and the light incident through the optical path 741 reaches the optical path 7550, the reflection direction is reversed, and the optical paths 7600 to 76.6
  • the light exits from the optical path 767 via
  • the incident angle of the incident light is set to about 5 degrees with respect to the normal of the multilayer film 711
  • d1 is set to 1 O mm
  • the beam of the incident light in the optical path 741 is set.
  • the multilayer films 711 and 721 are formed on the substrates 710 and 702, respectively.
  • the thickness of the film constituting the multilayer film changes from the bottom to the top of the figure in the direction of change different from that in FIG. 3, but changes in the same manner as described with reference to FIG. The thickness varies depending on the location).
  • the thickness of each of the light transmitting layers of the multilayer films 7 1 1 and 7 2 1 is formed so as to increase in the directions of arrows 708 and 709. Therefore, the content of the dispersion compensation that the incident light received at the respective positions of the optical dispersion compensating elements 703 and 704 described above with reference to FIG. 7A differs according to the description with reference to FIG. The shape and the extremum of the group velocity delay time-wavelength characteristic curve at each position are different from each other.
  • the signal light that enters the composite type optical dispersion compensating element 70 1 from the optical path 7 41, undergoes dispersion compensation by the optical dispersion compensating elements 7 03 and 7 04, and exits from the optical path 7 67 is shown in FIG.
  • the group velocity delay time-wavelength characteristic curve at each position of the optical dispersion compensating elements 703 and 704 is obtained as described later with reference to FIG.
  • the dispersion compensation is performed according to the group velocity delay time-wavelength characteristic curve that is almost similar to the synthesized group velocity delay time-wavelength characteristic curve.
  • the signal light causes an optical loss when it enters or exits from the optical fiber and when it is reflected after being subjected to dispersion compensation in the optical dispersion compensating element.
  • the former mainly causes a coupling loss (loss), and the latter a signal loss. Mainly causes reflection loss.
  • the present inventors have found that the reflection loss is much smaller than the coupling loss and the properties thereof are different. That is, dispersion compensation
  • the above-mentioned reflection loss at the point where the noise is applied occurs only in the vicinity of the wavelength that gives the extreme value of the group velocity delay time-wavelength characteristic curve at that position, and the peak value is approximately 0.1 ldB or less. At other wavelengths, it is almost negligible.
  • the reflection loss is the same as that described above, and the element that can perform dispersion compensation as described in Figs.
  • the coupling loss is greatly reduced compared to the coupling loss when connected in series along the optical path of light. '
  • FIG. 8 shows another example of the composite type optical dispersion compensating element of the present invention.
  • reference numeral 72 denotes a composite type optical dispersion compensating element of the present invention
  • 705 denotes a substrate
  • 706 denotes a substrate.
  • Reference numeral 707 denotes an optical dispersion compensating element formed on the substrate 705 and formed of a multilayer film having a group velocity delay time and one wavelength characteristic with respect to incident light as described above.
  • Arrows indicating the direction of incidence of light, and 786 are arrows indicating the direction of emission of signal light.
  • the substrate 705 is formed so that the lower part is gradually thicker than the upper part in the figure, and is formed so as to exhibit the same operation as that of the distances 41 and d2 described in FIG. 7A.
  • the thickness of the film constituting the multilayer film changes as in the case of FIG. 7A (that is, the thickness of the multilayer film is It depends on the position in the inside).
  • the signal light incident on the composite type optical dispersion compensating element 72 from the arrow 785 travels through the substrate 7 05 for the same reason as in FIG. 0 6 or 7 0 7, undergoes dispersion compensation, is reflected by the multilayer film constituting the light dispersion compensating element 7 06 or 7 0 7, travels through the substrate 7 0 5, and has an arrow 7 8 6 Emit in the direction of.
  • the multilayer film and the multilayer films 711 and 721 constituting the optical dispersion compensating elements 706 and 707 are arranged in the same manner as described with reference to FIGS. It has the function of performing dispersion compensation corresponding to the speed delay time-wavelength characteristic.
  • the multilayer films 711 and 721 of FIG.7A are formed on the substrates 710 and 720, respectively, and have at least two reflective layers and at least one light transmitting layer. ing.
  • the reflectance of the reflective layer constituting each multilayer film with respect to the central wavelength of the incident light is higher than that of the reflective layer existing on the incident surface of the incident light on the surface of each multilayer film or the reflective layer closest to the surface of each multilayer film.
  • Each reflection layer is formed such that the next reflection layer provided with the light transmission layer between the reflection layer and the substrate has a higher reflectance.
  • Each multilayer film has at least one reflective layer having a reflectance of 99.5% or more, and the reflective layer closest to the surface of the multilayer film or the reflective layer closest to the surface of the multilayer film.
  • Each anti-It layer is formed such that the reflectivity of each reflective layer existing between the reflective layers with a reflectivity of 99.5% or more increases sequentially from the surface to the substrate.
  • This reflection layer is a single reflection layer with the reflection layers on both sides of the light transmission layer interposed therebetween, and the reflectance of each reflection layer is the unit of each layer H, layer L, etc. that constitute each reflection layer It does not refer to the reflectivity of the film, but to the reflectivity of the single reflective layer.
  • each multilayer film in Fig. 7A is, for example, in the case of a 2-cavity structure with three reflective layers and two light-transmitting layers, four reflective layers and three light-transmitting layers In the case of three cavities, there are many possible forms, such as four reflective layers and five light transmitting layers, and a multilayer film can be constructed according to the required dispersion compensation. Use it.
  • the light dispersion compensating elements 706 and 707 in FIG. 8 are also each composed of a multilayer film, have at least three reflective layers and at least two light transmission layers, and have a reflectivity of 99.5%. Having at least one reflective layer as described above is the same as in FIG. 7A, but the reflectance is sequentially from the reflective layer closest to the substrate to the first reflective layer with a reflectance of 99.5% or more. It is different from the case of Fig. 7A in that the configuration is larger.
  • the distances d 1 and d 2 between the optical dispersion compensating elements 703 and 704 are taken as d 1 and d 2, and the difference between d 1 and d 2 is set to an appropriate value.
  • the positions of the incident light and the reflected light that are incident on the optical dispersion compensating elements 703 and 704 disposed opposite to each other are arranged opposite to each other as shown in FIG. 7A. It can be on the same side of the optical dispersion compensating elements 703 and 704.
  • FIG. 9 is a graph illustrating a group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element 701 of FIG. 7A.
  • reference numeral 8001 denotes each group velocity at the incident position of each optical path of the optical dispersion compensating elements 703 and 704 constituting the composite optical dispersion compensation element 701.
  • Delay time vs. wavelength characteristic This is a group of group velocity delay time-wavelength characteristic curves as a set of curves, and indicates the direction of the film thickness change of the multilayer films 7 1 1 and 7 2 1 as described by the arrows 7 08 and 7 09 in FIG. By inverting, it becomes a symmetrical curve group.
  • Reference numeral 800 denotes a group velocity delay time-wavelength characteristic curve obtained by combining all the curves of the group velocity delay time-wavelength characteristic curve group 8001, that is, a composite optical dispersion compensating element 7 0 1 according to the present invention.
  • 7 is a group velocity delay time-wavelength characteristic curve of FIG.
  • the characteristics of the composite type optical dispersion compensating element 701 in terms of the group velocity delay time vs. wavelength characteristic include an extremum larger than the individual curves of the group velocity delay time vs. wavelength characteristic curve group 801 and a wider bandwidth.
  • the loss of light intensity is significantly reduced as described above, as compared with the case where the optical fiber and the lens are used for coupling as shown in FIGS. .
  • FIG. 9 shows that the dispersion compensation wavelength bandwidth value and the group velocity delay time as a compensation amount can be considerably increased as compared with the conventional optical dispersion compensating element. Depending on the communication system, a wider bandwidth and a larger amount of compensation are required.
  • FIGS. 10A and 10B are diagrams illustrating a particularly preferred embodiment of the composite type optical dispersion compensating element of the present invention.
  • FIG. 10A is a diagram showing components of the composite type optical dispersion compensating element of the present invention.
  • FIG. 10A is a diagram showing components of the composite type optical dispersion compensating element of the present invention.
  • FIG. 10B is a model cross-sectional view of a pair of optical dispersion compensating elements 900 in which the incident surfaces are arranged so as to face each other, and FIG. 10B is an incident surface forming a composite type optical dispersion compensating element of the present invention.
  • Fig. 11A shows a pair of optical dispersion compensating elements 900 arranged opposite to each other, as viewed from the direction of the arrow 941 of Fig. 1OA.
  • Fig. 11A shows the reflectors 91 of Fig. 1OA and Fig. 10B.
  • 1 is a diagram showing a corner cube as an example, and FIG. 11B is a diagram for explaining a corner cube.
  • Figure 1 The dashed line at 0B shows the portion that is invisible because it is below the portion above it for convenience of explanation.
  • reference numeral 900 denotes a pair of light beams having a pair of incident surfaces, which constitute a part of the composite type optical dispersion compensating element of the present invention, opposed to each other.
  • Dispersion compensating elements, 901 and 902 are optical dispersion compensating elements alone, 91 1 to 913 are reflectors, 921 to 922 are optical fibers, 930 to 935, 9301 to 9303, 931 1 to 9313, 932:! ⁇ 9323, 933:!
  • ⁇ 9333, 971 ⁇ 974 is the optical path of the signal light
  • 941 is the arrow
  • 950, 9500 is the corner cube
  • 951 ⁇ 953 is the corner cube 950 is the reflecting surface of the cube 960
  • the inner wall of the cube 960, 960 is the corner Cubes 951 1 to 95 16 and 961 to 963 for explaining cube 950 are a solid line and a broken line indicating the cutting position of cube 960.
  • the optical dispersion compensating elements 901 and 902 are arranged so that the signal light incident surfaces face each other, and the signal light emitted from the optical fiber 921 passes through the optical path 930 to be transmitted through the optical path 930.
  • the light enters the incident surface of the dispersion compensating element 902, is subjected to dispersion compensation, is reflected (that is, exits from the light dispersion compensating element 902), and enters the light dispersion compensating element 901 through the optical path 931. Dispersion compensation.
  • the signal light that has been subjected to dispersion compensation by the optical dispersion compensating element 901 proceeds to an optical path 932, is again subjected to dispersion compensation by the optical dispersion compensating element 902, reflects, travels to an optical path 933, and again The dispersion compensating element 901 is subjected to dispersion compensation and reflected, and travels to an optical path 934.
  • the dispersion compensation element is subjected to dispersion compensation, reflected and travels to an optical path 935 by the dispersion compensating element 902.
  • the light exits from the pair of light dispersion compensating elements 900 and enters the reflector 911.
  • the signal light incident on the reflector 911 is reflected by the reflector 911 and is again directed to the optical dispersion compensating element 902 in a direction parallel to and opposite to the optical path 935, and from the optical path 935, for example,
  • the light enters through an optical path slightly deviated in the depth direction of FIG. 1 OA, and is subjected to dispersion compensation a plurality of times by the optical dispersion compensating elements 902 and 901 in the same manner as described above.
  • the traveling direction of the signal light described above is viewed from the direction indicated by the arrow 941, as shown in FIG. 10B, the signal light emitted from the optical fiber 921 travels along the optical path 9301, and the optical dispersion compensation is performed.
  • the element unit 902 and the optical dispersion compensating element unit 9 At 0 2 and 9 0 1 the light travels along the optical path 932 while the dispersion compensation is performed a plurality of times alternately as described above, and the light exits from the optical dispersion compensating element 9 0 2 and travels along the optical path 9 3 0 3.
  • the light is incident on the reflector 9 11.
  • the reflector 911 reflects the light incident from the optical path 9303 and emits the light to the optical path 931 1.
  • the optical path 9303 and the optical path 931 1 are located at different positions of the light dispersion compensating elements 9 01 and 9 02 as shown in the figure, are parallel to each other, and are in opposite directions.
  • the signal light reflected by the reflector 911 in this way travels along the optical path 931 and is subjected to dispersion compensation multiple times alternately by the reproducing dispersion compensating elements 902 and 901 alone. While traveling, the light travels along the optical path 9 3 1 2, exits from the optical dispersion compensating element 9 0 2, and travels along the optical path 9 3 13, on the side opposite to the reflector 9 11 of the optical dispersion compensating element 9 0 0 . The light is incident on the placed reflector 9 12.
  • the signal light reflected by the reflector 912 travels along the optical path 9321, and is subjected to multiple dispersion compensation by the optical dispersion compensating elements 902 and 901, so that the optical path 932 Then, the light is emitted from the light dispersion compensating element 902 alone, travels along the optical path 932, and enters the reflector 913.
  • the signal light reflected by the reflector 913 travels along an optical path 9331, and undergoes a plurality of dispersion compensations in the optical dispersion compensating elements 902 and 901, while the optical path 93332 Then, the light is emitted from the optical dispersion compensating element 902, travels along the optical path 9333, and enters the optical fiber 9222.
  • Either one of the light dispersion compensating elements 90 1 and 90 2 may be a mirror (reflection plate), and in this case, the light is incident on the light dispersion compensating element a plurality of times by the mirror. A plurality of dispersion compensations can be performed.
  • optical path 931 13 and the optical path 9321, and the optical path 932 and the optical path 9331 are located at different positions, respectively, are parallel and the traveling directions of light are opposite.
  • FIGS. 10A and 10B illustrate the case where the signal light enters and exits from the pair of optical dispersion compensating elements in which the incident surfaces are arranged to face each other, and is performed by the optical dispersion compensating element alone 102.
  • the present invention is not limited to this, and the signal light may be input and output separately from the light dispersion compensating element alone, and the signal light may be changed by changing the way the incident light is incident.
  • the incident light dispersion compensating element alone can be changed as appropriate.
  • the reflectors 911 to 913 can be realized by, for example, arranging a pair of reflectors facing each other in a direction parallel to the arrow 941 in FIG. 10A.
  • the pair of reflectors arranged to face each other in an integrated structure or integrally formed with each dispersion compensating element alone By making the pair of reflectors arranged to face each other in an integrated structure or integrally formed with each dispersion compensating element alone, the size of the light dispersion compensating element can be reduced, and the reliability can be improved. Therefore, it is possible to provide an optical dispersion compensating element which is easy to mount and low in mass production cost.
  • FIGS. 7A-B, 8 and 10A-B a pair of light dispersion compensating elements having incident surfaces arranged opposite to each other has been described.
  • One of the light dispersion compensating elements for example, the light dispersion compensating elements 704 and 707 and the light dispersion compensating element alone 90 1 are each replaced with a reflector, and the reflecting surface of each reflector and the light dispersion compensating element 7 are replaced.
  • 0 3 and 7 0 6 and the single element of the optical dispersion compensating element 9 0 2 are arranged so as to face each other, and a composite similar to the optical dispersion compensating elements 7 0 1, 7 0 2 and 9 0 0 Type light dispersion compensating element.
  • Such a composite type optical dispersion compensating element is also the optical dispersion compensating element of the present invention, and a great effect can be obtained by properly using it according to the purpose of dispersion compensation.
  • a corner cube 9550 shown in FIG. 11A can be used as the reflector.
  • the corner cube is composed of three mutually orthogonal reflecting surfaces 951, 952, and 953, and the cube 9660 shown in FIG. 11B is replaced by broken lines 961 to 96. It has a shape cut at the position indicated by 3.
  • the reflecting surfaces 951 to 953 are the same as the cube 960 and the symbol 951 :! This is the inside surface of the corner cupe (ie, the inside of the cube when it is a cube) cut at the positions indicated by ⁇ 9516.
  • the signal light incident on the corner cube 9550 from the optical path 971 is reflected by the reflective surface 951, passes through the optical path 972, enters the reflective surface 952, and is reflected by the reflective surface 952.
  • the light is reflected and enters the reflection surface 953 through the optical path 973, is reflected by the reflection surface 9553, passes through the optical path 964, and exits from the corner cup 9550.
  • the cube 960 can be cut at the positions indicated by broken lines 961 to 963 to form the corner cube 9500. Since the size of the reflecting surface is half that of the corner cube 950, Although there are restrictions on each optical path, it is basically the same as that of the corner cube 9550. As described above, the most significant feature of the present invention is that a composite type optical dispersion compensating element combining a plurality of optical dispersion compensating elements including at least a pair of optical dispersion compensating elements arranged with their incident surfaces facing each other.
  • the light dispersion compensating element according to the present invention has been described above, but the present invention is not limited to this, and the light dispersion compensating element is configured by combining a plurality of sets of light dispersion compensating elements whose incident surfaces are opposed to each other.
  • the present invention includes, for example, a combination of a light dispersion compensating element whose surface is opposed to a light dispersion compensating element whose input surface is not opposed to the light dispersion compensating element.
  • a wide wavelength such as 15 nm and 30 ⁇ m can be obtained. It can be applied not only to bandwidths but also to communication systems that handle wavelength bands as narrow as 1 nm in optical communications, for example, and can also be applied to communication systems that handle wavelength bands of 3 nm or 5 to 10 nm. In any case, the extremely large effects as described above can be obtained.
  • the composite type optical dispersion compensating element of the present invention and the optical dispersion compensating method using the element have been described centering on the optical dispersion compensating element used in the present invention.
  • the characteristic to be achieved is that at least one pair of the plurality of light dispersion compensating elements used in the present invention is arranged with the incident surfaces facing each other, and the pair of light dispersion compensating elements arranged opposite to each other.
  • the signal light is incident on one side, is reflected by performing dispersion compensation, is incident on the other optical dispersion compensating element, is reflected by performing dispersion compensation there, and is incident again on the one optical dispersion compensating element to thereby perform dispersion compensation.
  • optical dispersion compensation method of the present invention is that a composite type optical dispersion compensation element in which the reflecting surface of the reflector and the incident surface of the optical dispersion compensation element are arranged to face each other. It can be used in the same manner as a composite type optical dispersion compensating element in which the incident surfaces of the pair of optical dispersion compensating elements are arranged to face each other.
  • optical dispersion compensating element of the present invention is appropriately configured to have a wide wavelength band, for example, 1260 to: 1360 nm, 1360 to 1460 nm, 1460 to 1 530 nm, 1
  • the dispersion compensating element so as to have a group velocity delay time-wavelength characteristic curve having an extreme value at a plurality of wavelengths in a wavelength range of 60 to 170 nm.
  • the present invention makes use of such a large degree of freedom to make it possible to perform secondary and tertiary dispersion compensation required in actual communication, and makes use of many of the conventional optical communication systems. It enables high speed and long distance communication.
  • the present invention has been described in detail. According to the present invention, by preparing various group velocity delay time-wavelength characteristic curves described with reference to FIGS. In addition to this, good dispersion compensation for multiple channels can be performed.
  • the dispersion compensation by the optical dispersion compensating element of the present invention has a particularly great effect in the third-order dispersion compensation, and also has a large group velocity delay time. By appropriate adjustment of the wavelength characteristics, secondary dispersion compensation can be performed.
  • the present invention is indispensable for the practical use of high-speed and long-distance optical communication such as transmitting 100,000 km at 40 Gbps, has a wide range of use, and develops the optical communication field. It greatly contributes to.
  • optical dispersion compensating element using the special multilayer film according to the present invention is small in size, suitable for mass production, and can be provided at a low price, which greatly contributes to the development of optical communication.
  • optical dispersion compensation device of the present invention in that it allows to take advantage of many existing optical communication systems, social and economic effects is of great c

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

In conventional optical communication at a communication bit rate of 10 Gbps or above, especially 40 Gbps or above, wavelength dispersion takes place in a signal propagated through an optical fiber to cause a significant problem in communication. A composite light dispersion compensating device of the invention comprises a light dispersion compensating element where a reflector or a mutilayer film element is opposed to the incident face of a mutilayer film element which can compensate dispersion utilizing group velocity delay time-to-wavelength characteristics. A light dispersion compensating device having a group velocity delay time-to-wavelength characteristic curve having a wide bandwidth and a large extreme value of the group velocity delay time can be also realized by connecting a plurality of dispersion compensating elements in series. Dispersion can be compensated for each channel or a plurality of channels.

Description

明 細 書 複合型の光分散補償素子とその素子を用いた光分散補償方法 技術分野  Description Composite optical dispersion compensating element and optical dispersion compensating method using the element
本発明の以下の説明において、 光分散補償のことを単に分散補償とも称し、 光 分散補償素子のことを単に分散補償素子ともいい、 光分散補償方法のことを単に 分散補償方法ともいう。 また、 本発明の分散補償素子である複合型の光分散補償 素子のことをも、 単に、 光分散補償素子あるいは分散補償素子ということもある。 本発明は、 伝送路に光ファイバ (以下、 光ファイバのことを、 単に、 ファイバ ともいう) を用い、 信号光として、 たとえば、 波長が 1 . 5 5 m近傍の光など を用いた光通信において生ずる 2次以上 (後述) の波長分散 (以下、 単に、 分散 ともいう) を補償可能な素子 (以下、 2次の分散を補償可能な素子のことを 2次 の分散を変えることができる素子、 あるいは、 2次分散補償素子ともいう。 また、 後述の 3次の分散を補償可能な素子についても、 これと同様に、 3次の分散を変 えることができる素子、 あるいは、 3次分散補償素子ともいう。 ) を有する分散 補償素子を少なくとも一対、 光の入射面を対向させて配置した、 損失の少ない、 複合型の光分散補償素子および前記と同様の構成をした素子等を用いて行う光分 散補償方法に関する。  In the following description of the present invention, the optical dispersion compensation is simply referred to as dispersion compensation, the optical dispersion compensation element is simply referred to as dispersion compensation element, and the optical dispersion compensation method is also simply referred to as dispersion compensation method. In addition, the composite type optical dispersion compensating element that is the dispersion compensating element of the present invention may be simply referred to as an optical dispersion compensating element or a dispersion compensating element. The present invention relates to an optical communication using an optical fiber (hereinafter, also referred to simply as a fiber) for a transmission line and using, for example, light having a wavelength of about 1.55 m as signal light. An element capable of compensating for the resulting second or higher order chromatic dispersion (hereinafter simply referred to as dispersion) (hereinafter, an element capable of compensating the secondary dispersion is an element capable of changing the secondary dispersion, Similarly, an element capable of compensating for a third-order dispersion, which will be described later, is also an element capable of changing a third-order dispersion, or a third-order dispersion compensating element. At least one pair of dispersion compensating elements having the light incident surfaces facing each other, a low-loss, composite light dispersion compensating element, and an element having the same configuration as described above are used. Dispersion compensation Law on.
そして、 本発明の特筆すべき特徴は、 低損失で 3次の分散を補償することが出 来る後述の如き複合型の分散補償素子およびそれを用いた分散補償方法、 あるい は、 低損失で 2次と 3次の分散補償を行うことが出来る分散補償素子およびそれ を用いた分散補償方法にある。  A notable feature of the present invention is that a composite dispersion compensating element and a dispersion compensating method using the same as described below, which can compensate for the third-order dispersion with low loss, or A dispersion compensating element capable of performing second and third order dispersion compensation and a dispersion compensating method using the same.
そして、 本発明の複合型の分散補償素子は、 前記の 3次分散補償素子だけの場 合もあり、 3次の分散補償のみならず、 2次の分散補償が可能なように構成され ている場合もあり、 また、 後述の入射面内における入射光の入射位置等を変化さ せる手段を含む場合もあり、 ケースに実装されている場合もあり、 ケースに実装 されていないいわゆるチップ状やウェハー状の場合もある。  The composite dispersion compensating element of the present invention may include only the third-order dispersion compensating element, and is configured to perform not only the third-order dispersion compensation but also the second-order dispersion compensation. In some cases, it may include a means for changing the incident position of incident light on the incident surface, which will be described later.In some cases, it may be mounted on a case, and may be a so-called chip or wafer not mounted on the case. It may be in the form of a letter.
本発明の分散補償素子は、 これらのすべての形態を含んでおり、 使用状況ゃ販 売などの目的に応じて、 種々の形態をとることができるものである。 The dispersion compensating element of the present invention includes all of these forms. It can take various forms depending on the purpose of selling.
本発明では、 2次の分散補償とは 「図 12 Aを用いて後述するような波長一時 間特性曲線の傾きを補償すること」 を意味し、 3次の分散捕償とは 「図 1 2Aを 用いて後述する波長一時間特性曲線の曲がりを補償すること」 を意味する。 背景技術  In the present invention, the second-order dispersion compensation means “compensating for the slope of the temporal wavelength characteristic curve described later with reference to FIG. 12A”, and the third-order dispersion compensation refers to “FIG. Is used to compensate for the bending of the wavelength-time characteristic curve described later. " Background art
通信伝送路に光ファイバを用いる光通信においては、 利用技術の進展および利 用範囲の拡大とともに、 通信伝送路の長距離化や通信ビットレートの高速化が求 められている。 このような環境下では、 光ファイバを伝送するときに生じる分散 が大きな問題となり、 分散の補償が種々試みられている。 これまで、 2次の分散 が大きな問題となり、 その補償が種々提案され、 そのうちのいくつかの提案が効 果をあげている。  In optical communications that use optical fibers for communication transmission lines, there is a need for longer-distance communication transmission lines and higher-speed communication bit rates, along with advances in use technology and expansion of the range of use. In such an environment, dispersion generated when transmitting an optical fiber becomes a serious problem, and various attempts have been made to compensate for dispersion. Until now, second-order dispersion has been a major problem, and various compensations have been proposed, some of which have been effective.
しかし、 光通信に対する要求がさらに高度になるにつれて、 送信中の 2次の分 散の補償だけでは不充分になり、 3次の分散の補償が重大な課題になりつつある。 以下、 図 1 2A〜Cおよび図 1 3を使用して、 従来の 2次の分散補償方法を説 明する。  However, as the demands on optical communication become more sophisticated, compensating for second-order dispersion alone during transmission is not sufficient, and compensating for third-order dispersion is becoming a serious issue. Hereinafter, a conventional second-order dispersion compensation method will be described with reference to FIGS. 12A to 12C and FIG.
図 1 3は、 シングルモード光ファイバ (以下、 SMFとも称す) と分散補償フ アイバ、 および分散シフトファイバ (以下、 DSFともいう) の分散一波長特性 を説明する図である。 図 1 3において、 符号 601は SMFの分散一波長特性を 示すグラフ、 602は分散ネ翁償ファイバの分散一波長特性を示すグラフ、 603 は DS Fの分散一波長特性を示すグラフで、 縦軸を分散、 横軸を波長にとったグ ラフである。  Figure 13 is a diagram illustrating the dispersion-wavelength characteristics of a single-mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensating fiber, and a dispersion-shifted fiber (hereinafter, also referred to as DSF). In FIG. 13, reference numeral 601 is a graph showing the dispersion-wavelength characteristic of the SMF, 602 is a graph showing the dispersion-wavelength characteristic of the dispersion fiber, and 603 is a graph showing the dispersion-wavelength characteristic of the DSF. Is a graph in which wavelength is plotted on the horizontal axis.
図 1 3で明らかなように, SMFでは、 ファイバに入力する (以下、 入射する ともいう) 光の波長が 1. 3 μπιから 1. 8 μπιへと長くなるにつれて分散は増 大し, 分散補償ファイバでは, 入力光 (以下、 入射光ともいう) の波長が 1. 3 111から 1. 8 μπιまで長くなるにつれて分散は減少する。 また、 DS Fでは、 入力光の波長が 1. 2 111から1. 55 μπι付近へと長くなるにつれて分散は減 少し、 入力光の波長が 1. 55 ^ 111付近から 1. 8 μπιへと長くなるにつれて分 散が増大する。 そして、 DSFでは、 従来の 2. 5 Gb p s (毎秒 2. 5ギガビ ット) 程度の通信ビットレートの光通信においては、 入力光の波長が 1. ' 55 w πι付近では、 分散は光通信上支障を生じない。 As is clear from Fig. 13, in the SMF, the dispersion increases as the wavelength of the light input to the fiber (hereinafter also referred to as “incident”) increases from 1.3 μπι to 1.8 μπι. In a fiber, the dispersion decreases as the wavelength of the input light (hereinafter also referred to as the incident light) increases from 1.3 111 to 1.8 μπι. In the DSF, the dispersion decreases as the wavelength of the input light increases from 1.2 111 to about 1.55 μπι, and the wavelength of the input light increases from about 1.55 ^ 111 to 1.8 μπι. Dispersion increases as it becomes. And DSF uses the conventional 2.5 Gb ps (2.5 Gb / s In optical communications of Tsu g) about communication bit rate, the wavelength of the input light is 1. 'in the vicinity of 55 w πι, dispersion does not occur on the trouble optical communication.
図 12A〜Cは、 主として 2次の分散の補償方法を説明する図であり、 図 1 2 Aは波長一時間特性と光強度一時間特性を、 図 12Bは SMFを用いた伝送路に おいて分散補償ファイバを用いて 2次の分散補償を行った伝送例を、 図 12 Cは S MFだけで構成した伝送路での伝送例を説明する図である。  12A to 12C are diagrams mainly illustrating a second-order dispersion compensation method.FIG. 12A shows a wavelength-time characteristic and a light intensity-time characteristic, and FIG. 12B shows a transmission line using an SMF. FIG. 12C is a diagram illustrating a transmission example in which a second-order dispersion compensation is performed using a dispersion compensating fiber, and FIG.
図 1 2A〜Cにおいて、 符号 50 1と 5 1 1は伝送路に入力する前の信号光の 特性を示すグラフを、 530は SMF 531で構成された伝送路を、 502と 5 12は、 グラフ 501と 51 1で示した特性の信号光が伝送路 530を伝送され て伝送路 530から出力された信号光の特性を示すグラフ、 520は分散補償フ アイバ 521と SMF 522から構成された伝送路、 503と 5 13は、 グラフ 501と 5 1 1で示した特性の信号光が伝送路 520を伝送されて伝送路 520 から出力された信号光の特性を示すグラフである。 符号 504および 514は、 グラフ 501と 51 1で示した特性の信号光が伝送路 520を伝送されて伝送路 520から出力されて後、 本発明によって後述の望ましい 3次分散補償を施した ときの信号光の特性を示すグラフであり、 グラフ 501および 51 1とほとんど 一致している。 また、 グラフ 501、 502、 503、 504はそれぞれ縦軸を 波長、 横軸を時間 (または時刻) にとつたグラフであり、 グラフ 51 1、 5 1 2、 513、 514はそれぞれ縦軸を光強度、 横軸を時間 (または時刻) にとつたグ ラフである。 なお、 符号 524と 534は送信器、 525と 535は受信器であ る。  In FIGS. 12A to 12C, reference numerals 501 and 511 denote graphs showing characteristics of signal light before input to the transmission line, reference numeral 530 denotes a transmission line configured by the SMF 531, and reference numerals 502 and 512 denote graphs. 501 and 511 are graphs showing the characteristics of signal light output from the transmission line 530 after transmission of the signal light having the characteristics shown in the transmission line 530. 520 is a transmission line composed of the dispersion compensation fiber 521 and the SMF 522. , 503 and 513 are graphs showing the characteristics of the signal light output from the transmission line 520 after the signal light having the characteristics shown in the graphs 501 and 511 is transmitted through the transmission line 520. Reference numerals 504 and 514 represent the case where the signal light having the characteristics shown in the graphs 501 and 511 is transmitted through the transmission line 520 and output from the transmission line 520, and the desired third-order dispersion compensation described below is performed by the present invention. It is a graph which shows the characteristic of signal light, and is almost in agreement with graphs 501 and 511. Graphs 501, 502, 503, and 504 are graphs in which the vertical axis is wavelength and the horizontal axis is time (or time), respectively, and graphs 511, 512, 513, and 514 are light intensity on the vertical axis, respectively. , A graph with the horizontal axis representing time (or time). Reference numerals 524 and 534 are transmitters, and 525 and 535 are receivers.
従来の SMFは、 前述のように、 信号光の波長が 1. 3 μπιから 1. 8 へ と長くなるにつれて分散が増加するため、 高速通信や長距離伝送の際には、 分散 による群速度遅延を生じる。 SMFで構成された伝送路 530では、 信号光は伝 送中に長波長側が短波長側に比べ大きく遅延して、 グラフ 502と 51 2に示す ようになる。 このように変化した信号光は、 たとえば高速通信 ·長距離伝送にお いては、 前後の信号光と区別できなくなったりして正確な信号として受信できな い場合がある。  As described above, the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1.3 μπι to 1.8, so that in high-speed communication and long-distance transmission, the group velocity delay due to dispersion increases. Is generated. In the transmission path 530 constituted by the SMF, the signal light is greatly delayed on the long wavelength side compared to the short wavelength side during transmission, as shown in graphs 502 and 512. For example, in high-speed communication and long-distance transmission, the changed signal light may not be able to be distinguished from the preceding and succeeding signal lights, and may not be received as an accurate signal.
このような問題を解決するため、 従来は、 たとえば、 図 12Bに示すように分 散補償ファイバを用いて分散を補償 (あるいは、 補正ともいう) している。 Conventionally, to solve such a problem, for example, as shown in FIG. The dispersion is compensated (or called correction) using a dispersion compensating fiber.
従来の分散補償ファイバは、 波長が 1 . 3 μ πιから 1 . 8 μ πιへと長くなるに つれて分散が増加するという S M Fの問題点を解決するため、 前述のよ^うに、 波 長が 1 . 3 111から 1 . 8 μ πιへと長くなるにつれて分散が減少するように作ら れている。  The conventional dispersion compensating fiber solves the SMF problem that the dispersion increases as the wavelength increases from 1.3 μπι to 1.8 μπι. The dispersion is designed to decrease as the length increases from 1.3 111 to 1.8 μπι.
分散補償ファイバは、 たとえば、 図 1 2 Βの伝送路 5 2 0で示すように、 S M F 5 2 2に分散補償ファイバ 5 2 1を接続して用いることができる。 上記伝送路 5 2 0では、 信号光は、 S M F 5 2 2では長波長側が短波長側に比べて大きく遅 延し、 分散補償ファイバ 5 2 1では短波長側が長波長側に比べて大きく遅延する ことにより、 グラフ 5 0 3と 5 1 3に示すように、 グラフ 5 0 2と 5 1 2に示す 変化よりも変化量を小さく抑えることが出来る。  The dispersion compensating fiber can be used, for example, by connecting the dispersion compensating fiber 521 to the SMF 522 as shown by the transmission line 520 in FIG. In the above transmission line 520, the signal light is greatly delayed on the long wavelength side in the SMF 522 compared with the short wavelength side, and is significantly delayed in the dispersion compensation fiber 521 on the short wavelength side compared to the long wavelength side. As a result, as shown in the graphs 503 and 513, the amount of change can be suppressed smaller than the changes shown in the graphs 502 and 512.
しかし、 分散補償ファイバを使用した上記従来の 2次の波長分散の補償方法で は、 伝送路を伝送した信号光の波長分散を、 伝送路に入力する前の信号光の状態、 すなわち、 グラフ 5 0 1の形までには分散補償することができず、 ダラフ 5 0 3 の形まで補償するのが限界である。 グラフ 5 0 3に示すように、 分散補償フアイ バを使用した従来の 2次の波長分散の補償方法では、 信号光の中心波長の光が短 波長側の光および長波長側の光に比べて遅延せず、 信号光の中心波長成分の光よ り短波長側おょぴ長波長側の成分の光のみが遅延する。 そして、 グラフ 5 1 3に 示すようにグラフの一部にリップルが生じることがある。  However, in the above-mentioned conventional method of compensating for the second-order chromatic dispersion using the dispersion compensating fiber, the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before input to the transmission line, that is, as shown in FIG. It is not possible to compensate for dispersion up to the form of 01, but the limit is to compensate for the form of Darraf 503. As shown in graph 503, in the conventional second-order chromatic dispersion compensation method using a dispersion compensation fiber, the light of the central wavelength of the signal light is compared with the light of the short wavelength side and the light of the long wavelength side. Without delay, only the light of the component on the shorter wavelength side or longer wavelength side than the light of the central wavelength component of the signal light is delayed. Then, as shown in the graph 513, a ripple may be generated in a part of the graph.
これらの現象は、 光通信の伝送距離の長距離化と通信速度の高速化のニーズが 高まるに従い、 正確な信号受信ができなくなるなどの大きな問題となりつつある。 たとえば、 通信ビットレートが 4 0 G b p s (毎秒 4 0ギガビット) で 1万 kmを 送信する高速通信や 8 0 G b p sで千 kmオーダーの距離を送信する高速通信にお いては、 これらの現象がかなり心配されており、 極めて重大な課題として心配さ れている。 そして、 このような高速通信、 長距離通信においては、 従来の光ファ ィバ通信システムを使用することは困難と考えられており、 たとえば、 光フアイ バ自体の材質も変える必要が叫ばれるなど、 システム構築の経済的な観点からも . 重大問題となっている。  These phenomena are becoming serious problems such as the inability to receive accurate signals as the need for longer transmission distances and higher communication speeds increases in optical communications. For example, in a high-speed communication that transmits 10,000 km at a communication bit rate of 40 Gbps (40 gigabits per second) and a high-speed communication that transmits a distance of the order of 1,000 km at 80 Gbps, these phenomena occur. It is of great concern and of great concern. In such high-speed communication and long-distance communication, it is considered difficult to use the conventional optical fiber communication system. For example, it is necessary to change the material of the optical fiber itself. It is also a serious problem from the economic viewpoint of system construction.
このような分散補償を行うには、 2次の分散補償だけでは困難であり、 3次の 分散補償が必要になる。 It is difficult to perform such dispersion compensation only with second-order dispersion compensation. Dispersion compensation is required.
従来、 波長が 1 . 5 5 in付近の光に対して 2次の分散が少なくなるような光 ファイバとして D S Fがあるが、 このファイバでは前述の、 図 1 2 A、 図 1 3の 特性からも明らかなように本発明の課題とする 3次の分散補償はできない。 光通信の高速通信化、 長距離通信化を実現するにあたり、 3次の分散は大きな 問題として次第に認識され、 その補償が重要な課題となりつつある。 3次の分散 の捕償問題を解決すべく、 多くの試みが行なわれているが、 従来の課題を十分に 解決することができる 3次分散補償素子や補償方法はまだ実用化されていない。  Conventionally, there is a DSF as an optical fiber that reduces the second-order dispersion for light with a wavelength of around 1.55 in, but this fiber also has the characteristics shown in Figs. 12A and 13 above. Obviously, the third-order dispersion compensation, which is the subject of the present invention, cannot be performed. In realizing high-speed and long-distance optical communications, third-order dispersion is increasingly recognized as a major problem, and compensation for it is becoming an important issue. Many attempts have been made to solve the third-order dispersion compensation problem, but a third-order dispersion compensator or compensation method that can sufficiently solve the conventional problems has not yet been put into practical use.
3次の分散を補償する方法として回折格子を形成したファイバを用いた例が報 告されているが、 必要な補償ができなく、 損失が大きく、 形状寸法が大きいなど 致命的な欠点を有しており、 さらに、 価格も高く、 実用化は期待されていない。 前記の 3次分散の補償の一例として、 本発明者らは、 誘電体などの多層膜を用 いた小型の光分散補償素子を用いて、 ある程度の 3次の分散補償に成功し、 従来 の光通信技術を大きく前進させることが出来た。  An example using a fiber formed with a diffraction grating as a method of compensating for third-order dispersion has been reported, but it has fatal disadvantages such as the inability to perform the necessary compensation, large loss, and large dimensions. In addition, the price is high and practical application is not expected. As an example of the above-described third-order dispersion compensation, the present inventors succeeded in a certain degree of third-order dispersion compensation using a small-sized optical dispersion compensation element using a multilayer film such as a dielectric, and We have made great progress in communication technology.
し力 し、 たとえば通信ビットレートを 4 0 G b p s、 8 0 G b p sなどのよう に高速化した場合の 3次の分散補償を理想的に行つたり、 複数チャンネルの光通 信における 3次の分散の補償を十分に行うには、 さらに広い波長域において、 2 次と 3次の分散を十分に補償できる分散補償素子あるいは分散補償方法が望まれ る。  For example, when the communication bit rate is increased to 40 Gbps, 80 Gbps, etc., the third-order dispersion compensation is ideally performed, or the third-order dispersion compensation in multi-channel optical communication is performed. In order to sufficiently compensate for dispersion, a dispersion compensating element or dispersion compensating method capable of sufficiently compensating for second and third order dispersion in a wider wavelength range is desired.
その 1つの提案として、 群速度遅延の波長帯域および群速度遅延の遅延時間を 調整可能な 3次分散補償素子の提案が行なった。 特に、 各チャンネルの波長にも 適する 3次の分散捕償素子を安価に実用化する 1つの方法として、 波長可変な (すなわち、 分散補償対象波長を選択可能な) 分散補償素子を提案した。  As one proposal, a third-order dispersion compensator capable of adjusting the wavelength band of group velocity delay and the delay time of group velocity delay was proposed. In particular, we proposed a wavelength-tunable dispersion compensator (that is, selectable wavelengths for dispersion compensation) as one of the inexpensive ways to commercialize a third-order dispersion compensator suitable for the wavelength of each channel.
しかしながら、 これらの分散補償素子で広い波長域で十分な分散補償を行い得 るような群速度遅延時間一波長特性を有する分散補償素子を得ることはかなり難 しい。  However, it is quite difficult to obtain a dispersion compensating element having a group velocity delay time-one wavelength characteristic that can sufficiently perform dispersion compensation in a wide wavelength range with these dispersion compensating elements.
広い波長域で良好な分散補償を行ない得るような群速度遅延時間一波長特性を 有する分散補償素子を得る方法として、 本発明者らが提案した分散補償を行うこ とが出来る素子を信号光の光路において複数個直列に接続する方法がある。 この 場合、 分散補償を行うことが出来る素子を、 たとえば、 光ファイバとレンズを有 する光ファイバコリメータを介して直列に接続すると、 分散ネ 償素子全体として の形状寸法が大型になり、 さらに、 その損失が積算されることになる。 そのため、 分散補償素子の使用条件によっては、 分散補償素子の損失をいかに少なくするこ とが出来るかが大きな問題である。 As a method of obtaining a dispersion compensating element having a group velocity delay time-one wavelength characteristic that can perform good dispersion compensation in a wide wavelength range, an element capable of performing dispersion compensation proposed by the present inventors is called a signal light. There is a method of connecting a plurality of optical paths in series. this In this case, if an element capable of performing dispersion compensation is connected in series via an optical fiber collimator having an optical fiber and a lens, for example, the overall shape and dimensions of the dispersion compensation element become large, and the loss Are integrated. Therefore, depending on the usage conditions of the dispersion compensator, it is a major problem how the loss of the dispersion compensator can be reduced.
分散補償を行うことが出来る素子複数個を、 光路において直列に接続して、 た とえば、 3 0 n mのように広い波長帯域に用いることが出来る光分散捕償素子を 構成する場合、 装置が小型で損失が少なく接続しやすい分散補償素子の構成方法 の実現が望まれる。  When a plurality of elements capable of performing dispersion compensation are connected in series in an optical path to form a light dispersion compensation element that can be used in a wide wavelength band such as 30 nm, for example, It is desired to realize a method of constructing a dispersion compensating element that is small, has low loss, and is easy to connect.
本発明はこのような点に鑑みてなされたものであり、 本発明の目的は、 従来実 用化することが出来なかった広い波長域にわたっても十分な分散補償、 特に 3次 の分散補償を行うことが出来るような優れた群速度遅延時間一波長特性を有する 光分散補償素子を、 小型で、 使いやすく、 損失が少なく、 信頼性が高く、 量産に 適した状態で、 安価に提供することにあるとともに、 さらに、 群速度遅延の波長 帯域および遅延時間の調整機能を有する多層膜素子を用いた、 3次の分散捕償を 可能にする分散補償素子および分散補償方法、 あるいは、 2次と 3次の分散補償 を合わせて行うことが出来る分散補償素子および分散補償方法を提供することに める。 発明の開示  The present invention has been made in view of such a point, and an object of the present invention is to perform sufficient dispersion compensation, especially third-order dispersion compensation, over a wide wavelength range that has not been practically used in the past. To provide an optical dispersion compensator with excellent group velocity delay time vs. wavelength characteristics that can be used in a compact, easy-to-use, low-loss, high-reliability, and suitable for mass production, at low cost. In addition, a dispersion compensating element and a dispersion compensating method that enable a third-order dispersion compensation using a multilayer film element having a function of adjusting the wavelength band of the group velocity delay and the delay time. A dispersion compensating element and a dispersion compensating method capable of performing the following dispersion compensation are provided. Disclosure of the invention
本発明は複合型の分散補償素子に関するものであるとともに、 実質的に前記本 発明の複合型の分散補償素子と等価な分散補償素子を構成して分散を補償する分 散補償方法に関するものであり、 したがって、 以下の説明では、 本発明の分散補 償素子の内容を、 本発明の分散補償方法に用いる分散補償素子としても説明し、 あわせて分散補償方法の説明も兼ねることにする。  The present invention relates to a composite dispersion compensating element, and also relates to a dispersion compensating method for compensating dispersion by constructing a dispersion compensating element substantially equivalent to the composite type dispersion compensating element of the present invention. Therefore, in the following description, the content of the dispersion compensation element of the present invention will be described as the dispersion compensation element used in the dispersion compensation method of the present invention, and will also serve as the description of the dispersion compensation method.
本発明の分散補償方法に用いる複合型の分散補償素子の最大の特徴は、 多層膜 を用いた 3次の分散補償を行うことが出来る素子を複数個、 あるいは、 分散補償 を行うことが出来る素子の部分を複数箇所 (以下、 前記分散補償を行うことが出 来る素子と分散補償を行うことが出来る素子の部分を総称して分散補償を行うこ とが出来る素子ともいう) 、 信号光の光路に沿ってきわめて低損失で直列に接続 して構成されていることにある。 そして、 前記複合型の分散補償素子は、 3次の 分散補償だけでなく、 2次の分散補償をできるように形成することもできる。 そして、 本発明の目的の達成を図るため、 本発明の光分散補償方法に用いる光 分散補償素子は、 前記分散補償を行うことが出来る素子が、 多層膜の群速度遅延 時間一波長特性を利用して分散補償を行うことが出来る光分散補償素子である。 そして、 3次の分散補償をするときには、 前記多層膜の群速度遅延時間一波長 特性曲線が分散補償対象波長帯域あるいはその近傍の波長域において、 少なくと も 1つの極値を有するように形成されていることを特徴としており、 本発明の光 分散補償方法に用いる複合型の光分散補償素子の群速度遅延時間一波長特性曲線 と本発明の光分散補償方法に用いる光分散補償素子を構成する各分散補償を行う ことが出来る素子の群速度遅延時間一波長特性曲線とは、 通常、 その形が異なつ ている。 The greatest feature of the composite dispersion compensation element used in the dispersion compensation method of the present invention is that a plurality of elements capable of performing third-order dispersion compensation using a multilayer film, or an element capable of performing dispersion compensation (Hereinafter referred to as the element that can perform dispersion compensation and the element that can perform dispersion compensation) ), Which are connected in series with very low loss along the optical path of the signal light. The composite type dispersion compensating element can be formed so as to perform not only the third-order dispersion compensation but also the second-order dispersion compensation. In order to achieve the object of the present invention, in the optical dispersion compensating element used in the optical dispersion compensating method of the present invention, the element capable of performing the dispersion compensation uses a group velocity delay time-wavelength characteristic of a multilayer film. This is an optical dispersion compensating element that can perform dispersion compensation. When performing third-order dispersion compensation, the group velocity delay time-one wavelength characteristic curve of the multilayer film is formed so as to have at least one extreme value in the wavelength band in or near the dispersion compensation target wavelength band. It is characterized by the group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element used in the optical dispersion compensating method of the present invention and the optical dispersion compensating element used in the optical dispersion compensating method of the present invention. The group velocity delay time-wavelength characteristic curve of an element capable of performing each dispersion compensation usually has a different shape.
前記多層膜を有する本発明の複合型の光分散補償素子は、 基本的にはどの波長 域にも適用できるものである。 本発明は、 現在注視されている 1 260〜1 70 0 nmの波長域において少なくとも 1つの極値を有する群速度遅延時間一波長特 性曲線を有する多層膜を用いた複合型の光分散補償素子を用いて、 大きな効果を 上げることができるものである。  The composite type optical dispersion compensating element of the present invention having the multilayer film can basically be applied to any wavelength range. The present invention relates to a composite type optical dispersion compensation element using a multilayer film having a group velocity delay time-one wavelength characteristic curve having at least one extreme value in a wavelength range of 1260 to 1700 nm which is currently being watched. A great effect can be achieved by using.
さらに具体的には、 本発明によれば、 0—バンド (1 260— 1360 nm) 、 E—バンド (1 36 0— 1 460 n m) 、 S—バンド (1 460_ 1 530 n m) 、 C一バンド (1 530— 1 565 η m) 、 L一パンド (1 565— 162 5 nm) 、 U—バンド (1 625— 1675 nm) と呼称されている各バンドの 少なくともいずれか 1つのバンドの波長帯域、 あるいは、 1つの波長帯域の中の 特定の波長域において、 少なくとも 1つの極値を有する群速度遅延時間一波長特 性曲線を有する多層膜を用いた複合型の分散補償素子を構成することができ、 各 通信波長域において正確な分散補償を行うことができる。  More specifically, according to the present invention, the 0-band (1260-1360 nm), the E-band (1360-1460 nm), the S-band (1460_1530 nm), the C-band (1 530—1 565 η m), L-band (1 565—1625 nm), and U—band (1 625—1675 nm) Alternatively, a composite dispersion compensator using a multilayer film having a group velocity delay time-one wavelength characteristic curve having at least one extreme value in a specific wavelength range within one wavelength band can be configured. Thus, accurate dispersion compensation can be performed in each communication wavelength range.
本発明の目的を達成するため、 本発明の複合型の光分散補償素子は、 光フアイ パを通信伝送路に用いる通信に使用して波長分散としての分散を補償することが 出来る光分散補償素子を組み合わせた複合型の光分散補償素子であって、 前記複 合型の光分散補償素子は、 それを構成する光分散補償素子のうちの少なくとも一 部の光分散補償素子が、 前記少なくとも一部の光分散補償素子への光の入射面の 少なくとも一部に対向して、 その光分散補償素子とは別の光分散補償素子の入射 面、 あるいは、 以下において反射体 Aとも呼称する反射体の反射面が配置された 構成になっていることを特徴としている。 In order to achieve the object of the present invention, a composite type optical dispersion compensating element of the present invention is an optical dispersion compensating element capable of compensating for dispersion as chromatic dispersion by using an optical fiber for communication using a communication transmission line. A composite type optical dispersion compensating element combining: In the combined type optical dispersion compensating element, at least a part of the optical dispersion compensating elements constituting the optical dispersion compensating element has at least a part of a light incident surface on at least a part of the optical dispersion compensating elements. It is characterized in that a light-entering surface of a light-dispersion compensating element, which is different from the light-dispersion compensating element, or a reflecting surface of a reflector, which is also referred to as a reflector A below, is disposed oppositely. .
そして、 本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素 子を構成する光分散補償素子のうちの、 少なくとも一対の前記対向して配置され ている光分散補償素子のうちの一方の光分散補償素子の入射面と他方の光分散補 償素子の入射面とが、 あるいは、 前記対向して配置されている光分散補償素子の 入射面と反射体 Aの反射面とが、 前記対向して配置されている一方の光分散補償 素子の入射面と他方の光分散補償素子の入射面との間で、 あるいは、 前記対向し て配置されている光分散捕償素子の入射面と反射体 Aの反射面との間で、 当該光 分散捕償素子への入射光が入射して反射されることを複数回行うことが可能な程 度に近接して配置されていることを特徴としている。  Further, an example of the composite type optical dispersion compensating element of the present invention includes at least a pair of the optical dispersion compensating elements which are arranged opposite to each other among the optical dispersion compensating elements constituting the composite type optical dispersion compensating element. The light incident surface of one of the light dispersion compensating elements and the light incident surface of the other light dispersion compensating element, or the light incident surface of the opposing light dispersion compensating element and the reflection of the reflector A Between the incident surface of one of the optical dispersion compensating elements and the incident surface of the other optical dispersion compensating element, or It is arranged between the incident surface of the element and the reflecting surface of the reflector A so close that the light incident on the light dispersion compensating element can be incident and reflected several times. It is characterized by having.
本発明の目的を達成するため、 本発明の例は、 それぞれいくつかの特徴を有し ている。 それらについて、 以下に例示する。  In order to achieve the objects of the present invention, examples of the present invention each have some features. These are illustrated below.
また、 本発明の複合型の光分散補償素子の例は、 前記複数個の分散補償を行う ことが出来る素子の接続方法または接続経路が複数通りあることを特徴としてい る。  Further, an example of the compound type optical dispersion compensation element of the present invention is characterized in that there are a plurality of connection methods or connection paths of the plurality of elements capable of performing dispersion compensation.
本発明の複合型の光分散補償素子の例は、 前記複数個の分散補償を行うことが 出来る素子の接続方法または接続経路を光分散補償素子の外部から選択すること ができることを特徴としている。  An example of the compound type optical dispersion compensating element of the present invention is characterized in that a connection method or a connection path of the plurality of elements capable of performing dispersion compensation can be selected from outside the optical dispersion compensating element.
本発明の複合型の光分散補償素子の例は、 前記複数個の分散補償を行うことが 出来る素子の接続方法または接続経路を光分散捕償素子の外部から選択する手段 力 電気的手段であることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is a means for selecting a connection method or a connection path of the plurality of elements capable of performing dispersion compensation from outside the optical dispersion compensating element. It is characterized by:
本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素子を構成 する少なくとも一部の光分散補償素子が、 分散を補償することが出来る多層膜を 用いた素子であるいわゆる多層膜素子を有する光分散補償素子であることを特徴 としている。 本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素子を構成 する前記光の入射面の少なくとも一部に対向して、 その光分散補償素子とは別の 光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置されている光分散 補償素子が、 分散を補償することが出来る多層膜を用いた素子であるいわゆる多 層膜素子を有する光分散補償素子であることを特徴としている。 An example of the composite type optical dispersion compensating element of the present invention is an element in which at least a part of the optical type dispersion compensating element constituting the composite type optical dispersion compensating element uses a multilayer film capable of compensating dispersion. It is characterized in that it is a light dispersion compensation element having a so-called multilayer film element. An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element, which faces at least a part of the light incident surface constituting the composite type optical dispersion compensating element. A light dispersion compensating element having a so-called multi-layer film element in which the light dispersion compensating element on which the incident surface of the compensating element or the reflecting surface of the reflector A is arranged is a device using a multilayer film capable of compensating for dispersion. It is characterized by being.
本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素子を構成 する前記光の入射面の少なくとも一部に対向して、 その光分散補償素子とは別の 光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置されている光分散 補償素子の前記光の入射面とそれに対向して配置されている前記別の光分散補償 素子の入射面あるいは前記反射体 Aの反射面のいずれか一方または双方が平面で あることを特 としている。  An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element, which faces at least a part of the light incident surface constituting the composite type optical dispersion compensating element. The light incident surface of the compensating element or the light dispersion surface on which the reflecting surface of the reflector A is disposed, and the light incident surface of the light compensating element and the incident surface or the reflection of the another light dispersion compensating element disposed opposite thereto. One or both of the reflection surfaces of the body A are flat.
本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素子を構成 する前記光の入射面の少なくとも一部に対向して、 その光分散補償素子とは別の 光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置されている光分散 補償素子の前記光の入射面とそれに対向して配置されている前記別の光分散補償 素子の入射面あるレ、は前記反射体 Aの反射面のいずれか一方または双方が曲面で あることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element, which faces at least a part of the light incident surface constituting the composite type optical dispersion compensating element. The light incident surface of the compensating element or the light scattering surface on which the reflecting surface of the reflector A is disposed, and the light incident surface of the light of the compensating element and the incident surface of the another light dispersion compensating element disposed opposite thereto; Is characterized in that one or both of the reflection surfaces of the reflector A are curved surfaces.
本発明の複合型の光分散補償素子の例は、 前記光分散補償素子を構成する多層 膜素子が、 少なくとも 3層の反射層とも称する光反射層と少なくとも 2層の光透 過層を有する多層膜を有し、 前記各 1層の光透過層は前記反射層のうちの 2層の 反射層に挟まれているように形成されており、 前記多層膜は入射光の、 波長が; であるときに中心波長えと呼称する中心波長に対する前記反射層の反射率が 9 9 . 5 %以上の反射層を少なくとも 1層有しており、 入射面から前記多層膜の厚み方 向にすすむにつれて最初に現れる前記反射率が 9 9 . 5 %以上の反射層の位置ま でに配置されている各反射層の反射率が、 入射面側から前記多層膜の厚み方向に すすむにつれて川頁次大きくなっていることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is a multilayer optical element comprising the optical dispersion compensating element, wherein the multilayer film element includes at least three reflective layers, also referred to as a reflective layer, and at least two optically transparent layers. Wherein each of the one light transmission layers is formed so as to be sandwiched between two of the reflection layers, and the multilayer film has a wavelength of incident light; The reflective layer has at least one reflective layer having a reflectance of 99.5% or more with respect to a central wavelength sometimes referred to as a central wavelength, and firstly, as the light proceeds from the incident surface in the thickness direction of the multilayer film. The reflectivity of each of the reflective layers arranged up to the position of the reflective layer where the appearing reflectivity is 99.5% or more becomes larger as the flow proceeds from the incident surface side in the thickness direction of the multilayer film. It is characterized by having.
本発明の複合型の光分散補償素子の例は、 前記光分散補償素子への光の入射面 の少なくとも一部に対向して、 その光分散補償素子とは別の光分散補償素子の入 射面あるいは前記反射体 Aの反射面が配置された構成になっている光分散補償素 子の少なくとも一部に対向するかもしくはその近傍に、 以下、 反射体 Bと呼称す る前記反射体 Aとは別の反射体もしくは反射部が設けられていることを特徴とし ている。 An example of the composite type optical dispersion compensating element according to the present invention is a method in which at least a part of the light incident surface of the optical dispersion compensating element is opposed to the optical dispersion compensating element, Light dispersion compensating element having a surface or a reflecting surface of the reflector A A reflector or a reflector different from the reflector A, hereinafter referred to as a reflector B, is provided at or near at least a part of the child.
本発明の複合型の光分散補償素子の例は、 前記反射体 Bが、 入射面が対向して 配置された一対の光分散補償素子のうちのいずれかから、 あるいは入射面に対向 して前記反射体 Aの反射面が配置されている光分散補償素子と前記反射体 Aのう ちのいずれかから出力される.光 Aと呼称する光を反射して光分散補償素子あるい は前記反射体 Aへ入射させることが出来るように配置されていることを特徴とし ている。  In an example of the composite type optical dispersion compensating element of the present invention, the reflector B may be formed of any one of a pair of optical dispersion compensating elements having an incident surface opposed thereto, or facing the incident surface. The light is output from one of the light dispersion compensating element on which the reflecting surface of the reflector A is disposed and the light reflector A. The light dispersion compensating element or the light reflecting element reflects light referred to as light A. It is characterized by being arranged so that it can be incident on A.
本発明の複合型の光分散捕償素子の例は、 前記光 Aが前記反射体 Bによる反射 光 Bと呼称する光として入射されるところが、 前記光 Aが出射された光分散補償 素子あるいは反射体 Aであることを特徴としている。  In an example of the composite type light dispersion compensation element of the present invention, the light A is incident as light referred to as reflected light B by the reflector B, but the light dispersion compensating element or the reflected light from which the light A is emitted. It is characterized by being body A.
本発明の複合型の光分散補償素子の例は、 前記光分散補償素子における前記光 Aの出射位置と前記光 Bの入射位置が異なる位置であることを特徴としている。 本発明の複合型の光分散補償素子の例は、 前記光 Aと光 Bは平行で進行方向が 逆向きであることを特徴としている。  An example of the compound type optical dispersion compensating element of the present invention is characterized in that the emission position of the light A and the incident position of the light B in the optical dispersion compensation element are different positions. An example of the composite type optical dispersion compensating element of the present invention is characterized in that the light A and the light B are parallel and the traveling directions are opposite.
本発明の複合型の光分散補償素子の例は、 前記反射体 Bが少なくとも 3つの反 射面を有することを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is characterized in that the reflector B has at least three reflecting surfaces.
本発明の複合型の光分散補償素子の例は、 前記反射体 Bの少なくとも 1つの反 射面が可動であることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is characterized in that at least one reflecting surface of the reflector B is movable.
本発明の複合型の光分散補償素子の例は、 反射体 Bの前記可動な反射面を駆動 する手段が、 手動による手段もしくは電気的な手段であることを特徴としている。 本発明の複合型の光分散補償素子の例は、 前記反射体 Bが、 前記入射面が対向 して配置された一対の光分散補償素子の各光分散補償素子単体とも呼称する各光 分散補償素子のいずれかからの出射光を、 あるいは、 対向して配置されている前 記反射体 Aの反射面と光分散補償素子の入射面のいずれかからの出射光を反射す ることができるように、 前記入射面が対向して配置された一対の光分散補償素子 あるいは光分散補償素子と反射体 Aの同じ側の端部に少なくとも一対設けられて いるか、 または、 一対の反射体部が、 前記入射面が対向して配置された一対の光 分散補償素子の少なくとも一方に、 あるいは、 対向して配置された光分散補償素 子と反射体 Aの少なくとも一つに、 一体的に設けられていることを特徴としてい る。 An example of the composite type optical dispersion compensating element of the present invention is characterized in that the means for driving the movable reflecting surface of the reflector B is a manual means or an electric means. An example of the composite type optical dispersion compensating element of the present invention is such that each of the reflectors B is also referred to as each optical dispersion compensating element alone of a pair of optical dispersion compensating elements in which the incident surfaces are opposed to each other. It is possible to reflect the light emitted from any one of the elements or the light emitted from either the reflecting surface of the reflector A and the incident surface of the optical dispersion compensating element which are arranged to face each other. At least one pair of the light dispersion compensating element or the light dispersion compensating element and the light dispersion compensating element in which the incident surfaces are disposed to face each other are provided at the same end of the reflector A. A pair of light beams whose incident surfaces are arranged to face each other It is characterized in that it is provided integrally on at least one of the dispersion compensating elements or on at least one of the optical dispersion compensating element and the reflector A arranged to face each other.
本発明の複合型の光分散補償素子の例は、 前記反射体 Bがコーナーキューブで あることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is characterized in that the reflector B is a corner cube.
本発明の複合型の光分散補償素子の例は、 前記光 Bが前記入射面が対向して配 置された一対の光分散捕償素子のいずれか、 あるいは、 前記対向して配置された 光分散補償素子と反射体 Aのいずれかに入射して後に進行する方向は、 前記光 A が出射する前に該光分散補償素子内を進行してきた進行方向に対して平行であり かつ逆方向であることを特徴としている。  Examples of the composite type optical dispersion compensating element of the present invention include any one of a pair of optical dispersion compensating elements in which the light B is disposed with the incident surface facing each other, or The direction in which the light is incident on one of the dispersion compensating element and the reflector A and travels later is parallel to the traveling direction traveling in the light dispersion compensating element before the light A exits, and in the opposite direction. It is characterized by having.
本発明の複合型の光分散補償素子の例は、 前記入射面が対向して配置された一 対の光分散補償素子の端部の、 あるいは、 前記対向して配置された光分散補償素 子と反射体 Aの端部の複数箇所に対応して反射体 Bが設けられていることを特徴 としている。  Examples of the composite type optical dispersion compensating element of the present invention include: an end portion of a pair of optical dispersion compensating elements in which the incident surfaces are arranged opposing each other; or an optical dispersion compensating element arranged in opposition. And a reflector B is provided at a plurality of locations at the end of the reflector A.
本発明の複合型の光分散補償素子の例は、 前記入射面が対向して配置された一 対の光分散補償素子の各光分散補償素子単体の入射面に、 あるいは、 前記反射体 Aに対向して配置された光分散補償素子の入射面に入射して分散補償を受けなが ら進行する信号光の進行方向が、 前記入射面の一方の側から他方の側に移動した 位置において、 順に、 交互に反対向きであることを特徴としている。  Examples of the composite type optical dispersion compensating element of the present invention include: the incident surface of each of the individual optical dispersion compensating elements of the pair of optical dispersion compensating elements arranged to face each other; or the reflector A. At a position where the traveling direction of the signal light that is incident on the incident surface of the optical dispersion compensating element arranged oppositely and travels while undergoing dispersion compensation moves from one side of the incident surface to the other side, It is characterized by being in the opposite direction in turn.
本発明の複合型の光分散補償素子の例は、 前記入射面を対向して配置した一対 の光分散補償素子の各光分散補償素子単体が、 それぞれ異なる基板上に形成され ている多層膜素子で構成されていることを特徴とする複合型の光分散補償素子。 本発明の複合型の光分散補償素子の例は、 前記入射面が対向して配置されてい る少なくとも一対の前記光分散補償素子の各光分散補償素子単体が、 入射光を透 過することが出来る同一の基板の互いに対向する面上に、 入射面が前記基板側に なるように形成されていることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is a multilayer film element in which each optical dispersion compensating element alone of a pair of optical dispersion compensating elements having the incident surfaces facing each other is formed on different substrates. A composite type optical dispersion compensating element characterized by comprising: In an example of the composite type optical dispersion compensating element of the present invention, each of the optical dispersion compensating elements alone of at least a pair of the optical dispersion compensating elements whose incident surfaces are opposed to each other transmits incident light. It is characterized in that the incident surfaces are formed on the surfaces of the same substrate which are opposed to each other so that the incident surface is on the substrate side.
本発明の複合型の光分散補償素子の例は、 前記光分散補償素子や各光分散補償 素子単体の少なくとも 1つを構成する多層膜の前記基板側から少なくとも 3層の 反射層の反射率が、 前記基板に近レ、方の反射層から遠レ、方の反射層になるにつれ て大きくなっていることを特徴としている。 An example of the composite type optical dispersion compensating element of the present invention is that the reflectance of at least three reflective layers from the substrate side of a multilayer film constituting at least one of the optical dispersion compensating element and each of the optical dispersion compensating elements alone is The closer to the substrate, the farther from the reflective layer, the closer to the reflective layer. It is characterized by being large.
本発明の複合型の光分散補償素子の例は、 少なくとも一組の前記入射面が対向 して配置された一対の光分散補償素子の、 あるいは、 前記光分散補償素子の入射 面と反射体 Aの反射面が対向して配置されている光分散捕償素子の信号光の入射 位置と出射位置が、 前記入射面が対向して配置された一対の光分散補償素子の、 あるいは、 前記反射体 Aと対向して配置されている光分散補償素子の異なる側に あることを特徴としている。  Examples of the composite type optical dispersion compensating element of the present invention include: a pair of optical dispersion compensating elements in which at least one pair of the incident surfaces are arranged to face each other; or an incident surface of the optical dispersion compensating element and a reflector A The incident position and the outgoing position of the signal light of the light dispersion compensation element in which the reflection surfaces of the light dispersion compensation elements are opposed to each other are the same as those of the pair of light dispersion compensation elements in which the incidence surfaces are opposed to each other, or It is characterized by being on a different side of the optical dispersion compensating element arranged opposite to A.
本発明の複合型の光分散補償素子の例は、 少なくとも一組の前記入射面が対向 して配置された一対の光分散補償素子の、 あるいは、 前記光分散補償素子の入射 面と反射体 Aの反射面が対向して配置されている光分散補償素子の信号光の入射 位置と出射位置が、 前記入射面が対向して配置された一対の光分散補償素子の、 あるいは、 前記反射体 Aと対向して配置されている光分散補償素子の同じ側にあ ることを特徴としている。  Examples of the composite type optical dispersion compensating element of the present invention include: a pair of optical dispersion compensating elements in which at least one pair of the incident surfaces are arranged to face each other; or an incident surface of the optical dispersion compensating element and a reflector A The incident position and the outgoing position of the signal light of the optical dispersion compensating element in which the reflecting surfaces of the optical dispersion compensating elements are opposed to each other are the same. It is characterized by being on the same side of the optical dispersion compensating element that is disposed opposite to the above.
本発明の複合型の光分散補償素子の例は、 少なくとも 1つの前記多層膜素子が、 光学的性質が異なる積層膜を少なくとも 5種類、 すなわち、 光の反射率や膜厚な どの光学的な性質の異なる積層膜を少なくとも 5層有する多層膜を有し、 前記多 層膜が、 光の反射率が互いに異なる少なくとも 2種類の反射層を含む少なくとも 3種類の反射層を有するとともに、 前記 3種類の反射層の他に少なくとも 2つの 光透過層を有し、 前記 3種類の反射層の各 1層と前記 2つの光透過層の各 1層と が交互に配置されており、 前記多層膜が、 膜の厚み方向の一方の側から順に、 第 1の反射層である第 1層、 第 1の光透過層である第 2層、 第 2の反射層である第 3層、 第 2の光透過層である第 4層、 第 3の反射層である第 5層から構成されて おり、 入射光の中心波長を; として、 前記第 1〜第 5層において、 光路長、 すな わち、 入射光の中心波長えの光に対する光路長として考えたときの前記多層膜を 構成する各層の膜厚が、 おおむね λ / 4の整数倍土 1 %の範囲の値の膜厚であり、 かつ、 前記多層膜が、 膜厚がおおむね; の 1 / 4倍 ± 1 %で屈折率が高い方の層 である層 Ηと膜厚がおおむね λの 1 / 4倍 ± 1 %で屈折率が低い方の層である層 Lを組み合わせた層の複数組で構成されており、  An example of the composite type optical dispersion compensating element of the present invention is that at least one of the multilayer film elements has at least five kinds of laminated films having different optical properties, that is, optical properties such as light reflectance and film thickness. A multi-layer film having at least five different laminated films, wherein the multi-layer film has at least three types of reflective layers including at least two types of reflective layers having different light reflectances from each other; It has at least two light transmission layers in addition to the reflection layer, wherein each one of the three types of reflection layers and each one of the two light transmission layers are alternately arranged, and the multilayer film is In order from one side in the thickness direction of the film, a first layer as a first reflection layer, a second layer as a first light transmission layer, a third layer as a second reflection layer, and a second light transmission It is composed of a fourth layer, which is a layer, and a fifth layer, which is a third reflective layer. In the first to fifth layers, the optical path length, that is, the film thickness of each layer constituting the multilayer film when considered as the optical path length with respect to the central wavelength of the incident light is The film thickness has a value in the range of approximately 1%, which is approximately an integral multiple of λ / 4, and the multilayer film is a layer having a higher refractive index of 1/4 times ± 1% of the film thickness. It is composed of a plurality of layers combining the layer 層 and the layer L having a lower refractive index with a thickness of about% times ± 1% of λ and a thickness of about λ.
多層膜 Αを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 H、 層 Lの順に各 1層ずつ組み合わせた層である H Lの層を 3セット積層して構成される第 1層、 層 Hと層 Hを組み合わせた層で ある HHの層を 1 0セット積層して構成される第 2層、 層 Lを 1層と H Lの層を 7セットとを積層して構成される第 3層、 HHの層を 3 8セット積層して構成さ れる第 4層、 層 Lを 1層と H Lの層を 1 3セットとを積層して構成される第 5層 でそれぞれ形成されている多層膜とし、 The multilayer film Α, the five-layer laminated film, that is, the first to fifth layers, the thickness of the multilayer film The first layer composed of three sets of HL layers, which are layers combined one by one in the order of layer H and layer L, in order from one side in the direction of movement, and a layer combining layer H and layer H The second layer is formed by laminating 10 sets of HH layers, the third layer is formed by laminating 1 layer L and 7 sets of HL layers, and 38 sets of HH layers A fourth layer composed of laminated layers, a layer L composed of a fifth layer composed of one layer L and a fifth layer composed of 13 sets of HL layers,
多層膜 Bを、 前記多層膜 Aの HHの層を 1 0セット積層して形成されている前 記第 2層の代わりに、 前記第 2層が、 多層膜 Aの場合と同じ方向の膜の厚み方向 の一方の側から順に、 HHの層を 3セット、 層 Lと層 Lを組み合わせた層である L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 2セット、 HHの層を 1 セットをこの順に積層して構成される積層膜で形成されている多層膜とし、 多層膜 Cを、 前記多層膜 Aまたは Bの HHの層を 3 8セット積層して形成され ている前記第 4層の代わりに、 前記第 4層が、 多層膜 Aの場合と同じ方向の膜の 厚み方向の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 H H の層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セッ ト、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層 を 3セット、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 2セットをこの順に積層して構成される積層膜 で形成されている多層膜とし、  Instead of the second layer, which is formed by laminating 10 sets of HH layers of the multilayer film A, the second layer is a multilayer film having the same direction as that of the multilayer film A. In order from one side in the thickness direction, 3 sets of HH layers, 3 sets of LL layers, which is a layer combining layers L and L, 3 sets of HH layers, 2 sets of LL layers, and 2 sets of HH layers One set of layers is a multilayer film formed of a laminated film formed by laminating in this order, and a multilayer film C is formed by laminating 38 sets of HH layers of the multilayer film A or B. Instead of the fourth layer, the fourth layer is, in order from one side in the thickness direction of the film in the same direction as that of the multilayer film A, three sets of HH layers, three sets of LL layers, and three sets of HH layers. 3 sets of layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers are stacked in this order It is a multilayer film composed of a multilayer film,
多層膜 Dを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層し、 層 Hの順に各 1層ずつ組み合わせた層である L Hの層を 5セット積層して構成される第 1層、 L Lの層を 7セット積層して構 成される第 2層、 層 Hを 1層と L Hの層を 7セットとを積層して構成される第 3 層、 L Lの層を 5 7セット積層して構成される第 4層、 層 Hを 1層と L Hの-層を 1 3セットとを積層して構成される第 5層でそれぞれ形成されている多層膜とし、 多層膜 Eを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 H Lの層を 2セット積層して構成される第 1層、 H Hの層を 1 4セット積層して構成される第 2層、 層 Lを 1層と H Lの層を 6セッ トとを積層して構成される第 3層、 HHの層を 2 4セット積層して構成される第 4層、 層 Lを 1層ど H Lの層を 1 3セットとを積層して構成される第 5層でそれ ぞれ形成されている多層膜とし、 The multilayer film D is a layer obtained by combining the five-layered film, that is, the first to fifth layers, in order from one side in the thickness direction of the multilayer film, and combining the layers one by one in the order of layer H. The first layer composed of 5 sets of LH layers, the second layer composed of 7 sets of LL layers, 1 layer H and 7 sets of LH layers The third layer is composed of 5 layers, composed of 57 sets of LL layers, the 5th layer composed of 1 layer of H and 13 sets of-layers of LH The multilayer film E is defined as: a multilayer film E, wherein the five-layer laminated film, that is, the first to fifth layers, are arranged such that two layers of HL are sequentially arranged from one side in the thickness direction of the multilayer film. The first layer is formed by stacking sets, the second layer is formed by stacking 14 sets of HH layers, and the second layer is formed by stacking 1 set of layer L and 6 sets of HL layers. 3 layers, HH layers 24 sets The constituted by a layer Four layers, one layer L and five layers of HL are laminated as a fifth layer composed of 13 sets,
多層膜 Fを、 前記多層膜 Eの前記 HHの層を 1 4セット積層して形成されてい る第 2層の代わりに、 前記第 2層が、 多層膜 Eの場合と同じ方向の膜の厚み方向 の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3 セット、 L Lの層を 3セット、 HHの層を 2セット、 L Lの層を 1セット、 HH の層を 1セットをこの順に積層して構成される積層膜で形成されている多層膜と し、  Instead of the second layer formed by laminating 14 sets of the HH layers of the multilayer film E with the multilayer film F, the second layer has a film thickness in the same direction as that of the multilayer film E. In order from one side of the direction, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 2 sets of LL layers, 1 set of LL layers, A set of HH layers is a multilayer film formed of a laminated film formed by laminating one set in this order,
多層膜 Gを、 前記多層膜 Eまたは Fの前記 HHの層を 2 4セット積層して形成 されている第 4層の代わりに、 前記第 4層が、 多層膜 Eの場合と同じ方向の膜の 厚み方向の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 H H の層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セッ ト、 H Hの層を 3セット、 L Lの層を 3セット、 HHの層を 2セット、 L Lの層 を 1セット、 HHの層を 1セットをこの順に積層して構成される積層膜で形成さ れている多層膜とし、  Instead of the fourth layer formed by laminating 24 sets of the HH layers of the multilayer film E or F, the fourth layer is a film in the same direction as the multilayer film E. 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers in order from one side in the thickness direction of Set, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers, 1 set of LL layers, 1 set of HH layers It is a multilayer film that has been
多層膜 Hを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 L、 L Hの層を 4セット積層して構成される第 1 層、 L Lの層を 9セット積層して構成される第 2層、 層 Hを 1層と L Hの層を 6 セットとを積層して構成される第 3層、 L Lの層を 3 5セット積層して構成され る第 4層、 層 Hを 1層と L Hの層を 1 3セットとを積層して構成される第 5層で それぞれ形成されている多層膜とするとき、  The multilayer film H is formed by laminating four sets of layers L and LH in order of the five-layer laminated film, that is, the first to fifth layers, from one side in the thickness direction of the multilayer film. The first layer, the second layer composed of 9 sets of LL layers, the third layer composed of 1 layer H and the 6 sets of LH layers, and the 3rd layer composed of 6 layers of LH layers When a multilayer film composed of a fourth layer composed of set laminations, a fifth layer composed of one layer H, and a fifth layer composed of 13 sets of LH layers,
少なくとも 1つの前記多層膜素子が、 前記多層膜 A〜Hのうちの少なくとも 1 つを有することを特徴としている。  At least one of the multilayer devices has at least one of the multilayer films A to H.
本発明の複合型の光分散補償素子の例は、 少なくとも 1つの前記光分散補償素 子の多層膜を構成する少なくとも 1つの積層膜の膜厚が、 前記多層膜の光の入射 面に平行な断面における面内方向すなわち入射面内方向において変化している、 すなわち該積層膜内の位置によって膜厚が異なることを特徴としている。  In an example of the composite type optical dispersion compensating element of the present invention, the film thickness of at least one laminated film constituting the multilayer film of at least one of the optical dispersion compensating elements is parallel to a light incident surface of the multilayer film. It is characterized in that it changes in the in-plane direction of the cross section, that is, in the direction of the incident plane, that is, the film thickness varies depending on the position in the laminated film.
本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素子を構成 する少なくとも一対の前記入射面が互いに対向して配置された光分散補償素子の 各光分散補償素子単体の多層膜の少なくとも各 1つの光透過層の膜厚の変化して いる方向が互いに異なることを特徴としている。 An example of the composite type optical dispersion compensating element of the present invention is a composite type optical dispersion compensating element in which at least a pair of the incident surfaces constituting the composite type optical dispersion compensating element are arranged to face each other. It is characterized in that at least one light transmitting layer of the multilayer film of each light dispersion compensating element alone has a different thickness in different directions.
本発明の複合型の光分散補償素子の例は、 前記複合型の光分散補償素子を構成 する少なくとも一対の前記互いに対向して配置された光分散補償素子の各光分散 補償素子単体の多層膜の少なくとも各 1つの光透過層の膜厚が、 互いに逆方向に 変化していることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is a multilayer film of each optical dispersion compensating element alone of at least a pair of the optical dispersion compensating elements constituting the composite type optical dispersion compensating element. The film thickness of at least one of the light transmitting layers is changed in opposite directions to each other.
本発明の複合型の光分散補償素子の例は、 前記光分散補償素子に係合して、 前 記多層膜の少なくとも 1つの積層膜の膜厚を調整する調整手段、 あるいは、 前記 多層膜の入射面における光の入射位置を変える手段が設けられていることを特徴 としている。  Examples of the composite type optical dispersion compensating element of the present invention include adjusting means for engaging with the optical dispersion compensating element and adjusting the film thickness of at least one of the multilayer films, or It is characterized in that means for changing the incident position of light on the incident surface are provided.
本発明の複合型の光分散補償素子の例は、 前記多層膜素子素子の少なくとも 1 つが主として 3次の分散を補償可能な光分散補償素子であることを特徴としてい る。  An example of the composite type optical dispersion compensating element of the present invention is characterized in that at least one of the multilayer film element elements is an optical dispersion compensating element capable of mainly compensating third-order dispersion.
本発明の複合型の光分散補償素子の例は、 前記光分散補償素子の少なくとも 1 つが 2次の分散を補償可能な光分散捕償素子であることを特徴としている。  An example of the composite type optical dispersion compensating element of the present invention is characterized in that at least one of the optical dispersion compensating elements is an optical dispersion compensating element capable of compensating for secondary dispersion.
そして、 本発明の目的を達成するため、 本発明の光分散補償方法は、 前記の如 き各特徴を有する複合型の光分散捕償素子を用いて、 あるいはそれと実質的に等 価な光分散補償素子をいくつかの部品として入手したりしたものなどを用いて構 成して、 光信号の分散を補償するところに特徴を有する。  In order to achieve the object of the present invention, the optical dispersion compensating method of the present invention uses a composite type optical dispersion compensating element having each of the above-mentioned features, or an optical dispersion substantially equivalent thereto. It is characterized by compensating for the dispersion of optical signals by using compensating elements obtained as some parts or the like.
本発明の光分散補償方法は、 光ファイバを通信伝送路に用いる通信において波 長分散としての分散を補償する光分散補償方法であって、 光分散補償素子への光 の入射面の少なくとも一部に対向して、 その光分散補償素子とは別の光分散補償 素子の入射面、 あるいは、 以下において反射体 Aとも呼称する反射体の反射面を 配置して、 かつ、 前記対向して配置した双方の光分散補償素子の入射面を、 ある いは、 前記対向して配置した光分散補償素子の入射面と前記反射体 Aの反射面を、 その間に入射光の光路を形成することができるように配置して、 該対向して配置 した前記両入射面あるいは前記入射面と前記反射面の間に入射した入射光が、 前 記光路を進行しながら光分散補償素子の入射面に入射して反射されることを複数 回行うことができるように構成した光分散補償素子を少なくとも 1組含む複合型 の光分散補償素子を構成し、 この光路を入射光を進行させて入射光の分散補償を 行うことを特徴としている。 An optical dispersion compensation method according to the present invention is a method for compensating for dispersion as wavelength dispersion in communication using an optical fiber for a communication transmission line, and comprises at least a part of a light incident surface on an optical dispersion compensating element. And an incident surface of a light dispersion compensating element different from the light dispersion compensating element, or a reflecting surface of a reflector which is also referred to as a reflector A below. An optical path of incident light can be formed between the incident surfaces of both the optical dispersion compensating elements, or between the incident surface of the optical dispersion compensating element and the reflecting surface of the reflector A disposed opposite to each other. And the incident light incident between the two incident surfaces or the incident surface and the reflecting surface is incident on the incident surface of the optical dispersion compensating element while traveling along the optical path. Do multiple reflections At least one set comprising composite optical dispersion compensation element configured to allow bets The optical dispersion compensating element of the present invention is characterized in that the incident light travels along this optical path to perform dispersion compensation of the incident light.
本発明の光分散補償方法の例は、 少なくとも一組の前記対向させて配置した一 対の光分散補償素子あるいは光分散補償素子と反射体 Aの少なくとも一部もしく は近傍に対応して、 以下において反射体 Bとも呼称する反射体もしくは反射部を 配置して入射光の分散補償を行うことを特徴としている。  An example of the optical dispersion compensation method of the present invention includes: at least one pair of the opposed optical dispersion compensating elements or at least a part or the vicinity of the optical dispersion compensating element and the reflector A, It is characterized in that a reflector or a reflector, also referred to as a reflector B, is arranged below to perform dispersion compensation of incident light.
本発明の光分散補償方法の例は、 前記反射体 Bを、 前記対向して配置された一 対の光分散捕償素子あるいは光分散補償素子と反射体 Aから出力される以下にお いて光 Aとも呼称する光を反射して光分散補償素子へ入射させることが出来るよ うに配置して、 入射光の分散補償を行うことを特徴としている。  An example of the optical dispersion compensation method of the present invention is as follows. The reflector B is provided with a pair of light dispersion compensating elements or a light dispersion compensating element arranged opposite to each other and the light output from the reflector A below. It is characterized by arranging so that light, also referred to as A, can be reflected and made incident on the optical dispersion compensating element to perform dispersion compensation of incident light.
本発明の光分散捕償方法の例は、 前記光 Aが、 以下に光 Bとも呼称する前記反 射体 Bによる反射光が、 前記光 Aが出射された光分散補償素子に再び入射するよ うに、 該光分散補償素子と反射体とを配置して入射光の分散捕償を行うことを特 徴としている。  An example of the light dispersion compensation method of the present invention is that the light A reflects the light reflected by the reflector B, which is also referred to as light B below, and reenters the light dispersion compensating element from which the light A is emitted. As described above, the invention is characterized in that the light dispersion compensating element and the reflector are arranged to perform dispersion compensation of incident light.
本発明の光分散補償方法の例は、 前記光分散補償素子における前記光 Aの出射 位置と前記光 Bの入射位置が異なる位置であることを特徴としている。  An example of the optical dispersion compensation method according to the present invention is characterized in that the emission position of the light A and the incident position of the light B in the optical dispersion compensation element are different positions.
本発明の光分散補償方法の例は、 前記光 Aと光 Bは平行でかつ進行方向が逆向 きであることを特徴としている。  An example of the optical dispersion compensation method of the present invention is characterized in that the light A and the light B are parallel and the traveling directions are opposite.
本発明の光分散補償方法の例は、 前記反射体 Bが少なくとも 3つの反射面を有 することを特徴としている。  An example of the optical dispersion compensation method of the present invention is characterized in that the reflector B has at least three reflecting surfaces.
本発明の光分散補償方法の例は、 前記反射体 Bがコーナーキュープであること を特徴としている。  An example of the optical dispersion compensation method of the present invention is characterized in that the reflector B is a corner cup.
本発明の光分散補償方法の例は、 少なくとも 1つの前記光分散補償素子が、 分 散補償を行うことができる多層膜を有する多層膜素子であることを特徴としてい る。  An example of the optical dispersion compensation method according to the present invention is characterized in that at least one of the optical dispersion compensation elements is a multilayer element having a multilayer film capable of performing dispersion compensation.
本発明の光分散補償方法の例は、 少なくとも 1つの前記多層膜を構成する少な くとも 1つの積層膜の膜厚が、 前記多層膜の光の入射面に平行な断面における面 内方向すなわち入射面内方向において変化していることを特徴としている。 本発明の光分散補償方法の例は、 少なくとも 1つの前記多層膜きる素子を複数 個あるいは複数箇所直列に接続して構成した光分散補償素子を、 1260〜13 60 n m、 1 360〜 1460 η m、 1460〜: 1 530 η m、 1530〜 15 65 n m、 1 565〜 1625 η m、 1625〜: 1 675 η mの波長範囲の少な くとも 1つの波長範囲において少なくとも 1つの極値を有する群速度遅延時間一 波長特性曲線を有するように構成することを特徴としている。 An example of the optical dispersion compensation method according to the present invention is that the film thickness of at least one laminated film constituting at least one of the multilayer films is an in-plane direction, that is, an in-plane direction in a cross section parallel to a light incident surface of the multilayer film. It is characterized in that it changes in the in-plane direction. An example of the optical dispersion compensating method of the present invention includes: 1260 to 1360 nm, 1360 to 1460 ηm, 1460 to: 1530 ηm, 1530 to 1565 nm, 1565 to 1625 ηm , 1625-: 1675 ηm is characterized by having a group velocity delay time-wavelength characteristic curve having at least one extreme value in at least one wavelength range.
本発明の光分散補償方法の例は、 信号光の光路における分散補償を行うこと力 S 出来る素子の接続の仕方を複数通り選択することができることを特徴としている。 , 本発明の光分散補償方法の例は、 信号光の分散補償が少なくとも 3次の分散の 補償を行うことができる分散補償であることを特徴とする光分散補償方法。  An example of the optical dispersion compensation method according to the present invention is characterized in that a plurality of connection methods of elements capable of performing dispersion compensation in an optical path of signal light can be selected. An example of the optical dispersion compensation method according to the present invention is the optical dispersion compensation method, wherein the dispersion compensation of the signal light is a dispersion compensation capable of performing at least tertiary dispersion compensation.
以上、 本発明の特徴を説明したが、 本発明の複合型の光分散補償素子と光分散 補償方法は、 上記の如き各種の特徴を有する各発明を適宜組み合わせて、 あるい は単独で用いて、 後述するように、 たとえば 4 OGb p sや 80Gb p sのよう な超高速の光通信において大きな効果を発揮するものである。 図面の簡単な説明  Although the features of the present invention have been described above, the composite type optical dispersion compensating element and the optical dispersion compensating method of the present invention can be obtained by appropriately combining the inventions having the various features as described above, or using the invention alone. However, as will be described later, the present invention exerts a great effect in ultra-high-speed optical communication such as 4 OGb ps or 80 Gb ps. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による光分散補償を説明する図である。  FIG. 1 is a diagram illustrating optical dispersion compensation according to the present invention.
図 2は、 本発明の多層膜の断面図である。  FIG. 2 is a cross-sectional view of the multilayer film of the present invention.
図 3は、 本発明の多層膜の斜視図である。  FIG. 3 is a perspective view of the multilayer film of the present invention.
図 4は、 本発明の多層膜の群速度遅延時間一波長特性曲線である。  FIG. 4 is a group velocity delay time-wavelength characteristic curve of the multilayer film of the present invention.
図 5 Aは、 本発明の分散補償素子の基本となる分散補償を行うことが出来る素 子 1個の群速度遅延時間一波長特性を表すグラフである。  FIG. 5A is a graph showing a group velocity delay time-wavelength characteristic of one element capable of performing dispersion compensation, which is a basic element of the dispersion compensation element of the present invention.
図 5 Bは、 本発明の、 分散補償を行うことが出来る素子を複数個用いて群速度 遅延時間一波長特性を改善する方法を説明する図で、 分散補償を行うことが出来 る素子を 2個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特 性を表すグラフである。  FIG. 5B is a diagram illustrating a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention. 5 is a graph showing a group velocity delay time versus wavelength characteristic of the optical dispersion compensating elements of the present invention connected in series.
図 5 Cは、 本発明の、 分散補償を行うことが出来る素子を複数個用いて群速度 遅延時間一波長特性を改善する方法を説明する図で、 分散補償を行うことが出来 る素子を 3個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特 性を表すグラフである。 図 5 Dは、 本発明の、 分散補償を行うことが出来る素子を複数個用いて群速度 遅延時間一波長特性を改善する方法を説明する図で、 分散補償を行うことが出来 る素子を 3個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特 性を表すグラフである。 FIG. 5C is a diagram illustrating a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention. 5 is a graph showing a group velocity delay time versus wavelength characteristic of the optical dispersion compensating elements of the present invention connected in series. FIG. 5D is a diagram for explaining a method of improving the group velocity delay time vs. wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention. 5 is a graph showing a group velocity delay time versus wavelength characteristic of the optical dispersion compensating elements of the present invention connected in series.
図 6 Aは、 光分散補償素子の接続を説明する図であり、 2個の分散補償を行う ことが出来る素子を直列に接続して光分散補償素子を構成した例を説明する図で ある。  FIG. 6A is a diagram for explaining the connection of the optical dispersion compensating elements, and is a diagram for explaining an example in which two elements capable of performing dispersion compensation are connected in series to constitute an optical dispersion compensating element.
図 6 Bは、 光分散補償素子の接続を説明する図であり、 3個の分散補償を行う ことが出来る素子を直列に接続して光分散補償素子を構成した例を説明する図で ある。  FIG. 6B is a diagram illustrating the connection of the optical dispersion compensating element, and is a diagram illustrating an example in which three elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element.
図 6 Cは、 光分散補償素子の接続を説明する図であり、 入射面内方向で膜厚が 変化している多層膜上で、 信号光の入射位置 2箇所を、 信号光の航路に沿って直 列に接続して光分散補償素子を構成した例を説明する図である。  Fig. 6C is a diagram illustrating the connection of the optical dispersion compensating element. In the multilayer film whose film thickness changes in the direction of the incident plane, two signal light incident positions are set along the signal light route. FIG. 3 is a diagram for explaining an example in which the optical dispersion compensating elements are configured by being connected in series in a row.
図 6 Dは、 光分散補償素子の例を説明する図であり、 光分散補償素子を 1つの ケースに実装した例を説明する図である。  FIG. 6D is a diagram illustrating an example of the optical dispersion compensating element, and is a diagram illustrating an example in which the optical dispersion compensating element is mounted in one case.
図 7 Aは本発明の複合型の光分散補償素子を説明する側面図である。  FIG. 7A is a side view illustrating the composite type optical dispersion compensating element of the present invention.
図 7 Bは本発明の複合型の光分散補償素子を説明する図で、 上方から見た図で める。  FIG. 7B is a diagram for explaining the composite type optical dispersion compensating element of the present invention, which is viewed from above.
図 8は、 本発明の複合型の光分散補償素子の他の例を説明する図である。 図 9は、 図 7 Aの複合型の光分散補償素子の群速度遅延時間一波長特性曲線を 説明する図である。  FIG. 8 is a diagram for explaining another example of the composite type optical dispersion compensation element of the present invention. FIG. 9 is a diagram illustrating a group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element of FIG. 7A.
図 1 0 Aは本発明の複合型の光分散補償素子の構成要素の 1つである入射面を 対向させて配置した一対の光分散補償素子 9 0 0のモデル的な断面図である。 図 1 0 Bは本発明の複合型の光分散補償素子を構成する入射面を対向させて配 置した一対の光分散補償素子 9 0 0を図 1 O Aの矢印 9 4 1の方向から見た図で める。  FIG. 10A is a model cross-sectional view of a pair of optical dispersion compensating elements 900 in which the incident surfaces, which are one of the components of the composite type optical dispersion compensating element of the present invention, are arranged to face each other. FIG. 10B shows a pair of optical dispersion compensating elements 900 in which the incident surfaces constituting the composite type optical dispersion compensating element of the present invention are arranged facing each other, viewed from the direction of arrow 941 in FIG. 1OA. See diagram.
図 1 1 Aは、 コーナーキューブを示す図である。  FIG. 11A is a diagram showing a corner cube.
図 1 1 Bはコーナーキューブを説明するための図である。  FIG. 11B is a diagram for explaining a corner cube.
図 1 2 Aは、 2次と 3次の波長分散の補償方法を説明する図であり、 波長一時 間特性と光強度一時間特性を説明する図である。 Fig. 12A is a diagram for explaining the method of compensating the second and third order chromatic dispersion. FIG. 4 is a diagram for explaining an inter-characteristic and a light intensity-one-hour characteristic.
図 1 2 Bは、 2次と 3次の波長分散の補償方法を説明する図であり、 伝送路を 説明する図である。  FIG. 12B is a diagram for explaining a method of compensating for second and third order chromatic dispersion, and is a diagram for explaining a transmission path.
図 1 2 Cは、 2次と 3次の波長分散を説明する図であり、 伝送路を説明する図 である。  FIG. 12C is a diagram illustrating second-order and third-order chromatic dispersion, and is a diagram illustrating a transmission path.
図 1 3は、 従来の光ファイバの分散一波長特性を示すグラフである。 発明を実施するための最良の形態  FIG. 13 is a graph showing dispersion-wavelength characteristics of a conventional optical fiber. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態について説明する。 なお、 説明に用 いる各図は本発明を理解できる程度に各構成成分の寸法、 形状、 配置関係などを 概略的に示してある。 そして本発明の説明の都合上、 部分的に拡大率を変えて図 示する場合もあり、 本発明の説明に用いる図は、 必ずしも実施例などの実物や記 述と相似形でない場合もある。 また、 各図において、 同様な構成成分については 同一の番号を付けて示し、 重複する説明を省略することもある。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing used for the description schematically shows dimensions, shapes, arrangement relations, and the like of each component so that the present invention can be understood. For convenience of description of the present invention, the magnification may be partially changed in the drawings, and the drawings used in the description of the present invention may not necessarily be similar to the actual products and descriptions in the embodiments and the like. Also, in each of the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
図 1は光ファイバを伝送路に用いた通信において生じた分散を光分散捕償素子 で補償する方法を説明する図で、 符号 1 1 0 1は 2次の分散を補償して残った信 号光の 3次分散を示す群速度遅延時間一波長特性曲線、 1 1 0 2は分散補償素子 の群速度遅延時間一波長特性曲線で、 1 1 0 3は、 曲線 1 1 0 1の分散特性を有 する信号光の分散を、 曲線 1 1 0 2の分散特性を有する分散補償素子で捕償した あとの補償対象波長帯域; I 〜え 2の間の群速度遅延時間一波長特性曲線で、 縦軸 は群速度遅延時間、 横軸は波長である。 Fig. 1 is a diagram illustrating a method of compensating dispersion generated in communication using an optical fiber as a transmission line with an optical dispersion compensating element, and reference numeral 1101 denotes a signal remaining after compensating for secondary dispersion. The group velocity delay time-wavelength characteristic curve showing the third-order dispersion of light, 1102 is the group velocity delay time-wavelength characteristic curve of the dispersion compensator, and 1103 is the dispersion characteristic of the curve 111 the dispersion of the chromatic signal light, curve 1 1 0 2 compensated wavelength band after To償dispersion compensating device having a dispersion characteristic; in group velocity delay wave characteristic curve between I ~ e 2, vertical The axis is the group velocity delay time, and the horizontal axis is the wavelength.
図 2〜図 4は、 本発明に用いる各光分散補償素子 (本発明では、 分散捕償を行 うことができる素子自体およびそれらで構成したもののことを広く光分散補償素 子と称し、 説明上の必要性により、 たとえば、 本発明の複合型の光分散補償素子 を構成する各素子を光分散補償素子ということがあり、 そしてそれらのうちで入 射面を対向して配置される各光分散補償素子単体を特に区別を必要としないとき は、 光分散補償素子単体のことも光分散捕償素子と称することもあり、 特に、 前 記入射面を対向して配置されている各光分散補償素子単体を区別して述べる必要 があるときは、 それを光分散補償素子単体と称することもある。 そして、 後述の ように、 光分散補償素子が複数の分散補償を行うことが出来る素子から構成され ている場合にその構成要素としての分散補償を行うことが出来る素子自体を説明 あるいは定義などする場合には、 それを分散補償を行うことが出来る素子とも称 する。 また、 同一のウェハーやチップの上に形成されている分散補償を行うこと が出来る多層膜上の一部を指すときには、 その部分のことを、 分散補償を行うこ とができる素子の部分ともいう。 ) を構成する分散補償を行うことが出来る素子 ,の例を説明する図で、 図 2は後述の多層膜の断面図、 図 3は膜厚を変化させた多 層膜の斜視図、 図 4は多層膜の群速度遅延時間一波長特性曲線である。 FIGS. 2 to 4 show the respective optical dispersion compensating elements used in the present invention (in the present invention, the element itself capable of performing dispersion compensation and the element composed of them are widely referred to as an optical dispersion compensating element. Due to the above-mentioned necessity, for example, each element constituting the composite type optical dispersion compensating element of the present invention may be referred to as an optical dispersion compensating element. When it is not particularly necessary to distinguish the dispersion compensating element alone, the dispersion compensating element alone may be referred to as a light dispersion compensating element. When it is necessary to separately describe the compensating element alone, it may be referred to as an optical dispersion compensating element alone. As described above, when the optical dispersion compensating element is composed of a plurality of elements capable of performing dispersion compensation, when the element itself capable of performing dispersion compensation as a constituent element is to be described or defined, the following is required. Is also referred to as an element capable of performing dispersion compensation. When a part of a multilayer film formed on the same wafer or chip and capable of performing dispersion compensation is referred to, that part is also referred to as a part of an element capable of performing dispersion compensation. . FIG. 2 is a view for explaining an example of an element which can perform dispersion compensation, which constitutes FIG. 2. FIG. 2 is a cross-sectional view of a multilayer film described later, FIG. 3 is a perspective view of a multilayer film having a changed film thickness, and FIG. Is a group velocity delay time-wavelength characteristic curve of the multilayer film.
図 2は本発明に用いる 3次の光分散補償素子の例として用いる多層膜の断面を モデル的に説明する図である。 図 2において、 符号 100は本発明に用いる光分 散ネ甫償素子の例としての多層膜、 1 01は入射光の方向を示す矢印、 102は出 射光の方向を示す矢印、 103、 104は反射率が 100%未満の反射層 (以下、 反射膜あるいは光反射層ともいう) 、 105は反射率が 98〜100%の反射層、 1 08、 10 9は光透過層 (以下、 単に透過層ともいう) 、 1 1 1、 1 1 2はキ ャビティである。 また、 符号 107は基板で、 たとえば、 BK— 7ガラス (ドィ ッ国ショット社の商品名) を使用している。  FIG. 2 is a diagram schematically illustrating a cross section of a multilayer film used as an example of a third-order optical dispersion compensating element used in the present invention. In FIG. 2, reference numeral 100 denotes a multilayer film as an example of a light-dispersing optical compensation element used in the present invention, 101 denotes an arrow indicating the direction of incident light, 102 denotes an arrow indicating the direction of emitted light, and 103 and 104 denote arrows. A reflective layer having a reflectivity of less than 100% (hereinafter also referred to as a reflective film or a light reflective layer), 105 is a reflective layer having a reflectivity of 98 to 100%, and 108 and 109 are a light transmissive layer (hereinafter simply referred to as a transmissive layer). Also, 1 1 1 and 1 1 2 are cavities. Reference numeral 107 denotes a substrate, for example, made of BK-7 glass (trade name of Dokku Shot Co., Ltd.).
図 2の各反射層 103、 104、 105の反射率 R (103) 、 R (1 04) 、 R (1.05) は、 R (103) ≤R (1 04) ≤R (105) の関係にある。 各 反射層の反射率を、 少なくとも光透過層を挟んで隣り合う反射層間において互い に異なるように設定することが量産上好ましい。 すなわち、 入射光が入射する側 から多層膜の厚み方向に向かって、 入射光の中心波長 λに対する各反射層の反射 率が次第に大きくなるように形成する。 そして、 特に好ましくは、 各反射層の前 記波長; の光に対する反射率を、 60% R (103) ≤ 77%, 96 %≤R (1 04) ≤ 99. 8%、 98%≤R (105) の範囲にし、 前記 R (103) 、 R (1 04) 、 R (105) の大小関係を満たすように構成することにより、 後 述の図 4 , 図 5 A〜Dに示すような群速度遅延時間一波長特性曲線を得ることが できる。 そして、 R (103) く R (104) く R (105) にすることがより 好ましく、 R (1 05) を 100%に近づけるか 100%にすることがより好ま しく、 本発明に用いる光分散補償素子の性能を一層高めることができる。 そして、 本発明に用いる光分散捕償素子をより製造し易くするために、 隣り合 う各反射層間の光路長として考えたときの間隔がそれぞれ異なるように各反射層 の形成条件を選ぶことが好ましく、 各反射層の反射率の設計条件をゆるめること ができ、 膜厚が波長えの 4分の 1の単位膜の組み合わせ (すなわち、 λ / 4の整 数倍の膜厚の膜) で本発明に用いる 3次の光分散補償素子に用いられる多層膜を 形成することができ、 信頼性が高く、 量産性の優れた 3次の光分散補償素子を安 価に提供することができる。 The reflectances R (103), R (104), and R (1.05) of each of the reflective layers 103, 104, and 105 in FIG. 2 are in the relationship of R (103) ≤R (1 04) ≤R (105) . It is preferable in terms of mass production that the reflectance of each reflective layer is set to be different from each other at least between the reflective layers adjacent to each other with the light transmitting layer interposed therebetween. That is, the reflective layer is formed so that the reflectance of each reflective layer with respect to the center wavelength λ of the incident light gradually increases from the side where the incident light is incident toward the thickness direction of the multilayer film. It is particularly preferable that the reflectance of each reflective layer with respect to the light of the above wavelength is 60% R (103) ≤ 77%, 96% ≤ R (104) ≤ 99.8%, 98% ≤ R ( 105) and satisfying the magnitude relation of R (103), R (104), and R (105), the group as shown in FIG. 4 and FIG. A speed delay time-wavelength characteristic curve can be obtained. It is more preferable to set R (103) to R (104) to R (105), and it is more preferable to set R (105) closer to 100% or more preferably to 100%. The performance of the compensating element can be further improved. Then, in order to make it easier to manufacture the light dispersion compensation element used in the present invention, it is necessary to select the formation conditions of each reflection layer so that the intervals when considered as the optical path length between the adjacent reflection layers are different. Preferably, the design conditions for the reflectance of each reflective layer can be relaxed, and the combination of unit films whose film thickness is a quarter of the wavelength (that is, a film whose film thickness is an integral multiple of λ / 4) can be used. A multilayer film used for the tertiary light dispersion compensating element used in the present invention can be formed, and a highly reliable tertiary light dispersion compensating element having excellent mass productivity can be provided at low cost.
なお、 前記多層膜の単位膜の膜厚が波長; Lの 4分の 1であると記載したが、 こ れは、 前記の如く、 量産における膜の形成で許容される誤差の範囲内において λ / 4 という意味であり、 現在の多層膜形成技術を考えると、 一般的に は、 λ / 4 ± 1 %において本発明でいう ; L / 4の膜厚を意味しており、 こ の範囲において本発明は特に大きな効果を発する。 しかし、 λ / 4 ± 1 %から多少誤差の大きい方にずれた膜が混在しても、 多層膜全体として、 後述する群速度遅延時間一波長特性曲線を得ることができる多層膜は、 本発明でいう 「膜厚が波長えの 4分の 1である単位膜を積層した多層膜」 とい うことができる。 特に、 上記単位膜の厚みをえ / 4 ± 0 . 5 % (この場合 のえ / 4は誤差無しの; 1 / 4の意味) にすることにより、 量産性を損な わずに、 バラツキが少なく、 信頼性の高い多層膜を形成することができ、 図 5 A〜D、 図 A〜Dなどを用いて後述するような光分散補償素子を安 価に提供することができる。  Although the thickness of the unit film of the multilayer film is described as being a quarter of the wavelength; L, as described above, this is within the range of an allowable error in film formation in mass production. / 4 means the current multilayer film forming technology, and generally means λ / 4 ± 1% in the present invention; L / 4 film thickness. The invention has a particularly great effect. However, even if films deviated from λ / 4 ± 1% to a direction having a slightly larger error coexist, a multilayer film capable of obtaining a group velocity delay time-wavelength characteristic curve described later as the entire multilayer film is the present invention. It can be said that it is a “multilayer film in which unit films each having a thickness of one quarter of the wavelength are stacked”. In particular, by setting the thickness of the unit film to え ± 0.5% (in this case, / is no error; meaning /), variation can be achieved without impairing mass productivity. A small and highly reliable multilayer film can be formed, and a light dispersion compensating element as described later with reference to FIGS. 5A to 5D and FIGS.
また、 本発明において、 多層膜が、 膜厚がえ / 4の単位膜を積層して 形成すると説明しているが、 これは、 1つの単位膜を形成してから次の 単位膜を形成するという方法を繰り返して多層膜を形成することもでき るが、 これに限らず、 一般的には λ / 4の整数倍の膜厚の膜を、 連続的 に形成することが多く、 このような多層膜も当然のことながら本発明の 多層膜に含まれるものである。  Further, in the present invention, it is described that the multilayer film is formed by stacking unit films each having a thickness of / 4, but this is achieved by forming one unit film and then forming the next unit film. The method described above can be repeated to form a multilayer film. However, the present invention is not limited to this. In general, a film having a thickness of an integral multiple of λ / 4 is often formed continuously. Of course, a multilayer film is also included in the multilayer film of the present invention.
実際に、 前記反射層と前記透過層を連続的に形成する膜形成工程を用 いて本発明の多層膜のいくつかの例を形成することができた。  In fact, some examples of the multilayer film of the present invention could be formed by using a film forming step of continuously forming the reflection layer and the transmission layer.
図 3は、 図 1の多層膜 1 0 0の後述する入射面 2 2 0の面内方向において、 前 記多層膜 100の膜厚を変化させた例を説明する図である。 FIG. 3 is a front view of the multilayer film 100 in FIG. FIG. 4 is a diagram illustrating an example in which the thickness of the multilayer film 100 is changed.
図 3において、 符号 200は本発明に用いる光分散補償素子の一例としての多 層膜、 201は第 1の反射層、 202は第 2の反射層、 203は第 3の反射層、 205は基板、 206は第 1の光透過層、 207は第 2の光透過層、 21 1は第 1のキヤビティ、 212は第 2のキヤビティ、 220は光入射面、 230は入射 光の方向を示す矢印、 240は出射光の方向を示す矢印、 250は第 1の膜厚変 化方向を示す矢印、 260は第 2の膜厚変化方向を示す矢印、 270, 271は 入射光の入射位置を移動させる方向を示す矢印である。  In FIG. 3, reference numeral 200 denotes a multilayer film as an example of a light dispersion compensating element used in the present invention, 201 denotes a first reflective layer, 202 denotes a second reflective layer, 203 denotes a third reflective layer, and 205 denotes a substrate. , 206 is the first light transmitting layer, 207 is the second light transmitting layer, 211 is the first cavity, 212 is the second cavity, 220 is the light incident surface, 230 is the arrow indicating the direction of the incident light, 240 is an arrow indicating the direction of the emitted light, 250 is an arrow indicating the first thickness change direction, 260 is an arrow indicating the second thickness change direction, and 270 and 271 are directions for moving the incident position of the incident light. It is an arrow showing.
図 3において、 たとえば、 BK— 7ガラス (ドイツ国ショット社の商品名) な どから成る基板 205の上に、 第 3の反射層 203, 第 2の光透過層 207、 第 2の反射層 202、 第 1の光透過層 206、 第 1の反射層 20 1力 順次形成さ れている。  In FIG. 3, a third reflective layer 203, a second light transmitting layer 207, and a second reflective layer 202 are formed on a substrate 205 made of, for example, BK-7 glass (trade name of Schott, Germany). The first light transmitting layer 206 and the first reflecting layer 201 are sequentially formed.
第 1の光透過層 206の厚みが図 3の矢印 250で示す方向に変化する (図の 右から左の方向に次第に厚くなつている) ように、 そして、 第 2の光透過層 20 7の厚みが矢印 260で示す方向に変化する (図の手前から向こう側に次第に厚 くなつている) ように、 前記多層膜を形成する。 第 1から第 3の反射層の厚みは、 第 1および第 2のキヤビティの共振波長が一致したときの波長が入射光の中心波 長 Lに一致したときに、 第 1、 第 2、 第 3の各反射層の反射率が、 前記 R (10 3) 、 R (1 04) 、 R (105) の大小関係に準じた条件、 すなわち、 反射層 20 1, 202, 203の反射率をそれぞれ R (20 1) 、 R (202) 、 R (203) としたとき、 R (20 1) ≤R (202) ≤R (203) など、 を満 たすような膜厚構成になるように形成する。  As the thickness of the first light transmitting layer 206 changes in the direction indicated by the arrow 250 in FIG. 3 (the thickness gradually increases from right to left in the figure), and the thickness of the second light transmitting layer 207 changes. The multilayer film is formed so that the thickness changes in the direction indicated by arrow 260 (the thickness gradually increases from the front of the figure to the other side). The thicknesses of the first to third reflective layers are defined as first, second, and third when the resonance wavelength of the first and second cavities coincides with the center wavelength L of the incident light. The reflectance of each of the reflective layers of R (10 3), R (104) and R (105) is in accordance with the magnitude relation of R (103), that is, the reflectance of the reflective layers 201, 202, and 203 is R (20 1), R (202), R (203) are formed so as to satisfy R (20 1) ≤R (202) ≤R (203) .
図 4は、 本発明の光分散補償素子の例としての多層膜 (以下、 単に、 光分散補 償素子ともいう) 200の入射面 220において、 図 3の矢印 230の方向から 入射光を入射し、 矢印 240の方向に出射光を得るようにし、 入射光の入射位置 を後述のように図 3の矢印 270あるいは 271の方向に移動した時の、 群速度 遅延時間一波長特性曲線の変化する様子を説明するものである。  FIG. 4 shows a case where incident light is incident from the direction of an arrow 230 in FIG. 3 on an incident surface 220 of a multilayer film (hereinafter, also simply referred to as a light dispersion compensation element) 200 as an example of the light dispersion compensation element of the present invention. When the emitted light is obtained in the direction of arrow 240 and the incident position of the incident light is moved in the direction of arrow 270 or 271 in FIG. 3 as described later, the change of the group velocity delay time-wavelength characteristic curve It is to explain.
図 4は、 図 3の入射位置 280〜282に中心波長えの入射光を入射させたと きの群速度遅延時間一波長特性曲線を示し、 縦軸は群速度遅延時間、 横軸は波長 である。 Fig. 4 shows the group velocity delay time vs. wavelength characteristic curve when incident light with a center wavelength is incident on the incident positions 280 to 282 in Fig. 3, the vertical axis represents the group velocity delay time, and the horizontal axis represents the wavelength. It is.
図 3の反射層 2 0 1〜 2 0 3および光透過層 2 0 6と 2 0 7の各矢印 2 5 0と 2 6 0で示す方向、 すなわち、 入射面におおむね平行な方向である入射面内方向 に膜厚を変化させる条件を適切に選ぶことによって、 前記入射光の入射面 2 2 0 における入射位置を矢印 2 7 0で示す方向に移動させたとき、 群速度遅延時間一 波長特性曲線の形状をほぼ同様の形に維持しつつ、 群速度遅延時間一波長特性曲 線の帯域中心波長 λ。 (たとえば、 図 4のほぼ左右対称の形状の群速度遅延時間 一波長特性曲線 2 8 0 1における極値を与える波長) が変化し、 そして、 その位 置から矢印 2 7 1で示す方向に前記入射位置を移動させたとき、 前記波長; L。は ほとんど変わらずに、 群速度遅延時間一波長特性曲線の形状を、 図 4の曲線 2 8 1 1、 2 8 1 2のように変化させることができる。 図 4の各曲線は、 図 3の矢印 2 5 0と 2 6 0の方向へそれぞれ各当該膜の膜厚を単調に増大するように形成し た時のものである。  The directions indicated by the arrows 250 and 260 of the reflective layers 201 to 203 and the light transmitting layers 206 and 207 in FIG. 3, that is, the incident surface that is substantially parallel to the incident surface By appropriately selecting the conditions for changing the film thickness inward, when the incident position of the incident light on the incident surface 220 is moved in the direction indicated by the arrow 270, the group velocity delay time-wavelength characteristic curve While maintaining the shape of in almost the same shape, the band center wavelength λ of the group velocity delay time-wavelength characteristic curve. (For example, the group velocity delay time of a substantially symmetrical shape in FIG. 4, the wavelength giving the extremum in the wavelength characteristic curve 2801) changes, and the position changes from the position in the direction indicated by the arrow 271. When the incident position is moved, the wavelength; With almost no change, the shape of the group velocity delay time-wavelength characteristic curve can be changed as shown by the curves 2811 and 2812 in FIG. Each curve in FIG. 4 is obtained when the thickness of each film is monotonically increased in the directions of arrows 250 and 260 in FIG.
図 4の曲線 2 8 0 1、 2 8 1 1 , 2 8 1 2における帯域中心波長; L 0は、 分散 補償の目的によって、 たとえば図 4のグラフの適切な波長のところに設定するが、 たとえば、 図 4に図示の曲線の波長の範囲のほぼ中央値にとってもよく、 分散補 償の目的に応じて適宜定めても良い。 また、 曲線 2 8 0 1から 2 8 1 2、 曲線 2 8 0 1から 2 8 1 1 , 曲線 2 8 1 1から 2 8 1 2の間のそれぞれの極値波長など 曲線の各特徴点の波長や曲線の形などの対応関係をあらかじめ調べておくことな どはここに記載しなくても当然のことである。  The band center wavelengths at the curves 2801, 2811, and 2812 in FIG. 4; L 0 is set at an appropriate wavelength in the graph of FIG. 4 according to the purpose of dispersion compensation. Alternatively, it may be set to approximately the center value of the wavelength range of the curve shown in FIG. 4, or may be appropriately determined according to the purpose of dispersion compensation. Also, the wavelength of each characteristic point of the curve, such as the extreme wavelength between the curve 280 1 to 281 2, the curve 280 1 to 281 1, and the curve 281 1 to 281 2 It is a matter of course that the correspondence such as the shape of the curve and the shape of the curve should be checked beforehand, even if it is not described here.
このようにして、 たとえば、 まず、 分散補償すべき入射光の中心波長えに該当 する帯域中心波長え。を一致させるように、 入射光の入射位置を図 3の矢印 2 7 0の方向に移動して決め、 分散補償すべき保障の内容、 すなわち、 入射光の分散 状況に適合して、 分散補償に用いる群速度遅延時間一波長特性曲線の形状を、 た とえば図 4の各曲線などから選択し、 それに対応して、 図 3の矢印 2 7 1で示す 方向に前記入射位置をたとえば符号 2 8 0〜2 8 2で示す各点などのように選択 することにより、 信号光に求められる分散補償を効果的に行うことができる。 図 4の群速度遅延時間一波長特性曲線の形状からも明らかなように、 本発明の 光分散補償素子を用いて、 たとえば、 曲線 2 8 0 1を用いて 3次分散捕償を行う ことができ、 曲線 2 8 1 1または 2 8 1 2の比較的直線成分に近い部分を用いて、 2次の微少な分散補償を行うことができる。 In this way, for example, first, the center wavelength of the band corresponding to the center wavelength of the incident light to be dispersion-compensated. The position of the incident light is moved in the direction of arrow 270 in FIG. 3 so as to match, and the content of the guarantee to be dispersion-compensated, that is, the dispersion situation of the incident light, is adapted to the dispersion compensation. The shape of the group velocity delay time-wavelength characteristic curve to be used is selected, for example, from each curve in FIG. 4, and correspondingly, the incident position is indicated in the direction indicated by the arrow 271 in FIG. By selecting such points as indicated by 0 to 282, the dispersion compensation required for the signal light can be effectively performed. As is apparent from the shape of the group velocity delay time-wavelength characteristic curve in FIG. 4, third-order dispersion compensation is performed using the optical dispersion compensating element of the present invention, for example, using the curve 2801. The second-order minute dispersion compensation can be performed by using a portion of the curve 2811 or 2812 that is relatively close to a linear component.
以上、 図 2〜図 4を用いて説明したのは本発明に用いる 「分散補償素子の一部 である分散補償を行うことが出来る素子」 であるが、 この 「分散補償を行うこと が出来る素子」 を用いれば、 3次の分散をある程度の波長域において補償するこ とが出来ることは、 図 4の各曲線の説明から明白である。  As described above with reference to FIGS. 2 to 4, the “element capable of performing dispersion compensation, which is a part of the dispersion compensation element” used in the present invention, is referred to as the “element capable of performing dispersion compensation”. It is clear from the explanation of each curve in FIG. 4 that the third-order dispersion can be compensated for in a certain wavelength range by using “”.
しかし、 「分散補償を行うことが出来る素子」 単独で補償できる分散補償の波 長帯域幅は、 波長が 1 . 5 5 μ ηι近傍の信号光について、 1 . 5 n m前後、 群速 度遅延時間は 3 p s (ピコ秒) 位の場合が多く、 また、 複数チャンネルの光通信 に対応するために分散補償の波長帯域幅を広くすると、 分散補償を十分に行うこ とが出来る程度の群速度遅延時間を得ることが難しく、 現実の通信に広く使い勝 手よく用いるには、 さらなる改善がなされることが望ましい。 そこで、 本発明を 図 5 A〜D、 図 6 A〜Dならびに図 7〜1 0を用いてさらに詳しく説明する。 図 5 A〜Dは、 図 2〜図 4で説明したような多層膜を用いた分散補償を行うこ とが出来る素子を複数個用いて群速度遅延時間一波長特性を改善する方法を説明 する図であり、 図 5 Aは本発明に用いる分散補償を行うことが出来る素子が 1個 の群速度遅延時間一波長特性、 図 5 Bは群速度遅延時間一波長特性曲線の形がほ ぼ同じで、 群速度遅延時間一波長特性曲線のピーク値 (以下、 極値ともいう) を 与える波長 (以下、 極値波長ともいう) が異なる分散補償を行うことが出来る素 子を 2個直列に接続した本発明の光分散補償素子の群速度遅延時間—波長特性を、 図 5 Cは群速度遅延時間一波長特性曲線がほぼ同じで極値波長が異なる分散補償 を行うことが出来る素子を 3個直列に接続した本発明の光分散補償素子の群速度 遅延時間一波長特性を、 図 5 Dは群速度遅延時間一波長特性曲線の形も極値波長 も異なる分散補償を行うことが出来る素子を 3個直列に接続した本発明の光分散 補償方法に用いる光分散補償素子の群速度遅延時間一波長特性を表すグラフであ り、 いずれも縦軸が群速度遅延時間、 横軸が波長である。  However, the wavelength bandwidth of the dispersion compensation that can be compensated by the “element that can perform dispersion compensation” alone is around 1.5 nm for the signal light whose wavelength is around 1.55 μηι, and the group velocity delay time Is often around 3 ps (picoseconds), and if the wavelength bandwidth of dispersion compensation is widened to support multi-channel optical communication, the group velocity delay is large enough to achieve sufficient dispersion compensation. It is difficult to gain time, and further improvements are desirable for widespread use in real-world communications. Therefore, the present invention will be described in more detail with reference to FIGS. 5A to 5D, FIGS. 6A to 6D, and FIGS. 5A to 5D illustrate a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation using a multilayer film as described with reference to FIGS. 2 to 4. Fig. 5A shows the group velocity delay time vs. wavelength characteristic with one element capable of performing dispersion compensation used in the present invention, and Fig. 5B shows the shape of the group velocity delay time vs. wavelength characteristic curve which is almost the same. The two elements that can perform dispersion compensation at different wavelengths (hereinafter also referred to as extreme values) giving the peak value (hereinafter also referred to as extreme values) of the group velocity delay time-wavelength characteristic curve are connected in series. The group velocity delay time vs. wavelength characteristic of the optical dispersion compensating element of the present invention is shown in FIG. 5C. Three elements that can perform dispersion compensation with different group extremal wavelengths having substantially the same group velocity delay time-wavelength characteristic curve are shown. Group velocity of the optical dispersion compensator of the present invention connected in series Figure 5D shows the optical dispersion compensation used in the optical dispersion compensation method of the present invention in which three elements capable of performing dispersion compensation differing in the shape of the group velocity delay time vs. wavelength characteristic curve and the extremal wavelength are connected in series. 5 is a graph showing a group velocity delay time-wavelength characteristic of an element, wherein the vertical axis represents the group velocity delay time and the horizontal axis represents the wavelength.
そして、 本発明の光分散補償方法の基本は、 たとえば図 5 A〜Dに示じたよう な特性を有する光分散補償素子を用いて、 たとえば、 図 7 , 図 8、 図 1 0を用い て後述するような複合型の光分散補償素子を構成して、 それを光分散補償素子を 光伝送路したような中の適切なところ、 たとえば、 光ファイバに直列に接続させ たり、 伝送路に設けた増幅器、 受信機、 波長分波機、 中継局の各種装置等の信号 光の経路中に配置して前記光分散捕償素子に信号光を入射させて信号光の分散を 補償する分散補償方法にある。 The basic principle of the optical dispersion compensation method of the present invention is to use, for example, an optical dispersion compensating element having the characteristics shown in FIGS. 5A to 5D, for example, by using FIGS. 7, 8, and 10. A composite type optical dispersion compensating element as described later is constructed, and the optical type Appropriate place in an optical transmission line, for example, in a signal light path such as connected to an optical fiber in series, or in an amplifier, receiver, wavelength demultiplexer, or various devices of a relay station installed in the transmission line And compensating the dispersion of the signal light by making the signal light incident on the light dispersion compensating element.
図 5 A〜Dにおいて、 符号 3 0 1〜3 0 9は本発明に用いる分散補償を行うこ とが出来る素子 1個の各群速度遅延時間一波長特性曲線、 3 1 0は前記本発明に 用レ、る群速度遅延時間一波長特性曲線の形がほぼ同じで極値波長が異なる分散補 償を行うことが出来る素子を 2個を直列に接続した場合の群速度遅延時間一波長 特性曲線、 3 1 1は前記本発明に用いる群速度遅延時間一波長特性曲線の形がほ ぼ同じで極値波長が異なる分散補償を行うことが出来る素子を 3個直列に接続し た場合の群速度遅延時間 波長特性曲線、 3 1 2は群速度遅延時間一波長特性曲 線の形も極値波長も異なる分散捕償を行うことが出来る素子を 3個直列に接続し た場合の群速度遅延時間一波長特性曲線である。 図 5 Aで符号 aは分散補償対象 波長帯域、 bは群速度遅延時間の極値である。  5A to 5D, reference numerals 301 to 309 denote the group velocity delay time-wavelength characteristic curves of one element capable of performing dispersion compensation used in the present invention, and 310 denotes the present invention. The group velocity delay time vs. wavelength characteristic curve when two devices that can perform dispersion compensation and have different extremal wavelengths with almost the same shape of the group velocity delay time vs. wavelength characteristic curve are connected in series Reference numeral 311 denotes a group velocity when three elements capable of performing dispersion compensation with substantially the same shape of the group velocity delay time-wavelength characteristic curve used in the present invention and having different extreme wavelengths are connected in series. Delay time Wavelength characteristic curve, 3 1 2 Group velocity delay time Group velocity delay time when three elements capable of performing dispersion compensation with different shapes and extreme wavelengths are connected in series It is a one-wavelength characteristic curve. In Fig. 5A, the symbol a is the wavelength band for dispersion compensation, and b is the extreme value of the group velocity delay time.
曲線 3 0 2〜3 0 7および 3 0 9の分散補償対象波長域の帯域幅と群速度遅延 時間の極値はほぼ同じで、 曲線 3 0 8は曲線 3 0 7や 3 0 9よりも分散補償対象 波長域の帯域幅が狭く群速度遅延時間の極値が大きい群速度遅延時間一波長特性 曲線である。 なお、 上記曲線 3 0 1〜3 0 9の極値波長は、 図示の如く、 それぞ れ異なっている。  The extreme values of the bandwidth and the group velocity delay time of the wavelength bands to be compensated for the curves 302 to 307 and 309 are almost the same, and the curve 308 is more dispersion than the curves 307 and 309. This is a group velocity delay time-wavelength characteristic curve in which the bandwidth of the compensation target wavelength band is narrow and the extreme value of the group velocity delay time is large. The extreme wavelengths of the curves 301 to 309 are different from each other as shown in the drawing.
図 5 Bと図 5 Cにおいて、 群速度遅延時間一波長特性曲線 3 1 0の群速度遅延 時間の極値は、 分散補償を行うことが出来る素子 1個の場合の 1 . 6倍、 分散補 償対象波長帯域は約 1 . 8倍になっており、 群速度遅延時間一波長特性曲線 3 1 1の群速度遅延時間の極値は 1個の場合の約 2 . 3倍、 分散補償対象波長帯域は 分散補償を行うことが出来る素子 1個の場合の約 2 . 5倍になっている。  In FIG. 5B and FIG. 5C, the extremum of the group velocity delay time of the group velocity delay time vs. wavelength characteristic curve 310 is 1.6 times that of a single element capable of performing dispersion compensation, The wavelength band to be compensated is about 1.8 times, and the extremum of group velocity delay time vs. wavelength characteristic curve 3 1 1 is about 2.3 times that of a single group velocity delay time. The bandwidth is about 2.5 times that of a single element that can perform dispersion compensation.
図 5 Dにおいては、 群速度遅延時間一波長特性曲線 3 1 2の曲線の群速度遅延 時間の極値が分散補償を行うことが出来る素子 1個の場合の約 3倍、 分散補償対 象波長帯域は分散捕償を行うことが出来る素子 1個の場合の約 2 . 3倍になって いる。  In Fig. 5D, the extremum of the group velocity delay time in the curve of the group velocity delay time-wavelength characteristic 312 is about three times that of a single element that can perform dispersion compensation. The bandwidth is about 2.3 times that of a single device that can perform dispersion compensation.
図 2〜図 4において説明したような多層膜を用いた分散補償を行うことが出来 る素子の群速度遅延時間一波長特性曲線の群速度遅延時間の極値と分散補償対象 波長帯域は、 前記多層膜の各反射層と各光透過層の構成条件によって変化し、 た とえば、 図 5 Dの曲線 3 0 7のような分散補償対象波長帯域が比較的広いが群速 度遅延時間の極値があまり大きくない群速度遅延時間一波長特性曲線や、 曲線 3 0 8のように分散補償対象波長帯域が狭いが群速度遅延時間の極値は大きい群速 度遅延時間一波長特性曲線のように、 種々の特性を有する分散補償を行うことが 出来る素子を実現することが出来る。 It is possible to perform dispersion compensation using a multilayer film as described in FIGS. The extreme value of the group velocity delay time of the group velocity delay time-wavelength characteristic curve of the element and the wavelength band to be dispersion-compensated vary depending on the configuration conditions of each reflection layer and each light transmission layer of the multilayer film. As shown in the curve 3108 of the group velocity delay time vs. wavelength characteristic curve where the wavelength band for dispersion compensation is relatively wide but the extreme value of the group velocity delay time is not so large as shown by the curve 3107 in Fig. 5D. An element capable of performing dispersion compensation having various characteristics, such as a group velocity delay time-wavelength characteristic curve, in which the wavelength band for dispersion compensation is narrow but the extreme value of the group velocity delay time is large can be realized.
このような分散補償を行うことが出来る素子に用いる多層膜としては、 たとえ ば、 前記 「発明の開示」 の項に記載した多層膜 A〜多層膜 Hがあげられる。 この 多層膜 A〜Hを用いて、 分散補償を行うことが出来る素子を作成したところ、 波 長が約 1 . 5 5 μ mの信号光に対して、 群速度遅延時間の極値が 3 p s (ピコ 秒) で分散補償対象波長帯域が 1 . 3〜2 . 0 n mの群速度遅延時間一波長特性 曲線を実現することが出来た。  Examples of the multilayer film used for an element capable of performing such dispersion compensation include the multilayer films A to H described in the section of the above “Disclosure of the Invention”. When an element capable of performing dispersion compensation was created using these multilayer films A to H, the extreme value of the group velocity delay time was 3 ps for signal light with a wavelength of about 1.55 μm. (Picoseconds), it was possible to realize a group velocity delay time-wavelength characteristic curve with a dispersion compensation wavelength band of 1.3 to 2.0 nm.
上記多層膜 A〜Hは、 入射面から膜の厚み方向に、 反射層に挟まれた光透過層 (キヤビティ、 すなわち入射光に対する共振器を形成している。 ) が 2つ、 すな わち 2キヤビティの多層膜であるが、 本発明はこれに限定されず、 3キヤビティ、 4キヤビティなど種々の構成の多層膜を用いることを可能にするものである。 本 発明の多層膜は 2キヤビティ以上の多層膜であり、 1キヤビティの多層膜とは全 く異なる群速度遅延時間一波長特性を得られるものである。  Each of the multilayer films A to H has two light transmission layers (cavities, that is, resonators for incident light) sandwiched between reflection layers in the thickness direction of the film from the incident surface, that is, two layers. Although the present invention is a two-cavity multilayer film, the present invention is not limited to this, and it is possible to use a multilayer film having various configurations such as three-cavity and four-cavity. The multilayer film of the present invention is a multilayer film having two or more cavities, and can obtain a group velocity delay time-one wavelength characteristic completely different from a multilayer film having one cavity.
そして、 この分散補償を行うことが出来る素子を複数個直列に接続して、 光フ アイバ伝送による分散を補償することができる群速度遅延一波長特性を有する分 散補償対象波長帯域が 1 5 n mの光分散補償素子を実現することが出来た。 この 光分散補償素子を波長が 1 . 5 5 μ ηι近傍で、 各チャンネルの帯域波長幅 0 . 5 n m、 3 0チャンネルの通信システムの 3次分散補償を行う素子として用い、 1 O O G b p s相当で 6 0 k m送信の光通信を行ったところ、 3次分散が全く害に ならずに通信を行うことが出来た。  A plurality of devices capable of performing this dispersion compensation are connected in series, and a dispersion compensation wavelength band having a group velocity delay-one wavelength characteristic capable of compensating for dispersion due to optical fiber transmission is 15 nm. Can be realized. This optical dispersion compensating element is used as a third-order dispersion compensating element for a 30-channel communication system with a wavelength bandwidth of 0.5 nm and a channel wavelength of 0.5 nm near 1.55 μηι, equivalent to 1 OOG bps. When optical communication was performed for 60 km transmission, communication could be performed without any harm from third-order dispersion.
また、 図 4における群速度遅延時間一波長特性曲線や、 図 5 Dにおける形の異 なる群速度遅延時間一波長特性曲線の組み合わせなど、 直列に接続して用いる分 散補償を行うことが出来る素子の群速度遅延時間一波長特性を適宜工夫して選択 することにより、 3次の分散のみならず 2次の分散をも補償することが出来る。 本発明の分散補償を行うことが出来る素子を少なくとも 2個直列に接続した光 分散補償素子の例においては、 たとえば 3次の分散を補償するのに必要な群速度 遅延時間一波長特性を有する光分散補償素子を実現するためには、 分散補償対象 波長域において極値を有する群速度遅延時間一波長特性曲線を有する分散補償を 行うことが出来る素子を少なくとも 1つ用いることが望ましい。 Elements that can be used in series to perform dispersion compensation, such as the group velocity delay time-wavelength characteristic curve in Fig. 4 and the combination of group velocity delay time-wavelength characteristic curves of different shapes in Fig. 5D Group delay time vs. wavelength characteristics By doing so, not only third-order dispersion but also second-order dispersion can be compensated. In the example of the light dispersion compensating element in which at least two elements capable of performing dispersion compensation according to the present invention are connected in series, for example, a light having a group velocity, a delay time, and a wavelength characteristic required to compensate for the third-order dispersion. In order to realize a dispersion compensating element, it is desirable to use at least one element capable of performing dispersion compensation having a group velocity delay time-wavelength characteristic curve having an extreme value in the wavelength region to be compensated for dispersion.
また、 通信伝送路の分散補償をより効果的に行うには、 光分散補償素子として の群速度遅延時間一波長特性曲線をよりよいものにすることが望ましい。 そのた めの 1つの方法として、 分散補償を行うことが出来る素子の群速度遅延時間一波 長特性を調整できる手段を有する方法がある。  In order to more effectively perform dispersion compensation of a communication transmission line, it is desirable to improve the group velocity delay time-wavelength characteristic curve as an optical dispersion compensating element. As one method for this, there is a method having means for adjusting the group velocity delay time-wavelength characteristic of an element capable of performing dispersion compensation.
その方法として、 図 2と図 3を用いて説明したような、 多層膜の光透過層と反 射層の膜厚を入射面内方向 (すなわち、 素子の入射面に平行な方向) において変 化させて多層膜を形成しておき、 分散補償を行うことが出来る素子における信号 光の相対的な入射位置を変えて、 分散補償を行うことが出来る素子の群速度遅延 時間一波長特性を変えることがあげられる。 この入射光の入射位置を変更す る手段としては、 入射光の位置に対して、 光分散補償素子 2 0 0あるい は入射光の入射位置そのものの少なく とも一方を移動させることによつ て実現した。 前記光分散補償素子または入射光を移動させる手段として は、 光分散補償素子の使用される事情、 コス トあるいは特性などの条件 など、 事情によって種々選択することができる。 たとえば、 コス ト上あ るいは装置の事情から、 ネジなどの手動的手段により行う方法を用いる ことができ、 また、 正確に調整するため、 あるいは手動で調整すること ができない時にも調整することができるようにするためには、 たとえば 電磁的なステップモータや連続駆動モータを用いることが効果的であり、 また、 P Z T (チタン酸ジルコン酸鉛) などを用いた圧電モーターを使 用することも効果的である。 また、 これらの方法と組み合わせることも できるプリズムゃニ芯コリメータなどを用いたり、 光導波路を利用する などの光学的手段によって入射位置を選択することにより、 容易に、 正 確に入射位置を選択することができる。 また、 本発明の複合型の光分散補償素子における光路を選択する手段 を前記複合型の光分散補償素子に係合して設けておき、 光路選択を前記 の入射位置選択手段と同様な手段を用いて行うことにより、 実用上の効 果を高めることができる。 As a method, as described with reference to FIGS. 2 and 3, the thicknesses of the light-transmitting layer and the reflecting layer of the multilayer film are changed in the in-plane direction of the incident plane (that is, in the direction parallel to the incident plane of the element). By changing the relative incident position of the signal light in the device that can perform dispersion compensation, and changing the group velocity delay time-wavelength characteristic of the device that can perform dispersion compensation, Is raised. As a means for changing the incident position of the incident light, the light dispersion compensating element 200 or at least one of the incident positions of the incident light itself is moved with respect to the position of the incident light. It was realized. The light dispersion compensating element or the means for moving the incident light can be variously selected depending on the circumstances, such as the circumstances in which the light dispersion compensating element is used, the cost, and the characteristics. For example, due to the cost or the circumstances of the equipment, it is possible to use a method that is performed by manual means such as screws, and it is also possible to make adjustments for accurate adjustment or when manual adjustment is not possible. In order to achieve this, it is effective to use, for example, an electromagnetic step motor or continuous drive motor, and it is also effective to use a piezoelectric motor using PZT (lead zirconate titanate). It is a target. In addition, it is possible to easily and accurately select the incident position by using a prism-core collimator that can be combined with these methods, or by selecting the incident position by an optical means such as using an optical waveguide. be able to. Further, means for selecting an optical path in the composite type optical dispersion compensating element of the present invention is provided in engagement with the composite type optical dispersion compensating element, and optical path selection is performed by the same means as the above-mentioned incident position selecting means. By using it, the practical effect can be enhanced.
また、 前記多層膜の少なくとも 1つのキヤビティを、 たとえばエア (空気) ギ ャップキャビティにしてエアギヤップを可変にすることにより、 群速度遅延時間 —波長特性を変えることができる。  Also, by making at least one cavity of the multilayer film, for example, an air gap cavity to make the air gap variable, the group velocity delay time-wavelength characteristic can be changed.
前記本発明の光分散補償素子に用いる分散補償を行うことが出来る素 子の多層膜の各層は、 厚みが 4分の 1波長の S i〇2のイオンアシスト蒸着で 作成した膜 (以下、 イオンアシス ト膜ともいう) で形成された層 と、 厚みが 4 分の 1波長の T i 0 2のイオンアシス ト膜で形成された層 Hとから構成されてい る。 前記 S i O 2のイオンアシスト膜 (層 L ) 1層と T i〇2のイオンアシスト膜 (層 H) 1層の組みあわせ層で L Hの層 1セットと称し、 たとえば、 「L Hの層 5セット積層して」 とは、 「層 L ·層 H ·層 L '層 H ·層 L ·層 H ·層 L .層 H '層 '層 Hの順に各層をそれぞれ 1層ずつ重ねて形成して」 ということを意味 する。 Wherein each layer of the multilayer film of the element capable of performing dispersion compensation used for optical dispersion compensation device of the present invention, the thickness created by the wave of S I_〇 2 of ion-assisted deposition of 4 minutes film (hereinafter, Ion'ashisu a layer formed by preparative layer also referred to as) a thickness that is composed of a layer H formed in Ion'ashisu preparative layer of T i 0 2 of a quarter wavelength. A combination layer of the above-mentioned one SiO 2 ion-assisted film (layer L) and one Ti 2 ion-assisted film (layer H) is referred to as one set of LH layers. The term "set and stack" means "layer L, layer H, layer L 'layer H, layer L, layer H, layer L. layer H, layer H, layer H, layer H in order. It means that.
同様に、前記 L Lの層は、 厚みが 4分の 1波長の S i O 2のイオンアシス ト膜で 構成されている層 Lを 2層重ねて形成した層を L Lの層 1セットと称す。 したが つて、 たとえば、 「L Lの層を 3セット積層して」 とは、 「層 Lを 6層重ねて形 成して」 を意味する。 Similarly, the LL layer is referred to as a set of LL layers formed by laminating two layers L composed of a SiO 2 ion-assist film having a quarter wavelength thickness. Therefore, for example, “three layers of LL are stacked” means “formed by stacking six layers L”.
なお、 層 Hを形成する膜の組成として、 誘電体の例を示したが、 本発明はこれ に限定されるものではなく、 T i 0 2と同じ誘電体材料としては T i 0 2の他に、 T a 25、 N b 25などを用いることができ、 さらに、 誘電体材料の他に、 S i や G eを用いて層 Hを形成することもできる。 S iや G eを用いて層 Hを形成し た場合、 光学的性質より層 Hを薄く形成することができるという利点を有する。 また、 層 Lの組成として S i 0 2の例を示したが、 S i 02は安価にしかも信頼 性高く層 Lを形成できる利点があるが、 本発明はこれに限定されるものではなく、 層 Hの屈折率よりも屈折率が低くなる材質によって層 Lを形成すれば、 本発明の 上記効果を発揮する光分散補償素子を実現することができる。 また、 本実施例では、 前記多層膜を構成する層 Lと層 Hをイオンアシスト蒸着 で形成したが、 本発明はこれに限定されるものではなく、 通常の蒸着、 スパッタ リング、 イオンプレーティングその他の方法で形成した多層膜を用いても本癸明 は大きな効果を発揮するものである。 As the composition of the film forming the layer H, although an example of a dielectric, the present invention is not limited thereto, other T i 0 2 as the same dielectric material as T i 0 2 a, T a 25, N b 25 or the like can be used, further, in addition to the dielectric material, it is also possible to form a layer H with S i and G e. When the layer H is formed using Si or Ge, there is an advantage that the layer H can be formed thinner than the optical properties. Also, although an example of S i 0 2 As the composition of the layer L, but S i 0 2 has the advantage of forming a low cost yet reliable layer L, the present invention is not limited thereto If the layer L is formed of a material having a lower refractive index than the refractive index of the layer H, a light dispersion compensating element exhibiting the above effects of the present invention can be realized. Further, in the present embodiment, the layer L and the layer H constituting the multilayer film are formed by ion-assisted vapor deposition, but the present invention is not limited to this, and ordinary vapor deposition, sputtering, ion plating, and the like are performed. Even if a multilayer film formed by the above method is used, the present invention exhibits a great effect.
本発明の光分散補償素子は、 図 3に示す光分散補償素子としての多層膜 200 のように、 ウェハー状のものを適当に保持して用いることもでき、 また、 入射面 220内での必要な部分を含むように、 厚み方向に、 すなわち、 入射面 220か ら基板 205方向に、 たとえば垂直に、 小さく切断したチップ状にして、 たとえ ばファイバコリメータとともに筒状のケースに実装して光分散補償素子として用 いることもできるなど、 その形態は多様な可能性を有するものであり、 そのいず れの場合においても、 本発明で説明する主たる効果をもたらすものである。  The light dispersion compensating element of the present invention can be used by appropriately holding a wafer-like element such as a multilayer film 200 as a light dispersion compensating element shown in FIG. In the thickness direction, that is, in the direction of thickness, that is, in the direction from the incident surface 220 to the substrate 205, for example, perpendicularly, the chip is cut into small pieces. The form has various possibilities, for example, it can be used as a compensating element. In any case, the main effects described in the present invention can be obtained.
図 6は図 5で説明した例のような群速度遅延時間一波長特性曲線を実現するた めに分散補償を行うことが出来る素子を複数個直列に接続する方法を説明する図 で、 図 6 Aは、 前記分散補償を行うことが出来る素子 2個を直列に接続して光分 散補償素子を構成した例を、 図 6 Bは前記分散補償を行うことが出来る素子 3個 を直列に接続して光分散補償素子を構成した例を、 図 6 Cは入射面内方向で膜厚 が変化している多層膜上で、 信号光の入射位置 2箇所を、 信号光の航路に沿って 直列に接続して光分散補償素子を構成した例を、 図 6 Dは図 6 Aと同じ構成の光 分散補償素子を 1つのケースに実装した例を示す図である。 ,  FIG. 6 is a diagram for explaining a method of connecting a plurality of elements capable of performing dispersion compensation in series to realize a group velocity delay time-wavelength characteristic curve as in the example described in FIG. A shows an example in which two elements capable of performing the dispersion compensation are connected in series to form a light dispersion compensation element, and FIG. 6B shows three elements capable of performing the dispersion compensation connected in series. Figure 6C shows an example in which the optical dispersion compensating element is configured as shown in Fig. 6C. In the multilayer film, the thickness of which changes in the plane of incidence, two signal light incident positions are connected in series along the signal light path. FIG. 6D is a diagram showing an example in which the optical dispersion compensating element having the same configuration as that of FIG. 6A is mounted in one case. ,
図 6 A〜Dにおいて、 符号 410、 420、 430、 440は上記の如く分散 補償を行うことが出来る素子を複数個直列に接続して構成した光分散補償素子、 41 1、 41 2、 421〜 423、 431、 442、 443は分散補償を行うこ とが出来る素子、 416は分散補償を行うことが出来る素子に用いている多層膜、 41 5、 41 5 1〜 41 54、 426、 4261、 4262、 436、 436 1、 4362、 446、 4461、 4462は光ファイバ、 41 3、 413 1、 41 4、 4141、 424、 425、 434、 435、 444、 445は信号光の進 行方向を示す矢印、 41 7はレンズ、 418はレンズ 41 7と光ファイバ 41 5 1および 41 52とで構成している 2芯コリメータ、 441はケース、 43.1は 入射面内方向で膜厚が変化している多層膜を基板上に形成して分散補償を行うこ とができるように構成したウェハー状の分散補償を行うことが出来る素子で、 4 32、 433はそれぞれ 「分散補償を行うことが出来る素子の部分」 である。 ま た、 前記各光ファイバのうち、 符号 415、 4152、 426、 436、 446 は内部接続部品としての光ファイバ、 符号 4151、 4153、 4154、 42 6 1、 4262、 4361、 4362、 4461、 4462は外部接続部品とし ての光ファイバである。 6A to 6D, reference numerals 410, 420, 430, and 440 denote an optical dispersion compensating element configured by connecting a plurality of elements capable of performing dispersion compensation as described above in series, 411, 412, 421 to 421. 423, 431, 442, and 443 are elements capable of performing dispersion compensation, 416 is a multilayer film used for an element capable of performing dispersion compensation, 415, 415 1 to 4154, 426, 4261, and 4262 , 436, 436 1, 4362, 446, 4461, 4462 are optical fibers, 413, 413 1, 414, 4141, 424, 425, 434, 435, 444, 445 are arrows indicating the direction of signal light travel, 417 is a lens, 418 is a two-core collimator composed of the lens 41 7 and optical fibers 41 51 and 41 52, 441 is a case, and 43.1 is a multilayer film whose film thickness changes in the incident plane direction. It can be formed on a substrate to perform dispersion compensation. 432 and 433 are "element parts capable of performing dispersion compensation", respectively. Further, among the above optical fibers, reference numerals 415, 4152, 426, 436, and 446 are optical fibers as internal connection parts, and reference numerals 4151, 4153, 4154, 4261, 4262, 4361, 4362, 4461, and 4462 are An optical fiber as an external connection part.
図 6 Aにおいて、 矢印 41 3の方向に光ファイバ 41 53から、 分散補償を行 うことが出来る素子 41 1に入射した信号光は、 分散補償を受けて分散補償を行 うことが出来る素子 411から出射し、 光ファイバ 41 5を伝送されて分散補償 を行うことが出来る素子 41 2に入射し、 再び分散補償を受けて分散補償を行う ことが出来る素子 41 2力 ら出射し、 矢印 414の方向に光ファイバ 41 54を 伝送される。  In FIG. 6A, the signal light that has entered the element 41 1 capable of performing dispersion compensation from the optical fiber 41 53 in the direction of the arrow 413 is subjected to dispersion compensation to the element 411 capable of performing dispersion compensation. From the optical fiber 415, and is incident on an element 412 capable of performing dispersion compensation by being transmitted through an optical fiber 415. The optical fiber 41 54 is transmitted in the direction.
符号 411 2は、 分散補償を行うことが出来る素子 411の破線 411 1で囲 んだ部分であり、 その内部構造を説明する図である。 光ファイバ 4151および 41 52とレンズ 41 7は 2芯コリメータ 418を構成し、 光ファイバ 4151 を矢印 413 1方向に進行した信号光はレンズ 41 7を通り多層膜 416に入射 する。  Reference numeral 4112 denotes a portion surrounded by a broken line 4111 of the element 411 capable of performing dispersion compensation, and is a diagram for explaining the internal structure thereof. The optical fibers 4151 and 4152 and the lens 4117 constitute a two-core collimator 418, and the signal light that has traveled along the optical fiber 4151 in the direction of the arrow 413 enters the multilayer film 416 through the lens 417.
多層膜 41 6は、 たとえば、 図 5 Aに示したような群速度遅延時間—波長特性 を有しており、 光ファイバ 41 5 1とレンズ 417を通って多層膜 416に入射 した信号光は、 3次の分散補償を施され、 多層膜 416から出て再びレンズ 41 7を通り、 光ファイバ 41 52に入射して矢印 4141の方向に進み、 分散補償 を行うことが出来る素子 41 2に入射する。 この場合、 光ファイバ 4152と光 ファイバ 4.1 5は実質的に同じファイバであり、 光ファイバ 41 51と光フアイ パ 41 53も実質的に同じである。 分散補償を行うことが出来る素子 41 2でさ らに分散補償を施された信号光は分散補償を行うことが出来る素子 412から出 射して、 光ファイバ 41 54を矢印 414で示した方向へ進行する。  The multilayer film 416 has, for example, a group velocity delay time-wavelength characteristic as shown in FIG. 5A, and the signal light incident on the multilayer film 416 through the optical fiber 4151 and the lens 417 is: The third-order dispersion compensation is performed, and the light exits from the multilayer film 416, passes through the lens 417 again, enters the optical fiber 4152, proceeds in the direction of arrow 4141, and enters the element 412 capable of performing dispersion compensation. . In this case, the optical fiber 4152 and the optical fiber 4.15 are substantially the same fiber, and the optical fiber 4151 and the optical fiber 4153 are also substantially the same. The signal light that has been further subjected to dispersion compensation by the element 41 2 capable of performing dispersion compensation emits from the element 412 capable of performing dispersion compensation, and the optical fiber 41 54 passes in the direction indicated by the arrow 414. proceed.
このような図 6 Aに示した光分散補償素子 410は、 図 5 Bに示した群速度遅 延時間一波長特性を有し、 光分散補償素子 410に入射した信号光は、 図 5 Bに 示したような群速度遅延時間一波長特性曲線に応じた分散補償を施されて光分散 補償素子 4 1 0力 ら出射される。 The optical dispersion compensating element 410 shown in FIG. 6A has the group velocity delay time-wavelength characteristic shown in FIG. 5B, and the signal light incident on the optical dispersion compensating element 410 is shown in FIG. Optical dispersion with dispersion compensation according to the group velocity delay time-wavelength characteristic curve as shown The light is emitted from the compensating element 410.
このとき、 光ファイバ 4 1 5 1を矢印 4 1 3 1方向に進行してきた信号光がた とえば 2芯コリメータ 4 1 8を介して、 多層膜 4 1 6に入射して分散補償を施さ れて多層膜 4 1 6で反射され、 光ファイバ 4 1 5 2に入射し、 矢印 4 1 4 1方向 に出射される過程において、 光ファイバ 4 1 5 1を矢印 4 1 3 1方向に進行して きた光分散補償素子 4 1 0の入射光に対して、 光ファイバ 4 1 5 2を矢印 4 1 4 1方向に進行する光分散補償素子 4 1 0の出射光は、 入射光に比較して約 0 . 3 〜0 . 5 d B程度あるいはそれ以上のカップリング損失 (カップリングロスとも いう) を受ける。 この損朱は、 従来のファイバーグレーティングを用いる分散捕 償の場合に比較すれば極めて小さな損失であるが、 1 5 n m、 3 0 n mという広 い波長帯域においてより少ない損失で分散補償を行いたい場合には、 図 5で説明 した直列に接続する分散補償を行うことが出来る素子の数が多くなるため、 この カップリングロスは積算されて大きなロスになる。 たとえば、 分散補償を行うこ とが出来る素子 1 0個を上記の接続方法で直列に接続すると、 3〜3 0 d Bの力 ップリングロスを生じる。 この損失は、 1 5 n mや 3 0 n mの広い波長帯域幅の 光分散補償素子を構成するときに重大な問題になる。  At this time, the signal light traveling along the optical fiber 4151 in the direction of the arrow 4131 is incident on the multilayer film 416 via, for example, a 2-core collimator 418 to be subjected to dispersion compensation. In the process of being reflected by the multilayer film 4 16, entering the optical fiber 4 152, and exiting in the direction of the arrow 4 141, the optical fiber 4 151 travels in the direction of the arrow 4 With respect to the incident light of the optical dispersion compensating element 4 10, the outgoing light of the optical dispersion compensating element 4 10 traveling in the direction of the arrow 4 1 4 1 through the optical fiber 4 15 2 is approximately smaller than the incident light. It receives coupling loss of 0.3 to 0.5 dB or more (also called coupling loss). This loss is extremely small compared to dispersion compensation using a conventional fiber grating.However, when dispersion compensation is required with less loss in a wide wavelength band of 15 nm and 30 nm. In this case, since the number of elements connected in series and capable of performing dispersion compensation described in FIG. 5 increases, this coupling loss is accumulated and becomes a large loss. For example, if 10 elements capable of performing dispersion compensation are connected in series by the above connection method, a power coupling loss of 3 to 30 dB is generated. This loss becomes a serious problem when constructing an optical dispersion compensator having a wide wavelength bandwidth of 15 nm or 30 nm.
本発明の目的は、 このような広い波長帯域にも小さな損失で分散補償を行うこ とができる光分散補償素子と光分散捕償方法を提供することにあり、 それに関し ては、 図 7〜図 1 0を用いて後述する。  An object of the present invention is to provide an optical dispersion compensation element and an optical dispersion compensation method capable of performing dispersion compensation with a small loss even in such a wide wavelength band. This will be described later with reference to FIG.
その前に本発明の理解をさらに深めるため、 分散補償についてさらに詳述する。 図 6 Bの光分散補償素子 4 2 0においても同様に、 矢印 4 2 4の方向から光フ アイバ 4 2 6 1を介して光分散補償素子 4 2 0に入射した信号光は、 まず、 分散 補償を行うことが出来る素子 4 2 1に入射して分散補償を施されてから出射し、 光ファイバ 4 2 6を介して分散補償を行うことが出来る素子 4 2 2〜4 2 3に順 次入射して出射する過程において、 たとえば、 図 5 Cのような群速度遅延時間— 波長特性曲線に応じた分散補償を施されて光分散補償素子 4 2 0から出射し、 光 ファイバ 4 2 6 2を矢印 4 2 5で示した方向へと進行する。  Before that, the dispersion compensation will be described in more detail in order to further understand the present invention. Similarly, in the optical dispersion compensating element 420 of FIG. 6B, the signal light incident on the optical dispersion compensating element 420 from the direction of the arrow 424 through the optical fiber 422 is firstly dispersed. The element which can perform compensation is input to the element 4 21 which can perform compensation, and is emitted after being subjected to dispersion compensation, and is sequentially transmitted to the element 4 22 to 4 23 which can perform dispersion compensation via the optical fiber 4 26. In the process of entering and exiting, for example, dispersion compensation is performed according to the group velocity delay time-wavelength characteristic curve as shown in FIG. In the direction indicated by the arrow 4 25.
図 6 Cは図 6 Aの分散補償を行うことが出来る素子 4 1 1と 4 1 2の代わりに、 同一のウェハ一上に形成された 「分散補償を行うことが出来る素子 4 3 1の部分 4 3 2と 4 3 3」 を光ファイバ 4 3 6を用いて信号光の経路に沿って直列に接続 した例としての光分散捕償素子 4 3 0で、 分散補償の施され方は図 6 Aについて 説明したのと同様である。 Fig. 6C shows the part of the element 431 that can perform dispersion compensation formed on the same wafer instead of the elements 411 and 412 that can perform dispersion compensation in Fig. 6A. Figure 4 shows an example of an optical dispersion compensating element 430 in which `` 4 3 2 and 4 3 3 '' are connected in series along the path of signal light using an optical fiber 4 36. It is the same as described for A.
ただし、 分散補償の施され方は、 分散補償を行うことが出来る素子の群速度遅 延時間一波長特性によつて変わるものであることは上記説明より明らかである。 図 6 Dは図 6 Aと同様の分散補償を行うことが出来る素子 4 4 2と 4 4 3を同 一のケース 4 4 1に組み込んで光ファイバ 4 4 6を介して信号光の通信経路に沿 つて直列に接続して光分散補償素子 4 4 0を構成したものであり、 図示していな いが、 分散補償を行うことが出来る素子 4 4 3は、 図 3を用いて説明した多層膜 の入射面内方向において膜厚が変化している多層膜を使用しており、 入射位置を 調整する手段を有している。 その入射位置調整手段は図示していないが、 ケース 4 4 1に設けられた制御回路とそれによつて制御される入射位置調整手段駆動回 路を利用して入射位置を調整することが出来るようになっている。 信号光は光分 散補償素子 4 4 0へ光ファイバ 4 4 6 1を介して入射し、 光ファイバ 4 4 6 2を 介して光分散補償素子 4 4 0から出射する。  However, it is clear from the above description that the manner in which dispersion compensation is performed depends on the group velocity delay time-wavelength characteristic of an element capable of performing dispersion compensation. Fig. 6D shows an example in which the same dispersion compensating elements 4 4 2 and 4 4 3 as those in Fig. 6 A are incorporated in the same case 4 4 1 to provide a signal light communication path via an optical fiber 4 4 6. A light dispersion compensating element 440 is connected in series along the line, and although not shown, the element 443 capable of performing dispersion compensation is a multilayer film described with reference to FIG. It uses a multilayer film whose film thickness changes in the direction of the incident plane, and has means for adjusting the incident position. Although the incident position adjusting means is not shown, the incident position can be adjusted by using a control circuit provided in the case 441 and an incident position adjusting means driving circuit controlled by the control circuit. Has become. The signal light enters the optical dispersion compensating element 4440 via the optical fiber 4461, and exits from the optical dispersion compensating element 4440 via the optical fiber 4446.
本発明における分散ネ甫償素子およびそれを用いた分散補償方法における分散補 償の対象とする波長帯域を広くとることが出来るようにするためには、 前記の如 く、 たとえば、 多層膜を用いた分散補償を行うことが出来る素子を複数個、 光路 において直列に接続して、 図 5 A〜Dを用いて説明したような主旨の分散補償素 子を構成すればよく、 そして、 そのような分散補償素子を用いて分散を補償すれ ばよい。  In order to be able to broaden the wavelength band to be subjected to dispersion compensation in the dispersion compensation element and the dispersion compensation method using the same according to the present invention, for example, a multilayer film is used as described above. A plurality of elements capable of performing dispersion compensation can be connected in series in the optical path to form a dispersion compensation element having the purpose described with reference to FIGS. 5A to 5D. What is necessary is just to compensate dispersion using a dispersion compensation element.
し力 し、 図 6 A〜Dを用いて説明したように、 コリメータを用いて、 本発明の 分散補償を行うことが出来る素子を複数個接続する場合、 接続すべき前記素子の 数が多くなれば、 接続に起因する光学的損失が大きな問題となる。 そこで、 この 接続に起因する光学的損失を大幅に低減させる方法として、 本発明の発明者らは 図 7 A、 図 7 Bおよび図 8に例示する接続方法を用いた分散補償素子を本発明に おいて提案する。  As described with reference to FIGS. 6A to 6D, when a plurality of elements capable of performing the dispersion compensation of the present invention are connected by using a collimator, the number of the elements to be connected increases. For example, optical loss due to the connection becomes a major problem. Therefore, as a method for greatly reducing the optical loss due to this connection, the present inventors have proposed a dispersion compensation element using the connection method illustrated in FIGS. 7A, 7B and 8 in the present invention. I will propose.
図 7 Aと図 7 Bは本発明の複合型の光分散補償素子を説明する図で、 図 7 Aは 側面図、 図 7 Bは上方から見た図である。 図 7 Bの中の点線は、 その上方にある 部分により見えない部分を説明する都合上示したものである。 7A and 7B are views for explaining the composite type optical dispersion compensating element of the present invention. FIG. 7A is a side view, and FIG. 7B is a view seen from above. The dotted line in Figure 7B is above it This is shown for convenience of explanation of a part that cannot be seen.
図 7 Aおよび Bで、 符号 7 0 1は複合型の光分散捕償素子、 7 0 3と 7 0 4は 前記複合型の光分散補償素子 7 0 1を構成する本発明に用いる光分散補償素子で、 以下に説明するように、 それぞれ本発明に用いる分散補償を行うことが出来る素 子を信号光の光路に沿って複数個直列に接続したものの例、 7 1 0と 7 2 0は基 板、 7 1 1と 7 2 1は前記基板上に形成されており入射光に対して前述のような 群速度遅延時間一波長特性を有する多層膜、 7 3 0は図 7 Aに示した後述の入射 光の光路の位置を概略示す線、 7 4 1〜 7 4 7 , 7 5 0 , 7 6 0〜 7 6 7は入射 光の光路、 7 8 1と 7 8 2は光ファイバ、 7 8 3と 7 8 4はレンズ、 7 0 8と 7 0 9は多層膜を形成する光透過層の膜厚の変化する方向を示す矢印である。 d 1 と d 2は光分散補償素子 7 0 3と 7 0 4のそれぞれ図示の位置における間隔であ る。  7A and 7B, reference numeral 701 denotes a composite type optical dispersion compensating element, and reference numerals 703 and 704 denote optical dispersion compensating elements used in the present invention constituting the composite type optical dispersion compensating element 701. As described below, examples of a plurality of devices, each of which can perform dispersion compensation used in the present invention, connected in series along the optical path of signal light, as described below. Plate, 7 11 and 7 2 1 are formed on the substrate and have a group velocity delay time-wavelength characteristic as described above with respect to incident light, 7 30 is a later-described film shown in FIG. 7 4 1 to 7 4 7, 7 5 0, 7 6 0 to 7 6 7 are the optical paths of the incident light, 7 8 1 and 7 8 2 are the optical fibers, 7 8 Reference numerals 3 and 784 denote lenses, and reference numerals 708 and 709 denote arrows indicating the direction in which the thickness of the light transmitting layer forming the multilayer film changes. d 1 and d 2 are the intervals at the illustrated positions of the optical dispersion compensating elements 703 and 704, respectively.
複合型の光分散補償素子 7 0 1は、 図示のように対向して設けられた光分散補 償素子 7 0 3と 7 0 4で構成されている。  The composite type optical dispersion compensating element 701 is composed of optical dispersion compensating elements 703 and 704 provided to face each other as shown in the figure.
図 7 Aにおいて、 光ファイバ 7 8 1を伝送された信号光は、 レンズ 7 8 3を通 り、 光路 7 4 1から光分散補償素子 7 0 1を構成する光分散捕償素子 7 0 3に入 射して分散補償を行うことが出来る素子としての多層膜 7 1 1の入射点 (光路 7 4 1と多層膜 7 1 1の交点) で分散補償を受けて反射され、 光路 7 4 2を通り光 分散補償素子 7 0 4に至り、 分散補償を行うことが出来る素子としての多層 S莫 7 2 1の入射点で分散補償を受けて反射され、 以下光路 7 4 3〜 7 4 7を通りそれ ぞれ分散補償を行うことが出来る素子としての多層膜 7 1 1または 7 2 1の入射 点で交互に分散補償を受けて反射され、 さらに光路 7 5 0, 7 6 0〜7 6 6を通 りそれぞれ多層膜 7 2 1または 7 1 1の入射点で分散補償を受けて反射されて、 光路 7 6 7を通って複合型の光分散補償素子 7 0 1から出射して、 レンズ 7 8 4 から光ファイバ 7 8 2に入射し、 光ファイバ 7 8 2を伝送される。  In FIG. 7A, the signal light transmitted through the optical fiber 781 passes through the lens 783, and from the optical path 741 to the light dispersion compensating element 703 constituting the light dispersion compensating element 701. The light is subjected to dispersion compensation at the incident point of the multilayer film 711 (an intersection point of the optical path 740 and the multilayer film 711) as an element capable of performing dispersion compensation by being incident, and is reflected. The light reaches the dispersion compensating element 704, is subjected to dispersion compensation at the incident point of the multilayer S 721 as an element capable of performing dispersion compensation, is reflected, and then passes through the optical path 743 to 747. Each of the multilayer films 711 and 721 as elements capable of performing dispersion compensation is alternately subjected to dispersion compensation at the point of incidence and reflected, and furthermore, the optical paths 750, 760 to 766 are formed. As a result, the light is reflected after being subjected to dispersion compensation at the incident point of the multilayer film 721 or 711, and is emitted from the composite optical dispersion compensation element 701 through the optical path 676. Te, incident from the lens 7 8 4 to the optical fiber 7 8 2, is transmitted through the optical fiber 7 8 2.
以上の説明からわかるように、 光分散補償素子 7 0 3と 7 0 4は、 信号光の各 入射点 (この入射点は入射点であるとともに反射点でもある) における分散補償 を行うことが出来る素子を入射光すなわち信号光の光路に沿って直列に接続した 光分散補償素子になっている。 複合型の光分散補償素子 7 0 1を構成している光分散補償素子 7 0 3と 7 0 4 は、 図 7 Aのように、 図の上側が間隔 d 1で図の下側が間隔 d 2で対向して配置 されている。 この場合は間隔 d lは間隔 d 2よりも狭く形成されており、 光路 7 4 1を通って入射した光は、 光路 7 5 0に至って反射方向が反転し、 順次光路 7 6 0〜7 6 6を経由して光路 7 6 7から出射する。 好ましい一例において、 これに 限られないが、 入射光の入射角を多層膜 7 1 1の法線に対して約 5度にとり、 d 1を 1 O mmとして、 光路 7 4 1の入射光のビーム径を約 1 mmにすることによ り、 光路 7 6 7から良好な出力光を得ることができる。 As can be seen from the above description, the optical dispersion compensating elements 703 and 704 can perform dispersion compensation at each signal light incident point (this incident point is both an incident point and a reflection point). It is a light dispersion compensating element in which elements are connected in series along the optical path of incident light, that is, signal light. As shown in FIG. 7A, the optical dispersion compensating elements 703 and 704 constituting the composite type optical dispersion compensating element 701 have an interval d1 on the upper side of the figure and an interval d2 on the lower side of the figure. And are arranged facing each other. In this case, the interval dl is formed to be narrower than the interval d2, and the light incident through the optical path 741 reaches the optical path 7550, the reflection direction is reversed, and the optical paths 7600 to 76.6 The light exits from the optical path 767 via In a preferred example, although not limited to this, the incident angle of the incident light is set to about 5 degrees with respect to the normal of the multilayer film 711, d1 is set to 1 O mm, and the beam of the incident light in the optical path 741 is set. By setting the diameter to about 1 mm, good output light can be obtained from the optical path 767.
光分散補償素子 7 0 3と 7 0 4は、 それぞれ多層膜 7 1 1と 7 2 1が各基板 7 1 0と 7 2 0の上に形成されており、 多層膜 7 1 1と 7 2 1は、 図の下側から上 側に向けて多層膜を構成する膜の厚みが、 図 3の場合と変化の方向は異なるが、 図 3を用いて説明したと同様に変化する (すなわち、 膜の厚みが場所によって異 なる) ように形成されている。  In the optical dispersion compensating elements 703 and 704, the multilayer films 711 and 721 are formed on the substrates 710 and 702, respectively. The thickness of the film constituting the multilayer film changes from the bottom to the top of the figure in the direction of change different from that in FIG. 3, but changes in the same manner as described with reference to FIG. The thickness varies depending on the location).
1つの例として多層膜 7 1 1と 7 2 1の各光透過層の膜厚が矢印 7 0 8と 7 0 9の方向に厚くなるように形成されている。 したがって、 図 7 Aを用いて前述し た入射光が光分散補償素子 7 0 3と 7 0 4の各当該位置で受ける分散補償の内容 は、 図 3を用いて説明したのに準じて異なっており、 それぞれの位置における群 速度遅延時間一波長特性曲線の形および極値とその極値波長が異なつている。 光路 7 4 1から複合型の光分散補償素子 7 0 1に入射して、 光分散補償素子 7 0 3と 7 0 4でそれぞれ分散補償を受けて光路 7 6 7から出射する信号光は、 図 5 A〜Dを用いて前述したのと同様の理由により、 図 9を用いて後述するように、 光分散補償素子 7 0 3と 7 0 4の各位置における群速度遅延時間一波長特性曲線 が合成された群速度遅延時間一波長特性曲線にほぼ近い群速度遅延時間一波長特 性曲線に従った分散補償を受けることになる。  As an example, the thickness of each of the light transmitting layers of the multilayer films 7 1 1 and 7 2 1 is formed so as to increase in the directions of arrows 708 and 709. Therefore, the content of the dispersion compensation that the incident light received at the respective positions of the optical dispersion compensating elements 703 and 704 described above with reference to FIG. 7A differs according to the description with reference to FIG. The shape and the extremum of the group velocity delay time-wavelength characteristic curve at each position are different from each other. The signal light that enters the composite type optical dispersion compensating element 70 1 from the optical path 7 41, undergoes dispersion compensation by the optical dispersion compensating elements 7 03 and 7 04, and exits from the optical path 7 67 is shown in FIG. For the same reason as described above using FIGS. 5A to D, the group velocity delay time-wavelength characteristic curve at each position of the optical dispersion compensating elements 703 and 704 is obtained as described later with reference to FIG. The dispersion compensation is performed according to the group velocity delay time-wavelength characteristic curve that is almost similar to the synthesized group velocity delay time-wavelength characteristic curve.
この場合、 信号光は、 光ファイバから入射または出射する時と光分散補償素子 において分散補償を受けて反射される時に光学的損失を生じ、 前者では主にカツ プリングロス (損失) を、 後者では主に反射ロスを生じる。  In this case, the signal light causes an optical loss when it enters or exits from the optical fiber and when it is reflected after being subjected to dispersion compensation in the optical dispersion compensating element. The former mainly causes a coupling loss (loss), and the latter a signal loss. Mainly causes reflection loss.
一般にカツプリングロスよりも反射ロスの方が大幅に小さく、 しかもその性質 が異なっていることが本発明者らの研究によってわかった。 すなわち、 分散補償 を施される点における上記の反射ロスは、 その位置における群速度遅延時間一波 長特性曲線の極値を与える波長の近傍においてのみ生じ、 そのピーク値はおおむ ね 0 . l d B以下であり、 それ以外の波長ではほとんど無視出来る程度である。 本発明による複合型の光分散補償素子 7 0 1に信号光が入射されて前記の如く 分散補償を受けて出射されるまでに信号光の受ける損失 (ロス) は、 前記各入射 点 (反射点でもある) における反射ロスであり、 それと同じ内容の分散補償を行 うことが出来るだけ、 図 6 A〜Dで説明したように分散補償を行うことが出来る 素子を光ファイバとレンズを介して信号光の光路に沿つて直列に接続した場合の カップリングロスに比べて、 大幅に低減される。 ' In general, the present inventors have found that the reflection loss is much smaller than the coupling loss and the properties thereof are different. That is, dispersion compensation The above-mentioned reflection loss at the point where the noise is applied occurs only in the vicinity of the wavelength that gives the extreme value of the group velocity delay time-wavelength characteristic curve at that position, and the peak value is approximately 0.1 ldB or less. At other wavelengths, it is almost negligible. The loss of the signal light from the time when the signal light enters the composite type optical dispersion compensating element 70 1 according to the present invention, undergoes the dispersion compensation as described above, and is emitted, depends on each of the incident points (reflection points). 6) The reflection loss is the same as that described above, and the element that can perform dispersion compensation as described in Figs. The coupling loss is greatly reduced compared to the coupling loss when connected in series along the optical path of light. '
図 8は、 本発明の複合型の光分散補償素子の他の例であり、 図中、 符号 7 0 2 は本発明の複合型の光分散補償素子、 7 0 5は基板、 7 0 6と 7 0 7は前記基板 7 0 5上に形成されており入射光に対して前述のように群速度遅延時間一波長特 性を有する多層膜で構成される光分散補償素子、 Ί 8 5は信号光の入射方向を示 す矢印、 7 8 6は信号光の出射方向を示す矢印である。 基板 7 0 5は図の上方よ りも下方が次第に厚くなるように形成されており、 図 7 Aにおいて説明した間隔 4 1と d 2の作用と同じ作用を呈するように形成されている。  FIG. 8 shows another example of the composite type optical dispersion compensating element of the present invention. In the figure, reference numeral 72 denotes a composite type optical dispersion compensating element of the present invention, 705 denotes a substrate, and 706 denotes a substrate. Reference numeral 707 denotes an optical dispersion compensating element formed on the substrate 705 and formed of a multilayer film having a group velocity delay time and one wavelength characteristic with respect to incident light as described above. Arrows indicating the direction of incidence of light, and 786 are arrows indicating the direction of emission of signal light. The substrate 705 is formed so that the lower part is gradually thicker than the upper part in the figure, and is formed so as to exhibit the same operation as that of the distances 41 and d2 described in FIG. 7A.
光分散補償素子 7 0 6と 7 0 7を構成している多層膜は、 図 7 Aの場合と同様 に多層膜を構成する膜の厚みが変化している (すなわち、 膜の厚みが多層膜内に おける位置によって異なる) ように形成されている。  In the multilayer film constituting the optical dispersion compensating elements 706 and 707, the thickness of the film constituting the multilayer film changes as in the case of FIG. 7A (that is, the thickness of the multilayer film is It depends on the position in the inside).
図 8において、 矢印 7 8 5から複合型の光分散補償素子 7 0 2に入射した信号 光は、 図 7 Aの場合と同様の理由により、 基板 7 0 5内を進行し光分散補償素子 7 0 6または 7 0 7に入射して分散補償を受け、 光分散捕償素子 7 0 6または 7 0 7を構成する多層膜に反射されて基板 7 0 5内を進行して、 矢印 7 8 6の方向 へ出射する。  In FIG. 8, the signal light incident on the composite type optical dispersion compensating element 72 from the arrow 785 travels through the substrate 7 05 for the same reason as in FIG. 0 6 or 7 0 7, undergoes dispersion compensation, is reflected by the multilayer film constituting the light dispersion compensating element 7 06 or 7 0 7, travels through the substrate 7 0 5, and has an arrow 7 8 6 Emit in the direction of.
前記の光分散補償素子 7 0 6と 7 0 7を構成する多層膜および多層膜 7 1 1と 7 2 1は、 図 2〜4を用いて説明したのと同様に、 入射光に対して 群速度遅延 時間一波長特性に対応した分散補償を施す作用を有するものである。  The multilayer film and the multilayer films 711 and 721 constituting the optical dispersion compensating elements 706 and 707 are arranged in the same manner as described with reference to FIGS. It has the function of performing dispersion compensation corresponding to the speed delay time-wavelength characteristic.
図 7 Aの多層膜 7 1 1と 7 2 1は、 それぞれ基板 7 1 0と 7 2 0の上に形成さ れており、 少なくとも 2層の反射層と少なくとも 1層の光透過層を有している。 各多層膜を構成する反射層の入射光の中心波長に対する反射率は、 各多層膜の表 面の入射光の入射面に存在する反射層もしくは各多層膜の表面に最も近い反射層 よりも、 その反射層の前記基板寄りに光透過層を挟んで設けられている次の反射 層の方が高い反射率を有するように各反射層が形成されている。 各多層膜は、 反 射率が 9 9 . 5 %以上の反射層を少なくとも 1層有しており、 多層膜の表面もし くは表面に最も近い反射層から、 多層膜の表面から最も近い前記反射率が 9 9 . 5 %以上の反射層の間に存在する各反射層の反射率が、 表面から基板の方向に順 次大きい値になっているように各反 It層が形成されている。 この反射層とは、 光 透過層を挟んでその両側にある反射層をそれぞれ 1層の反射層とし、 各反射層の 反射率とは、 各反射層を構成する各層 H、 層 Lなどの単位膜の反射率を指すので はなく、 前記 1層の反射層としての反射率を指している。 The multilayer films 711 and 721 of FIG.7A are formed on the substrates 710 and 720, respectively, and have at least two reflective layers and at least one light transmitting layer. ing. The reflectance of the reflective layer constituting each multilayer film with respect to the central wavelength of the incident light is higher than that of the reflective layer existing on the incident surface of the incident light on the surface of each multilayer film or the reflective layer closest to the surface of each multilayer film. Each reflection layer is formed such that the next reflection layer provided with the light transmission layer between the reflection layer and the substrate has a higher reflectance. Each multilayer film has at least one reflective layer having a reflectance of 99.5% or more, and the reflective layer closest to the surface of the multilayer film or the reflective layer closest to the surface of the multilayer film. Each anti-It layer is formed such that the reflectivity of each reflective layer existing between the reflective layers with a reflectivity of 99.5% or more increases sequentially from the surface to the substrate. . This reflection layer is a single reflection layer with the reflection layers on both sides of the light transmission layer interposed therebetween, and the reflectance of each reflection layer is the unit of each layer H, layer L, etc. that constitute each reflection layer It does not refer to the reflectivity of the film, but to the reflectivity of the single reflective layer.
図 7 Aの各多層膜における反射層と光透過層の層数は、 たとえば、 反射層が 3 層で光透過層が 2層の 2キヤビティの場合、 反射層が 4層で光透過層が 3層の 3 キヤビティの場合、 反射層が 5層で光透過層が 4層の 4キヤビティの場合など多 くの形態が可能であり、 要求される分散補償の内容に応じて多層膜を構成して用 いるようにする。  The number of reflective layers and light-transmitting layers in each multilayer film in Fig. 7A is, for example, in the case of a 2-cavity structure with three reflective layers and two light-transmitting layers, four reflective layers and three light-transmitting layers In the case of three cavities, there are many possible forms, such as four reflective layers and five light transmitting layers, and a multilayer film can be constructed according to the required dispersion compensation. Use it.
図 8の光分散補償素子 7 0 6と 7 0 7も、 それぞれ多層膜で構成されており、 少なくとも 3層の反射層と少なくとも 2層の光透過を有すること、 反射率が 9 9 . 5 %以上の反射層を少なくとも 1層有することは図 7 Aの場合と同様であるが、 基板に最も近い反射層から最初の 9 9 . 5 %以上の反射率を有する反射層まで、 反射率が順次大きくなつている構成になっている点が図 7 Aの場合と異なってい る。  The light dispersion compensating elements 706 and 707 in FIG. 8 are also each composed of a multilayer film, have at least three reflective layers and at least two light transmission layers, and have a reflectivity of 99.5%. Having at least one reflective layer as described above is the same as in FIG. 7A, but the reflectance is sequentially from the reflective layer closest to the substrate to the first reflective layer with a reflectance of 99.5% or more. It is different from the case of Fig. 7A in that the configuration is larger.
また、 図 7において、 光分散補償素子 7 0 3と 7 0 4の間隔 d 1と d 2を、 d 1く d 2にとつたが、 この d 1と d 2の差を適当な値にすることにより、 対向し て配置されている光分散補償素子 7 0 3と 7 0 4に入射する入射光と反射光の位 置を、 図 7 Aに示したように、 対向して配置されている光分散補償素子 7 0 3と 7 0 4の同じ側にすることが出来る。  Also, in FIG. 7, the distances d 1 and d 2 between the optical dispersion compensating elements 703 and 704 are taken as d 1 and d 2, and the difference between d 1 and d 2 is set to an appropriate value. As a result, the positions of the incident light and the reflected light that are incident on the optical dispersion compensating elements 703 and 704 disposed opposite to each other are arranged opposite to each other as shown in FIG. 7A. It can be on the same side of the optical dispersion compensating elements 703 and 704.
そして、 前記間隔 d 1と d 2の差を変えることにより、 前記入射光と反射光の 位置を、 対向して配置されている光分散補償素子 7 0 3と 7 0 4の異なる側にす ることもできる。 さらに、 前記間隔 d 1と d 2を d l = d 2にすることにより、 前記入射光と反射光の位置を前記対向して配置されている光分散補償素子 7 0 3 と 7 0 4の反対側にすることも出来る。 Then, by changing the difference between the distances d1 and d2, the positions of the incident light and the reflected light are shifted to different sides of the optical dispersion compensating elements 703 and 704 disposed opposite to each other. You can also. Further, by setting the distances d 1 and d 2 to dl = d 2, the positions of the incident light and the reflected light are opposite to the light dispersion compensating elements 70 3 and 70 4 which are arranged opposite to each other. You can also
図 9は、 図 7 Aの複合型の光分散補償素子 7 0 1の群速度遅延時間一波長特性 曲線を説明するグラフである。 図 9で、 符号 8 0 1は複合型の光分散補償素子 7 0 1を構成する光分散捕償素子 7 0 3と 7 0 4の各光路の入射位置での各群速度 遅延時間一波長特性曲線の集合としての群速度遅延時間一波長特性曲線群であり、 図 7 Aの矢印 7 0 8と 7 0 9で説明したように多層膜 7 1 1と 7 2 1の膜厚変化 の方向を逆にしていることにより左右対称の曲線群になっている。 符号 8 0 0は 群速度遅延時間一波長特性曲線群 8 0 1の各曲線をすベて合成した結果の群速度 遅延時間一波長特性曲線すなわち本発明による複合型の光分散補償素子 7 0 1の 群速度遅延時間一波長特性曲線である。  FIG. 9 is a graph illustrating a group velocity delay time-wavelength characteristic curve of the composite type optical dispersion compensating element 701 of FIG. 7A. In FIG. 9, reference numeral 8001 denotes each group velocity at the incident position of each optical path of the optical dispersion compensating elements 703 and 704 constituting the composite optical dispersion compensation element 701.Delay time vs. wavelength characteristic This is a group of group velocity delay time-wavelength characteristic curves as a set of curves, and indicates the direction of the film thickness change of the multilayer films 7 1 1 and 7 2 1 as described by the arrows 7 08 and 7 09 in FIG. By inverting, it becomes a symmetrical curve group. Reference numeral 800 denotes a group velocity delay time-wavelength characteristic curve obtained by combining all the curves of the group velocity delay time-wavelength characteristic curve group 8001, that is, a composite optical dispersion compensating element 7 0 1 according to the present invention. 7 is a group velocity delay time-wavelength characteristic curve of FIG.
上記複合型の光分散補償素子 7 0 1の群速度遅延時間一波長特性の特徴は、 群 速度遅延時間一波長特性曲線群 8 0 1の個々の曲線よりも大きな極値と広い帯域 幅を有しているのに加えて、 光ファイバとレンズを用いて結合させて図 6 A〜D のように構成した場合に比べて、 光強度の損失が前記の如く大幅に減少している ことである。  The characteristics of the composite type optical dispersion compensating element 701 in terms of the group velocity delay time vs. wavelength characteristic include an extremum larger than the individual curves of the group velocity delay time vs. wavelength characteristic curve group 801 and a wider bandwidth. In addition to the above, the loss of light intensity is significantly reduced as described above, as compared with the case where the optical fiber and the lens are used for coupling as shown in FIGS. .
前記図 9の群速度遅延時間一波長特性曲線は、 従来の光分散補償素子に比較す るとその分散補償波長帯域幅値と補償量としての群速度遅延時間をかなり大きく することができるが、 通信系によってはさらに広レヽ帯域幅とさらに大きな補償量 が要求されている。 そのような要求を満たすことができる本発明の複合型の光分 散捕償素子の好適な形態を図 1 0 A〜Bと図 1 1 A〜Bを用いて以下に説明する。 図 1 0 A〜Bは本発明の複合型の光分散補償素子の特に好適な実施の形態を説 明する図であり、 図 1 0 Aは本発明の複合型の光分散補償素子の構成要素の 1つ である入射面を対向させて配置した一対の光分散補償素子 9 0 0のモデル的な断 面図、 図 1 0 Bは本発明の複合型の光分散補償素子を構成する入射面を対向させ て配置した一対の光分散補償素子 9 0 0を図1 O Aの矢印 9 4 1の方向から見た 図、 図 1 1 Aは、 図 1 O Aと図 1 0 Bの反射体 9 1 1の一例としてのコーナーキ ユーブを示す図、 図 1 1 Bはコーナーキューブを説明するための図である。 図 1 0 Bにおける点線は、 その上方にある部分の下側にあるために見えない部分を説 明の都合上示したものである。 The group velocity delay time-wavelength characteristic curve in FIG. 9 shows that the dispersion compensation wavelength bandwidth value and the group velocity delay time as a compensation amount can be considerably increased as compared with the conventional optical dispersion compensating element. Depending on the communication system, a wider bandwidth and a larger amount of compensation are required. A preferred embodiment of the composite light scattering / compensation element of the present invention that can satisfy such a requirement will be described below with reference to FIGS. 10A and 10B and 11A and 11B. FIGS. 10A and 10B are diagrams illustrating a particularly preferred embodiment of the composite type optical dispersion compensating element of the present invention. FIG. 10A is a diagram showing components of the composite type optical dispersion compensating element of the present invention. FIG. 10B is a model cross-sectional view of a pair of optical dispersion compensating elements 900 in which the incident surfaces are arranged so as to face each other, and FIG. 10B is an incident surface forming a composite type optical dispersion compensating element of the present invention. Fig. 11A shows a pair of optical dispersion compensating elements 900 arranged opposite to each other, as viewed from the direction of the arrow 941 of Fig. 1OA. Fig. 11A shows the reflectors 91 of Fig. 1OA and Fig. 10B. 1 is a diagram showing a corner cube as an example, and FIG. 11B is a diagram for explaining a corner cube. Figure 1 The dashed line at 0B shows the portion that is invisible because it is below the portion above it for convenience of explanation.
図 10 A.〜Bおよぴ図 1 1 A〜Bで、 符号 900は本発明の複合型の光分散補 償素子の一部を構成する一対の入射面を対向して配置した一対の光分散補償素子、 901および 902は光分散補償素子単体、 91 1〜 9 13は反射体、 921お ょぴ 922は光ファイバ、 930〜935、 9301〜9303、 931 1〜9 31 3、 932:!〜 9323、 933:!〜 9333、 971〜9 74は信号光の 光路、 941は矢印、 950、 9500はコーナーキューブ、 951〜 953は コーナーキューブ 950の反射面で立方体 960の内壁面、 960はコーナーキ ユーブ 950を説明するための立方体、 951 1〜 95 16と 961〜 963は 立方体 960の切断位置を示す実線と破線である。  In FIGS. 10A and 10B and FIGS. 11A and 11B, reference numeral 900 denotes a pair of light beams having a pair of incident surfaces, which constitute a part of the composite type optical dispersion compensating element of the present invention, opposed to each other. Dispersion compensating elements, 901 and 902 are optical dispersion compensating elements alone, 91 1 to 913 are reflectors, 921 to 922 are optical fibers, 930 to 935, 9301 to 9303, 931 1 to 9313, 932:! ~ 9323, 933:! ~ 9333, 971 ~ 974 is the optical path of the signal light, 941 is the arrow, 950, 9500 is the corner cube, 951 ~ 953 is the corner cube 950 is the reflecting surface of the cube 960, the inner wall of the cube 960, 960 is the corner Cubes 951 1 to 95 16 and 961 to 963 for explaining cube 950 are a solid line and a broken line indicating the cutting position of cube 960.
図 1 OAで示すように、 光分散補償素子単体 901および 902は、 信号光の 入射面が対向するように配置されており、 光ファイバ 921から出射された信号 光は、 光路 930を通って光分散捕償素子単体 902の入射面に入射して分散補 償を施されて反射し (すなわち、 光分散補償素子単体 902から出射し) 、 光路 931を通って光分散補償素子単体 901に入射して分散補償を施される。 同様 に、 前記光分散補償素子単体 901で分散補償を施された信号光は、 光路 932 に進み、 再び前記光分散補償素子単体 902で分散補償を施されて反射し、 光路 933に進み、 再び前記光分散補償素子単体 901で分散補償を施されて反射し、 光路 934に進み、 前記分散補償素子単体 902で分散補償を施されて反射して 光路 935に進み、 入射面を対向させて配置した一対の光分散補償素子 900か ら出射して反射体 9 1 1へと入射される。 そして、 反射体 91 1に入射された信 号光は反射体 9 1 1で反射されて再び前記光分散補償素子単体 902に光路 93 5と平行で逆向きであり、 かつ、 光路 935から、 たとえば図 1 OAの奥の方向 に少しずれた光路を通つて入射し、 前記で説明したのと同様に光分散補償素子単 体 902および 901で複数回の分散補償を施される。  As shown in FIG. 1 OA, the optical dispersion compensating elements 901 and 902 are arranged so that the signal light incident surfaces face each other, and the signal light emitted from the optical fiber 921 passes through the optical path 930 to be transmitted through the optical path 930. The light enters the incident surface of the dispersion compensating element 902, is subjected to dispersion compensation, is reflected (that is, exits from the light dispersion compensating element 902), and enters the light dispersion compensating element 901 through the optical path 931. Dispersion compensation. Similarly, the signal light that has been subjected to dispersion compensation by the optical dispersion compensating element 901 proceeds to an optical path 932, is again subjected to dispersion compensation by the optical dispersion compensating element 902, reflects, travels to an optical path 933, and again The dispersion compensating element 901 is subjected to dispersion compensation and reflected, and travels to an optical path 934.The dispersion compensation element is subjected to dispersion compensation, reflected and travels to an optical path 935 by the dispersion compensating element 902. The light exits from the pair of light dispersion compensating elements 900 and enters the reflector 911. Then, the signal light incident on the reflector 911 is reflected by the reflector 911 and is again directed to the optical dispersion compensating element 902 in a direction parallel to and opposite to the optical path 935, and from the optical path 935, for example, The light enters through an optical path slightly deviated in the depth direction of FIG. 1 OA, and is subjected to dispersion compensation a plurality of times by the optical dispersion compensating elements 902 and 901 in the same manner as described above.
また、 前記で説明した信号光の進行方向を矢印 941で示す方向から見た場合、 図 10Bで示すように、 光ファイバ 921から出射された信号光は、 光路 930 1を進み、 前記光分散補償素子単体 902に入射し、 前記光分散補償素子単体 9 0 2および 9 0 1で前記の如く交互に複数回の分散補償を施されながら光路 9 3 0 2を進み、 前記光分散補償素子単体 9 0 2から出射されて光路 9 3 0 3を進ん で前記反射体 9 1 1へと入射される。 In addition, when the traveling direction of the signal light described above is viewed from the direction indicated by the arrow 941, as shown in FIG. 10B, the signal light emitted from the optical fiber 921 travels along the optical path 9301, and the optical dispersion compensation is performed. Incident on the element unit 902, and the optical dispersion compensating element unit 9 At 0 2 and 9 0 1, the light travels along the optical path 932 while the dispersion compensation is performed a plurality of times alternately as described above, and the light exits from the optical dispersion compensating element 9 0 2 and travels along the optical path 9 3 0 3. The light is incident on the reflector 9 11.
反射体 9 1 1は、 光路 9 3 0 3から入射した光を反射して光路 9 3 1 1 へ出射 する。 光路 9 3 0 3と光路 9 3 1 1は、 図示の如く光分散捕償素子単体 9 0 1 , 9 0 2の異なる位置にあり、 互いに並行であり、 かつ逆向きである。  The reflector 911 reflects the light incident from the optical path 9303 and emits the light to the optical path 931 1. The optical path 9303 and the optical path 931 1 are located at different positions of the light dispersion compensating elements 9 01 and 9 02 as shown in the figure, are parallel to each other, and are in opposite directions.
このように反射体 9 1 1で反射された信号光は、 光路 9 3 1 1を進んで再ぴ光 分散補償素子単体 9 0 2および 9 0 1で交互に複数回の分散ネ詹償を施されながら 光路 9 3 1 2を進み、 前記光分散補償素子単体 9 0 2から出射されて光路 9 3 1 3を進んで、 光分散補償素子 9 0 0の反射体 9 1 1とは反対側に配置されている 反射体 9 1 2へと入射される。  The signal light reflected by the reflector 911 in this way travels along the optical path 931 and is subjected to dispersion compensation multiple times alternately by the reproducing dispersion compensating elements 902 and 901 alone. While traveling, the light travels along the optical path 9 3 1 2, exits from the optical dispersion compensating element 9 0 2, and travels along the optical path 9 3 13, on the side opposite to the reflector 9 11 of the optical dispersion compensating element 9 0 0 The light is incident on the placed reflector 9 12.
前記反射体 9 1 2で反射された信号光は、 光路 9 3 2 1を進んで光分散補償素 子単体 9 0 2および 9 0 1で複数回の分散補償を施されながら光路 9 3 2 2を進 み、 前記光分散補償素子単体 9 0 2から出射されて光路 9 3 2 3を進んで反射体 9 1 3へと入射される。  The signal light reflected by the reflector 912 travels along the optical path 9321, and is subjected to multiple dispersion compensation by the optical dispersion compensating elements 902 and 901, so that the optical path 932 Then, the light is emitted from the light dispersion compensating element 902 alone, travels along the optical path 932, and enters the reflector 913.
前記反射体 9 1 3で反射された信号光は、 光路 9 3 3 1を進んで光分散補償素 子単体 9 0 2および 9 0 1で複数回の分散補償を施されながら光路 9 3 3 2を進 み、 前記光分散補償素子単体 9 0 2から出射されて光路 9 3 3 3を進んで光ファ ィバ 9 2 2へと入射される。  The signal light reflected by the reflector 913 travels along an optical path 9331, and undergoes a plurality of dispersion compensations in the optical dispersion compensating elements 902 and 901, while the optical path 93332 Then, the light is emitted from the optical dispersion compensating element 902, travels along the optical path 9333, and enters the optical fiber 9222.
また、 光分散補償素子単体 9 0 1および 9 0 2は、 どちらか一方をミラー (反 射板) にすることもでき、 その場合も、 前記ミラーによって光分散補償素子に複 数回入射されて複数回の分散補償を施すことができる。  Either one of the light dispersion compensating elements 90 1 and 90 2 may be a mirror (reflection plate), and in this case, the light is incident on the light dispersion compensating element a plurality of times by the mirror. A plurality of dispersion compensations can be performed.
前記光路 9 3 1 3と光路 9 3 2 1、 光路 9 3 2 3と光路 9 3 3 1はそれぞれ異 なる位置にあり、 平行でかつ光の進行方向が逆である。  The optical path 931 13 and the optical path 9321, and the optical path 932 and the optical path 9331 are located at different positions, respectively, are parallel and the traveling directions of light are opposite.
なお、 図 1 0 A〜 Bでは入射面を対向配置した一対の光分散ネ霜償素子への信号 光の入射および出射が光分散補償素子単体 9 0 2において行われる場合を説明し たが、 本発明はこれに限定されるものでなく、 信号光の入射と出射が異なる光分 散補償素子単体において行われることもあり、 また入射光の入射のさせ方を変え ることで、 信号光が入射する光分散捕償素子単体を適宜変えることも出来、 その 場合は、 前記反射体 9 1 1〜 9 1 3を、 たとえば図 1 0 Aの矢印 9 4 1に平行な 方向に一対対向させた配置関係で配置させておくことにより実現することができ る。 そして、 前記一対対向させて配置させる反射体を一体構造にしたり、 各分散 補償素子単体と一体に形成することにより、 光分散捕償素子の小型化を図るとと もに、 信頼' I"生を高め、 実装しやすく、 量産コストの安い光分散補償素子を提供す ることができる。 Note that FIGS. 10A and 10B illustrate the case where the signal light enters and exits from the pair of optical dispersion compensating elements in which the incident surfaces are arranged to face each other, and is performed by the optical dispersion compensating element alone 102. The present invention is not limited to this, and the signal light may be input and output separately from the light dispersion compensating element alone, and the signal light may be changed by changing the way the incident light is incident. The incident light dispersion compensating element alone can be changed as appropriate. In this case, the reflectors 911 to 913 can be realized by, for example, arranging a pair of reflectors facing each other in a direction parallel to the arrow 941 in FIG. 10A. By making the pair of reflectors arranged to face each other in an integrated structure or integrally formed with each dispersion compensating element alone, the size of the light dispersion compensating element can be reduced, and the reliability can be improved. Therefore, it is possible to provide an optical dispersion compensating element which is easy to mount and low in mass production cost.
また、 図 7 A〜B、 図 8 , 図 1 0 A〜Bにおいて、 入射面を対向配置した一対 の光分散捕償素子について説明したが、 各入射面を対向配置した一対の光分散補 償素子の一方の光分散補償素子、 たとえば光分散補償素子 7 0 4と 7 0 7および 光分散補償素子単体 9 0 1をそれぞれ反射体に置き換えて、 各反射体の反射面と 光分散補償素子 7 0 3と 7 0 6およぴ光分散補償素子単体 9 0 2の各入射面とを 対向させて配置して、 光分散捕償素子 7 0 1, 7 0 2 , 9 0 0と同様の複合型の 光分散補償素子を構成することができる。 このような複合型の光分散補償素子も 本発明の光分散補償素子であって、 分散補償の目的に合わせて使い分けることに より、 大きな効果をあげることができる。  Also, in FIGS. 7A-B, 8 and 10A-B, a pair of light dispersion compensating elements having incident surfaces arranged opposite to each other has been described. One of the light dispersion compensating elements, for example, the light dispersion compensating elements 704 and 707 and the light dispersion compensating element alone 90 1 are each replaced with a reflector, and the reflecting surface of each reflector and the light dispersion compensating element 7 are replaced. 0 3 and 7 0 6 and the single element of the optical dispersion compensating element 9 0 2 are arranged so as to face each other, and a composite similar to the optical dispersion compensating elements 7 0 1, 7 0 2 and 9 0 0 Type light dispersion compensating element. Such a composite type optical dispersion compensating element is also the optical dispersion compensating element of the present invention, and a great effect can be obtained by properly using it according to the purpose of dispersion compensation.
また、 反射体 9 1 1〜9 1 3の一例として、 図 1 1 Aに示すコーナーキューブ 9 5 0を反射体として用いることができる。 前記コーナーキューブは反射面 9 5 1、 9 5 2、 9 5 3の 3つの互いに直交する反射面から構成されており、 図 1 1 Bに示す立方体 9 6 0を、 破線 9 6 1〜9 6 3で示す位置で切断した形状を有し ている。 そして反射面 9 5 1〜9 5 3は、 立方体 9 6 0を符号 9 5 1:!〜 9 5 1 6で示す位置で切断したコーナーキュープの内側 (すなわち、 立方体の時の立方 体の内側) の面である。  As an example of the reflectors 911 to 913, a corner cube 9550 shown in FIG. 11A can be used as the reflector. The corner cube is composed of three mutually orthogonal reflecting surfaces 951, 952, and 953, and the cube 9660 shown in FIG. 11B is replaced by broken lines 961 to 96. It has a shape cut at the position indicated by 3. And the reflecting surfaces 951 to 953 are the same as the cube 960 and the symbol 951 :! This is the inside surface of the corner cupe (ie, the inside of the cube when it is a cube) cut at the positions indicated by ~ 9516.
前記コーナーキューブ 9 5 0へ光路 9 7 1から入射された信号光は、 反射面 9 5 1で反射されて光路 9 7 2を通って反射面 9 5 2に入射し、 反射面 9 5 2で反 射されて光路 9 7 3を通り反射面 9 5 3に入射し、 反射面 9 5 3で反射されて光 路 9 6 4を通りコーナーキュープ 9 5 0から出射される。  The signal light incident on the corner cube 9550 from the optical path 971 is reflected by the reflective surface 951, passes through the optical path 972, enters the reflective surface 952, and is reflected by the reflective surface 952. The light is reflected and enters the reflection surface 953 through the optical path 973, is reflected by the reflection surface 9553, passes through the optical path 964, and exits from the corner cup 9550.
なお、 コーナーキューブ 9 5 0の小型化の例として、 立方体 9 6 0を破線 9 6 1〜9 6 3の位置で切断して、 コーナーキューブ 9 5 0 0を構成することができ る。 反射面の大きさがそれぞれコーナーキューブ 9 5 0の場合の半分になるので、 各光路に制約があるが、 基本的にはコーナーキューブ 9 5 0の場合と同様である。 以上説明したように、 本発明の最大の特徴は、 入射面を対向させて配置した少 なくとも一対の光分散補償素子を含む複数の光分散補償素子を組み合わせた複合 型の光分散補償素子を構成し、 それを用いて分散補償を行うようにしたところに あり、 前記の如く構成している前記各光分散補償素子の入力端と出力端を除いて 接続のためのレンズと光ファイバを少なくし構成によってはそれらを必要としな いところにあり、 広い波長帯域においても分散補償を行うことが出来る、 光学損 失の極めて少ない光分散補償素子を安価に提供することができるところにある。 以上、 一 ffl^の入射面が対向して配置された光分散補償素子や反射体の反射面と 光分散補償素子の入射面とを対向して配置した複合型の光分散補償素子を例にと つて本発明の光分散補償素子を説明したが、 本発明はこれに限定されず、 入射面 が対向して配置された光分散補償素子を複数組組み合わせて構成したもの、 さら には、 入射面が対向配置された光分散補償素子に入射面が対向配置されていない 光分散補償素子を Eみ合わせたものなども本発明に含まれるものである。 As an example of the miniaturization of the corner cube 950, the cube 960 can be cut at the positions indicated by broken lines 961 to 963 to form the corner cube 9500. Since the size of the reflecting surface is half that of the corner cube 950, Although there are restrictions on each optical path, it is basically the same as that of the corner cube 9550. As described above, the most significant feature of the present invention is that a composite type optical dispersion compensating element combining a plurality of optical dispersion compensating elements including at least a pair of optical dispersion compensating elements arranged with their incident surfaces facing each other. It is configured to perform dispersion compensation using the same, and the number of lenses and optical fibers for connection is reduced except for the input end and the output end of each of the optical dispersion compensating elements configured as described above. However, depending on the configuration, they are not required, and an optical dispersion compensating element with extremely small optical loss that can perform dispersion compensation even in a wide wavelength band can be provided at low cost. As described above, an example of a light dispersion compensating element in which one ffl ^ incident surface is arranged oppositely, or a compound type light dispersion compensating element in which the reflecting surface of a reflector and the incident surface of the light dispersion compensating element are arranged oppositely. The light dispersion compensating element according to the present invention has been described above, but the present invention is not limited to this, and the light dispersion compensating element is configured by combining a plurality of sets of light dispersion compensating elements whose incident surfaces are opposed to each other. The present invention includes, for example, a combination of a light dispersion compensating element whose surface is opposed to a light dispersion compensating element whose input surface is not opposed to the light dispersion compensating element.
なお、 本発明の複合型の分散補償素子およびそれと実質的に同様の構成にした 分散補償素子を用いて分散補償を行う分散補償方法によれば、 1 5 n m, 3 0 η mなどの広い波長帯域のみならず、 たとえば、 光通信における 1 n mなどと狭い 波長帯域を取扱う通信系に適用することもでき、 3 n mあるいは 5〜1 0 n mの 波長帯域を取扱う通信系に適用することもでき、 いずれの場合も前記の如き極め て大きな効果をもたらすものである。  According to the dispersion compensating element of the present invention and the dispersion compensating method of performing dispersion compensation using the dispersion compensating element having substantially the same configuration as that of the composite type compensating element, a wide wavelength such as 15 nm and 30 ηm can be obtained. It can be applied not only to bandwidths but also to communication systems that handle wavelength bands as narrow as 1 nm in optical communications, for example, and can also be applied to communication systems that handle wavelength bands of 3 nm or 5 to 10 nm. In any case, the extremely large effects as described above can be obtained.
このような本発明による複合型の光分散補償素子を用いて、 4 0 G b p sの通 信ビットレートで 6 0 k mの伝送を行う通信システムにおいて分散を捕償した結 果、 きわめて良好な分散補償を行うことが出来た上に、 信号光が光分散補償素子 を透過することによる損失は、 光分散補償素子をレンズと光フアイバで構成する コリメータのみで行った場合に比較して、 きわめて低いものであった。  By using such a composite optical dispersion compensator according to the present invention to compensate for dispersion in a communication system that transmits 60 km at a communication bit rate of 40 Gbps, extremely good dispersion compensation is achieved. And the loss due to the transmission of the signal light through the optical dispersion compensator is extremely low compared to the case where the optical dispersion compensator is performed only with a collimator consisting of a lens and an optical fiber. Met.
以上、 本発明に用いる光分散補償素子を中心に本発明の複合型の光分散補償素 子とその素子を用いた光分散補償方法を説明したが、 本発明の光分散補償方法の もっとも注目すべき特徴は、 本発明に用いる複数の光分散補償素子の少なくとも 一対を、 入射面を対向させて配置し、 その対向配置した一対の光分散捕償素子の 一方に信号光を入射し、 分散補償を行なって反射し、 他方の光分散補償素子に入 射し、 そこで分散補償を行なって反射し、 再び前記一方の光分散補償素子に入射 して分散補償を行なって反射するという分散捕償を前記一対の光分散補償素子の 間で複数回繰り返すことであり、 前記一対の光分散補償素子に信号光を入射して から出射するまでの間に生ずる損失を、 前記のカツプリングロスを生じることな く、 カップリングロスより損失が圧倒的に小さい反射ロスのみに抑え、 広い波長 帯域において 2次や 3次の低損失の分散補償をすることを可能にしたところにあ る。 そして、 本発明の光分散補償方法の特に注目すべき多の特徴のひとつは、 反 射体の反射面と光分散補償素子の入射面とを対向させて配置した複合型の光分散 補償素子を構成して、 前記一対の光分散補償素子の入射面を対向させて配置した 複合型の光分散補償素子と同様に用いることができることである。 As described above, the composite type optical dispersion compensating element of the present invention and the optical dispersion compensating method using the element have been described centering on the optical dispersion compensating element used in the present invention. The characteristic to be achieved is that at least one pair of the plurality of light dispersion compensating elements used in the present invention is arranged with the incident surfaces facing each other, and the pair of light dispersion compensating elements arranged opposite to each other. The signal light is incident on one side, is reflected by performing dispersion compensation, is incident on the other optical dispersion compensating element, is reflected by performing dispersion compensation there, and is incident again on the one optical dispersion compensating element to thereby perform dispersion compensation. Is performed a plurality of times between the pair of optical dispersion compensating elements, and a loss generated between the time when the signal light is incident on the pair of optical dispersion compensating elements and the time when the signal light is emitted is reflected. Without the coupling loss described above, only the reflection loss that is overwhelmingly smaller than the coupling loss, making it possible to perform second- and third-order low-loss dispersion compensation over a wide wavelength band. It is in the place. One of the notable features of the optical dispersion compensation method of the present invention is that a composite type optical dispersion compensation element in which the reflecting surface of the reflector and the incident surface of the optical dispersion compensation element are arranged to face each other. It can be used in the same manner as a composite type optical dispersion compensating element in which the incident surfaces of the pair of optical dispersion compensating elements are arranged to face each other.
また、 本発明の光分散補償素子を適宜構成して、 広い波長帯域、 たとえば、 1 2 6 0〜: 1 3 6 0 n m、 1 3 6 0〜1 4 6 0 n m、 1 4 6 0〜1 5 3 0 n m、 1 Further, the optical dispersion compensating element of the present invention is appropriately configured to have a wide wavelength band, for example, 1260 to: 1360 nm, 1360 to 1460 nm, 1460 to 1 530 nm, 1
5 3 0〜1 5 6 5 n m、 1 5 6 5〜1 6 2 5 n m、 1 6 2 5〜 1 6 7 5 n mのい ずれか 1つの波長範囲において少なくとも 1つの極値を有する群速度遅延時間一 波長特性曲線を有するように分散補償素子を構成して、 通信事情に合わせた最適 の補償を行えるようにすることも可能で、 また、 分散補償素子全体として、 1 2Group velocity delay with at least one extreme in any one of the following wavelengths: 530 to 155 nm, 156 to 165 nm, 166 to 165 nm It is also possible to configure the dispersion compensating element to have a time-wavelength characteristic curve so that optimal compensation can be performed in accordance with the communication situation.
6 0〜1 7 0 0 n mの波長域における複数の波長において極値を有する群速度遅 延時間一波長特性曲線を有するように分散補償素子を構成することも可能となる。 本発明はこのような大きな自由度を活かして、 実際の通信で要求される 2次や 3 次の分散補償をすることを可能にしたところにあり、 従来の光通信システムの多 くを活用して高速 ·長距離通信を可能にするものである。 産業上の利用可能十生 It is also possible to configure the dispersion compensating element so as to have a group velocity delay time-wavelength characteristic curve having an extreme value at a plurality of wavelengths in a wavelength range of 60 to 170 nm. The present invention makes use of such a large degree of freedom to make it possible to perform secondary and tertiary dispersion compensation required in actual communication, and makes use of many of the conventional optical communication systems. It enables high speed and long distance communication. Industrial availability
以上、 本発明を詳細に説明したが、 本発明によれば、 図 5 B〜Dを用いて説明 した群速度遅延時間一波長特性曲線を種々用意することによって、 各チャンネル の良好な分散補償を行うことが出来る上に、 複数チャンネルの良好な分散補償を も行うことが出来る。 そして、 本発明の光分散補償素子による分散補償は、 3次 の分散補償において特に大きな効果をもたらすことに加えて、 群速度遅延時間一 波長特性の適切な調整によって、 2次の分散補償をも行い得るものである。 As described above, the present invention has been described in detail.According to the present invention, by preparing various group velocity delay time-wavelength characteristic curves described with reference to FIGS. In addition to this, good dispersion compensation for multiple channels can be performed. The dispersion compensation by the optical dispersion compensating element of the present invention has a particularly great effect in the third-order dispersion compensation, and also has a large group velocity delay time. By appropriate adjustment of the wavelength characteristics, secondary dispersion compensation can be performed.
本発明は、 たとえば 4 0 G b p sで 1 0, 0 0 0 k mを送信するような高速で 長距離の光通信の実用化には不可欠のものであり、 利用範囲も広く、 光通信分野 の発展に大きく貢献するものである。  INDUSTRIAL APPLICABILITY The present invention is indispensable for the practical use of high-speed and long-distance optical communication such as transmitting 100,000 km at 40 Gbps, has a wide range of use, and develops the optical communication field. It greatly contributes to.
そして、 本発明による特殊な多層膜を用いた光分散補償素子は、 小型で量産に 適しており、 価格も安価に提供することが出来るので、 光通信の発展に寄与する ところは極めて大きい。  The optical dispersion compensating element using the special multilayer film according to the present invention is small in size, suitable for mass production, and can be provided at a low price, which greatly contributes to the development of optical communication.
そして、 本発明の光分散補償素子を用いることにより、 既存の光通信システム の多くを利用することを可能にする点で、 社会的経済的効果が多大なものである c By using the optical dispersion compensation device of the present invention, in that it allows to take advantage of many existing optical communication systems, social and economic effects is of great c

Claims

請求の範囲 The scope of the claims
1 . 光ファイバを通信伝送路に用いる通信に使用して波長分散としての分散を 補償することが出来る光分散補償素子を組み合わせた複合型の光分散補償素子で あって、 前記複合型の光分散補償素子は、 それを構成する光分散補償素子のうち の少なくとも一部の光分散補償素子が、 前記少なくとも一部の光分散補償素子へ の光の入射面の少なくとも一部に対向して、 その光分散補償素子とは別の光分散 補償素子の入射面、 あるいは、 以下において反射体 Aとも呼称する反射体の反射 面が配置された構成になっていることを特徴とする複合型の光分散補償素子。 1. A composite type optical dispersion compensating element combining an optical dispersion compensating element capable of compensating dispersion as chromatic dispersion by using an optical fiber for communication using a communication transmission line, wherein the composite type optical dispersion In the compensating element, at least a part of the light dispersion compensating elements constituting the compensating element faces at least a part of a light incident surface on the at least some light dispersion compensating elements, and A composite type optical dispersion characterized in that an incident surface of an optical dispersion compensating element different from the optical dispersion compensating element or a reflecting surface of a reflector which is also referred to as a reflector A below is arranged. Compensating element.
2 . 請求項 1に記載の複合型の光分散補償素子において、 前記複合型の光分散 補償素子を構成する少なくとも一部の光分散補償素子が、 分散を補償することが 出来る多層膜を用いた素子であるいわゆる多層膜素子を有する光分散補償素子で あることを特徴とする複合型の光分散補償素子。 2. The composite type optical dispersion compensating element according to claim 1, wherein at least a part of the optical type dispersion compensating element constituting the composite type optical dispersion compensating element uses a multilayer film capable of compensating dispersion. A composite light dispersion compensating element characterized by being a light dispersion compensating element having a so-called multilayer film element.
3 . 請求項 1に記載の複合型の光分散補償素子において、 前記複合型の光分散 補償素子を構成する前記光の入射面の少なくとも一部に対向して、 その光分散補 償素子とは別の光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置さ れている光分散補償素子が、 分散を補償することが出来る多層膜を用いた素子で あるいわゆる多層膜素子を有する光分散補償素子であることを特徴とする複合型 の光分散補償素子。 3. The composite light dispersion compensating element according to claim 1, wherein the light dispersion compensating element is opposed to at least a part of the light incident surface constituting the composite light dispersion compensating element. The light dispersion compensating element on which the incident surface of another light dispersion compensating element or the reflecting surface of the reflector A is disposed has a so-called multilayer element which is an element using a multilayer film capable of compensating for dispersion. A composite light dispersion compensating element characterized by being a light dispersion compensating element.
4 . 請求項 1に記載の複合型の光分散補償素子において、 前記複合型の光分散 補償素子を構成する前記光の入射面の少なくとも一部に対向して、 その光分散捕 償素子とは別の光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置さ れている光分散補償素子の前記光の入射面とそれに対向して配置されている前記 別の光分散補償素子の入射面あるいは前記反射体 Aの反射面のいずれか一方また は双方が平面であることを特徴とする複合型の光分散補償素子。 4. The composite light dispersion compensation element according to claim 1, wherein the light dispersion compensation element faces at least a part of the light incident surface of the composite light dispersion compensation element. The incident surface of another light dispersion compensating element or the light incident surface of the light dispersion compensating element in which the reflecting surface of the reflector A is disposed and the light dispersion surface of the another light dispersion compensating element disposed opposite thereto. Either one or both of the incident surface and the reflecting surface of the reflector A are flat, and the composite type optical dispersion compensating element is characterized in that:
5 . 請求項 1に記載の複合型の光分散補償素子において、 前記複合型の光分散 補償素子を構成する前記光の入射面の少なくとも一部に対向して、 その光分散補 償素子とは別の光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置さ れている光分散補償素子の前記光の入射面とそれに対向して配置されている前記 別の光分散補償素子の入射面あるいは前記反射体 Aの反射面のいずれか一方また は双方が曲面であることを特徴とする複合型の光分散補償素子。 5. The composite light dispersion compensating element according to claim 1, wherein the light dispersion compensating element faces at least a part of the light incident surface constituting the composite light dispersion compensating element. The incident surface of another light dispersion compensating element or the light incident surface of the light dispersion compensating element in which the reflecting surface of the reflector A is disposed and the light dispersion surface of the another light dispersion compensating element disposed opposite thereto. A composite light dispersion compensating element, wherein one or both of the incident surface and the reflecting surface of the reflector A is a curved surface.
6 . 請求項 2に記載の複合型の光分散補償素子において、 前記光分散補償素子 を構成する多層膜素子が、 少なくとも 3層の反射層とも称する光反射層と少なく とも 2層の光透過層を有する多層膜を有し、 前記各 1層の光透過層は前記反射層 のうちの 2層の反射層に挟まれているように形成されており、 前記多層膜は入射 光の、 波長が λであるときに中心波長 λと呼称する中心波長に対する前記反射層 の反射率が 9 9 . 5 %以上の反射層を少なくとも 1層有しており、 入射面から前 記多層膜の厚み方向にすすむにつれて最初に現れる前記反射率が 9 9 . 5 %以上 の反射層の位置までに配置されている各反射層の反射率が、 入射面側から前記多 層膜の厚み方向にすすむにつれて順次大きくなっていることを特徴とする複合型 の光分散補償素子。 6. The composite type optical dispersion compensating element according to claim 2, wherein the multilayer element constituting the optical dispersion compensating element comprises at least three reflective layers and at least two light transmitting layers. Wherein the one light transmission layer is formed so as to be sandwiched between two reflection layers of the reflection layer, and the multilayer film has a wavelength of incident light, When the wavelength is λ, the reflective layer has at least one reflective layer having a reflectance of 99.5% or more with respect to a central wavelength referred to as a central wavelength λ, and extends from the incident surface in the thickness direction of the multilayer film. The reflectivity of each of the reflective layers arranged up to the position of the reflective layer where the reflectivity which appears first as 99.5% or more increases gradually as it proceeds in the thickness direction of the multilayer film from the incident surface side A composite type optical dispersion compensating element characterized in that:
7 . 請求項 1に記載の複合型の光分散補償素子において、 前記光分散補償素 子への光の入射面の少なくとも一部に対向して、 その光分散補償素子とは別の光 分散補償素子の入射面あるいは前記反射体 Αの反射面が配置された構成になって いる光分散補償素子の少なくとも一部に対向するかもしくはその近傍に、 以下、 反射体 Bと呼称する前記反射体 Aとは別の反射体もしくは反射部が設けられてい ることを特徴とする複合型の光分散補償素子。 7. The composite type optical dispersion compensating element according to claim 1, wherein at least a part of a light incident surface of the optical dispersion compensating element is opposed to another optical dispersion compensating element. The reflector A, which is hereinafter referred to as a reflector B, is opposed to or near at least a part of the light dispersion compensating element in which the entrance surface of the element or the reflection surface of the reflector is arranged. A composite light dispersion compensating element, characterized in that a reflector or a reflecting portion different from the above is provided.
8 . 請求項 7に記載の複合型の光分散補償素子において、 前記反射体 Bが、 入 射面が対向して配置された一対の光分散補償素子のうちのいずれかから、 あるい は入射面に対向して前記反射体 Aの反射面が配置されている光分散補償素子と前 記反射体 Aのうちのいずれかから出力される光 Aと呼称する光を反射して光分散 補償素子あるいは前記反射体 Aへ入射させることが出来るように配置されている ことを特徴とする複合型の光分散補償素子。 8. The composite type optical dispersion compensating element according to claim 7, wherein the reflector B is formed from one of a pair of optical dispersion compensating elements whose incident surfaces are opposed to each other or is incident thereon. A light dispersion compensating element in which the reflection surface of the reflector A is disposed opposite to the surface, and a light referred to as light A output from one of the reflectors A, and a light dispersion. A composite light dispersion compensating element, which is arranged so as to be able to enter the compensating element or the reflector A.
9 . 請求項 8に記載の複合型の光分散補償素子において、 前記光 Aが前記反射 体 Bによる反射光 Bと呼称する光として入射されるところが、 前記光 Aが出射さ れた光分散補償素子あるいは反射体 Aであることを特徴とする複合型の光分散補 償素子。 9. The composite type dispersion compensating element according to claim 8, wherein the light A is incident as light referred to as reflected light B by the reflector B, but the light A is emitted. A composite light dispersion compensating element characterized by being an element or a reflector A.
1 0 . 請求項 9に記載の複合型の光分散補償素子において、 前記光分散補償素 子における前記光 Aの出射位置と前記光 Bの入射位置が異なる位置であることを 特徴とする複合型の光分散補償素子。 10. The composite type optical dispersion compensating element according to claim 9, wherein an emission position of the light A and an incident position of the light B in the optical dispersion compensation element are different from each other. Light dispersion compensating element.
1 1 . 請求項 9に記載の複合型の光分散捕償素子において、 前記光 Aと光 Bは 平行で進行方向が逆向きであることを特徴とする複合型の光分散補償素子。 11. The composite light dispersion compensation element according to claim 9, wherein the light A and the light B are parallel and travel in opposite directions.
1 2 . 請求項 7に記載の複合型の光分散補償素子において、 前記反射体 Bが少 なくとも 3つの反射面を有することを特徴とする複合型の光分散補償素子。 12. The composite light dispersion compensation element according to claim 7, wherein the reflector B has at least three reflecting surfaces.
1 3 . 請求項 1 2に記載の複合型の光分散補償素子において、 前記反射体 Bの 少なくとも 1つの反射面が可動であることを特徴とする複合型の光分散補償素子。 13. The composite light dispersion compensating element according to claim 12, wherein at least one reflecting surface of the reflector B is movable.
1 4 . 請求項 1 0に記載の複合型の光分散補償素子において、 反射体 Bの前記 可動な反射面を駆動する手段が、 手動による手段もしくは電気的な手段であるこ とを特徴とする複合型の光分散補償素子。 14. The composite type optical dispersion compensating element according to claim 10, wherein the means for driving the movable reflecting surface of the reflector B is a manual means or an electric means. Type light dispersion compensation element.
1 5 . 請求項 1 4に記載の複合型の光分散補償素子において、 前記反射体 Bが、 前記入射面が対向して配置された一対の光分散補償素子の各光分散補償素子単体 とも呼称する各光分散補償素子のいずれかからの出射光を、 あるいは、 対向して 配置されている前記反射体 Aの反射面と光分散捕償素子のレ、ずれかからの出射光 を反射することができるように、 前記入射面が対向して配置された一対の光分散 補償素子あるいは前記対向して配置された光分散補償素子と反射体 Aの同じ側の 端部に少なくとも一対設けられているか、 または、 一対の反射体部が、 前記入射 面が対向して配置された一対の光分散補償素子の少なくとも一方に、 あるいは、 対向して配置された光分散補償素子と反射体 Aの少なくとも一方に一体的に設け られていることを特徴とする複合型の光分散補償素子。 15. The composite type optical dispersion compensating element according to claim 14, wherein the reflector B is also referred to as a single optical dispersion compensating element of a pair of optical dispersion compensating elements arranged so that the incident surfaces face each other. Light emitted from any one of the light dispersion compensating elements, or light emitted from the reflection surface of the reflector A disposed opposite to the light dispersion compensation element So that at least one pair of the light dispersion compensating elements or the light dispersion compensating elements disposed so as to face each other and the end of the reflector A on the same side of the reflector A so as to reflect the light. Or a pair of reflector portions are provided on at least one of a pair of light dispersion compensating elements whose incident surfaces are opposed to each other, or a light dispersion compensating element and a reflector which are opposed to each other. A composite light dispersion compensating element, which is provided integrally with at least one of A.
1 6 . 請求項 1 2に記載の複合型の光分散補償素子において、 前記反射体 Bが コーナーキューブであることを特徴とする複合型の光分散補償素子。 16. The composite light dispersion compensation element according to claim 12, wherein the reflector B is a corner cube.
1 7 . 請求項 9に記載の複合型の光分散補償素子において、 前記光 Bが前記入 射面が対向して配置された一対の光分散補償素子のいずれか、 あるいは、 前記対 向して配置された光分散補償素子と反射体 Aのいずれかに入射して後に進行する 方向は、 前記光 Aが出射する前に該光分散補償素子内を進行してきた進行方向に 対して平行でありかつ逆方向であることを特徴とする複合型の光分散補償素子。 17. The composite type optical dispersion compensating element according to claim 9, wherein the light B is one of a pair of optical dispersion compensating elements arranged such that the light-entering surfaces face each other, or the light B is directed to the opposite side. The direction in which the light A enters one of the disposed light dispersion compensating element and the reflector A and travels later is parallel to the traveling direction in which the light A travels in the light dispersion compensating element before the light A exits. And a composite type optical dispersion compensating element characterized by being in the opposite direction.
1 8 . 請求項 7に記載の複合型の光分散補償素子において、 前記入射面が対向 して配置された一対の光分散補償素子の端部の、 あるいは、 前記対向して配置さ れた光分散補償素子と反射体 Aの端部の複数箇所に対応して反射体 Bが設けられ ていることを特徴とする複合型の光分散補償素子。 18. The composite type optical dispersion compensating element according to claim 7, wherein the light is disposed at an end of a pair of optical dispersion compensating elements having the incident surfaces opposed to each other, or at the end of the pair of optical dispersion compensating elements. A composite light dispersion compensating element comprising a dispersion compensating element and a reflector B provided at a plurality of locations at the end of the reflector A.
1 9 . 請求項 1 8に記載の複合型の光分散補償素子において、 前記入射面が対 向して配置された一対の光分散補償素子の各光分散補償素子単体の入射面に、 あ るいは、 前記反射体 Aに対向して配置された光分散補償素子の入射面に入射して 分散補償を受けながら進行する信号光の進行方向が、 前記入射面の一方の側から 他方の側に移動した位置において、 順に、 交互に反対向きであることを特徴とす る複合型の光分散補償素子。 19. The composite type optical dispersion compensating element according to claim 18, wherein the incident surface of each of the individual optical dispersion compensating elements of the pair of optical dispersion compensating elements disposed opposite to each other is provided. The traveling direction of the signal light that is incident on the incident surface of the optical dispersion compensating element disposed to face the reflector A and travels while undergoing dispersion compensation is changed from one side of the incident surface to the other side. A composite type optical dispersion compensating element characterized in that, in a moved position, the directions are sequentially and alternately opposite.
2 0 . 請求項 3に記載の複合型の光分散補償素子において、 前記入射面を対向 して配置した一 の光分散補償素子の各光分散補償素子単体が、 それぞれ異なる 基板上に形成されている多層膜素子で構成されていることを特徴とする複合型の 光分散補償素子。 20. The composite type optical dispersion compensator according to claim 3, wherein the incident surfaces are opposed to each other. A composite light dispersion compensating element characterized in that each light dispersion compensating element of one light dispersion compensating element arranged in this manner is constituted by a multilayer film element formed on a different substrate.
2 1 . 請求項 3に記載の複合型の光分散補償素子において、 前記入射面が対向 して配置されている少なくとも一対の前記光分散補償素子の各光分散補償素子単 体が、 入射光を透過することが出来る同一の基板の互いに対向する面上に、 入射 面が前記基板側になるように形成されていることを特徴とする複合型の光分散補 償素子。 21. The composite type optical dispersion compensating element according to claim 3, wherein at least one pair of the optical dispersion compensating elements of the at least one pair of the optical dispersion compensating elements, the incident surfaces of which are opposed to each other, emit incident light. A composite light dispersion compensating element, wherein an incident surface is formed on the mutually opposing surfaces of the same substrate capable of transmitting light so that an incident surface is on the substrate side.
2 2 . 請求項 2 0に記載の複合型の光分散補償素子において、 前記光分散補償 素子や各光分散ネ肅償素子単体の少なくとも 1つを構成する多層膜の前記基板側か ら少なくとも 3層の反射層の反射率が、 前記基板に近い方の反射層から遠い方の 反射層になるにつれて大きくなつていることを特徴とする複合型の光分散補償素 子。 22. The composite type optical dispersion compensating element according to claim 20, wherein at least three layers from the substrate side of a multilayer film constituting at least one of the optical dispersion compensating element and each of the individual optical dispersion compensating elements. A composite light dispersion compensating element, wherein the reflectance of the reflective layer of the layer increases from the reflective layer closer to the substrate to the reflective layer farther from the substrate.
2 3 . 請求項 1に記載の複合型の光分散補償素子において、 少なくとも一組の 前記入射面が対向して配置された一対の光分散補償素子の、 あるいは、 前記光分 散補償素子の入射面と反射体 Aの反射面が対向して配置されている光分散補償素 子の信号光の入射位置と出射位置が、 前記入射面が対向して配置された一対の光 分散補償素子の、 あるいは、 前記反射体 Aと対向して配置されている光分散補償 素子の互いに異なる側にあることを特徴とする複合型の光分散補償素子。 23. The composite type optical dispersion compensating element according to claim 1, wherein at least one pair of the optical dispersion compensating elements in which at least one pair of the incident surfaces are arranged to face each other, or the optical dispersion compensating element is incident. The incident position and the emission position of the signal light of the optical dispersion compensating element in which the surface and the reflecting surface of the reflector A are arranged to face each other are the same as those of the pair of optical dispersion compensating elements in which the incident surface is arranged to face. Alternatively, a composite type optical dispersion compensating element, which is located on different sides of the optical dispersion compensating element arranged to face the reflector A.
2 4 . 請求項 1に記載の複合型の光分散補償素子において、 少なくとも一組の 前記入射面が対向して配置された一対の光分散補償素子の、 あるいは、 前記光分 散補償素子の入射面と反射体 Aの反射面が対向して配置されている光分散補償素 子の信号光の入射位置と出射位置が、 前記入射面が対向して配置された一対の光 分散補償素子の、 あるいは、 前記反射体 Aと対向して配置されている光分散補償 素子の同じ側にあることを特徴とする複合型の光分散補償素子。 24. The composite type optical dispersion compensating element according to claim 1, wherein at least one set of the pair of optical dispersion compensating elements in which the incident surfaces are opposed to each other or the optical dispersion compensating element is incident. The incident position and the emission position of the signal light of the optical dispersion compensating element in which the surface and the reflecting surface of the reflector A are arranged to face each other are the same as those of the pair of optical dispersion compensating elements in which the incident surface is arranged to face. Alternatively, a composite light dispersion compensating element is provided on the same side of the light dispersion compensating element that is arranged to face the reflector A.
2 5 . 請求項 2に記載の複合型の光分散補償素子において、 少なくとも 1つの 前記多層膜素子が、 光学的性質が異なる積層膜を少なくとも 5種類、 すなわち、 光の反射率や膜厚などの光学的な性質の異なる積層膜を少なくとも 5層有する多 層膜を有し、 前記多層膜が、 光の反射率が互いに異なる少なくとも 2種類の反射 層を含む少なくとも 3種類の反射層を有するとともに、 前記 3種類の反射層の他 に少なくとも 2つの光透過層を有し、 前記 3種類の反射層の各 1層と前記 2つの 光透過層の各 1層とが交互に配置されており、 前記多層膜が、 膜の厚み方向の一 方の側から順に、 第 1の反射層である第 1層、 第 1の光透過層である第 2層、 第 2の反射層である第 3層、 第 2の光透過層である第 4層、 第 3の反射層である第 5層から構成されており、 入射光の中心波長を; Lとして、 前記第 1〜第 5層にお いて、 光路長、 すなわち、 入射光の中心波長; の光に対する光路長として考えた ときの前記多層膜を構成する各層の膜厚が、 おおむね; 1 / 4の整数倍 ± 1 %の範 囲の値の膜厚であり、 かつ、 前記多層膜が、 膜厚がおおむね; Lの 1 / 4倍 ± 1 % で屈折率が高い方の層である層 Hと膜厚がおおむね; Lの 1 / 4倍 ± 1 %で屈折率 が低レ、方の層である層 Lを組み合わせた層の複数組で構成されており、 25. The composite type optical dispersion compensator according to claim 2, wherein at least one of the multilayer devices has at least five types of laminated films having different optical properties, that is, such as light reflectance and film thickness. A multilayer film having at least five laminated films having different optical properties, wherein the multilayer film has at least three types of reflective layers including at least two types of reflective layers having different light reflectances from each other; It has at least two light transmission layers in addition to the three types of reflection layers, wherein each one of the three types of reflection layers and each one of the two light transmission layers are alternately arranged, The multilayer film includes, in order from one side in the thickness direction of the film, a first layer that is a first reflective layer, a second layer that is a first light transmitting layer, a third layer that is a second reflective layer, It is composed of a fourth layer, which is a second light transmission layer, and a fifth layer, which is a third reflection layer. Let L be the central wavelength of the incident light, and L be the optical path length in the first to fifth layers, that is, the optical path length for the light of the central wavelength of the incident light. The film thickness is approximately an integer multiple of 1/4 ± 1%, and the multilayer film has a film thickness of approximately 1/4 times L and a refractive index of ± 1%. Is about 1/4 times ± 1% of L and has a low refractive index, and is composed of multiple sets of layers combining the upper layer, Layer L. ,
多層膜 Aを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 H、 層 Lの順に各 1層ずつ組み合わせた層である H Lの層を 3セット積層して構成される第 1層、 層 Hと層 Hを組み合わせた層で ある HHの層を 1 0セット積層して構成される第 2層、 層 Lを 1層と H Lの層を 7セットとを積層して構成される第 3層、 HHの層を 3 8セット積層して構成さ れる第 4層、 層 Lを 1層と H Lの層を 1 3セットとを積層して構成される第 5層 でそれぞれ形成されている多層膜とし、  The multilayer film A is a layer in which the five-layer laminated film, that is, the first to fifth layers are combined one by one in the order of layer H and layer L in order from one side in the thickness direction of the multilayer film. The first layer composed of three sets of HL layers, the second layer composed of 10 sets of HH layers that are a combination of layers H and H, and one layer L composed of layers H and H The third layer is formed by laminating 7 sets of HL layers, the fourth layer is formed by laminating 38 sets of HH layers, 1 layer L and 13 sets of HL layers And a multi-layered film formed by the fifth layer composed of
多層膜 Bを、 前記多層膜 Aの HHの層を 1 0セット積層して形成されている前 記第 2層の代わりに、 前記第 2層が、 多層膜 Aの場合と同じ方向の膜の厚み方向 の一方の側から順に、 HHの層を 3セット、 層 Lと層 Lを組み合わせた層である L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 2セット、 HHの層を 1 セットをこの順に積層して構成される積層膜で形成されている多層膜とし、 多層膜 Cを、 前記多層膜 Aまたは Bの HHの層を 3 8セット積層して形成され ている前記第 4層の代わりに、 前記第 4層が、 多層膜 Aの場合と同じ方向の膜の 厚み方向の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 HH の層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セッ ト、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層 を 3セット、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 2セットをこの順に積層して構成される積層膜 で形成されている多層膜とし、 Instead of the second layer, which is formed by laminating 10 sets of HH layers of the multilayer film A, the second layer is a multilayer film having the same direction as that of the multilayer film A. In order from one side in the thickness direction, 3 sets of HH layers, 3 sets of LL layers, which is a layer combining layers L and L, 3 sets of HH layers, 2 sets of LL layers, and 2 sets of HH layers One set of layers is a multilayer film formed by stacking layers in this order, and a multilayer film C is formed by stacking 38 sets of HH layers of the multilayer film A or B. In place of the fourth layer, the fourth layer has three sets of HH layers and three sets of LL layers in order from one side in the thickness direction of the film in the same direction as that of the multilayer film A, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers are stacked in this order It is a multilayer film composed of a multilayer film,
多層膜 Dを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 L、 層 Hの順に各 1層ずつ組み合わせた層である L Hの層を 5セット積層して構成される第 1層、 L Lの層を 7セット積層して構 成される第 2層、 層 Hを 1層と L Hの層を 7セットとを積層して構成される第 3 層、' L Lの層を 5 7セット積層して構成される第 4層、 層 Hを 1層と L Hの層を 1 3セットとを積層して構成される第 5層でそれぞれ形成されている多層膜とし、 多層膜 Eを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 H Lの層を 2セット積層して構成される第 1層、 H Hの層を 1 4セット積層して構成される第 2層、 層 Lを 1層と H Lの層を 6セッ トとを積層して構成される第 3層、 HHの層を 2 4セット積層して構成される第 4層、 層 Lを 1層と H Lの層を 1 3セットとを積層して構成される第 5層でそれ ぞれ形成されている多層膜とし、  The multilayer film D is a layer in which the five-layered film, that is, the first to fifth layers are combined one by one in the order of layer L and layer H in order from one side in the thickness direction of the multilayer film. The first layer composed of 5 sets of LH layers, the second layer composed of 7 sets of LL layers, 1 layer H and 7 sets of LH layers The third layer is composed of: the fourth layer composed of 57 sets of LL layers, the fifth layer composed of one layer H and 13 sets of LH layers The multilayer film E is defined as: a multilayer film E, wherein the five-layer laminated film, that is, the first to fifth layers, are arranged such that two layers of HL are sequentially arranged from one side in the thickness direction of the multilayer film. The first layer is formed by stacking sets, the second layer is formed by stacking 14 sets of HH layers, and the second layer is formed by stacking 1 set of layer L and 6 sets of HL layers. 3 layers, HH layer 24 sections A fourth layer composed of a plurality of layers, and a multilayer film composed of a fifth layer composed of a single layer L and a fifth layer composed of a set of 13 HL layers,
多層膜 Fを、 前記多層膜 Eの前記 HHの層を 1 4セット積層して形成されてい る第 2層の代わりに、 前記第 2層が、 多層膜 Eの場合と同じ方向の膜の厚み方向 の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3 セット、 L Lの層を 3セット、 HHの層を 2セット、 L Lの層を 1セット、 HH の層を 1セットをこの順に積層して構成される積層膜で形成されている多層膜と し、  Instead of the second layer formed by laminating 14 sets of the HH layers of the multilayer film E with the multilayer film F, the second layer has a film thickness in the same direction as that of the multilayer film E. In order from one side of the direction, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 2 sets of LL layers, 1 set of LL layers, A set of HH layers is a multilayer film formed of a laminated film formed by laminating one set in this order,
多層膜 Gを、 前記多層膜 Eまたは Fの前記 HHの層を 2 4セット積層して形成 されている第 4層の代わりに、 前記第 4層が、 多層膜 Eの場合と同じ方向の膜の 厚み方向の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 HH の層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セッ ト、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 2セット、 L Lの層 を 1セット、 HHの層を 1セットをこの順に積層して構成される積層膜で形成さ れている多層膜とし、 Instead of the fourth layer formed by laminating 24 sets of the HH layers of the multilayer film E or F, the fourth layer is a film in the same direction as the multilayer film E. 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers in order from one side in the thickness direction of Set Layer, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers, 1 set of LL layers, and 1 set of HH layers. Is a multilayer film,
多層膜 Hを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層し、 L Hの層を 4セット積層して構成される第 1 層、 L Lの層を 9セット積層して構成される第 2層、 層 Hを 1層と L Hの層を 6 セットとを積層して構成される第 3層、 L Lの層を 3 5セット積層して構成され る第 4層、 層 Hを 1層と L Hの層を 1 3セットとを積層して構成される第 5層で それぞれ形成されている多層膜とするとき、  The multilayer film H is formed by laminating the five layers, that is, the first to fifth layers in order from one side in the thickness direction of the multilayer film, and laminating four sets of LH layers. The first layer, the second layer composed of 9 sets of LL layers, the third layer composed of 1 layer H and the 6 sets of LH layers, and the 3rd layer composed of 6 layers of LH layers When a multilayer film composed of a fourth layer composed of set laminations, a fifth layer composed of one layer H, and a fifth layer composed of 13 sets of LH layers,
少なくとも 1つの前記多層膜素子が、 前記多層膜 A〜Hのうちの少なくとも 1 つを有することを特徴とする複合型の光分散補償素子。  A composite type optical dispersion compensation element, wherein at least one of the multilayer elements has at least one of the multilayer films A to H.
2 6 . 請求項 2に記載の複合型の光分散補償素子において、 少なくとも 1つの 前記光分散補償素子の多層膜を構成する少なくとも 1つの積層膜の膜厚が、 前記 多層膜の光の入射面に平行な断面における面内方向すなわち入射面内方向におい て変化している、 すなわち該積層膜内の位置によって膜厚が異なることを特徴と する複合型の光分散補償素子。 26. The composite type optical dispersion compensating element according to claim 2, wherein the thickness of at least one laminated film constituting the multilayered film of at least one of the optical dispersion compensating elements is a light incident surface of the multilayered film. A composite light dispersion compensating element characterized in that it changes in an in-plane direction in a cross section parallel to the plane, that is, in an in-plane direction, that is, the film thickness varies depending on the position in the laminated film.
2 7 . 請求項 2 6に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する少なくとも一対の前記入射面が互いに対向して配置され た光分散補償素子の各光分散補償素子単体の多層膜の少なくとも各 1つの光透過 '層の膜厚の変化している方向が互いに異なることを特徴とする複合型の光分散補 償素子。 27. The composite type optical dispersion compensating element according to claim 26, wherein each of the optical type dispersion compensating elements of the composite type optical dispersion compensating element, wherein at least one pair of the incident surfaces is arranged to face each other. A composite light dispersion compensation element, characterized in that at least one light transmission layer of a single light dispersion compensation element has a different thickness in different directions.
2 8 . 請求項 2 7に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する少なくとも一対の前記互いに対向して配置された光分散 補償素子の各光分散補償素子単体の多層膜の少なくとも各 1つの光透過層の膜厚 、 互いに逆方向に変化していることを特徴とする複合型の光分散補償素子。 28. The composite type optical dispersion compensating element according to claim 27, wherein each optical dispersion compensating element of at least a pair of the opposing optical dispersion compensating elements constituting the composite type optical dispersion compensating element. A composite type optical dispersion compensating element characterized in that the thickness of at least one light transmitting layer of the multilayer film of the element alone changes in opposite directions.
2 9 . 請求項 2 6に記載の複合型の光分散補償素子において、 前記光分散補償 素子に係合して、 前記多層膜の少なくとも 1つの積層膜の膜厚を調整する調整手 段、 あるいは、 前記多層膜の入射面における光の入射位置を変える手段が設けら れていることを特徴とする複合型の光分散補償素子。 29. The composite type optical dispersion compensating element according to claim 26, wherein the adjusting means adjusts the film thickness of at least one of the multilayer films by engaging with the optical dispersion compensating element, or And a means for changing a light incident position on an incident surface of the multilayer film.
3 0 . 請求項 2に記載の複合型の光分散補償素子において、 前記多層膜素子素 子の少なくとも 1つが主として 3次の分散を捕償可能な光分散補償素子であるこ とを特徴とする複合型の光分散補償素子。 30. The composite type optical dispersion compensating element according to claim 2, wherein at least one of the multilayer element elements is an optical dispersion compensating element capable of mainly capturing third-order dispersion. Type light dispersion compensation element.
3 1 . 請求項 2に記載の複合型の光分散補償素子において、 前記光分散補償素 子の少なくとも 1つが 2次の分散を補償可能な光分散補償素子であることを特徴 とする複合型の光分散補償素子。 3. The composite type optical dispersion compensating element according to claim 2, wherein at least one of the optical dispersion compensating elements is an optical dispersion compensating element capable of compensating secondary dispersion. Light dispersion compensation element.
3 2 . 請求項 1に記載の複合型の光分散補償素子において、 前記複合型の光分 散補償素子を構成する光分散補償素子のうちの、 少なくとも一対の前記対向して 配置されている光分散捕償素子のうちの一方の光分散補償素子の入射面と他方の 光分散補償素子の入射面、 あるいは、 前記対向して配置されている光分散補償素 子の入射面と反射体 Aの反射面とが、 前記対向して配置されている一方の光分散 補償素子の入射面と他方の光分散補償素子の入射面との間で、 あるいは、 前記対 向して配置されている光分散補償素子の入射面と反射体 Aの反射面との間で、 当 該光分散補償素子への入射光が入射して反射されることを複数回行うことが可能 な程度に近接して配置されていることを特徴とする複合型の光分散補償素子。 32. The composite type optical dispersion compensating element according to claim 1, wherein at least a pair of the opposingly arranged lights out of the optical type dispersion compensating elements constituting the composite type optical dispersion compensating element. The incident surface of one of the dispersion compensating elements and the incident surface of the other one of the dispersion compensating elements, or the incident surface of the light dispersion compensating element disposed opposite to the incident surface of the reflector A. A reflection surface between the incident surface of one of the opposing light dispersion compensating elements and the incident surface of the other light dispersion compensating element, or an opposing light dispersion compensating element. It is arranged between the incident surface of the compensating element and the reflecting surface of the reflector A such that the light incident on the optical dispersion compensating element can be incident and reflected a plurality of times. A composite type optical dispersion compensating element, characterized in that:
3 3 . 請求項 3 2に記載の複合型の光分散捕償素子において、 前記複合型の光 分散補償素子を構成する少なくとも一部の光分散補償素子が、 分散を捕償するこ とが出来る多層膜を用いた素子であるいわゆる多層膜素子を有する光分散補償素 子であることを特徴とする複合型の光分散補償素子。 33. The composite light dispersion compensation element according to claim 32, wherein at least a part of the light dispersion compensation element constituting the composite light dispersion compensation element can compensate for dispersion. A composite light dispersion compensating element characterized by being a light dispersion compensating element having a so-called multilayer film element, which is an element using a multilayer film.
3 4 . 請求項 3 2に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する前記光の入射面の少なくとも一部に対向して、 その光分 散補償素子とは別の光分散補償素子の入射面あるいは前記反射体 Aの反射面が配 置されている光分散補償素子が、 分散を補償することが出来る多層膜を用いた素 子であるいわゆる多層膜素子を有する光分散補償素子であることを特徴とする複 合型の光分散補償素子。 34. The composite type optical dispersion compensation element according to claim 32, wherein the composite type light is An incident surface of a light dispersion compensating element different from the light dispersion compensating element or a reflecting surface of the reflector A is disposed so as to face at least a part of the light incident surface constituting the dispersion compensating element. A composite light dispersion compensating element, wherein the light dispersion compensating element is a light dispersion compensating element having a so-called multilayer film element which is a device using a multilayer film capable of compensating for dispersion.
3 5 . 請求項 3 2に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する前記光の入射面の少なくとも一部に対向して、 その光分 散補償素子とは別の光分散捕償素子の入射面あるいは前記反射体 Aの反射面が配 置されている光分散補償素子の前記光の入射面とそれに対向して配置されている 前記別の光分散補償素子の入射面あるいは前記反射体 Aの反射面のいずれか一方 または双方が平面であることを特徴とする複合型の光分散補償素子。 35. The composite light dispersion compensation element according to claim 32, wherein the light dispersion compensation element faces at least a part of an incident surface of the light constituting the composite light dispersion compensation element. The light incident surface of another light dispersion compensating element or the light incident surface of the light dispersion compensating element in which the reflection surface of the reflector A is disposed, and the another light dispersion disposed opposite thereto. A composite light dispersion compensating element, wherein one or both of the incident surface of the compensating element and the reflecting surface of the reflector A are flat.
3 6 . 請求項 3 2に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する前記光の入射面の少なくとも一部に対向して、 その光分 散補償素子とは別の光分散補償素子の入射面あるいは前記反射体 Aの反射面が配 置されている光分散補償素子の前記光の入射面とそれに対向して配置されている 前記別の光分散補償素子の入射面あるいは前記反射体 Aの反射面のいずれか一方 または双方が曲面であることを特徴とする複合型の光分散補償素子。 36. The composite light dispersion compensating element according to claim 32, wherein the light dispersion compensating element opposes at least a part of the light incident surface constituting the composite light dispersion compensating element. The light incident surface of another light dispersion compensating element or the light incident surface of the light dispersion compensating element in which the reflecting surface of the reflector A is disposed and the another light dispersion compensating member A composite type optical dispersion compensating element, wherein one or both of the incident surface of the element and the reflecting surface of the reflector A are curved.
3 7 . 請求項 3 3に記載の複合型の光分散補償素子において、 前記光分散補償 素子を構成する多層膜素子が、 少なくとも 3層の反射層とも称する光反射層と少 なくとも 2層の光透過層を有する多層膜を有し、 前記各 1層の光透過層は前記反 射層のうちの 2層の反射層に挟まれているように形成されており、 前記多層膜は 入射光の、 波長が λであるときに中心波長; と呼称する中心波長に対する前記反 射層の反射率が 9 9 . 5 %以上の反射層を少なくとも 1層有しており、 入射面か ら前記多層膜の厚み方向にすすむにつれて最初に現れる前記反射率が 9 9 . 5 % 以上の反射層の位置までに配置されている各反射層の反射率が、 入射面側から前 記多層膜の厚み方向にすすむにつれて順次大きくなつていることを特徴とする複 合型の光分散補償素子。 37. The composite type optical dispersion compensating element according to claim 33, wherein the multilayer film element constituting the optical dispersion compensating element has at least two light-reflecting layers, which are also referred to as reflective layers, and at least two layers. A multi-layer film having a light-transmitting layer, wherein each of the one light-transmitting layers is formed so as to be sandwiched between two reflective layers of the reflective layer; The reflective layer has at least one reflective layer having a reflectivity of 99.5% or more with respect to a central wavelength referred to as a central wavelength when the wavelength is λ. The reflectivity of each of the reflective layers arranged up to the position of the reflective layer in which the reflectivity which appears first as proceeding in the thickness direction of the film is 99.5% or more increases from the incident surface side in the thickness direction of the multilayer film. The characteristic feature is that the size of the Combined light dispersion compensating element.
3 8 . 請求項 3 2に記載の複合型の光分散補償素子において、 前記光分散捕 償素子への光の入射面の少なくとも一部に対向して、 その光分散補償素子とは別 の光分散補償素子の入射面あるいは前記反射体 Aの反射面が配置された構成にな つている光分散補償素子の少なくとも一部に対向するかもしくはその近傍に、 以 下、 反射体 Bと呼称する前記反射体 Aとは別の反射体もしくは反射部が設けられ ていることを特徴とする複合型の光分散捕償素子。 38. The composite type optical dispersion compensating element according to claim 32, wherein at least a part of a light incident surface of the optical dispersion compensating element is opposed to, and light different from, the optical dispersion compensating element. At least at a portion facing or near at least a part of the light dispersion compensating element in which the incident surface of the dispersion compensating element or the reflecting surface of the reflector A is arranged, the reflector B is referred to as A composite light dispersion compensation element characterized in that a reflector or a reflection part different from the reflector A is provided.
3 9 . 請求項 3 8に記載の複合型の光分散補償素子において、 前記反射体 Bが、 入射面が対向して配置された一対の光分散補償素子のうちのいずれかから、 ある いは入射面に対向して前記反射体 Aの反射面が配置されている光分散補償素子と 前記反射体 Aのうちのいずれかから出力される光 Aと呼称する光を反射して光分 散補償素子ある 、は前記反射体 Aへ入射させることが出来るように配置されてい ることを特徴とする複合型の光分散補償素子。 39. The composite type optical dispersion compensating element according to claim 38, wherein the reflector B is formed of any one of a pair of optical dispersion compensating elements whose incident surfaces are opposed to each other. A light dispersion compensating element in which a reflection surface of the reflector A is arranged opposite to an incident surface; and a light dispersion compensation device that reflects light referred to as light A output from any one of the reflectors A. The compound type optical dispersion compensating element is arranged so that it can be incident on the reflector A.
4 0 . 請求項 3 9に記載の複合型の光分散補償素子において、 前記光 Aが前記 反射体 Bによる反射光 Bと呼称する光として入射されるところが、 前記光 Aが出 射された光分散補償素子あるいは反射体 Aであることを特徴とする複合型の光分 散補償素子。 . 40. The composite type optical dispersion compensating element according to claim 39, wherein the light A is incident as light referred to as reflected light B by the reflector B, but the light A is emitted. A composite light dispersion compensating element, which is a dispersion compensating element or a reflector A. .
4 1 . 請求項 4 0に記載の複合型の光分散補償素子において、 前記光分散補償 素子における前記光 Aの出射位置と前記光 Bの入射位置が異なる位置であること を特徴とする複合型の光分散補償素子。 41. The composite type optical dispersion compensating element according to claim 40, wherein an emission position of the light A and an incident position of the light B in the optical dispersion compensation element are different from each other. Light dispersion compensating element.
4 2 . 請求項 4 0に記載の複合型の光分散補償素子において、 前記光 Aと光 B は平行で進行方向が逆向きであることを特徴とする複合型の光分散補償素子。 42. The composite light dispersion compensation element according to claim 40, wherein the light A and the light B are parallel and travel in opposite directions.
4 3 . 請求項 3 8に記載の複合型の光分散補償素子において、 前記反射体 Bが 少なくとも 3つの反射面を有することを特徴とする複合型の光分散補償素子。 43. The composite type optical dispersion compensation element according to claim 38, wherein the reflector B is A composite type optical dispersion compensator having at least three reflecting surfaces.
4 4 . 請求項 4 3に記載の複合型の光分散補償素子において、 前記反射体 Bの 少なくとも 1つの反射面が可動であることを特徴とする複合型の光分散補償素子。 44. The composite light dispersion compensation element according to claim 43, wherein at least one reflection surface of the reflector B is movable.
4 5 . 請求項 4 1に記載の複合型の光分散補償素子において、 反射体 Bの前記 可動な反射面を駆動する手段が、 手動による手段もしくは電気的な手段であるこ とを特徴とする複合型の光分散補償素子。 45. The composite type optical dispersion compensating element according to claim 41, wherein the means for driving the movable reflecting surface of the reflector B is a manual means or an electric means. Type light dispersion compensation element.
4 6 . 請求項 4 5に記載の複合型の光分散補償素子において、 前記反射体 Bが、 前記入射面が対向して配置された一対の光分散補償素子の各光分散補償素子単体 とも呼称する各光分散捕償素子のいずれかからの出射光を、 あるいは、 対向して 配置されている前記反射体 Aの反射面と光分散補償素子のいずれかからの出射光 を反射することができるように、 前記入射面が対向して配置された一対の光分散 補償素子あるいは前記対向して配置された光分散補償素子と反射体 Aの同じ側の 端部に少なくとも一対設けられている力 \ または、 一対の反射体部が、 前記入射 面が対向して配置された一対の光分散補償素子の少なくとも一方に、 あるいは、 対向して配置された光分散補償素子と反射体 Aの少なくとも一方に一体的に設け られていることを特徴とする複合型の光分散補償素子。 46. The composite light dispersion compensation element according to claim 45, wherein the reflector B is also referred to as a single light dispersion compensation element of a pair of light dispersion compensation elements arranged so that the incident surfaces face each other. Out of any one of the light dispersion compensating elements, or the outgoing light from any one of the light dispersion compensating elements and the reflecting surface of the reflector A disposed opposite to the light dispersing element. As described above, a pair of optical dispersion compensating elements whose incident surfaces are opposed to each other, or at least a pair of forces provided at the same end of the reflector A with the optical dispersion compensating elements arranged opposite to each other. Or, a pair of reflector portions are provided on at least one of the pair of light dispersion compensating elements in which the incident surfaces are arranged opposite to each other, or on at least one of the light dispersion compensating element and the reflector A arranged in opposition to each other. Being provided integrally A composite type optical dispersion compensating element characterized by the following.
4 7 . 請求項 4 3に記載の複合型の光分散補償素子において、 前記反射体 Bが コーナーキュープであることを特徴とする複合型の光分散補償素子。 47. The composite light dispersion compensation element according to claim 43, wherein the reflector B is a corner cup.
4 8 . 請求項 4 0に記載の複合型の光分散補償素子において、 前記光 Bが前記 入射面が対向して配置された一対の光分散補償素子のいずれか、 あるいは、 前記 対向して配置された光分散補償素子と反射体 Aのいずれかに入射して後に進行す る方向は、 前記光 Aが出射する前に該光分散補償素子内を進行してきた進行方向 に対して平行でありかつ逆方向であることを特徴とする複合型の光分散補償素子。 48. The composite type optical dispersion compensating element according to claim 40, wherein the light B is any one of a pair of optical dispersion compensating elements arranged such that the incident surfaces face each other, or the optical B is arranged facing the light dispersion compensating element. The direction in which the light A enters one of the light dispersion compensating element and the reflector A and travels later is parallel to the traveling direction in which the light A travels in the light dispersion compensating element before the light A exits. And a composite type optical dispersion compensating element characterized by being in the opposite direction.
4 9 . 請求項 3 8に記載の複合型の光分散補償素子において、 前記入射面が対 向して配置された一対の光分散補償素子の端部の、 あるいは、 前記対向して配置 された光分散補償素子と反射体 Aの端部の複数箇所に対応して反射体 Bが設けら れていることを特徴とする複合型の光分散補償素子。 49. The composite type optical dispersion compensating element according to claim 38, wherein the light-entering surfaces are disposed at the ends of a pair of optical dispersion compensating elements disposed facing each other, or disposed opposite to each other. A composite light dispersion compensating element comprising a light dispersion compensating element and reflectors B provided at a plurality of locations at the end of the reflector A.
5 0 . 請求項 4 9に記載の複合型の光分散補償素子において、 前記入射面が対 向して配置された一対の光分散補償素子の各光分散補償素子単体の入射面に、 あ るいは、 前記反射体 Aに対向して配置された光分散補償素子の入射面に入射して 分散補償を受けながら進行する信号光の進行方向が、 前記入射面の一方の側から 他方の側に移動した位置において、 順に、 交互に反対向きであることを特徴とす る複合型の光分散補償素子。 50. The composite type optical dispersion compensating element according to claim 49, wherein the incident surface of each of the pair of optical dispersion compensating elements arranged opposite to each other has an incident surface of each optical dispersion compensating element alone. The traveling direction of the signal light that is incident on the incident surface of the optical dispersion compensating element disposed to face the reflector A and travels while undergoing dispersion compensation is changed from one side of the incident surface to the other side. A composite type optical dispersion compensating element characterized in that, in a moved position, the directions are sequentially and alternately opposite.
5 1 . 請求項 3 4に記載の複合型の光分散補償素子において、 前記入射面を対 向して配置した一対の光分散補償素子の各光分散補償素子単体が、 それぞれ異な る基板上に形成されている多層膜素子で構成されていることを特徴とする複合型 の光分散補償素子。 51. The composite type optical dispersion compensating element according to claim 34, wherein each of the individual optical dispersion compensating elements of the pair of optical dispersion compensating elements arranged with the incident surface facing each other is provided on different substrates. A composite light dispersion compensating element comprising a multilayer element formed.
5 2 . 請求項 3 4に記載の複合型の光分散補償素子において、 前記入射面が対 向して配置されている少なくとも一対の前記光分散補償素子の各光分散補償素子 単体が、 入射光を透過することが出来る同一の基板の互いに対向する面上に、 入 射面が前記基板側になるように形成されていることを特徴とする複合型の光分散 補償素子。 52. The composite type optical dispersion compensating element according to claim 34, wherein at least one pair of the optical dispersion compensating elements of the at least one pair of the optical dispersion compensating elements, the incident surfaces of which are arranged to face each other, the incident light. A composite light dispersion compensating element, characterized in that an incident surface is formed on the mutually facing surfaces of the same substrate capable of transmitting light, so that an incident surface is on the substrate side.
5 3 . 請求項 5 1に記載の複合型の光分散補償素子において、 前記光分散補償 素子や各光分散ネ翁償素子単体の少なくとも 1つを構成する多層膜の前記基板側か ら少なくとも 3層の反射層の反射率が、 前記基板に近い方の反射層から遠い方の 反射層になるにつれて大きくなつていることを特徴とする複合型の光分散補償素 子。 53. The composite type optical dispersion compensating element according to claim 51, wherein at least 3 from the substrate side of a multilayer film constituting at least one of the optical dispersion compensating element and each of the individual optical dispersion compensation elements. A composite light dispersion compensating element, wherein the reflectance of the reflective layer of the layer increases from the reflective layer closer to the substrate to the reflective layer farther from the substrate.
5 4 . 請求項 3 2に記載の複合型の光分散補償素子において、 少なくとも一組 の前記入射面が対向して配置された一対の光分散補償素子の、 あるいは、 前記光 分散補償素子の入射面と反射体 Aの反射面が対向して配置されている光分散補償 素子の信号光の入射位置と出射位置が、 前記入射面が対向して配置された一対の 光分散補償素子の、 あるいは、 前記反射体 Aと対向して配置されている光分散補 償素子の互いに異なる側にあることを特徴とする複合型の光分散補償素子。 54. The composite type optical dispersion compensating element according to claim 32, wherein at least one pair of the incident surfaces is arranged so as to face each other, or a pair of the optical dispersion compensating elements are incident. The incident position and the emission position of the signal light of the optical dispersion compensating element in which the surface and the reflecting surface of the reflector A are arranged to face each other, A composite light dispersion compensating element, which is located on different sides of a light dispersion compensating element disposed opposite to the reflector A.
5 5 . 請求項 3 2に記載の複合型の光分散補償素子において、 少なくとも一組 の前記入射面が対向して配置された一対の光分散補償素子の、 あるいは、 前記光 分散補償素子の入射面と反射体 Aの反射面が対向して配置されている光分散補償 素子の信号光の入射位置と出射位置が、 前記入射面が対向して配置された一対の 光分散補償素子の、 あるいは、 前記反射体 Aと対向して配置されている光分散補 償素子の同じ側にあることを特徴とする複合型の光分散補償素子。 55. The composite type optical dispersion compensating element according to claim 32, wherein at least one pair of the incident surfaces is disposed so as to face each other, or the optical dispersion compensating element is incident. The incident position and the emission position of the signal light of the optical dispersion compensating element in which the surface and the reflecting surface of the reflector A are arranged to face each other, A composite light dispersion compensating element which is on the same side as the light dispersion compensating element disposed opposite to the reflector A.
5 6 . 請求項 3 3に記載の複合型の光分散補償素子において、 少なくとも 1つ の前記多層膜素子が、 光学的性質が異なる積層膜を少なくとも 5種類、 すなわち、 光の反射率や膜厚などの光学的な性質の異なる積層膜を少なくとも 5層有する多 層膜を有し、 前記多層膜が、 光の反射率が互いに異なる少なくとも 2種類の反射 層を含む少なくとも 3種類の反射層を有するとともに、 前記 3種類の反射層の他 に少なくとも 2つの光透過層を有し、 前記 3種類の反射層の各 1層と前記 2つの 光透過層の各 1層とが交互に配置されており、 前記多層膜が、 膜の厚み方向の一 方の側から順に、 第 1の反射層である第 1層、 第 1の光透過層である第 2層、 第 2の反射層である第 3層、 第 2の光透過層である第 4層、 第 3の ¾射層である第 5層から構成されており、 入射光の中心波長を; Lとして、 前記第 1〜第 5層にお いて、 光路長、 すなわち、 入射光の中心波長; Lの光に対する光路長として考えた ときの前記多層膜を構成する各層の膜厚が、 おおむね; L / 4の整数倍 ± 1 %の範 囲の値の膜厚であり、 かつ、 前記多層膜が、 膜厚がおおむね; Iの 1 / 4倍土 1 % で屈折率が高い方の層である層 Hと膜厚がおおむねえの 1 / 4倍 ± 1 %で屈折率 が低レ、方の層である層 Lを組み合わせた層の複数組で構成されており、 多層膜 Aを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 H、 層 Lの順に各 1層ずつ組み合わせた層である H Lの層を 3セット積層して構成される第 1層、 層 Hと層 Hを組み合わせた層で ある HHの層を 1 0セット積層して構成される第 2層、 層 Lを 1層と H Lの層を 7セットとを積層して構成される第 3層、 HHの層を 3 8セット積層して構成さ れる第 4層、 層 Lを 1層と H Lの層を 1 3セットとを積層して構成される第 5層 でそれぞれ形成されている多層膜とし、 56. The composite type optical dispersion compensating element according to claim 33, wherein at least one of the multilayer film elements has at least five kinds of laminated films having different optical properties, that is, light reflectance and film thickness. And the like, and the multilayer film has at least three types of reflective layers including at least two types of reflective layers having different light reflectances from each other. And at least two light transmission layers in addition to the three types of reflection layers, wherein one layer of each of the three types of reflection layers and one layer of each of the two light transmission layers are alternately arranged. The multilayer film includes, in order from one side in the thickness direction of the film, a first layer serving as a first reflective layer, a second layer serving as a first light transmitting layer, and a third layer serving as a second reflective layer. Layer, a fourth layer as a second light transmitting layer, and a fifth layer as a third radiating layer. In the first to fifth layers, the central wavelength of the incident light is L; and the optical path length, that is, the central wavelength of the incident light; The film thickness of each layer is approximately an integer multiple of L / 4 ± 1%, and the multilayer film has a film thickness of approximately 1/4 times I and 1% soil. It is composed of a combination of the layer H, which is the layer with the higher refractive index, and the layer L, which is the layer whose thickness is 1/4 times ± 1% and the refractive index is low, and the layer with the higher refractive index is about 1%. Yes, The multilayer film A is a layer in which the five-layer laminated film, that is, the first to fifth layers are combined one by one in the order of layer H and layer L in order from one side in the thickness direction of the multilayer film. The first layer composed of three sets of HL layers, the second layer composed of 10 sets of HH layers that are a combination of layers H and H, and one layer L composed of layers H and H The third layer is formed by laminating 7 sets of HL layers, the fourth layer is formed by laminating 38 sets of HH layers, 1 layer L and 13 sets of HL layers And a multi-layered film formed by the fifth layer composed of
多層膜 Bを、 前記多層膜 Aの HHの層を 1 0セット積層して形成されている前 記第 2層の代わりに、 前記第 2層が、 多層膜 Aの場合と同じ方向の膜の厚み方向 の一方の側から順に、 HHの層を 3セット、 層 Lと層 Lを組み合わせた層である L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 2セット、 HHの層を 1 セットをこの順に積層して構成される積層膜で形成されている多層膜とし、 多層膜 Cを、 前記多層膜 Aまたは Bの HHの層を 3 8セット積層して形成され ている前記第 4層の代わりに、 前記第 4層が、 多層膜 Aの場合と同じ方向の膜の 厚み方向の一方の側から順に、 HHの層を 3セット、 L Lの層を 3セット、 H H の層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セッ ト、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層 を 3セット、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 3セット、 L Lの層を 3セット、 HHの層を 2セットをこの順に積層して構成される積層膜 で形成されている多層膜とし、  Instead of the second layer, which is formed by laminating 10 sets of HH layers of the multilayer film A, the second layer is a multilayer film having the same direction as that of the multilayer film A. In order from one side in the thickness direction, 3 sets of HH layers, 3 sets of LL layers, which is a layer combining layers L and L, 3 sets of HH layers, 2 sets of LL layers, and 2 sets of HH layers One set of layers is a multilayer film formed of a laminated film formed by laminating in this order, and a multilayer film C is formed by laminating 38 sets of HH layers of the multilayer film A or B. Instead of the fourth layer, the fourth layer is, in order from one side in the thickness direction of the film in the same direction as that of the multilayer film A, three sets of HH layers, three sets of LL layers, and three sets of HH layers. 3 sets of layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers are stacked in this order It is a multilayer film composed of a multilayer film,
多層膜 Dを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 L、 層 Hの順に各 1層ずつ組み合わせた層である L Hの層を 5セット積層して構成される第 1層、 L Lの層を 7セット積層して構 成される第 2層、 層 Hを 1層と L Hの層を 7セットとを積層して構成される第 3 層、 L Lの層を 5 7セット積層して構成される第 4層、 層 Hを 1層と L Hの層を 1 3セットとを積層して構成される第 5層でそれぞれ形成されている多層膜とし、 多層膜 Eを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 H Lの層を 2セット積層して構成される第 1層、 H Hの層を 1 4セット積層して構成される第 2層、 層 Lを 1層と H Lの層を 6セッ トとを積層して構成される第 3層、 HHの層を 24セット積層して構成される第 4層、 層 Lを 1層と HLの層を 1 3セットとを積層して構成される第 5層でそれ ぞれ形成されている多層膜とし、 The multilayer film D is a layer in which the five-layered film, that is, the first to fifth layers are combined one by one in the order of layer L and layer H in order from one side in the thickness direction of the multilayer film. The first layer composed of 5 sets of LH layers, the second layer composed of 7 sets of LL layers, 1 layer H and 7 sets of LH layers The third layer is composed of 5 layers of LL layers, the fourth layer is composed of 57 layers, and the fifth layer is composed of 1 layer of H and 13 sets of LH layers. Each of the multi-layer films is formed, and the multi-layer film E is composed of two sets of HL layers, in which the five-layer laminated film, that is, the first to fifth layers, are sequentially arranged from one side in the thickness direction of the multi-layer film. 1st layer composed of laminated layers, 14 sets of HH layers 2nd layer composed of laminated layers, 1 layer L and 6 sets of HL layers The third layer is constructed by laminating layers, the fourth layer is constructed by laminating 24 sets of HH layers, the layer is constructed by laminating one layer L and 13 sets of HL layers It is a multi-layered film formed on the fifth layer,
多層膜 Fを、 前記多層膜 Eの前記 HHの層を 1 4セット積層して形成されてい る第 2層の代わりに、 前記第 2層が、 多層膜 Eの場合と同じ方向の膜の厚み方向 の一方の側から順に、 HHの層を 3セット、 LLの層を 3セット、 HHの層を 3 セット、 LLの層を 3セット、 HHの層を 2セット、 L Lの層を 1セット、 HH の層を 1セットをこの順に積層して構成される積層膜で形成されている多層膜と し、  Instead of the second layer formed by laminating 14 sets of the HH layers of the multilayer film E with the multilayer film F, the second layer has a film thickness in the same direction as that of the multilayer film E. In order from one side of the direction, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 2 sets of LL layers, 1 set of LL layers, A set of HH layers is a multilayer film formed of a laminated film formed by laminating one set in this order,
多層膜 Gを、 前記多層膜 Eまたは Fの前記 HHの層を 24セット積層して形成 されている第 4層の代わりに、 前記第 4層が、 多層膜 Eの場合と同じ方向の膜の 厚み方向の一方の側から順に、 HHの層を 3セット、 LLの層を 3セット、 HH の層を 3セット、 LLの層を 3セット、 HHの層を 3セット、 LLの層を 3セッ ト、 HHの層を 3セット、 LLの層を 3セット、 HHの層を 2セット、 LLの層 を 1セット、 HHの層を 1セットをこの順に積層して構成される積層膜で形成さ れている多層膜とし、  Instead of the fourth layer, which is formed by stacking 24 sets of the HH layers of the multilayer film E or F, the fourth layer has a multilayer film G in the same direction as that of the multilayer film E. In order from one side in the thickness direction, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers Layer, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers, 1 set of LL layers, and 1 set of HH layers. Is a multilayer film,
多層膜 Hを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層膜の厚 み方向の一方の側から順に、 層 L、 LHの層を 4セット積層して構成される第 1 層、 L Lの層を 9セット積層して構成される第 2層、 層 Hを 1層と LHの層を 6 セットとを積層して構成される第 3層、 LLの層を 3 5セット積層して構成され る第 4層、 層 Hを 1層と LHの層を 1 3セットとを積層して構成される第 5層で それぞれ形成されている多層膜とするとき、  The multilayer film H is formed by laminating four sets of layers L and LH in order of the five-layer laminated film, that is, the first to fifth layers, from one side in the thickness direction of the multilayer film. The first layer, the second layer composed of 9 sets of LL layers, the third layer composed of 1 layer H and the 6 sets of LH layers, and the 3rd layer composed of 6 layers of LH layers When a multilayer film composed of a fourth layer composed of set laminations, a fifth layer composed of one layer H, and a fifth layer composed of 13 sets of LH layers,
少なくとも 1つの前記多層膜素子が、 前記多層膜 A〜Hのうちの少なくとも 1 つを有することを特徵とする複合型の光分散補償素子。  A composite optical dispersion compensating element, wherein at least one of the multilayer elements has at least one of the multilayer films A to H.
5 7. 請求項 3 3に記載の複合型の光分散補償素子において、 少なくとも 1つ の前記光分散補償素子の多層膜を構成する少なくとも 1つの積層膜の膜厚が、 前 記多層膜の光の入射面に平行な断面における面内方向すなわち入射面内方向にお いて変化している、 すなわち該積層膜内の位置によって膜厚が異なることを特徴 とする複合型の光分散補償素子。 5 7. The composite type optical dispersion compensating element according to claim 33, wherein at least one of the multilayer films of the optical dispersion compensating element has a film thickness of at least one of the multilayer films. Is changed in the in-plane direction in the cross section parallel to the incident surface, that is, in the in-plane direction, that is, the film thickness is different depending on the position in the laminated film. A composite type dispersion compensating element.
5 8 . 請求項 5 7に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する少なくとも一対の前記入射面が互いに対向して配置され た光分散補償素子の各光分散ネ甫償素子単体の多層膜の少なくとも各 1つの光透過 層の膜厚の変化している方向が互いに異なることを特徴とする複合型の光分散補 償素子。 58. The composite light dispersion compensating element according to claim 57, wherein each of the light dispersion compensating elements in which at least a pair of the incident surfaces constituting the composite light dispersion compensating element are arranged to face each other. A composite light dispersion compensation element, characterized in that at least one light transmission layer of the multilayer film of the light dispersion compensation element alone has a different thickness in different directions.
5 9 . 請求項 5 8に記載の複合型の光分散補償素子において、 前記複合型の光 分散補償素子を構成する少なくとも一対の前記互いに対向して配置された光分散 補償素子の各光分散補償素子単体の多層膜の少なくとも各 1つの光透過層の膜厚 、 互いに逆方向に変化していることを特徴とする複合型の光分散補償素子。 59. The composite type optical dispersion compensating element according to claim 58, wherein each of the optical type dispersion compensating elements constituting the composite type optical dispersion compensating element has at least a pair of the optical dispersion compensating elements disposed opposite to each other. A composite type optical dispersion compensating element characterized in that the thickness of at least one light transmitting layer of the multilayer film of the element alone changes in opposite directions.
6 0 . 請求項 5 7に記載の複合型の光分散補償素子において、 前記光分散捕償 素子に係合して、 前記多層膜の少なくとも 1つの積層膜の膜厚を調整する調整手 段、 あるいは、 前記多層膜の入射面における光の入射位置を変える手段が設けら れていることを特徴とする複合型の光分散補償素子。 60. The composite type optical dispersion compensating element according to claim 57, wherein the adjusting means is configured to engage with the optical dispersion compensating element and adjust a film thickness of at least one of the multilayer films. Alternatively, there is provided means for changing a light incident position on an incident surface of the multilayer film, wherein the composite light dispersion compensating element is provided.
6 1 . 請求項 3 3に記載の複合型の光分散補償素子において、 前記多層膜素子 素子の少なくとも 1つが主として 3次の分散を補償可能な光分散補償素子である ことを特徴とする複合型の光分散補償素子。 31. The composite type optical dispersion compensating element according to claim 33, wherein at least one of the multilayer film elements is an optical dispersion compensating element capable of mainly compensating third-order dispersion. Light dispersion compensating element.
6 2 . 請求項 3 3に記載の複合型の光分散補償素子において、 前記光分散補償 素子の少なくとも 1つが 2次の分散を補償可能な光分散補償素子であることを特 徴とする複合型の光分散補償素子。 62. The composite type optical dispersion compensating element according to claim 33, wherein at least one of the optical dispersion compensating elements is an optical dispersion compensating element capable of compensating secondary dispersion. Light dispersion compensating element.
6 3 . 光ファイバを通信伝送路に用いる通信において波長分散としての分散を 補償する光分散補償方法であって、 光分散補償素子への光の入射面の少なくとも 一部に対向して、 その光分散補償素子とは別の光分散補償素子の入射面、 あるい は、 以下において反射体 Aとも呼称する反射体の反射面を配置して、 かつ、 前記 対向して配置した双方の光分散補償素子の入射面を、 あるいは、 前記対向して配 置した光分散補償素子の入射面と前記反射体 Aの反射面を、 その間に入射光の光 路を形成することができるように配置して、 該対向して配置した前記両入射面あ るレ、は前記入射面と前記反射面の間に入射した入射光が、 前記光路を進行しなが ら光分散補償素子の入射面に入射して反射されることを複数回行うことができる ように構成した光分散補償素子を少なくとも 1組含む複合型の光分散補償素子を 構成し、 この光路を入射光を進行させて入射光の分散補償を行うことを特徴とす る光分散補償方法。 6 3. An optical dispersion compensation method for compensating for dispersion as chromatic dispersion in communication using an optical fiber as a communication transmission line. Incident surface of optical dispersion compensating element different from dispersion compensating element, or Is a reflection surface of a reflector also referred to as a reflector A below, and the incident surfaces of both of the light dispersion compensating elements disposed opposite to each other, or the light dispersion disposed opposite to each other. The incident surface of the compensating element and the reflecting surface of the reflector A are arranged so that an optical path of incident light can be formed therebetween. Light configured so that incident light that has entered between an incident surface and the reflective surface can be incident and reflected on the incident surface of the optical dispersion compensation element a plurality of times while traveling along the optical path. An optical dispersion compensation method comprising: forming a composite optical dispersion compensation element including at least one set of dispersion compensation elements; and dispersing the incident light by propagating the incident light through the optical path.
6 4 . 請求項 6 3に記載の光分散補償方法において、 少なくとも一組の前記対 向させて配置した一対の光分散補償素子あるいは光分散補償素子と反射体 Aの少 なくとも一部もしくは近傍に対応して、 以下において反射体 Bとも呼称する反射 体もしくは反射部を配置して入射光の分散補償を行うことを特徴とする光分散補 償方法。 64. The optical dispersion compensating method according to claim 63, wherein at least one pair of the optical dispersion compensating elements or a pair of the optical dispersion compensating elements and the reflector A are at least partially or in the vicinity. A light dispersion compensation method characterized by arranging a reflector or a reflector, also referred to as a reflector B below, to perform dispersion compensation of incident light.
6 5 . 請求項 6 4に記載の光分散捕償方法において、 前記反射体 Bを、 前記対 向して配置された一対の光分散補償素子あるいは光分散補償素子と反射体 Aから 出力される以下において光 Aとも呼称する光を反射して光分散補償素子へ入射さ せることが出来るように配置して、 入射光の分散補償を行うことを特徴とする光 分散補償方法。 65. The light dispersion compensation method according to claim 64, wherein the reflector B is output from a pair of light dispersion compensating elements or the light dispersion compensating element and the reflector A arranged opposite to each other. A method for compensating for dispersion of incident light, comprising arranging light, also referred to as light A hereinafter, so that the light can be reflected and made incident on the light dispersion compensating element, thereby performing dispersion compensation of the incident light.
6 6 . 請求項 6 5に記載の光分散補償方法において、 前記光 Aが、 以下に光 B とも呼称する前記反射体 Bによる反射光が、 前記光 Aが出射された光分散補償素 子に再び入射するように、 該光分散補償素子と反射体とを配置して入射光の分散 補償を行うことを特徴とする光分散補償方法。 66. The optical dispersion compensation method according to claim 65, wherein the light A is a light reflected by the reflector B, which is also referred to as a light B hereinafter, and the light A is a light dispersion compensation element from which the light A is emitted. An optical dispersion compensation method, comprising: disposing the optical dispersion compensating element and a reflector so as to be incident again to perform dispersion compensation of incident light.
6 7 . 請求項 6 6に記載の光分散補償方法において、 前記光分散補償素子にお ける前記光 Aの出射位置と前記光 Bの入射位置が異なる位置であることを特徴と する光分散補償方法。 67. The optical dispersion compensation method according to claim 66, wherein the emission position of the light A and the incident position of the light B in the optical dispersion compensation element are different positions. Optical dispersion compensation method.
6 8 . 請求項 6 6に記載の光分散補償方法において、 前記光 Aと光 Bは平行で かつ進行方向が逆向きであることを特徴とする光分散補償方法。 68. The optical dispersion compensation method according to claim 66, wherein the light A and the light B are parallel and traveling in opposite directions.
6 9 . 請求項 6 5に記載の光分散補償方法において、 前記反射体 Bが少なくと も 3つの反射面を有することを特徴とする光分散補償方法。 69. The optical dispersion compensation method according to claim 65, wherein said reflector B has at least three reflecting surfaces.
7 0 . 請求項 6 9に記載の光分散捕償方法において、 前記反射体 Bがコーナー キュープであることを特徴とする光分散補償方法。 70. The optical dispersion compensation method according to claim 69, wherein said reflector B is a corner cup.
7 1 . 請求項 6 3に記載の光分散捕償方法において、 少なくとも 1つの前記光 分散捕償素子が、 分散捕償を行うことができる多層膜を有する多層膜素子である ことを特徴とする光分散補償方法。 71. The light dispersion compensation method according to claim 63, wherein at least one of the light dispersion compensation elements is a multilayer film element having a multilayer film capable of performing dispersion compensation. Optical dispersion compensation method.
7 2 . 請求項 7 1に記載の光分散補償方法において、 少なくとも 1つの前記多 層膜を構成する少なくとも 1つの積層膜の膜厚が、 前記多層膜の光の入射面に平 行な断面における面内方向すなわち入射面内方向において変化していることを特 徴とする光分散補償方法。 72. The optical dispersion compensation method according to claim 71, wherein the film thickness of at least one laminated film constituting at least one of the multilayer films is in a cross section parallel to a light incident surface of the multilayer film. An optical dispersion compensation method characterized by being changed in the in-plane direction, that is, in the in-plane direction.
7 3 . 請求項 7 1に記載の光分散補償方法において、 少なくとも 1つの前記多 層膜きる素子を複数個あるいは複数箇所直列に接続して構成した光分散捕償素子 、 1 2 6 0〜1 3 6 0 n m、 1 3 6 0〜1 4 6 0 n m、 1 4 6 0〜1 5 3 0 n m、 1 5 3 0〜1 5 6 5 n m、 1 5 6 5〜1 6 2 5 n m、 1 6 2 5〜1 6 7 5 n mの波長範囲の少なくとも 1つの波長範囲において少なくとも 1つの極値を有す る群速度遅延時間一波長特性曲線を有するように構成されていることを特徴とす る光分散補償方法。 73. The optical dispersion compensation method according to claim 71, wherein at least one of the multi-layer film-forming elements is connected in series at a plurality or at a plurality of locations. 365 nm, 1360-1460 nm, 1460-1530 nm, 1530-1565 nm, 1565-1625 nm, 1 It is characterized by having a group velocity delay time-wavelength characteristic curve having at least one extreme value in at least one wavelength range of the wavelength range of 625 to 1675 nm. Optical dispersion compensation method.
7 4 . 請求項 6 3に記載の光分散補償方法において、 信号光の光路における分 散補償を行うことが出来る素子の接続の仕方を複数通り選択することができるこ とを特徴とする光分散補償方法。 74. The optical dispersion compensating method according to claim 63, wherein the signal light is separated in the optical path. An optical dispersion compensation method characterized in that a plurality of ways of connecting elements capable of performing dispersion compensation can be selected.
7 5 . 請求項 Ί 1に記載の光分散補償方法において、 信号光の分散補償が少な くとも 3次の分散の補償を行うことができる分散補償であることを特徴とする光 分散補償方法。 75. The optical dispersion compensation method according to claim 1, wherein the dispersion compensation of the signal light is a dispersion compensation capable of performing at least tertiary dispersion compensation.
PCT/JP2001/004852 2000-06-08 2001-06-08 Composite light dispersion for compensating device and method for compensating light dispersion using the device WO2001094991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001264226A AU2001264226A1 (en) 2000-06-08 2001-06-08 Composite light dispersion for compensating device and method for compensating light dispersion using the device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-172529 2000-06-08
JP2000172529 2000-06-08
JP2000314297A JP2005236336A (en) 2000-10-13 2000-10-13 Composite type light dispersion compensating element and light dispersion compensating method

Publications (1)

Publication Number Publication Date
WO2001094991A1 true WO2001094991A1 (en) 2001-12-13

Family

ID=26593583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004852 WO2001094991A1 (en) 2000-06-08 2001-06-08 Composite light dispersion for compensating device and method for compensating light dispersion using the device

Country Status (2)

Country Link
AU (1) AU2001264226A1 (en)
WO (1) WO2001094991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182159A1 (en) * 2020-03-10 2021-09-16 東海光学株式会社 Delay mirror and delay mirror system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227014A (en) * 1995-02-21 1996-09-03 Fujikura Ltd Wavelength variable filter, production thereof and wavelength variable light source
JPH1048567A (en) * 1996-08-02 1998-02-20 Hitachi Ltd Optical dispersion compensator, optical pulse generator and optical communication system using the same
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH11136186A (en) * 1997-08-28 1999-05-21 Samsung Electron Co Ltd Optical fiber dispersion compensator for optical line
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Optical dispersion compensation element, semiconductor laser device using the element, and optical communication system
JP2000105313A (en) * 1998-09-30 2000-04-11 Kazuro Kikuchi Dispersion compensator
JP2000138407A (en) * 1998-10-29 2000-05-16 Hamamatsu Photonics Kk Multilayered film mirror

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH08227014A (en) * 1995-02-21 1996-09-03 Fujikura Ltd Wavelength variable filter, production thereof and wavelength variable light source
JPH1048567A (en) * 1996-08-02 1998-02-20 Hitachi Ltd Optical dispersion compensator, optical pulse generator and optical communication system using the same
JPH11136186A (en) * 1997-08-28 1999-05-21 Samsung Electron Co Ltd Optical fiber dispersion compensator for optical line
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Optical dispersion compensation element, semiconductor laser device using the element, and optical communication system
JP2000105313A (en) * 1998-09-30 2000-04-11 Kazuro Kikuchi Dispersion compensator
JP2000138407A (en) * 1998-10-29 2000-05-16 Hamamatsu Photonics Kk Multilayered film mirror

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182159A1 (en) * 2020-03-10 2021-09-16 東海光学株式会社 Delay mirror and delay mirror system
JP2021144088A (en) * 2020-03-10 2021-09-24 東海光学株式会社 Delay mirror and delay mirror system
CN115280193A (en) * 2020-03-10 2022-11-01 东海光学株式会社 Delay mirror and delay mirror system
CN115280193B (en) * 2020-03-10 2023-10-24 东海光学株式会社 Retardation mirror and retardation mirror system
JP7448939B2 (en) 2020-03-10 2024-03-13 東海光学株式会社 Delay mirror and delay mirror system

Also Published As

Publication number Publication date
AU2001264226A1 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
WO2002023234A1 (en) Optical dispersion compensating device, composite optical dispersion compensating device comprising the device, and optical dispersion compensating method using the device
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
US6943951B2 (en) Optical component and dispersion compensation method
JP2001320328A (en) Optical communication method
US8456741B2 (en) Optical module having three or more optically transparent layers
JP2002267998A (en) Wavelength dispersion compensation module, optical receiving circuit, and optical communication system
JPH1078528A (en) Optical multiplexer / demultiplexer and wavelength division multiplex module
US6870679B2 (en) Multi-pass configurations
US6956700B1 (en) Wavelength dispersion compensating apparatus
WO2002031542A1 (en) Light dispersion compensating element and composite type light dispersion compensating element using that element and light dispersion compensating method using that element
JP4613814B2 (en) Variable dispersion compensator
CN101051870B (en) Wavelength dispersion compensation device
WO2001094991A1 (en) Composite light dispersion for compensating device and method for compensating light dispersion using the device
JP2002122732A (en) Optical dispersion compensating device
JP2002214430A (en) Optical dispersion compensating element
US20040042082A1 (en) Wavelength dispersion generation apparatus, multi-faced mirror used for wavelength dispersion generation apparatus, and method for manufacturing thereof
US20030099019A1 (en) Compensation of chromatic dispersion using cascaded etalons of variable reflectivity
WO2001084749A1 (en) Optical dispersion compensating device and optical dispersion compensating method using the device
WO2001086339A1 (en) Light dispersion compensation element and light dispersion compensation method using the element
JP2001352293A (en) Light dispersion compensating element and light dispersion compensating method using it
JP2001305339A (en) Optical dispersion compensation element
WO2001084750A1 (en) Optical dispersion compensating device and optical dispersion compensating method using the device
JP2002071945A (en) Element and method for compensating dispersion of light
JP2001251246A (en) Optical dispersion compensating element
US7062122B2 (en) Tunable optical add/drop device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WPC Withdrawal of priority claims after completion of the technical preparations for international publication
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 502483

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: 1205A

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载