WO2001090355A1 - Human sodium channel scn12a and scn8a - Google Patents
Human sodium channel scn12a and scn8a Download PDFInfo
- Publication number
- WO2001090355A1 WO2001090355A1 PCT/JP2000/004629 JP0004629W WO0190355A1 WO 2001090355 A1 WO2001090355 A1 WO 2001090355A1 JP 0004629 W JP0004629 W JP 0004629W WO 0190355 A1 WO0190355 A1 WO 0190355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scn12a
- seq
- human
- scn8a
- cdna
- Prior art date
Links
- 108010052164 Sodium Channels Proteins 0.000 title claims abstract description 29
- 102000018674 Sodium Channels Human genes 0.000 title claims abstract description 28
- 101000640020 Homo sapiens Sodium channel protein type 11 subunit alpha Proteins 0.000 claims abstract description 56
- 102100033974 Sodium channel protein type 11 subunit alpha Human genes 0.000 claims abstract description 49
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 48
- 101000654381 Homo sapiens Sodium channel protein type 8 subunit alpha Proteins 0.000 claims abstract description 42
- 239000002299 complementary DNA Substances 0.000 claims abstract description 41
- 102100031371 Sodium channel protein type 8 subunit alpha Human genes 0.000 claims abstract description 35
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 19
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 19
- 239000002157 polynucleotide Substances 0.000 claims abstract description 19
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 16
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 210000003917 human chromosome Anatomy 0.000 claims description 10
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 3
- 108020004635 Complementary DNA Proteins 0.000 abstract description 6
- 210000000653 nervous system Anatomy 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 17
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 12
- 238000003757 reverse transcription PCR Methods 0.000 description 12
- 239000012634 fragment Substances 0.000 description 11
- 210000000278 spinal cord Anatomy 0.000 description 9
- 210000003594 spinal ganglia Anatomy 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- 241000700159 Rattus Species 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- 210000003527 eukaryotic cell Anatomy 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 5
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 5
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 description 5
- 238000000636 Northern blotting Methods 0.000 description 5
- 102100031374 Sodium channel protein type 10 subunit alpha Human genes 0.000 description 5
- 102100027198 Sodium channel protein type 5 subunit alpha Human genes 0.000 description 5
- 230000002759 chromosomal effect Effects 0.000 description 5
- 210000005260 human cell Anatomy 0.000 description 5
- 238000007901 in situ hybridization Methods 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 108091060211 Expressed sequence tag Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 101000654356 Homo sapiens Sodium channel protein type 10 subunit alpha Proteins 0.000 description 4
- 101000684826 Homo sapiens Sodium channel protein type 2 subunit alpha Proteins 0.000 description 4
- 102100023150 Sodium channel protein type 2 subunit alpha Human genes 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000010339 dilation Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 210000002826 placenta Anatomy 0.000 description 4
- 239000013600 plasmid vector Substances 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 101000631760 Homo sapiens Sodium channel protein type 1 subunit alpha Proteins 0.000 description 3
- 101000684820 Homo sapiens Sodium channel protein type 3 subunit alpha Proteins 0.000 description 3
- 101000693993 Homo sapiens Sodium channel protein type 4 subunit alpha Proteins 0.000 description 3
- 101000654386 Homo sapiens Sodium channel protein type 9 subunit alpha Proteins 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 102100028910 Sodium channel protein type 1 subunit alpha Human genes 0.000 description 3
- 102100023720 Sodium channel protein type 3 subunit alpha Human genes 0.000 description 3
- 102100027195 Sodium channel protein type 4 subunit alpha Human genes 0.000 description 3
- 102100031367 Sodium channel protein type 9 subunit alpha Human genes 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000036982 action potential Effects 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000000813 small intestine Anatomy 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 101150020107 SCN8A gene Proteins 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000011888 autopsy Methods 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000001320 hippocampus Anatomy 0.000 description 2
- 102000055200 human SCN8A Human genes 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000007857 nested PCR Methods 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 210000000956 olfactory bulb Anatomy 0.000 description 2
- 230000008288 physiological mechanism Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 101100084990 Caenorhabditis elegans rpn-3 gene Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101000694025 Homo sapiens Sodium channel protein type 7 subunit alpha Proteins 0.000 description 1
- 208000002682 Hyperkalemia Diseases 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 101100473185 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) rpn-1 gene Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100221606 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS7 gene Proteins 0.000 description 1
- 241000235343 Saccharomycetales Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 101150010053 Scn10a gene Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010063499 Sigma Factor Proteins 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 101710134422 Sodium channel protein type 10 subunit alpha Proteins 0.000 description 1
- 101710102203 Sodium channel protein type 11 subunit alpha Proteins 0.000 description 1
- 102100027190 Sodium channel protein type 7 subunit alpha Human genes 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 108010053752 Voltage-Gated Sodium Channels Proteins 0.000 description 1
- 102000016913 Voltage-Gated Sodium Channels Human genes 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000001947 dentate gyrus Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 210000001654 germ layer Anatomy 0.000 description 1
- 210000001280 germinal center Anatomy 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 201000006903 long QT syndrome 3 Diseases 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000001611 motor endplate Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- CFMYXEVWODSLAX-QOZOJKKESA-N tetrodotoxin Chemical compound O([C@@]([C@H]1O)(O)O[C@H]2[C@@]3(O)CO)[C@H]3[C@@H](O)[C@]11[C@H]2[C@@H](O)N=C(N)N1 CFMYXEVWODSLAX-QOZOJKKESA-N 0.000 description 1
- 229950010357 tetrodotoxin Drugs 0.000 description 1
- CFMYXEVWODSLAX-UHFFFAOYSA-N tetrodotoxin Natural products C12C(O)NC(=N)NC2(C2O)C(O)C3C(CO)(O)C1OC2(O)O3 CFMYXEVWODSLAX-UHFFFAOYSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
Definitions
- This application relates to a novel subunit SCN12A of the sodium channel of the human nervous system and its splicing variant SCN12A-s, also a human sodium channel SCN8A, human genes encoding these molecules, and cDNAs of these genes. is there. Background art
- Membrane voltage-gated sodium channels are membrane protein molecules that are present in the cell membrane of excitable cells such as neuromuscularis. Excitable cells perform their function by generating action potentials. For example, in the case of a nerve cell, the action potential generated in the cell body propagates through the axon, thereby transmitting information as a function of the nerve cell.
- Sodium channels are protein molecules that, along with potassium channels, are responsible for initiating and transmitting action potentials.
- the membrane potential-dependent sodium channel is composed of a plurality of subunits, and the main functions are provided in subunits.
- SCN1A (2q24), SCN2A (2q23-q24.3), SCN3A (2q24-q31), SCN4A (17q23.1-q25.3) .
- SCN5A (3p21-24), SCN6A (2q21-q23), SCN8A (12q13.1), SCN9A (2q24), SCN10A (3p22-q24)
- the number in parentheses is the human chromosome locus).
- the corresponding disease in humans is not known, but it is also known to be due to a mutation in the mouse mutant motor endplate disease (med) Scn8a.
- understanding the molecular biology and function of the membrane-gated sodium channel is extremely important for understanding the physiological mechanisms of humans and for identifying the direct cause of various diseases. It is.
- substances that act on the sodium channel are drugs (eg, anesthetics, analgesics, muscle relaxants, etc.) that regulate the function of cells in which they are expressed. It is also important as a target for the development of new therapeutic agents.
- the inventors of the present application performed a gene clone for the purpose of confirming all sodium channels expressed in the human nervous system.
- the EST (Expressed Sequence Tags) database contained a partial sequence of SCN8A.
- AA446997 which is not a partial sequence of SCN8A, also differs from the sequence of other known sodium channel genes.
- This application describes a novel sodium channel SCN12A discovered by the inventors, The objective is to provide genes and cDNAs specifically. Another object of the present application is to specifically provide a sodium channel SCN8A, whose genes have been clarified by the inventors, and its gene and cDNA. Furthermore, it is an object of the present application to provide antibodies against SCN12A and SCN8A.
- This application discloses a purified human sodium channel SCN 12A having the amino acid sequence of SEQ ID NO: 2 and a purified human sodium channel having the amino acid sequence of SEQ ID NO: 4 Provides SCN12A-S. This application also provides a purified human sodium channel SCN8A having the amino acid sequence of SEQ ID NO: 6.
- the present application relates to a human gene encoding the SCN12A and SCN12A-S, wherein the SCN12A gene present on the third short arm of human chromosome (3p23-p21.3) and the human gene encoding the SCN8A It provides the SCN8A gene, which is located on the long arm of human chromosome 12 (12q13). Furthermore, this application provides a polynucleotide of the human SCN12A gene, which has the nucleotide sequence of SEQ ID NO: 1 and the polynucleotide having the nucleotide sequence of SEQ ID NO: 3.
- FIG. 1 is a schematic diagram showing a set of primers used for PCR amplification of SCN12A, and an EST sequence and a known sequence on which these primers were synthesized.
- FIG. 2 is a schematic diagram of the SCN12A full-length cDNA clone.
- FIG. 3 is a schematic diagram showing the relationship between the structure of each cDNA of SCN12A and SCN12A-S and the clones obtained by RT-PCR and RACE.
- FIG. 4 shows the results of chromosomal locus identification of SCN12A by FISH.
- the metaphase chromosome plate shows a hybridization signal of SCN 12A on human chromosome 3p23-p21.3 (arrow).
- the vertical bar indicates the position of SCN 12A.
- FIG. 5 shows the results of Northern blot analysis in which the expression of SCN12A in each organ was examined.
- the upper row shows the results of various adult tissues, and the lower row shows the results of examining each central nervous system tissue.
- FIG. 6 shows the results of in situ hybridization of SCN12A using rat organs.
- a DIG-labeled RNA probe was used specifically for SCN12A.
- Panel F shows the results of SCN12A RT-PCR using human cell lines.
- the cell lines are glioblastoma U215, neuroblastoma LAN-5 and SHSY-5 ⁇ .
- FIG. 8 is a schematic diagram showing a set of primers used for PCR amplification of SCN8A and a known sequence from which these primers were synthesized.
- FIG. 9 is a schematic diagram showing the relationship between the structure of SCN8A cDNA and clones obtained by RT-PCR and RACE.
- FIG. 10 is a schematic diagram of the SCN8A full-length cDNA clone. BEST MODE FOR CARRYING OUT THE INVENTION
- the sodium channels SCN12A and SCN12A-S of the present invention are different transcripts expressed from the same gene, respectively.
- SCN12A is composed of 179 "! Amino acids shown in SEQ ID NO: 2, and comprises SCN12A-S S consists of 1444 amino acids shown in SEQ ID NO: 4 (hereinafter, these two may be simply referred to as “SCN12A”).
- the sodium channel SCN8A of the present invention is a transcript expressed from the cDNA having the nucleotide sequence shown in SEQ ID NO: 1 and consists of 1980 amino acids shown in SEQ ID NO: 1.
- Each of SCN12A and SCN8A of the present invention can be isolated from a known method, that is, a method of isolating from human various organs (eg, brain, spleen, small intestine, placenta, spinal cord, etc., as confirmed in the Examples below). It can be obtained by a method of preparing a peptide by chemical synthesis based on the amino acid sequence provided by the application, or by a method of producing by recombinant DNA technology using the polynucleotide provided by this application.
- a known method that is, a method of isolating from human various organs (eg, brain, spleen, small intestine, placenta, spinal cord, etc., as confirmed in the Examples below). It can be obtained by a method of preparing a peptide by chemical synthesis based on the amino acid sequence provided by the application, or by a method of producing by recombinant DNA technology using the polynucleotide provided by this application.
- RNA is prepared by in vitro transcription from a vector having the polynucleotide (SEQ ID NO: 1, 3 or 4) of the present invention, and this is used as a type III protein.
- the SCN12A or SCN8A protein can be obtained by performing in vitro translation as described above.
- this recombinant vector is used to transform Escherichia coli, Bacillus subtilis, yeast, animal and plant cells, etc., these transformants can be used. Protein can be expressed in large quantities.
- the translation region of the polynucleotide of the present invention is recombined into a vector having an RNA polymerase promoter, and the RNA polymerase corresponding to the promoter is contained.
- RNA polymerase promoter examples include T7, T3, and SP6.
- vectors containing these RNA polymerase promoters include pKA1, pCDM8, pT3 / T718, ⁇ 7 / 319, pBluescript II, and the like.
- an expression vector having an origin, a promoter, a ribosome binding site, a DNA-cloning site, a terminator, and the like that can be replicated in the microorganism is used.
- the polynucle of the present invention An expression vector may be prepared by recombination of the nucleotide translation region, a host cell may be transformed with the expression vector, and the transformant may be cultured. At this time, by adding a start codon and a stop codon before and after the arbitrary translation region, a protein fragment containing the arbitrary region can be obtained.
- SCN12A can be expressed as a fusion protein with another protein. By cutting this fusion protein with an appropriate protease, only SCN12A can be obtained.
- the expression vector for Escherichia coli include a pUC system, a pBluescript pET expression system, and a pGEM expression system.
- the expression region for a eukaryotic cell having a promoter, a splicing region, a poly (A) addition site, and the like is used as the translation region of the polynucleotide of the present invention. First, it is recombined and introduced into eukaryotic cells.
- Eukaryotic cells include, but are not limited to, monkey kidney cells COS7, mammalian cells such as Chinese hamster ovary cells CHO, budding yeast, fission yeast, silkworm cells, African Xenopus egg cells, etc. Not something.
- known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used.
- a known separation operation is combined to isolate and purify the target protein from the culture. For example, treatment with denaturing agents such as urea or surfactants, ultrasonic treatment, enzyme digestion, salting out, solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing , Ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography and the like.
- the SCN12A of the present invention includes a peptide fragment (5 or more amino acid residues) containing any partial sequence in the amino acid sequence of SEQ ID NO: 2 or 4.
- SCN8A also includes a peptide fragment of 5 amino acids or more in the amino acid sequence of SEQ ID NO: 6. These peptide fragments can be used as antigens for producing antibodies.
- the SCN12A or SCN8A of the present invention also includes a fusion protein with any other protein.
- the gene of the present invention is a human gene encoding the above-mentioned SCN12A, and is a gene present in the third short arm of human chromosome (3p23-p21.3).
- Another gene of the present invention is a gene encoding the above-mentioned SCN8A, which is present on the long arm of human chromosome 12 (12q133).
- genes can be isolated from an existing genomic library using, for example, each polynucleotide of the present invention or its partial sequence as a probe.
- the polynucleotide (cDNA) of the present invention can be cloned, for example, from cDNA derived from human cells.
- cDNA is synthesized using poly A + RNA extracted from human cells as type II. Examples of the synthesis method include the Okayama-Ichi Berg method (Mol. Cell. Biol. 2: 161-170, 1982), the Gubler-Hoffman method ( ⁇ Gene 25: 263-269, 1983), and the cabbing method (Gene 150: 243-250). , 1994) can be used.
- a commercially available human cDNA library can also be used.
- an oligonucleotide is synthesized based on the nucleotide sequence of an arbitrary portion of the cDNA of the present invention, and this is used as a probe. Screening by one or plaque hybridization may be performed. In addition, oligonucleotides that hybridize to both ends of the cDNA fragment of interest are synthesized, and using this as a primer, the cDNA of the present invention is purified from mRNA isolated from human cells by RT-PCR. It can also be prepared.
- polynucleotide of SEQ ID NO: 1, 3 or 5 in which one or more nucleotides are added, deleted and / or substituted by other nucleotides are also included in the polynucleotide of the present invention.
- the polynucleotide of the present invention includes a DNA fragment (10 bp or more) containing any partial sequence of the nucleotide sequence of SEQ ID NO: 1, 3 or 5. It also includes a DNA fragment consisting of a sense strand and an antisense strand. These DNA fragments can be used as probes for gene diagnosis.
- the antibody of the present invention can be obtained as a polyclonal antibody or a monoclonal antibody by a known method using SCN12A or SCN8A itself or a partial peptide thereof as an antigen.
- SCN12A or SCN8A itself or a partial peptide thereof as an antigen.
- the (mRNA) fraction was purified.
- the mRNA purified in (1) was converted into type ⁇ , and single-stranded DNA was synthesized using a random primer.
- This one Using the strand DNA as type III, a partial sequence of SCN12A of 1832 bp was obtained by nested PCR.
- the primer used in this PCR has high homology between the EST sequence AA446997 and the known sodium channel ⁇ subunit (human ⁇ and rat R), and the sequence is well conserved. It was designed based on the part that was.
- Est-f1 oligonucleotide of SEQ ID NO: 7
- Est-f2 oligonucleotide of SEQ ID NO: 8
- Na-r1 oligonucleotide of SEQ ID NO: 9
- Na-r2 oligonucleotide of SEQ ID NO: 10
- the single-stranded DNA is highly homologous between known sodium channel ⁇ - subunits (human ⁇ and rat R) as shown in FIG. 8, and the sequence is well conserved.
- a partial sequence of a sodium channel containing a known sodium channel ⁇ -subunit was obtained by nested PCR using an oligonucleotide designed based on the portion as a primer. One of them, 1806 bp, has a very high homology of 91% in base sequence and 98% in amino acid sequence. It was confirmed that this was a partial sequence of human SCN8A cDNA.
- a primer was synthesized based on the nucleotide sequence of the SCN12A RT-PCR product obtained in (2) above, and 5′-RACE and 3′-RACE were performed using Marathon-ready cDNA (Clontech) as a type II. CDNA, cDNAs with 5'-side and 3'-side adapters were obtained.
- the primer for 5'-RACE was Race-5 (oligonucleotide of SEQ ID NO: 11)
- the primer for 3'-RACE was Race-3a (oligonucleotide of SEQ ID NO: 12) and Race-3b (sequence of SEQ ID NO: 12). No. 13 (oligonucleotide).
- AP1 oligonucleotide of SEQ ID NO: 14
- AP2 oligonucleotide of SEQ ID NO: 15
- 5′-RACE and 3′-RACE were similarly performed on SCN8A to obtain 5′- and 3′-side cDNAs.
- the 5 'end was obtained by PCR using a primer designed based on the 5' end cDNA sequence.
- the relationship between the obtained cDNA fragments is as shown in FIG. (4) Subcloning
- the cDNA fragment of SCN12A obtained by RT-PCR and RACE was subcloned into the plasmid vector pBleuscript IISK (+).
- the plasmid of the above (4) was propagated and purified, subjected to a re-quenching reaction by a dye terminator and a die primer method, and the reaction product was analyzed by a fluorescent sequencer-377A (Perkin Elmer / ABI).
- Northern blot was performed using an SCN12A cDNA fragment as a probe, using an RNA plot membrane (manufactured by Clontech) prepared from human various organ poly A + RNA.
- the probe - were labeled with [32 P] dCTP.
- the results of the hybridization were analyzed with a Storm 830 image analyzer (Molecukar Dynamics).
- the chromosomal locus was identified by fluorescence in situ hybridization (FISH).
- SCN8A cDNA containing full-length ⁇ RF was obtained by RT-PCR, and these were subcloned into the plasmid vector pSP64TR (FIG. 10). .
- SCN12AcDNA is 6528 bp in length, has an ORF of 5373 bp, and encodes a 1791 amino acid residue protein.
- SCN 12A-SCDNA is 5728 bp in length, has an ORF of 4332 bp, and encodes a protein with 1444 amino acid residues. All proteins identify four transmembrane domains common to the sodium channel subunit.
- Table 1 also shows homology with known sodium channel subunits, chromosomal locus, expression site, and relationship with disease.
- the homology with the known ⁇ -subunit is about 37-73%, which is quite distant from the conventionally known ones.Therefore, SCN12A has a different function from the known sub-unit. It is suggested that
- SCN12A has a serine amino acid residue in the SS2 segment of the transmembrane domain, as does Scn10a PN3 / SN $ and NaNZSNS2, which are known tetrodotoxin resistant (TTX-R) sodium channels. It was considered to be a TTX-R sodium channel. '
- the results of Northern blot analysis are as shown in FIG. 5, and the mRNA size of SCN 12A was about 7.0 Kb, and expression in brain, spleen, small intestine, placenta and spinal cord was observed. Expression in other tissues was below the detection sensitivity in Northern blots.
- known sites of expression of the sodium channel sigma subunit are nervous tissues such as brain, spinal cord and dorsal root ganglion, and muscular tissues such as skeletal muscle, cardiac muscle and uterus.
- SCN12A is expressed in the brain, spinal cord, spleen, small intestine, and placenta, but hardly expressed in skeletal muscle, extensor muscle, and uterus, and has an expression pattern that is not known. It was confirmed that they were different.
- SCN12A showed olfactory bulb, granular layer of cerebellum, dentate gyrus of hippocampus, central ependymal cells of spinal cord, spleen Germinal centers and placental vegetative germ layers showed strong expression (Fig. 6).
- SCN12A was expressed in both nervous cells and glial cells in the nervous system, and human material in the dorsal root ganglion (DRG). Although no RT-PCR band was observed due to the above problem, nested RT-PCR showed that SCN12A was also expressed in the dorsal root ganglion (FIG. 7).
- the SCN 8A cDNA has a total length of 7053 bp, has an ORF of 5940, and encodes a protein of 1980 amino acid residues.
- SCN8A four transmembrane domains common to sodium channel ⁇ -subunit are identified.
- Table 2 shows the homology with the known sodium channel ⁇ -subunit gene cDNA.
- the homology with the mouse and rat homologous genes was 86% and 94%, respectively.
- relatively high homology was observed with SCN1A, SCN2A, and SCN3A.
- this application provides a novel sodium channel subunit and its cDNA. These inventions will contribute greatly to elucidation of the physiological mechanisms involved in excitable cells, identification of the causes of various human diseases, and development of new therapeutic agents.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A novel α subunit SCN12A of the sodium channel of the human nervous system; its splicing variant SNC12A-s; another human sodium channel subunit SCN8A; human genes encoding these molecules; and cDNAs of these genes. SCN12A has the amino acid sequence of SEQ ID NO:2 and is encoded by a polynucleotide (cDNA) having the base sequence of SEQ ID NO:1. SCN12A-s has the amino acid sequence of SEQ ID NO:4 and is encoded by a polynucleotide (cDNA) having the base sequence of SEQ ID NO:3. SCN8A has the amino acid sequence of SEQ ID NO:6 and is encoded by a polynucleotide (cDNA) having the base sequence of SEQ ID NO:5.
Description
明細 ヒト ■ナトリゥムチャンネル SCN12Aおよび SCN8A 技術分野 Description Human ■ Natrium channel SCN12A and SCN8A
この出願は、 ヒト神経系のナトリウ厶チャンネルの新規な サブュニット SCN12A とそのスプライシングバリアント SCN12A-s、 同じくヒト ■ナトリウムチャンネル SCN8A、およびこれらの分子をコードするヒト遺伝子とこれら遺伝子の cDNAに関す るものである。 背景技術 This application relates to a novel subunit SCN12A of the sodium channel of the human nervous system and its splicing variant SCN12A-s, also a human sodium channel SCN8A, human genes encoding these molecules, and cDNAs of these genes. is there. Background art
膜電位依存性ナトリウムチャンネルは、 神経■筋などの興奮性細胞の細胞膜に存在 する膜タンパク質分子である。 興奮性細胞は、 活動電位を発生させることによってそ の機能を果たしている。 例えば、 神経細胞の場合には、 細胞体において発生した活動 電位が軸索を伝播することによって、 神経細胞の機能である情報の伝達が行われる。 ナトリウムチャンネルは、 カリウムチャンネルとともに、 活動電位の開始■伝播を担 つているタンパク質分子である。 Membrane voltage-gated sodium channels are membrane protein molecules that are present in the cell membrane of excitable cells such as neuromuscularis. Excitable cells perform their function by generating action potentials. For example, in the case of a nerve cell, the action potential generated in the cell body propagates through the axon, thereby transmitting information as a function of the nerve cell. Sodium channels are protein molecules that, along with potassium channels, are responsible for initiating and transmitting action potentials.
膜電位依存性ナトリウ厶チャンネルは複数のサブュニッ卜から構成されているが、 その主要な機能はなサブユニットに備わっている。 これまでに、 哺乳動物においては 複数の αサブュニット遺伝子の存在が明らかにされており、 ヒトにおいては少なくと も SCN1 A(2q24)、 SCN2A(2q23-q24.3)、 SCN3A(2q24-q31 )、 SCN4A( 17q23.1-q25.3) . SCN5A (3p21-24) 、 SCN6A (2q21-q23) 、 SCN8A ( 12q13.1 ) 、 SCN9A (2q24) 、 SCN10A (3p22— q24) の 9個の遺伝子が明らかにされている (括弧内はヒト染色体 座) 。 ただし、 これら全ての遺伝子が完全な形でクロ一ニングされている訳ではなく、 遺伝子によっては部分的な配列のみが報告されているものや、 あるいはマウスゃラッ 卜の相同配列からヒ ト相同遺伝子が確認されているものも存在する。 特に、 SCN8A は完全長の cDNAは未だに特定されておらず、 その遺伝子がコードするタンパク質に ついても全貌は知られていない。
近年、 ヒトまたは動物においてこれら遺伝子の突然変異による疾患が同定されてお リ、 ナトリウムチャンネルの αサブユニットは、 生理学的に重要な分子というだけで なく、 その変異が疾患原因となることも明らかにされてきている。 例えば、 SCN4A の突然変異により家族性高カリウム血症性周期性四肢麻痺が生じること、 SCN5A の 突然変異により QT延長症候群 3型が発症することなどが明らかにされている。また、 ヒ卜での相応する疾患は知られてはいないが、 マウスミュータント motor endplate disease (med)力 Scn8aの突然変異によるものであることも知られている。 前記のとおり、 膜電位依存性ナトリウムチャンネルの分子生物学的実体と機能を解 明することは、 ヒトの生理メカニズムを理解するうえでも、 また、 各種疾患の直接原 因を特定するうえでも極めて重要である。 さらには、 その生理的機能から推察して、 ナ卜リゥ厶チャンネルに作用する物質はそれが発現している細胞の機能を調節する 薬物 (例えば、 麻酔薬、 鎮痛薬、 筋弛緩剤など) となる可能性があり、 新たな治療薬 剤開発の標的としても重要である。 The membrane potential-dependent sodium channel is composed of a plurality of subunits, and the main functions are provided in subunits. To date, the existence of multiple α-subunit genes in mammals has been clarified, and in humans, at least SCN1A (2q24), SCN2A (2q23-q24.3), SCN3A (2q24-q31), SCN4A (17q23.1-q25.3) .SCN5A (3p21-24), SCN6A (2q21-q23), SCN8A (12q13.1), SCN9A (2q24), SCN10A (3p22-q24) (The number in parentheses is the human chromosome locus). However, not all of these genes have been cloned in perfect form, and only partial sequences have been reported for some genes. Some have been confirmed. In particular, the full-length cDNA of SCN8A has not yet been identified, and the full picture of the protein encoded by that gene is unknown. In recent years, diseases caused by mutations in these genes have been identified in humans or animals, and it is clear that the α subunit of the sodium channel is not only a physiologically important molecule, but that the mutation causes disease. Have been. For example, it has been shown that mutations in SCN4A cause familial hyperkalemia-induced periodic limb paralysis, and mutations in SCN5A cause long QT syndrome type 3. The corresponding disease in humans is not known, but it is also known to be due to a mutation in the mouse mutant motor endplate disease (med) Scn8a. As described above, understanding the molecular biology and function of the membrane-gated sodium channel is extremely important for understanding the physiological mechanisms of humans and for identifying the direct cause of various diseases. It is. Furthermore, inferring from their physiological functions, substances that act on the sodium channel are drugs (eg, anesthetics, analgesics, muscle relaxants, etc.) that regulate the function of cells in which they are expressed. It is also important as a target for the development of new therapeutic agents.
この出願の発明者らは、 ヒト神経系で発現している全てのナトリウムチャンネルを 確認することを目的として遺伝子のクロ一ニングを行った結果、 EST ( Expressed Sequence Tags ) データベースに、 SCN8A の部分配列と して登録されている AA446997が、 SCN8Aの部分配列でもなく、また他の既知のナトリウムチャンネル遺 伝子も配列とも異なることを見いだした。 そして、 この AA446997の配列を含む完全 長 cDNAをクロ一ニングすることに成功し、 この cDNAにコードされている新規ナト リゥムチャンネルを SCN12Aと命名した。 また、 部分配列が特定されているのみであったヒト SCN8Aの完全長 cDNAをク口 —ニングし、 この cDNAがコ一ドしている SCN8Aの全ァミノ酸配列を明らかにする ことに成功した。 発明の開示 ' The inventors of the present application performed a gene clone for the purpose of confirming all sodium channels expressed in the human nervous system. As a result, the EST (Expressed Sequence Tags) database contained a partial sequence of SCN8A. AA446997, which is not a partial sequence of SCN8A, also differs from the sequence of other known sodium channel genes. Then, we succeeded in cloning the full-length cDNA containing the sequence of AA446997, and named the novel sodium channel encoded by this cDNA SCN12A. We also cloned the full-length human SCN8A cDNA whose partial sequence was only specified, and succeeded in elucidating the entire amino acid sequence of SCN8A encoded by this cDNA. DISCLOSURE OF THE INVENTION ''
この出願は、発明者らが見いだした新規ナトリウムチャンネル SCN12Aと、 その遺
伝子および cDNAを具体的に提供することを課題としている。 またこの出願は、 発明 者らが全貌を明らかにしたナトリゥムチャンネル SCN8Aと、その遺伝子および cDNA を具体的に提供することを課題としている。 さらにまた、 この出願は、 SCN12Aおよ び SCN8Aに対する抗体を提供することを課題としている。 この出願は、 前記の課題を解決するための発明として、 配列番号 2のアミノ酸配列 を有する精製ヒ ト■ナトリウムチャンネル SCN 12A、 および配列番号 4のアミノ酸配 列を有する精製ヒ ト ■ナトリゥムチャンネル SCN12A-Sを提供する。 また、 この出願は、 配列番号 6のアミノ酸配列を有する精製ヒト .ナトリウムチヤ ンネル SCN8Aを提供する。 さらにこの出願は、 前記の SCN12Aおよび SCN 12A-S をコードするヒト遺伝子で あって、 ヒト染色体 3番短腕 (3p23-p21.3) に存在する SCN 12A 遺伝子と、 前記の SCN8Aをコードするヒト遺伝子であって、 ヒト染色体 12番長腕 (12q13) に存在す る SCN8A遺伝子を提供する。 さらにまた、 この出願は、 前記ヒ卜 SCN12A遺伝子の cDNAであって、配列番号 1 の塩基配列を有するポリヌクレオチド、 および配列番号 3の塩基配列を有するポリヌ クレオチドを提供する。 またさらに、 この出願は、 前記ヒト SCN8A遺伝子の cDNAであって、 配列番号 5 の塩基配列を有するポリヌクレオチドを提供する。 この出願は、 さらに、 前記 SCN12Aまたは SCN12A-s、 若しくは SCN8Aに対する 抗体をも提供する。 . 図面の簡単な説明
図 1 は、 SCN12Aの PCR増幅に用いたプライマ一セッ トと、 これらのプライマ一 合成の基になつた EST配列および既知配列を示す模式図である。 This application describes a novel sodium channel SCN12A discovered by the inventors, The objective is to provide genes and cDNAs specifically. Another object of the present application is to specifically provide a sodium channel SCN8A, whose genes have been clarified by the inventors, and its gene and cDNA. Furthermore, it is an object of the present application to provide antibodies against SCN12A and SCN8A. This application discloses a purified human sodium channel SCN 12A having the amino acid sequence of SEQ ID NO: 2 and a purified human sodium channel having the amino acid sequence of SEQ ID NO: 4 Provides SCN12A-S. This application also provides a purified human sodium channel SCN8A having the amino acid sequence of SEQ ID NO: 6. Further, the present application relates to a human gene encoding the SCN12A and SCN12A-S, wherein the SCN12A gene present on the third short arm of human chromosome (3p23-p21.3) and the human gene encoding the SCN8A It provides the SCN8A gene, which is located on the long arm of human chromosome 12 (12q13). Furthermore, this application provides a polynucleotide of the human SCN12A gene, which has the nucleotide sequence of SEQ ID NO: 1 and the polynucleotide having the nucleotide sequence of SEQ ID NO: 3. Furthermore, this application provides a polynucleotide of the human SCN8A gene, which has the nucleotide sequence of SEQ ID NO: 5. This application further provides an antibody against the SCN12A or SCN12A-s, or SCN8A. Brief description of the drawings FIG. 1 is a schematic diagram showing a set of primers used for PCR amplification of SCN12A, and an EST sequence and a known sequence on which these primers were synthesized.
図 2は、 SCN12A完全長 cDNAクローンの模式図である。 FIG. 2 is a schematic diagram of the SCN12A full-length cDNA clone.
図 3は、 SCN12A および SCN12A-Sの各 cDNAの構造と、 RT-PCR および RACE によリ得られたクローンとの関係を示す模式図である。 FIG. 3 is a schematic diagram showing the relationship between the structure of each cDNA of SCN12A and SCN12A-S and the clones obtained by RT-PCR and RACE.
図 4は、 SCN12Aの FISH法による染色体座位の同定の結果である。 中期染色体プ レートは、 ヒ ト染色体 3p23-p21.3 (矢印) 上に SCN 12Aのハイブリダィゼ一シヨン シグナルを示す。 ヒ ト染色体 3番の模式図は、 縦棒が SCN 12Aの位置を示す。 FIG. 4 shows the results of chromosomal locus identification of SCN12A by FISH. The metaphase chromosome plate shows a hybridization signal of SCN 12A on human chromosome 3p23-p21.3 (arrow). In the schematic diagram of human chromosome 3, the vertical bar indicates the position of SCN 12A.
図 5は、 SCN12Aの各臓器での発現を調べたノーザンブロッ ト解析の結果である。 上段は様々な成人組織、 下段は各中枢神経系組織を調べた結果である。 FIG. 5 shows the results of Northern blot analysis in which the expression of SCN12A in each organ was examined. The upper row shows the results of various adult tissues, and the lower row shows the results of examining each central nervous system tissue.
図 6は、ラッ 卜の臓器を用いた SCN12Aのインサイチュウハイブリダィゼ一ション の結果である。 SCN12Aに特異的は DIG標識 RNAプローブを用いた。 A :海馬、 B : 嗅球、 C : 小脳の低部拡張、 D : 小脳の高部拡張、 E : 脊髄の底部拡張、 F :脊髄の 高部拡張、 G : 脾臓、 H :胎盤。 FIG. 6 shows the results of in situ hybridization of SCN12A using rat organs. A DIG-labeled RNA probe was used specifically for SCN12A. A : Hippocampus, B: Olfactory bulb, C: Low cerebellar dilation, D: High cerebellar dilation, E: Bottom dilation of the spinal cord, F: High dilation of the spinal cord, G: Spleen, H: Placenta.
図フは、 ヒ 卜の株化細胞を用いた SCN12Aの RT-PCR の結果である。 細胞株は、 グリオブラストーマ U215、 ニューロブラストーマ LAN-5および SHSY-5丫である。 また全脳、 白質、 小脳、 脊髄、 DRG (後根神経節) についても調べた。 Panel F shows the results of SCN12A RT-PCR using human cell lines. The cell lines are glioblastoma U215, neuroblastoma LAN-5 and SHSY-5 丫. Whole brain, white matter, cerebellum, spinal cord, and DRG (dorsal root ganglion) were also examined.
図 8は、 SCN8Aの PCR増幅に用いたプライマ一セッ トと、 これらのプライマ一合 成の基になった既知配列を示す模式図である。 FIG. 8 is a schematic diagram showing a set of primers used for PCR amplification of SCN8A and a known sequence from which these primers were synthesized.
図 9は、 SCN8A cDNAの構造と、 RT-PCRおよび RACEにより得られたクローン との関係を示す模式図である。 FIG. 9 is a schematic diagram showing the relationship between the structure of SCN8A cDNA and clones obtained by RT-PCR and RACE.
図 10は、 SCN8A完全長 cDNAクローンの模式図である。 発明を実施するための最良の形態 FIG. 10 is a schematic diagram of the SCN8A full-length cDNA clone. BEST MODE FOR CARRYING OUT THE INVENTION
この発明のナトリウムチャンネル SCN12A および SCN 12A-S は、 それぞれ同一の 遺伝子から発現される異なった転写産物であり'、 SCN12A は、 配列番号 2に示した 179"!個の.アミノ酸からなり、 SCN12A-Sは、 配列番号 4に示した 1444個のアミノ酸 からなる (以下、 これら 2つを単に 「SCN12A」 と記載することがある) 。
また、 この発明のナトリウムチャンネル SCN 8 Aは、 配列番号 1 に塩基配列を示し た cDNAから発現される転写産物であり、 配列番号 1 に示した 1980個のアミノ酸か らなっている。 この発明の SCN12Aおよび SCN8Aはそれぞれ、 公知の方法、 すなわちヒ トの各種 臓器 (例えば、 下記の実施例で確認したように、 脳、 脾臓、 小腸、 胎盤および脊髄等) から単離する方法、 この出願によって提供されるのアミノ酸配列に基づき化学合成に よってべプチドを調製する方法、 あるいはこの出願によって提供されるポリヌクレオ チドを用いて組換え DNA 技術で生産する方法などにより取得することができる。 例 えば、 組換え DNA 技術によってタンパク質を取得する場合には、 この発明のポリヌ クレオチド (配列番号 1 、 3または 4 ) を有するベクタ一からインビトロ転写によつ て RNA を調製し、 これを錶型としてインビトロ翻訳を行なうことにより、 SCN12A または SCN8A タンパク質を得ることができる。 またポリヌクレオチドの翻訳領域を 公知の方法により適当な発現べクタ一に組換え、 この組換えべクタ一で大腸菌、 枯草 菌、 酵母、 動植物細胞等を形質転換すれば、 これらの形質転換体でタンパク質を大量 に発現させることができる。 この発明の SCN12Aまたは SCN8Aをインビトロ翻訳で生産する場合には、 この発 明のポリヌクレオチドの翻訳領域を RNA ポリメラ一ゼプロモータ一を有するベクタ —に組換え、 プロモータ一に対応する RNA ポリメラ一ゼを含むゥサギ網状赤血球溶 解物や小麦胚芽抽出物などのインビトロ翻訳系に添加すればよい。 RNAポリメラ一ゼ プロモーターとしては、 T7、 T3、 SP6などが例示できる。 これらの RNAポリメラ一 ゼプロモータ一を含むベクタ一としては、 pKA1、 pCDM8、 pT3/T7 18、 ρΤ7/3 19、 pBluescript IIなどが例示できる。 また、 この発明の SCN12Aまたは SCN8Aを大腸菌などの微生物で発現させる場合 には、 微生物中で複製可能なオリジン、 プロモータ一、 リボソーム結合部位、 DNAク 口一ニング部位、 ターミネータ一等を有する発現ベクターに、 この発明のポリヌクレ
ォチドの翻訳領域を組換えて発現べクタ一を作成し、 この発現べクタ一で宿主細胞を 形質転換し、 この形質転換体を培養すればよい。 この際、 任意の翻訳領域の前後に開 始コ ドンと停止コ ドンを付加すれば、 任意の領域を含むタンパク質断片を得ることが できる。 あるいは、 他のタンパク質との融合タンパク質として発現させることもでき る。 この融合タンパク質を適当なプロテア一ゼで切断することによって SCN12Aのみ を取得することもできる。 大腸菌用発現べクタ一としては、 pUC系、 pB luescript pET発現システム、 pGEM発現システムなどが例示できる。 この発明の SCN12Aまたは SCN8Aを真核細胞で発現させる場合には、 この発明の ポリヌクレオチドの翻訳領域を、 プロモータ一、 スプライシング領域、 ポリ (A ) 付 加部位等を有する真核細胞用発現べクタ一に組換え、 真核細胞内に導入する。 発現べ クタ一と しては、 pKA1、 pCDM8、 pSVK3、 pMSG、 pSVし pBK-CMV、 pBK-RSV、 EBV ベクター、 pRS、 pYES2 などが例示できる。 真核細胞としては、 サル腎臓細胞 COS7、 チャイニーズハムスター卵巣細胞 CHOなどの哺乳動物培養細胞、 出芽酵母、 分裂酵母、 カイコ細胞、 アフリカッメガエル卵細胞などが一般に用いられるが、 これ らに限定されるものではない。 発現べクタ一を真核細胞に導入するには、 電気穿孔法、 リン酸カルシウム法、 リボソーム法、 DEAEデキストラン法など公知の方法を用いる ことができる。 上記の方法により原核細胞や真核細胞でタンパク質を発現させたのち、 培養物から 目的タンパク質を単離精製するためには、 公知の分離操作を組み合わせて行う。 例え ぱ、 尿素などの変性剤や界面活性剤による処理、 超音波処理、 酵素消化、 塩析ゃ溶媒 沈殿法、 透析、 遠心分離、 限外濾過、 ゲル濾過、 SDS-PAGE、 等電点電気泳動、 ィォ ン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ァフィ二亍ィ一クロマトグ ラフィ一、 逆相クロマトグラフィー等である。 この発明の SCN12Aには、配列番号 2または 4のアミノ酸配列におけるいかなる部 分配列を含むペプチ ド断片 (5アミノ酸残基以上) も含まれる。 また、 この発明の
SCN8A には、 配列番号 6のアミノ酸配列における 5アミノ酸配列以上のペプチド断 片も含まれる。 これらのぺプチド断片は抗体を作製するための抗原として用いること ができる。 また、 この発明の SCN12Aまたは SCN8Aには、 他の任意のタンパク質と の融合蛋白質も含まれる。 この発明の遺伝子は、 上記 SCN12Aをコ一ドするヒ 卜の遺伝子であって、 ヒ ト染色 体 3番短腕 (3p23-p21.3) に存在する遺伝子である。 また、 この発明の別の遺伝子は、 上記 SCN8Aをコードする遺伝子であって、 ヒ ト染色体 12番長腕 (12q13 3) に存在 する遺伝子である。 これらの遺伝子は、 例えばこの発明のそれぞれのポリヌクレオチ ドまたはその一部配列をプローブとして、 既存のゲノムライブラリ一から単離するこ とができる。 この発明のポリヌクレオチド (cDNA) は、 例えばヒ ト細胞由来の cDNA からクロ —ン化することができる。 cDNAはヒ ト細胞から抽出したポリ A + RNA を錶型として 合成する。合成法としては、岡山一 Berg法 ( Mol. Cell. Biol. 2:161-170, 1982)、 Gubler - Hoffman法 (丄 Gene 25:263-269, 1983)、キヤッビング法(Gene 150:243-250,1994) 等を用いることができる。 また市販のヒ ト cDNAライブラリ一を用いることもできる。 cDNAライブラリ一からこの発明の cDNAをクローン化するには、 この発明の cDNA の任意の部分の塩基配列に基づいてオリゴヌクレオチドを合成し、 これをプローブと して用いて、 公知の方法によリコロニ一あるいはプラークハイブリダィゼ一シヨンに よるスクリーニングを行えばよい。 また、 目的とする cDNA断片の両末端にハイプリ ダイズするオリゴヌクレオチドを合成し、 これをプライマ一として用いて、 ヒ ト細胞 から単離した mRNAから RT-PCR法によリ、 この発明の cDNA を調製することもで さる。 The sodium channels SCN12A and SCN12A-S of the present invention are different transcripts expressed from the same gene, respectively. SCN12A is composed of 179 "! Amino acids shown in SEQ ID NO: 2, and comprises SCN12A-S S consists of 1444 amino acids shown in SEQ ID NO: 4 (hereinafter, these two may be simply referred to as “SCN12A”). In addition, the sodium channel SCN8A of the present invention is a transcript expressed from the cDNA having the nucleotide sequence shown in SEQ ID NO: 1 and consists of 1980 amino acids shown in SEQ ID NO: 1. Each of SCN12A and SCN8A of the present invention can be isolated from a known method, that is, a method of isolating from human various organs (eg, brain, spleen, small intestine, placenta, spinal cord, etc., as confirmed in the Examples below). It can be obtained by a method of preparing a peptide by chemical synthesis based on the amino acid sequence provided by the application, or by a method of producing by recombinant DNA technology using the polynucleotide provided by this application. For example, when a protein is obtained by recombinant DNA technology, RNA is prepared by in vitro transcription from a vector having the polynucleotide (SEQ ID NO: 1, 3 or 4) of the present invention, and this is used as a type III protein. The SCN12A or SCN8A protein can be obtained by performing in vitro translation as described above. In addition, if the translation region of the polynucleotide is recombined into an appropriate expression vector by a known method, and this recombinant vector is used to transform Escherichia coli, Bacillus subtilis, yeast, animal and plant cells, etc., these transformants can be used. Protein can be expressed in large quantities. When the SCN12A or SCN8A of the present invention is produced by in vitro translation, the translation region of the polynucleotide of the present invention is recombined into a vector having an RNA polymerase promoter, and the RNA polymerase corresponding to the promoter is contained.ゥ It may be added to an in vitro translation system such as a heron reticulocyte lysate or a wheat germ extract. Examples of the RNA polymerase promoter include T7, T3, and SP6. Examples of vectors containing these RNA polymerase promoters include pKA1, pCDM8, pT3 / T718, ρΤ7 / 319, pBluescript II, and the like. When the SCN12A or SCN8A of the present invention is expressed in a microorganism such as Escherichia coli, an expression vector having an origin, a promoter, a ribosome binding site, a DNA-cloning site, a terminator, and the like that can be replicated in the microorganism is used. The polynucle of the present invention An expression vector may be prepared by recombination of the nucleotide translation region, a host cell may be transformed with the expression vector, and the transformant may be cultured. At this time, by adding a start codon and a stop codon before and after the arbitrary translation region, a protein fragment containing the arbitrary region can be obtained. Alternatively, it can be expressed as a fusion protein with another protein. By cutting this fusion protein with an appropriate protease, only SCN12A can be obtained. Examples of the expression vector for Escherichia coli include a pUC system, a pBluescript pET expression system, and a pGEM expression system. When the SCN12A or SCN8A of the present invention is to be expressed in eukaryotic cells, the expression region for a eukaryotic cell having a promoter, a splicing region, a poly (A) addition site, and the like, is used as the translation region of the polynucleotide of the present invention. First, it is recombined and introduced into eukaryotic cells. Examples of expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSV, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2 and the like. Eukaryotic cells include, but are not limited to, monkey kidney cells COS7, mammalian cells such as Chinese hamster ovary cells CHO, budding yeast, fission yeast, silkworm cells, African Xenopus egg cells, etc. Not something. In order to introduce the expression vector into eukaryotic cells, known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used. After the protein is expressed in prokaryotic or eukaryotic cells by the above method, a known separation operation is combined to isolate and purify the target protein from the culture. For example, treatment with denaturing agents such as urea or surfactants, ultrasonic treatment, enzyme digestion, salting out, solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing , Ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography and the like. The SCN12A of the present invention includes a peptide fragment (5 or more amino acid residues) containing any partial sequence in the amino acid sequence of SEQ ID NO: 2 or 4. In addition, the present invention SCN8A also includes a peptide fragment of 5 amino acids or more in the amino acid sequence of SEQ ID NO: 6. These peptide fragments can be used as antigens for producing antibodies. The SCN12A or SCN8A of the present invention also includes a fusion protein with any other protein. The gene of the present invention is a human gene encoding the above-mentioned SCN12A, and is a gene present in the third short arm of human chromosome (3p23-p21.3). Another gene of the present invention is a gene encoding the above-mentioned SCN8A, which is present on the long arm of human chromosome 12 (12q133). These genes can be isolated from an existing genomic library using, for example, each polynucleotide of the present invention or its partial sequence as a probe. The polynucleotide (cDNA) of the present invention can be cloned, for example, from cDNA derived from human cells. cDNA is synthesized using poly A + RNA extracted from human cells as type II. Examples of the synthesis method include the Okayama-Ichi Berg method (Mol. Cell. Biol. 2: 161-170, 1982), the Gubler-Hoffman method (丄 Gene 25: 263-269, 1983), and the cabbing method (Gene 150: 243-250). , 1994) can be used. A commercially available human cDNA library can also be used. To clone the cDNA of the present invention from a single cDNA library, an oligonucleotide is synthesized based on the nucleotide sequence of an arbitrary portion of the cDNA of the present invention, and this is used as a probe. Screening by one or plaque hybridization may be performed. In addition, oligonucleotides that hybridize to both ends of the cDNA fragment of interest are synthesized, and using this as a primer, the cDNA of the present invention is purified from mRNA isolated from human cells by RT-PCR. It can also be prepared.
なお、 一般にヒ ト遺伝子は個体差による多型が頻繁に認められる。 従って配列番号 1 、 3または 5において、 1 または複数個のヌクレオチドの付加、 欠失および また は他のヌクレオチドによる置換がなされている cDNAもこの発明のポリヌクレオチド に含まれる。 同様に、 これらの塩基の変更によって生じる Ί または複数個のアミノ酸
の付加、欠失およびノまたは他のァミノ酸による置換がなされている SCN12Aまたは SCN8A も、'配列番号 2または 4のアミノ酸配列を有する SCN12A、 若しくは配列番 号 6のァミノ酸配列を有する SCN8Aの活性を有する限り、 この発明に含まれる。 さらに、 この発明のポリヌクレオチドには、 配列番号 1 、 3または 5の塩 ¾配列の いかなる部分配列を含む DNA断片 (10bp以上) も含まれる。 また、 センス鎖および アンチセンス鎖からなる DNA断片も含まれる。 これらの DNA断片は遺伝子診断用の プローブ等として用いることができる。 この発明の抗体は、 SCN12Aまたは SCN8Aそれ自体、 またはその部分ペプチドを 抗原として、 公知の方法によりポリクローナル抗体またはモノクローナル抗体として 得ることができる。 次に実施例として、 この発明の SCN12Aおよび SCN8Aの取得経緯およびその特性 等についての検討結果を示す。 実施例 In general, polymorphisms due to individual differences are frequently observed in human genes. Accordingly, the polynucleotide of SEQ ID NO: 1, 3 or 5 in which one or more nucleotides are added, deleted and / or substituted by other nucleotides are also included in the polynucleotide of the present invention. Similarly, 塩 基 or several amino acids resulting from these base changes SCN12A or SCN8A in which the addition, deletion and substitution of amino acids or amino acids of SEQ ID NO: 2 or 4 are also performed, or the activity of SCN8A having the amino acid sequence of SEQ ID NO: 6 or SCN8A having the amino acid sequence of SEQ ID NO: 6 The present invention is included as long as it has Furthermore, the polynucleotide of the present invention includes a DNA fragment (10 bp or more) containing any partial sequence of the nucleotide sequence of SEQ ID NO: 1, 3 or 5. It also includes a DNA fragment consisting of a sense strand and an antisense strand. These DNA fragments can be used as probes for gene diagnosis. The antibody of the present invention can be obtained as a polyclonal antibody or a monoclonal antibody by a known method using SCN12A or SCN8A itself or a partial peptide thereof as an antigen. Next, as an example, the process of obtaining the SCN12A and SCN8A of the present invention and the results of examination of the characteristics thereof will be described. Example
( 1 ) ヒ ト剖検脳 m RNAの精製 (1) Purification of human autopsy brain mRNA
非神経疾患患者剖検脳片 2 gを 20mLの TRIzol試薬 (Gibco-BRL社製) と共にホ モジェナイザ一にて完全に破砕し、 30°C、 15 分間インキュベートした。 次に、 4 mL のクロロフオルムを加え、 撹拌した後、 30°C、 30 分間インキュベートした。 12,000 g、 15分間遠心し、 水層を分取し、 エタノール沈殿により total RNAを抽出した。 ダイナビーズ m RNA精製キッ ト (DYNAL社製) を用いて total RNA よりポリ + RNA 2 g of an autopsy brain slice from a non-neurological disease patient was completely crushed with a homogenizer together with 20 mL of TRIzol reagent (manufactured by Gibco-BRL) and incubated at 30 ° C. for 15 minutes. Next, 4 mL of chloroform was added, stirred, and incubated at 30 ° C for 30 minutes. The mixture was centrifuged at 12,000 g for 15 minutes, the aqueous layer was separated, and total RNA was extracted by ethanol precipitation. Poly + RNA from total RNA using Dynabeads mRNA Purification Kit (DYNAL)
( m RNA) 分画を精製した。 The (mRNA) fraction was purified.
( 2 ) RT-PCR (2) RT-PCR
スーパ一スクリプト Π逆転写酵'素 (Gibco-BRL社製) により、 ( 1 ) で精製した m RNAを錶型と して、 ランダムプライマ一を用いて 1 本鎖 DNAを合成した。 この 1 本
鎖 DNAを鐯型として、ネスティ ド PCRによリ SCN 12Aの部分配列 1832bpを得た。 なお、 この PCRに用いたプライマ一は、 図 1に示したとおり、 E S T配列 AA446997 および既知のナトリウムチャンネル αサブユニット (ヒト Ηおよびラット R ) 間にお いて相同性が高く、 配列のよく保存されている部分を基に設計した。 具体的には、 以 下のプライマ一を用いた: Est-f1 (配列番号 7のオリゴヌクレオチド) 、 Est-f2 (配列 番号 8のオリゴヌクレオチド) 、 Na-r1 (配列番号 9のオリゴヌクレオチド) 、 Na-r2 (配列番号 10のオリゴヌクレオチド) 。 Using the superscript Πreverse transcriptase '(manufactured by Gibco-BRL), the mRNA purified in (1) was converted into type を, and single-stranded DNA was synthesized using a random primer. This one Using the strand DNA as type III, a partial sequence of SCN12A of 1832 bp was obtained by nested PCR. As shown in Figure 1, the primer used in this PCR has high homology between the EST sequence AA446997 and the known sodium channel α subunit (human Η and rat R), and the sequence is well conserved. It was designed based on the part that was. Specifically, the following primers were used: Est-f1 (oligonucleotide of SEQ ID NO: 7), Est-f2 (oligonucleotide of SEQ ID NO: 8), Na-r1 (oligonucleotide of SEQ ID NO: 9), Na-r2 (oligonucleotide of SEQ ID NO: 10).
また、 前記の 1本鎖 DNA を錡型として、 図 8に示したように既知のナ.トリウムチ ヤンネル αサブユニット (ヒト Ηおよびラット R ) 間において相同性が高く、 配列の よく保存されている部分を基に設計したオリゴヌクレオチドをプライマーとするネ ス亍ッ ド PCR によリ、 既知のナトリウムチャンネル αサブュニッ トを含むナトリゥ ムチャンネルの部分配列を得た。 そのうちの一つ 1806bpのク口一ンはラッ卜でク口 —ニングされている Scn8a と対応する部分の相同性が塩基配列 91 %、 アミノ酸配列 で 98%と非常に高いことから、 このクローンがヒト SCN8A cDNAの部分配列である ことが確認された。 In addition, as shown in FIG. 8, the single-stranded DNA is highly homologous between known sodium channel α- subunits (human Η and rat R) as shown in FIG. 8, and the sequence is well conserved. A partial sequence of a sodium channel containing a known sodium channel α-subunit was obtained by nested PCR using an oligonucleotide designed based on the portion as a primer. One of them, 1806 bp, has a very high homology of 91% in base sequence and 98% in amino acid sequence. It was confirmed that this was a partial sequence of human SCN8A cDNA.
( 3 ) RACE (3) RACE
上記 (2 ) で得た SCN12Aの RT-PCR産物の塩基配列を基にプライマ一を合成し、 Marathon-ready cDNA (Clontech社製) を錶型として 5'-RACEおよび 3'-RACEを行 しヽ、 5 ' 側および 3 ' 側のアダプター付き cDNAを得た。 なお、 5'-RACEのプライマ —は Race-5 (配列番号 11のオリゴヌクレオチド) を用い、 3'-RACEのプライマ一は Race-3a (配列番号 12のォリゴヌクレオチド) および Race-3b (配列番号 13のォリ ゴヌクレオチド) を用いた。 また、 アダプタ一プライマーは AP1 (配列番号 14のォ リゴヌクレオチド) および AP2 (配列番号 15のオリゴヌクレオチド) を用いた。 また、 SCN8Aについても同様に 5'-RACEおよび 3'-RACEを行い、 5'側および 3'側 の cDNAを得た。 また、 5'側の末端部分はラッ の 5'側の末端 cDNA配列をもとに設 計したプライマ一を用いて PCR法によリ得た。 得られた各 cDNA断片の関係は図 9 に示したとおりである。
( 4 ) サブクローニング A primer was synthesized based on the nucleotide sequence of the SCN12A RT-PCR product obtained in (2) above, and 5′-RACE and 3′-RACE were performed using Marathon-ready cDNA (Clontech) as a type II. CDNA, cDNAs with 5'-side and 3'-side adapters were obtained. The primer for 5'-RACE was Race-5 (oligonucleotide of SEQ ID NO: 11), and the primer for 3'-RACE was Race-3a (oligonucleotide of SEQ ID NO: 12) and Race-3b (sequence of SEQ ID NO: 12). No. 13 (oligonucleotide). AP1 (oligonucleotide of SEQ ID NO: 14) and AP2 (oligonucleotide of SEQ ID NO: 15) were used as adapter primers. 5′-RACE and 3′-RACE were similarly performed on SCN8A to obtain 5′- and 3′-side cDNAs. The 5 'end was obtained by PCR using a primer designed based on the 5' end cDNA sequence. The relationship between the obtained cDNA fragments is as shown in FIG. (4) Subcloning
RT-PCRおよび RACEによって得た SCN12Aの cDNA断片をプラスミ ドベクター pBleuscript IISK(+)にサブク口一ニングした。 The cDNA fragment of SCN12A obtained by RT-PCR and RACE was subcloned into the plasmid vector pBleuscript IISK (+).
また、 同じく SCN8Aの cDNA断片をプラスミ ドベクタ一 pBleuscript IISK(+)にサブ クローニングした。 Similarly, the cDNA fragment of SCN8A was subcloned into the plasmid vector pBleuscript IISK (+).
( 5 ) シークェンシング (5) Sequencing
上記 (4 ) のプラスミ ドを増殖精製し、 ダイターミネータ一およびダイプライマ一 法によリシ一クェンシング反応を行い、 反応産物を蛍光シークェンサ一377A ( Perkin Elmer/ABI) にて解析した。 The plasmid of the above (4) was propagated and purified, subjected to a re-quenching reaction by a dye terminator and a die primer method, and the reaction product was analyzed by a fluorescent sequencer-377A (Perkin Elmer / ABI).
( 6 ) ノーザンブロッ ト解析 (6) Northern blot analysis
ヒ 卜の各種臓器ポリ A + RNA より作製された RNA プロッ トメンブレン (Clontech 社製) を用いて、 SCN12A cDNA断片をプローブとしてノーザンブロッ トを行った。 プローブは [ -32P] dCTPにて標識した。 ハイブリダィゼ一シヨンの結果は、 Storm 830画像解析装置 (Molecukar Dynamics社製) にて解析した。 Northern blot was performed using an SCN12A cDNA fragment as a probe, using an RNA plot membrane (manufactured by Clontech) prepared from human various organ poly A + RNA. The probe - were labeled with [32 P] dCTP. The results of the hybridization were analyzed with a Storm 830 image analyzer (Molecukar Dynamics).
( 7 ) インサイチュウハイブリダィゼーシヨン解析 (7) In situ hybridization analysis
SCN12Aの cDNAクローンをプローブとして、 ラッ 卜の臓器を用いて、 インサイチ ユウハイブリダィゼ一シヨン (in situ Hybridization) 法により、 詳細な発現部位を調 ベた。 Using the SCN12A cDNA clone as a probe and rat organs, detailed expression sites were examined by in situ hybridization.
( 8 ) 染色体座位の同定 (8) Identification of chromosomal loci
SCN12Aの cDNAクローンをプローブとして、 蛍光インサイチュウハイブリダイゼ ーシヨン (FISH) 法により染色体座位を同定した。 Using the SCN12A cDNA clone as a probe, the chromosomal locus was identified by fluorescence in situ hybridization (FISH).
( 9 ) 完全長 cDNA発現クローンの作製
ヒ ト脾臓ポリ A + RNA (Clontech社製) を錶型として、 RT-PCRにより全長の ORF を含む SCN12A および SCN12A-S を得、 これらをプラスミ ドベクタ一 pSP64TRT (Promega社製の pSP64Poly(A)を変形したもの) にサブクロ一ニングした (図 2 ) 。 なお、 SCN12Aの PCRプライマーとしては配列番号 16および 17のオリゴヌクレオ チドを、 また SCN12A-Sの PCRプライマ一としては配列番号 16および 18めォリゴ ヌクレオチドを用いた。 (9) Construction of full-length cDNA expression clone Using human spleen poly A + RNA (Clontech) as type I, SCN12A and SCN12A-S containing the full-length ORF were obtained by RT-PCR, and these were converted to plasmid vector pSP64TRT (Promega pSP64Poly (A)). (Deformed) and subcloned (Fig. 2). The oligonucleotides of SEQ ID NOS: 16 and 17 were used as PCR primers for SCN12A, and the oligonucleotides of SEQ ID NOs: 16 and 18 were used as PCR primers for SCN12A-S.
また、 上記 ( 1 ) で精製した m RNAを錶型として、 RT-PCRにより全長の〇RFを 含む SCN 8 Aの cDNAを得、 これらをプラスミ ドベクタ一 pSP64TRにサブクロ一二 ングした (図 10) 。 Further, using the mRNA purified in (1) above as type III, SCN8A cDNA containing full-length ΔRF was obtained by RT-PCR, and these were subcloned into the plasmid vector pSP64TR (FIG. 10). .
( 10) 結果と考察 (10) Results and discussion
SCN12Aの cDNAクローニングを目的とした RACEの結果、 3'側については 2種類 の異なる cDNA断片を得た。 3'側の相違は alternative splicing と考えられる。 これら の断片より再構成される 2種類の cDNAについて、 長いものを SCN12AcDNA、 短い ものを SCN12A-SCDNA とした (図 3 ) 。 SCN12AcDNA は全長 6528bpで、 5373bp の ORFを有し、 1791 アミノ酸残基のタンパク質をコードしている。 SCN 12A-SCDNA は全長 5728bpで、 4332bpの ORFを有し、 1444ァミノ酸残基のタンパク質をコ一ド している。 いずれのタンパク質も、 ナトリウムチャンネル サブユニッ トに共通する 4力所の膜貫通ドメインが同定される。 As a result of RACE for the purpose of cDNA cloning of SCN12A, two different cDNA fragments were obtained on the 3 ′ side. The 3 'difference is considered alternative splicing. Of the two cDNAs reconstructed from these fragments, the long one was SCN12AcDNA and the short one was SCN12A-SCDNA (Figure 3). SCN12AcDNA is 6528 bp in length, has an ORF of 5373 bp, and encodes a 1791 amino acid residue protein. SCN 12A-SCDNA is 5728 bp in length, has an ORF of 4332 bp, and encodes a protein with 1444 amino acid residues. All proteins identify four transmembrane domains common to the sodium channel subunit.
表 1 には、 既知のナトリウムチャンネルなサブユニッ トとの相同性、 染色体座、 発 現部位および疾患のと関係等も併せて示した。 既知の αサブュニッ 卜との相同性は約 37— 73 %であり、 従来知られているものとはかなり離れた関係にあることから、 SCN12Aは、 既知の サブュニッ 卜とは異なった機能を担っていることが示唆される。 Table 1 also shows homology with known sodium channel subunits, chromosomal locus, expression site, and relationship with disease. The homology with the known α-subunit is about 37-73%, which is quite distant from the conventionally known ones.Therefore, SCN12A has a different function from the known sub-unit. It is suggested that
SCN12Aは、 既知の tetrodotoxin resistant ( T T X - R ) ナトリウムチャンネルで ある Scn10a PN3/SN$と NaNZSNS2と同様に膜貫通ドメィンの SS2セグメント にセリン (serine) ァ.ミノ酸残基が存在していることから、 TTX-Rナトリウムチャン ネルであることが考えられた。 . ' · SCN12A has a serine amino acid residue in the SS2 segment of the transmembrane domain, as does Scn10a PN3 / SN $ and NaNZSNS2, which are known tetrodotoxin resistant (TTX-R) sodium channels. It was considered to be a TTX-R sodium channel. '
また、 SCN12A遺伝子の染色体座はヒ ト染色体 3番短腕'(3p23-p21.3) にマップさ
れた (図 4 ) 。 この位置は既知の αサブユニット SCN5A (3ρ21-24) の近傍であり、 3ρ21 -ρ23 にナトリゥムチャンネル αサブュニット遺伝子のクラスタ一が存在する可 能性が示唆される。
In addition, the chromosomal locus of the SCN12A gene is mapped to the short arm of human chromosome 3 (3p23-p21.3). (Figure 4). This position is near the known α subunit SCN5A (3ρ21-24), suggesting that there may be a cluster of sodium channel α subunit genes in 3ρ21 -ρ23.
表 1table 1
チャンネル 。 クローン 主な 鄉立 疾 患 Channel . Clones Major diseases
个日 1口 J 土 k卜 1 unit per day J Sat
Navi. i rts I , 1 Navi.i rts I, 1
SCN2A Navl.2 rBll, all 47 % 2q23^24.3 2 E纖 DRG SCN2A Navl.2 rBll, all 47% 2q23 ^ 24.3 2 E Fiber DRG
Na 1. rDllI, .1(1 4y L Na 1.rDllI, .1 (1 4y L
u 4A r kMl , μ _ c u 4A r kMl, μ _ c
1 11 月力 lョ舌誦 ¾¾ 林 yJ \±Jヽフ ¾ Γ卜一 , 鳏 SCN5A Nav1.5 rHl, rSkM2, μ2 50 % 3p24-p21 9 肋, 凶 し QT3) 1 November 力 舌 舌 誦 ¾¾ 林 Lin yJ \ ± J ヽ Γ Γ 一 一 鳏 CN SCN5A Nav1.5 rHl, rSkM2, μ2 50% 3p24-p21 9
^q Ι~τ¾ίί Μ , ocn ann innii ^ q Ι ~ τ¾ίί Μ, ocn ann innii
M M
I S u, UL I I / L π , ocnwann UINon i flv I I o. I to nieuI S u, UL I I / L π, ocnwann UINon i flv I I o. I to nieu
m m
C C
SC 9A Nav1.7 hNe- a, rPN1 48 % 2q24 2 DRG,副腎, 甲難 SC 9A Nav1.7 hNe-a, rPN1 48% 2q24 2 DRG, adrenal gland, incontinence
SCN10A 1.8 SNS, rPN3 51 % 3P24-q22 9 DRG, SCN10A 1.8 SNS, rPN3 51% 3 P 24-q22 9 DRG,
SCN11A* Nav3.1 NaN, S S2t NaT 73 % 9 0¾,≡¾纖 脊髓 精巣 SCN11A * Nav3.1 NaN, S S2 t NaT 73% 90¾, ≡¾ Fiber Spinal testis
SCN12A 3p23-p21.3 脳, 脊髓 Dm,グリア, 腌 > m SCN12A 3p23-p21.3 Brain, spinal cord Dm, glia, 腌> m
* 寸しナ dlfeflこ相当するヒトクローン I だ賠されてし、ない。 * Dimensions dlfefl This is equivalent to human clone I.
林 寸し; に相当するヒト(½長クローンはまだ瞎されてし、ない
Lin's equivalent to human (long clones have not yet been sharpened
ノーザンブロット解析の結果は図 5に示したとおりであり、 SCN 12Aの m RNAサィ ズは約 7.0 Kbで、 脳、 脾臓、 小腸、 胎盤および脊髄での発現が観察された。 他の組織 での発現はノーザンブロットでは検出感度以下であった。 表 1にも示したとおり、 既 知のナトリウムチャンネル σサブユニットの発現部位は、 脳、 脊髄、 後根神経節等の 神経組織、 および骨格筋、 心筋、 子宮等の筋肉組織である。 これに対して、 SCN12A は、 脳、 脊髄、 脾臓、 小腸、 胎盤において発現が認めらるが、 骨格筋、 伸筋、 子宮で のは発現はほとんど認められず、 既知のものとは発現パターンが異なることが確認さ れた。 The results of Northern blot analysis are as shown in FIG. 5, and the mRNA size of SCN 12A was about 7.0 Kb, and expression in brain, spleen, small intestine, placenta and spinal cord was observed. Expression in other tissues was below the detection sensitivity in Northern blots. As also shown in Table 1, known sites of expression of the sodium channel sigma subunit are nervous tissues such as brain, spinal cord and dorsal root ganglion, and muscular tissues such as skeletal muscle, cardiac muscle and uterus. In contrast, SCN12A is expressed in the brain, spinal cord, spleen, small intestine, and placenta, but hardly expressed in skeletal muscle, extensor muscle, and uterus, and has an expression pattern that is not known. It was confirmed that they were different.
さらに詳細な発現部位を調べるために、 ラットを用いたインサイチュウハイブリダ ィゼ一ジョンを行った結果、 SCN12Aは嗅球、 小脳の顆粒層、 海馬の歯状回、 脊髄の 中心管上衣細胞、 脾臓の胚中心、 胎盤の栄養胚葉で強い発現を示した (図 6 ) 。 また、 ヒトの株化細胞 (cell line) を用いた RT-PCRの結果、 SCN12Aは神経系において神 経細胞と神経膠細胞の両方に発現し、 後根神経節 (DRG) ではヒ 卜の材料の問題で RT-PCRのバンドは観察されなかったが、 ネスティ ド RT-PCRの結果、 SCN12Aは後 根神経節でも発現が認められた (図 7 ) 。 As a result of in situ hybridization using rats to investigate more detailed expression sites, SCN12A showed olfactory bulb, granular layer of cerebellum, dentate gyrus of hippocampus, central ependymal cells of spinal cord, spleen Germinal centers and placental vegetative germ layers showed strong expression (Fig. 6). In addition, as a result of RT-PCR using human cell lines, SCN12A was expressed in both nervous cells and glial cells in the nervous system, and human material in the dorsal root ganglion (DRG). Although no RT-PCR band was observed due to the above problem, nested RT-PCR showed that SCN12A was also expressed in the dorsal root ganglion (FIG. 7).
—方、 SCN 8 Aの cDNA は、 配列番号 1に示したとおり、 全長 7053bp で、 5940 の O R Fを有し、 1980アミノ酸残基のタンパク質をコードしている。 この SCN8Aに は、 ナトリウムチャンネル αサブュニッ卜に共通する 4力所の膜貫通ドメインが同定 される。 On the other hand, as shown in SEQ ID NO: 1, the SCN 8A cDNA has a total length of 7053 bp, has an ORF of 5940, and encodes a protein of 1980 amino acid residues. In SCN8A, four transmembrane domains common to sodium channel α-subunit are identified.
表 2には、 既知のナトリウムチャンネル αサブュニッ ト遺伝子 cDNAとの相同性を 示した。 マウスおよびラッ卜の相同遺伝子との相同性はそれぞれ 86%および 94%で あった。 また、 既知のなサブユニットのうちでは、 SCN1A、 SCN2A、 SCN3Aとの間 に比較的高い相同性が認められた。
表 2 Table 2 shows the homology with the known sodium channel α-subunit gene cDNA. The homology with the mouse and rat homologous genes was 86% and 94%, respectively. Among the known subunits, relatively high homology was observed with SCN1A, SCN2A, and SCN3A. Table 2
ヒ卜 ラッ卜Human rat
SCN1A SCN2A SCN3A SCN4A SCN5A SCN9A SCN8A SCN10A SCN1A SCN2A SCN3A SCN4A SCN5A SCN9A SCN8A SCN10A
SCN8A 75 76 73 61 61 45 70 94 55 SCN8A 75 76 73 61 61 45 70 94 55
産業上の利用可能性 Industrial applicability
以上詳しく説明したとおり、 この出願によって、 新規なナトリウムチャンネルなサ ブユニッ トとその cDNAが提供される。 これらの発明は、 興奮性細胞の関与する生理 メカニズムの解明、 各種のヒ ト疾患の原因の特定、 および新たな治療薬剤の開発に大 きく貢献する。
As described in detail above, this application provides a novel sodium channel subunit and its cDNA. These inventions will contribute greatly to elucidation of the physiological mechanisms involved in excitable cells, identification of the causes of various human diseases, and development of new therapeutic agents.
Claims
請求の範囲 The scope of the claims
1. 配列番号 2のアミノ酸配列を有する精製ヒ ト .ナトリウムチャンネル SCN12A。 2. 配列番号 4のアミノ酸配列を有する精製ヒ ト'ナトリウムチャンネル SCN12A-sc 1. Purified human sodium channel SCN12A having the amino acid sequence of SEQ ID NO: 2. 2. Purification human 'sodium channel having the amino acid sequence of SEQ ID NO: 4 SCN12A-s c
3. 配列番号 6のアミノ酸配列を有する精製ヒ ト 'ナトリウ厶チャンネル SCN 8 AD 3. Purified human's sodium channel having the amino acid sequence of SEQ ID NO: 6 SCN 8 AD
4. 請求項 1の SCN12Aおよび請求項 2の SCN12A-S をコードするヒ ト遺伝子で あって、 ヒ ト染色体 3番短腕 (3p23-p21.3) に存在する SCN12A遺伝子。 4. A human gene encoding SCN12A of claim 1 and SCN12A-S of claim 2, wherein the SCN12A gene is located on the short arm of human chromosome 3 (3p23-p21.3).
5. 請求項 3の SCN8A をコードするヒ ト遺伝子であって、 ヒ ト染色体 12番長腕 (12q13.1) に存在する SCN8A遺伝子。 6. 請求項 4のヒ ト遺伝子の cDNAであって、 配列番号 1の塩基配列を有するポリ ヌクレオチド。 フ. W求項 4のヒ ト遺伝子の cDNAであって、 配列番号 3の塩基配列を有するポリ ヌクレオチド。 5. A human gene encoding SCN8A according to claim 3, which is located on the long arm of human chromosome 12 (12q13.1). 6. A polynucleotide of the cDNA of the human gene according to claim 4, which has the nucleotide sequence of SEQ ID NO: 1. F. A polynucleotide of the human gene of W claim 4, which has the nucleotide sequence of SEQ ID NO: 3.
8. 請求項 5のヒ ト遺伝子の cDNAであって、 配列番号 5の塩基配列を有するポリ ヌクレオチド。 8. A polynucleotide of the cDNA of the human gene according to claim 5, which has the nucleotide sequence of SEQ ID NO: 5.
9. 請求項 1の SCN12Aまたは請求項 2の SCN12A-Sに対する抗体。 9. An antibody against SCN12A of claim 1 or SCN12A-S of claim 2.
10. 請求項 3の SCN8Aに対する抗体。
10. The antibody against SCN8A of claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002412306A CA2412306A1 (en) | 2000-05-23 | 2000-07-11 | Human sodium channel scn12a and scn8a |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-152085 | 2000-05-23 | ||
JP2000152085A JP2001327294A (en) | 2000-05-23 | 2000-05-23 | Human natrium channel scn 12a |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001090355A1 true WO2001090355A1 (en) | 2001-11-29 |
Family
ID=18657555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/004629 WO2001090355A1 (en) | 2000-05-23 | 2000-07-11 | Human sodium channel scn12a and scn8a |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2001327294A (en) |
CA (1) | CA2412306A1 (en) |
WO (1) | WO2001090355A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998038302A2 (en) * | 1997-02-26 | 1998-09-03 | F. Hoffmann-La Roche Ag | TETRODOTOXIN-SENSITIVE SODIUM CHANNEL α-SUBUNIT |
JP2000201684A (en) * | 1999-01-11 | 2000-07-25 | Japan Science & Technology Corp | Sodium channel scn8 |
-
2000
- 2000-05-23 JP JP2000152085A patent/JP2001327294A/en active Pending
- 2000-07-11 CA CA002412306A patent/CA2412306A1/en not_active Abandoned
- 2000-07-11 WO PCT/JP2000/004629 patent/WO2001090355A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998038302A2 (en) * | 1997-02-26 | 1998-09-03 | F. Hoffmann-La Roche Ag | TETRODOTOXIN-SENSITIVE SODIUM CHANNEL α-SUBUNIT |
JP2000201684A (en) * | 1999-01-11 | 2000-07-25 | Japan Science & Technology Corp | Sodium channel scn8 |
Non-Patent Citations (3)
Title |
---|
Nicholas W. Plummer, et al., "Exon Organization, Coding Sequence, Physical Mapping, and Plymorphic Intragenic Markers for the Human Neuronal Sodium Channel Gene SCN8A", GENOMICS (1998), Vol. 54, No. 2, pages 287-296. * |
S. D. DIB-HAJI, et al., "NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy", Proc. Natl. Acad. Sci. USA (1998), Vol. 95, pages 8963-8968. * |
Seon-Yong Jeong, et al., "Identification of a Novel Human Voltage-Gated Sodium Channel alpha Subunit Gene, SCN12A", Biochemical and Biophysical Research Communications, (2000, Jan.), Vol. 267, No. 1, pages 262-270. * |
Also Published As
Publication number | Publication date |
---|---|
CA2412306A1 (en) | 2001-11-29 |
JP2001327294A (en) | 2001-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100631766B1 (en) | Polypeptides, cDNAs encoding the polypeptides and uses thereof | |
WO1999055858A2 (en) | Human nucleic acid sequences obtained from pancreas tumor tissue | |
EP1029916B1 (en) | Human lysophosphatidic acid receptor and use thereof | |
JP2002522016A (en) | Protein similar to neuroendocrine-specific protein and cDNA encoding the same | |
US6335172B1 (en) | Cloned tetrodotoxin-sensitive sodium channel α-subunit and a splice variant thereof | |
GB2372993A (en) | Vanilloid Receptor 6 | |
EP1283214B1 (en) | Novel collectins | |
JP2007536892A (en) | Secreted protein family | |
DE60117788T2 (en) | HUMAN WINGLESS-SIMILAR GENES | |
US7226997B2 (en) | Mast cell-specific signal transducer and cDNA thereof | |
WO2003053467A1 (en) | Drug for regenerating tissue and vessel and method therefor | |
WO2001090355A1 (en) | Human sodium channel scn12a and scn8a | |
AU784054B2 (en) | Novel polypeptides and genes encoding the same | |
JP2000135090A (en) | HUMAN H37 PROTEIN, AND cDAN CODING FOR THE SAME | |
WO2001096552A1 (en) | Sodium channels scn1a and scn3a | |
JP2002516675A (en) | Human minor vault protein p193 | |
EP1148125B1 (en) | Human nucleoprotein having a ww domain and polynucleotide encoding the same | |
CN1313297A (en) | Human protein able to suppress growth of cancer cells and its coding sequence | |
JP2000201684A (en) | Sodium channel scn8 | |
JP2001352987A (en) | Sodium channel scn1a | |
JP2001352988A (en) | Sodium channel scn3a | |
JPH11103867A (en) | Epo primary response gene1, eprg1 | |
GB2345487A (en) | Polynucleotide and polypeptide sequence encoding rat mdr1a and screening methods thereof | |
JP2003259871A (en) | Secretory protein creg2 expressing brain-specific expression and application of the same | |
AU4500696A (en) | Novel receptor tyrosine kinases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2412306 Country of ref document: CA |