WO2001089019A1 - Fuel cell stack with frame elements - Google Patents
Fuel cell stack with frame elements Download PDFInfo
- Publication number
- WO2001089019A1 WO2001089019A1 PCT/DE2001/001860 DE0101860W WO0189019A1 WO 2001089019 A1 WO2001089019 A1 WO 2001089019A1 DE 0101860 W DE0101860 W DE 0101860W WO 0189019 A1 WO0189019 A1 WO 0189019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- cell according
- poly
- channels
- bipolar plates
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/242—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the invention relates to a fuel cell, with a stack of membrane electrode units arranged one behind the other, which are coated on both sides with a catalyst and are each separated from one another by a bipolar plate, the first and the last membrane electrode unit of the stack being behind a simple pole plate is arranged as an end plate.
- the stack is of distribution and collection channels for supplying and removing hydrogen and oxygen to and from the anode or.
- Cathode spaces which are each formed between a membrane electrode assembly and a bipolar plate or between a membrane electrode assembly and an end plate. Branch channels branch off from the distribution and collecting channels to the corresponding anode or cathode spaces.
- Fuel cells for generating electrical energy by direct energy conversion from chemical energy in reverse of water electrolysis are known from the prior art.
- a single fuel cell usually consists of two invariant electrodes (anode and cathode) with an invariant electrolyte between them.
- the fuel cell continuously supplies electricity if it has an oxidizing fuel - this is usually done with hydrogen, which, for. B. is obtained by cleavage of natural gas, methanol, hydrazine, ammonia, etc. - and an oxidizing agent is continuously added and the oxidation products formed in the fuel cell are continuously removed.
- oxygen air
- the double negatively charged oxygen ions enter the electrolyte in contact with it from one electrode (cathode).
- a different oxygen ion leaves the electrolyte at the other electrode (anode), where it contains a fuel molecule adsorbed there (in this case, H 2 ), releasing its two excess electrons and under Formation of water as a combustion product reacts.
- the four electrons released each time consumed O 2 moles pass from the anode into an external electrical line, which leads back to the cathode of the fuel cell via a current consumer.
- the circuit is closed by the electrolyte through which the O 2 ions flow.
- Fuel cells are used for stationary and mobile power generation, for road vehicles, in space travel, in connection with H 2 storage devices (e.g. metal hydrides) as power plants in the MW range for peak loads and as O 2 sensors.
- H 2 storage devices e.g. metal hydrides
- a planar design has generally emerged as the typical fuel cell geometry.
- the main problems with this type of construction are to optimize the distribution of current density, concentration and temperature as well as the overall performance.
- efforts are being made to reduce the production costs, to make optimum use of the fuel and to keep the outlay for peripheral devices as low as possible.
- the invention provides a fuel cell in which the membrane electrode units, the bipolar plates and the end plates are each individually surrounded by a plastic frame.
- the distribution and collecting channels and the branch channels through which the oxygen is conducted into the cathode compartments and the hydrogen into the anode compartments, that is to say on the corresponding side of a membrane-cathode unit, are arranged in the plastic frame.
- the membrane electrode assemblies and bipolar plates can then simply be alternated one after the other in the desired number
- Stack are arranged, with a simple pole plate is used as the end plate at the beginning and at the end.
- the individual plastic frames are simply welded or glued to one another in alignment with one another, so that the stack is each provided with at least one distribution channel and at least one collection channel for the Oxygen (or for the cathode exhaust gas) and at least one distribution channel and at least one collection channel for the hydrogen (or for the anode exhaust gas) is continuously passed from one end plate to the other end plate.
- the fuel cell thus has a number of channels in the area of the plastic frame, through which various media can flow.
- the plastic frames are expediently produced by injection molding, the distribution and collecting channels and, if possible, also the branch channels being molded in at the same time, so that there is no need for machining.
- the bipolar plates can advantageously be extrusion-coated with a plastic frame made of electrically conductive plastic.
- the bipolar plates can also be formed as an integral component in one piece from such a plastic.
- the plastic used can be doped c / s-poly (acetylene) (PAC), doped ifra / 7s-poly (acetylene) (PAC), doped poly (p-phenylene) (PPP), doped poly (/ ⁇ ? -Phenylene ) (PMP), doped poly (pyrrole) (PPY), doped poly (thiophene) (PTP), doped poly (p-phenylene sulfide) (PPS) or doped poly (azasulfen) (PAS).
- PAC doped c / s-poly (acetylene)
- PAC doped ifra / 7s-poly (acetylene)
- PPPP doped poly (p-phenylene)
- PMP doped poly (/ ⁇ ? -Phenylene )
- PMP doped poly (pyrrole)
- PTY doped poly (thiophene)
- PPS doped poly (p
- the bipolar plates are preferably formed with at least one cavity for the passage of a cooling medium.
- they can be double-walled or can also be run through by cooling channels running in the plane of the bipolar plates.
- An electrically conductive fleece creates the required electrical connection between the walls of a double-walled bipolar plate. This electrical connection could also be ensured by means of correspondingly conductive frames which surround the walls of the bipolar plate.
- the plastic frames of the bipolar plates and preferably also the end plates as well as the plastic frames of the membrane electrode units are in addition to the distribution and collection channels for oxygen and hydrogen also with distribution and collection channels for a cooling medium (perpendicular to the The board).
- the plastic frame of the bipolar plates is there a connection of the distribution and collecting channels for the coolant to the respective cavity of the bipolar plate. This connection is preferably implemented in the same way as in the case of the distribution and collection channels for oxygen and hydrogen on the membrane electrode units in the form of branch channels (parallel to the plate level).
- the membrane electrode unit can advantageously be extrusion-coated with a plastic frame made of non-conductive plastic.
- Suitable plastics are - but not exclusively - cis-poly (acetylene) (PAC), trans-poly (acetylene) (PAC), poly (p-phenylene) (PPP), poly (m-phenylene) (PMP), poly (pyrrole) (PPY), poly (thiophene) (PTP),
- the distribution and collection channels for the individual media are each arranged in the plastic frame so that the channels for the supply and discharge of a medium are each on diametrically opposite sides of the plastic frame.
- the membrane of the membrane electrode unit is regularly coated with a catalyst (vapor-coated film).
- the catalyst used preferably consists of noble metals, Raney nickel, tungsten carbide, molybdenum or tungsten sulfides or
- Phthalocyanine or other chelate complexes are also conceivable.
- the bipolar plates can preferably be produced in the form of a honeycomb structure made of metal or two electrically connected metal foils.
- the end plates of the fuel line according to the invention preferably consist of electrically conductive plastic.
- the end plates expediently have connections for the gas supply and cooling and connections for tapping the current.
- a fleece preferably a fleece made of electrically conductive plastic or metal
- the fuel cells according to the invention have a number of advantages.
- the fuel cells have a lighter design and are easier and faster to manufacture. Due to the joining technique of welding or gluing the individual plates (end plates, bipolar plates, membrane electrode units), no separate seals are necessary.
- the supply ducts for fuel gas and oxidizing agents and ducts for cooling media can be integrated into the frame by molding appropriate passages for these media during injection molding. No special clamping elements are required to hold the individual components of the fuel cell together in a sealed manner.
- the fuel cells according to the invention are thus significantly lighter and, above all, less expensive to manufacture in mass production. Since the individual elements and modules of the fuel cells are injection molded, stacks can be produced continuously, for example in a production line. This eliminates the traditional, expensive and complex individual production of the stacks. Furthermore, the individual elements can be tightly welded to one another by the plastic frame without the need for a gasket to be inserted between the individual elements in a complex manner. At the same time, the channels for the reactants and cooling are integrated into the plastic frame. This eliminates the otherwise complex additional laying of a large number of supply and cooling lines. Only individual feed lines need to be routed to the corresponding connections on the two end plates of a stack.
- FIGS. 1 to 4. Show it:
- 1 is a plan view of a membrane electrode assembly
- Fig. 3 shows a cross section through a fuel line in a first embodiment
- FIG. 4 shows a cross section through a fuel cell in a second exemplary embodiment.
- FIG. 1 shows a membrane-electrode unit 1, which consists of a film vapor-coated on both sides with a catalyst (eg Raney nickel) and is surrounded by a frame 2 made of an electrically non-conductive plastic.
- a catalyst eg Raney nickel
- channels 3, 4, 5, 6, 7 and 8 are provided which run perpendicular to the image plane and through which different media are passed.
- the bores 3 and 4 are provided for the supply or discharge of hydrogen as the fuel gas.
- the oxidizing agent oxygen or air
- a cooling medium can be fed in or out, which dissipates the heat generated during the combustion.
- FIG. 1 shows two branch channels 14, 11 which branch off from the distribution channel 6 for the air supply or lead to the collecting channel 7 for the air removal. Both branch channels 14, 1 1 end, for example, on the underside of the membrane electrode unit 1. In this case, there are two branch channels (not shown) in a corresponding manner, which originate from the supply line (distribution channel 3) or from the discharge line (collecting channel 4) branch off for the fuel and end on the top of the membrane electrode assembly.
- one surface (cathode compartment) of the membrane electrode assembly 1 is supplied and disposed of with oxygen and the other surface (anode compartment) with fuel.
- the channels 5, 8 for the cooling medium have no branch channels in the frame 2 of the membrane electrode unit 1, since the cooling medium (eg water) must not penetrate into the anode and cathode compartments. Only a plastic frame of a bipolar plate has connecting channels to the respective one
- Distribution and collection channels 5, 8 for the cooling medium are distributed and collection channels 5, 8 for the cooling medium.
- Figures 2a, 2b and 2c show cross sections through a membrane electrode assembly 1 according to Figure 1.
- Figure 2a shows a cross section A near the distribution channel 7
- Figure 2b shows a cross section B near the distribution channel 5
- Figure 2c finally a cross section C in the vicinity of the distribution channel 3.
- the fuel gas and the oxidizing agent are each directed at opposite corners of the frame 2 to different sides of the membrane electrode assembly 1 and reacted there.
- the oxidizing agent flows through the distribution channel 6 in the frame 2 and passes through the branch channel 14 (FIG.
- the fuel for example a hydrogen-rich gas
- the branch channel 15 (FIG. 2c) to the right side of the fuel
- Membrane electrode unit 1 guided, distributed over a large area and, after the oxidation reaction has ended, discharged as anode exhaust gas at the corner of the frame 2 diametrically opposite the distribution channel 3 through the branch channel 16 into the collecting channel 4 (FIG. 2a).
- the two distribution and collecting channels 5, 8 for the cooling medium do not have an opening to the membrane electrode unit 1, but only serve as a line connection to the (not shown) bipolar plates, which are directly on both sides of the membrane - Connect electrode unit 1.
- a fuel cell in a first embodiment is shown schematically in FIG.
- the membrane-electrode units 1 are injected into a frame 2 made of electrically non-conductive plastic and the bipolar plates 10, which in this case are double-walled and through which a cooling medium can flow, are injected into a frame 12 made of electrically conductive plastic.
- the bipolar plates 10 which in this case are double-walled and through which a cooling medium can flow, are injected into a frame 12 made of electrically conductive plastic.
- individual plate-shaped walls can be manufactured separately and provided with a frame made of plastic, a pair of such plate-shaped walls then being placed one on top of the other (optionally with a fleece inserted between them) and welded to the frame.
- FIG. 3 shows a section of the typical arrangement of the individual modules of a fuel cell, which consists of a first membrane electrode unit 1, a first bipolar plate 10, a second membrane electrode unit 1, a second bipolar plate 10 and a third membrane electrode unit 1 exists. In this way, any number of plate modules could be connected.
- the complete fuel cell is then closed on the left and right side in each case in direct connection to a membrane electrode unit by a simple pole plate as the end plate.
- the channels for the distribution of the media run through the frames 2, 12, but are not shown in detail.
- FIG. 4 A further embodiment of a fuel cell according to the invention is now shown in FIG. 4, in which the bipolar plates 10 do not have a physically separate frame.
- the bipolar plates are made in one piece from a preferably conductive plastic with an expansion that corresponds to the frame 2 of the membrane electrode assembly 1.
- Conductive nonwovens 9 are in turn preferably arranged in the spaces between the membrane electrode assemblies 1 and the bipolar plates 10.
- the fleece 9 can preferably consist of conductive plastic.
- the membrane electrode units 1, in which the membrane is formed on a polymer basis and vapor-coated with the catalyst, and the bipolar plates 10 are in each case encapsulated with a plastic frame 2, 12, into which the distribution and collection channels 3 , 4, 5, 6, 7, 8 are molded for the individual media.
- the plate-shaped components formed in this way are placed one on top of the other in such a way that the corresponding channels connect flush with one another and are then welded or glued to one another to form an assembly. In this way, stacks of any size can be built.
- the encapsulation of the individual plates of the fuel cell allows a particularly cheap and fast production of fuel cells of any size and performance.
- I membrane electrode unit 2 frames (non-conductive plastic)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
The invention relates to a fuel stack that is composed of a stack of membrane-electrode units arranged with their flat sides one behind the other and separated one from the other by a bipolar plate. One simple pole flange each is provided as the final plate before the first and behind the last membrane-electrode unit. Distributing and collecting channels for the supply of the fuel cell with fuel, oxidant and coolant as well as for the discharge thereof run through the stack of membrane-electrode units, bipolar plates and final plates. Said distributing and collecting channels are disposed in respective plastic frames which enclose the individual membrane-electrode units, the bipolar plates and the final plates. Said plastic frames are firmly interlinked by welding or gluing. The invention allows for an especially inexpensive production of the fuel cell.
Description
BRENNSTOFFZELLENSTAPEL MIT RAHMENELEMENTEN FUEL CELL STACK WITH FRAME ELEMENTS
Beschreibungdescription
Die Erfindung betrifft eine Brennstoffzelle, mit einem Stapel von hintereinander angeordneten Membran-Elektroden-Einheiten, die beidseitig mit einem Katalysator beschichtet sind und jeweils durch eine Bipolarplatte voneinander getrennt sind, wobei von der ersten und hinter der letzten Membran-Elektroden-Einheit des Stapels jeweils eine einfache Polplatte als Endplatte angeordnet ist. Der Stapel ist von Verteil- und Sammelkanälen zur Zu- und Abfuhr von Wasserstoff und Sauerstoff zu und aus den Anodenbzw. Kathodenräumen durchzogen, die jeweils zwischen einer Membran-Elektroden- Einheit und einer Bipolarplatte oder zwischen einer Membran-Elektroden-Einheit und einer Endplatte gebildet sind. Von den Verteil- und Sammelkanälen zweigen jeweils Stichkanäle zu den entsprechenden Anoden- oder Kathodenräumen ab.The invention relates to a fuel cell, with a stack of membrane electrode units arranged one behind the other, which are coated on both sides with a catalyst and are each separated from one another by a bipolar plate, the first and the last membrane electrode unit of the stack being behind a simple pole plate is arranged as an end plate. The stack is of distribution and collection channels for supplying and removing hydrogen and oxygen to and from the anode or. Cathode spaces, which are each formed between a membrane electrode assembly and a bipolar plate or between a membrane electrode assembly and an end plate. Branch channels branch off from the distribution and collecting channels to the corresponding anode or cathode spaces.
Die ausreichende und zuverlässige Verfügbarkeit von Energie ist zu einem unverzichtbaren Bestandteil der modernen Industriegesellschaft geworden. Fossile Energieträger sind zwar nur begrenzt vorhanden, aber doch in einer so großen Menge, daß sie selbst bei Fortschreibung der heutigen Verbrauchssteigerungsraten voraussichtlich noch hundert Jahre zur Verfügung stehen. Die Belastung des Menschen und seiner Umwelt mit Schadstoffen aus den Verbrennungsprozessen hat jedoch in der Vergangenheit ein solches Ausmaß erreicht, daß der Staat immer strengere Emissionsgrenzwerte festsetzen mußte.The sufficient and reliable availability of energy has become an indispensable part of modern industrial society. Fossil fuels are only available to a limited extent, but in such a large quantity that they will probably be available for a hundred years even if today's consumption growth rates continue. However, the pollution of humans and their environment with pollutants from the combustion processes has reached such a level in the past that the state has had to set ever stricter emission limit values.
Als weiteres Problem wird zunehmend die Belastung der Erdatmosphäre mit Spurengasen erkannt, die vom Menschen erzeugt werden. Sie führt zu gefährlichen Klimaveränderungen. Dabei spielen die Kohlendioxidemissionen aus der Nutzung fossiler Brennstoffe die größte Rolle.
Zur Lösung dieser Probleme müssen verstärkt nichtfossile Energieträger zum Einsatz kommen. Die Energieeffizienz sowohl auf der Bereitstellungs- als auch auf der Nutzerseite muß weiter erhöht werden. Brennstoffzellen können zukünftig in beiderlei Hinsicht eine wichtige Rolle spielen. Sie sind deshalb zu einem Hoffnungsträger für eine umwelt- verträgliche Energieversorgung geworden.As a further problem, the contamination of the earth's atmosphere with trace gases that are generated by humans is increasingly being recognized. It leads to dangerous climate changes. The carbon dioxide emissions from the use of fossil fuels play the greatest role. To solve these problems, increasingly non-fossil fuels have to be used. Energy efficiency on both the provision and the user side must be further increased. Fuel cells can play an important role in both ways in the future. They have therefore become a beacon of hope for an environmentally compatible energy supply.
Brennstoffzellen zur Erzeugung elektrischer Energie durch Energie-Direktumwandlung aus chemischer Energie in Umkehrung der Wasser-Elektrolyse sind aus dem Stand der Technik bekannt.Fuel cells for generating electrical energy by direct energy conversion from chemical energy in reverse of water electrolysis are known from the prior art.
Eine einzelne Brennstoffzelle besteht normalerweise aus zwei invarianten Elektroden (Anode und Kathode), zwischen denen sich ein invarianter Elektrolyt befindet. Die Brennstoffzelle liefert kontinuierlich Strom, wenn ihr ein oxidierender Brennstoff - hierzu dient meist Wasserstoff, der z. B. durch Spaltung von Erdgas, Methanol, Hydrazin, Ammoniak usw. gewonnen wird - und ein Oxidationsmittel kontinuierlich zu- und die in der Brennstoffzelle gebildeten Oxidationsprodukte kontinuierlich abgeführt werden.A single fuel cell usually consists of two invariant electrodes (anode and cathode) with an invariant electrolyte between them. The fuel cell continuously supplies electricity if it has an oxidizing fuel - this is usually done with hydrogen, which, for. B. is obtained by cleavage of natural gas, methanol, hydrazine, ammonia, etc. - and an oxidizing agent is continuously added and the oxidation products formed in the fuel cell are continuously removed.
Bei der in der Brennstoffzelle stattfindenden sogenannten elektrochemischen Verbrennung wird als Oxidationsmittel Sauerstoff (Luft) verwendet. Bei der an den beiden invarianten porösen Elektroden ablaufenden Gesamtreaktion 2 H2 + O2 - 2 H2O treten die zweifach negativ geladenen Sauerstoff-Ionen von der einen Elektrode (Kathode) aus in den mit ihr in Kontakt stehenden Elektrolyten ein. Gleichzeitig verläßt für jedes in den Elektrolyten eingetretene Sauerstoff-Ion ein anderes Sauerstoff-Ion den Elektrolyten an der anderen Elektrode (Anode), wo es mit einem dort adsorbierten Brennstoff-Molekül (in diesem Falle H2) unter Abgabe seiner beiden überschüssigen Elektronen und unter Bildung von Wasser als Verbrennungsprodukt reagiert. Die je verbrauchtem O2-Mol freigewordenen vier Elektronen gehen von der Anode in eine äußere elektrische Leitung über, die über einen Stromverbraucher zur Kathode der Brennstoffzelle zurückführt. Der Stromkreis wird durch den Elektrolyten geschlossen, durch den die O2-lonen fließen.In the so-called electrochemical combustion taking place in the fuel cell, oxygen (air) is used as the oxidizing agent. In the overall reaction 2 H 2 + O 2 - 2 H 2 O, which takes place at the two invariant porous electrodes, the double negatively charged oxygen ions enter the electrolyte in contact with it from one electrode (cathode). At the same time, for each oxygen ion that has entered the electrolyte, a different oxygen ion leaves the electrolyte at the other electrode (anode), where it contains a fuel molecule adsorbed there (in this case, H 2 ), releasing its two excess electrons and under Formation of water as a combustion product reacts. The four electrons released each time consumed O 2 moles pass from the anode into an external electrical line, which leads back to the cathode of the fuel cell via a current consumer. The circuit is closed by the electrolyte through which the O 2 ions flow.
Brennstoffzellen werden zur stationären und mobilen Stromgewinnung, für Straßenfahrzeuge, in der Raumfahrt, in Verbindung mit H2-Speichem (z. B. Metallhydriden) als Kraftwerke im MW-Bereich für Spitzenbelastungen und als O2-Sensoren verwendet. Einer breiteren Anwendung von Brennstoffzellen stehen indes noch vergleichsweise hohe Kosten und/oder eine zu geringe Langzeitstabilität im Wege.
Als typische Brennstoffzellengeometrie hat sich allgemein ein planares Design herausgebildet. Die wesentlichen Probleme bei dieser Art des Aufbaus bestehen darin, die Verteilungen von Stromdichte, Konzentration und Temperatur sowie die Gesamtleistung zu optimieren. Darüber hinaus versucht man, die Herstellungskosten zu verringern, den Brennstoff optimal auszunutzen und den Aufwand für periphere Geräte so gering wie möglich zu halten.Fuel cells are used for stationary and mobile power generation, for road vehicles, in space travel, in connection with H 2 storage devices (e.g. metal hydrides) as power plants in the MW range for peak loads and as O 2 sensors. Comparatively high costs and / or insufficient long-term stability stand in the way of a broader use of fuel cells. A planar design has generally emerged as the typical fuel cell geometry. The main problems with this type of construction are to optimize the distribution of current density, concentration and temperature as well as the overall performance. In addition, efforts are being made to reduce the production costs, to make optimum use of the fuel and to keep the outlay for peripheral devices as low as possible.
Bei den Brennstoffzellen nach dem bisher bekannten Aufbau ergeben sich außerdem zusätzliche Nachteile durch die aufwendige Bauweise in bezug auf die Gasdichtigkeit, die Zu- und Abführung des Wasserstoffs und der Luft (Sauerstoff), sowie die meistens erforderliche Kühlung der Brennstoffzelle. Außerdem ist die Verteilung der Gase bzw. der Kühlflüssigkeit innerhalb der Brennstoffzelle unzureichend.In the case of the fuel cells according to the structure known hitherto, there are additional disadvantages due to the complex construction with regard to the gas tightness, the supply and removal of hydrogen and air (oxygen), and the cooling of the fuel cell which is usually required. In addition, the distribution of the gases or the coolant within the fuel cell is insufficient.
Es ist Aufgabe der vorliegenden Erfindung, Brennstoffzellen der eingangs genannten Art so weiterzuentwickeln, daß sie sich auf einfache, funktionelle und kostensparende Art und Weise aus einzelnen Elementen zusammensetzen lassen, um auf diese Weise die Brennstoffzellen schneller und billiger als bisher herstellen zu können.It is an object of the present invention to further develop fuel cells of the type mentioned at the outset in such a way that they can be composed of individual elements in a simple, functional and cost-saving manner, in order in this way to be able to produce the fuel cells faster and cheaper than hitherto.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Hauptanspruchs gelöst.This object is achieved by the features of the main claim.
Zweckmäßige Ausgestaltungen der erfindungsgemäßen Brennstoffzelle sind in den abhängigen Ansprüchen gekennzeichnet.Appropriate configurations of the fuel cell according to the invention are characterized in the dependent claims.
Die Erfindung sieht eine Brennstoffzelle vor, bei der die Membran-Elektroden-Einheiten, die Bipolarplatten und die Endplatten jeweils einzeln von einem Kunststoffrahmen umgeben sind. Dabei sind die Verteil- und Sammelkanäle sowie die Stichkanäle, durch die der Sauerstoff in die Kathodenräume und der Wasserstoff in die Anodenräume, also jeweils auf die entsprechende Seite einer Membran-Kathoden-Einheit geführt wird, in den Kunststoffrahmen angeordnet. Die Membran-Elektroden-Einheiten und Bipolarplatten können dann einfach in der gewünschten Anzahl abwechselnd hintereinander zu einemThe invention provides a fuel cell in which the membrane electrode units, the bipolar plates and the end plates are each individually surrounded by a plastic frame. The distribution and collecting channels and the branch channels through which the oxygen is conducted into the cathode compartments and the hydrogen into the anode compartments, that is to say on the corresponding side of a membrane-cathode unit, are arranged in the plastic frame. The membrane electrode assemblies and bipolar plates can then simply be alternated one after the other in the desired number
Stapel angeordnet werden, wobei am Anfang und am Ende jeweils eine einfache Polplatte als Endplatte eingesetzt wird. Zur gasdichten Verbindung der Verteil- und Sammelkanäle untereinander werden die einzelnen Kunststoffrahmen nach zueinander fluchtender Ausrichtung einfach miteinander verschweißt oder verklebt, so daß der Stapel jeweils von mindestens einem Verteilkanal und mindestens einem Sammelkanal für den
Sauerstoff (bzw. für das Kathodenabgas) und mindestens einem Verteilkanal und mindestens einem Sammelkanal für den Wasserstoff (bzw. für das Anodenabgas) durchgängig von einer Endplatte bis zur anderen Endplatte durchzogen ist. Die Brennstoffzelle weist somit im Bereich der Kunststoffrahmen eine Reihe von Kanälen auf, die von verschiedenen Medien durchströmt werden können. Die Kunststoffrahmen werden zweckmäßig durch Spritzgießen erzeugt, wobei die Verteil- und Sammelkanäle und möglichst auch die Stichkanäle gleichzeitig mit eingeformt werden, so daß hierfür eine spanende Bearbeitung entfallen kann.Stack are arranged, with a simple pole plate is used as the end plate at the beginning and at the end. For the gas-tight connection of the distribution and collection channels to one another, the individual plastic frames are simply welded or glued to one another in alignment with one another, so that the stack is each provided with at least one distribution channel and at least one collection channel for the Oxygen (or for the cathode exhaust gas) and at least one distribution channel and at least one collection channel for the hydrogen (or for the anode exhaust gas) is continuously passed from one end plate to the other end plate. The fuel cell thus has a number of channels in the area of the plastic frame, through which various media can flow. The plastic frames are expediently produced by injection molding, the distribution and collecting channels and, if possible, also the branch channels being molded in at the same time, so that there is no need for machining.
Vorteilhaft können die Bipolarplatten mit einem Kunststoffrahmen aus elektrisch leitendem Kunststoff umspritzt sein. Die Bipolarplatten können aber auch als integrales Bauteil in einstückiger Form aus einem solchen Kunststoff gebildet sein.The bipolar plates can advantageously be extrusion-coated with a plastic frame made of electrically conductive plastic. However, the bipolar plates can also be formed as an integral component in one piece from such a plastic.
Dabei kann der verwendete Kunststoff dotiertes c/s-Poly(acetylen) (PAC), dotiertes ifra/7s-Poly(acetylen) (PAC), dotiertes Poly(p-phenylen) (PPP), dotiertes Poly(/τ?-phenylen) (PMP), dotiertes Poly(pyrrol) (PPY), dotiertes Poly(thiophen) (PTP), dotiertes Poly (p-phenylensulfid) (PPS) oder dotiertes Poly(azasulfen) (PAS) sein. Es sind jedoch auch andere Kunststoffe denkbar, so daß die Erfindung nicht auf die genannten Beispiele beschränkt ist.The plastic used can be doped c / s-poly (acetylene) (PAC), doped ifra / 7s-poly (acetylene) (PAC), doped poly (p-phenylene) (PPP), doped poly (/ τ? -Phenylene ) (PMP), doped poly (pyrrole) (PPY), doped poly (thiophene) (PTP), doped poly (p-phenylene sulfide) (PPS) or doped poly (azasulfen) (PAS). However, other plastics are also conceivable, so that the invention is not restricted to the examples mentioned.
Bevorzugterweise sind die Bipolarplatten mit mindestens einem Hohlraum zur Durchleitung eines Kühlmediums ausgebildet. Sie können beispielsweise doppelwandig ausgeführt oder auch von in der Ebene der Bipolarplatten verlaufenden Kühlkanälen durchzogen sein. Bei der doppelwandigen Ausführung empfiehlt es sich, zwecks Erzielung einer möglichst über die Fläche gesehen gleichmäßigen Kühlmittelverteilung den Hohlraum mit einem Vlies, vorzugsweise einem Vlies aus elektrisch leitendem Kunststoff, auszufüllen. Ein elektrisch leitfähiges Vlies stellt die erforderliche elektrische Verbindung zwischen den Wänden einer doppelwandigen Bipolarplatte her. Diese elektrische Verbindung könnte auch über entsprechend leitfähige Rahmen gewährleistet werden, die die Wände der Bipolarplatte einfassen. Um das Kühlmittel in die Bipolarplatten (aber nicht in die Anoden- und Kathodenräume) einzuleiten und wieder aus den Bipolarplatten abzuziehen, sind die Kunststoffrahmen der Bipolarplatten und vorzugsweise auch der Endplatten sowie die Kunststoffrahmen der Membran-Elektroden- Einheiten zusätzlich zu den Verteil- und Sammelkanälen für Sauerstoff und Wasserstoff auch mit Verteil- und Sammelkanälen für ein Kühlmedium durchzogen (senkrecht zur
Plattenebene). Lediglich in den Kunststoffrahmen der Bipolarplatten besteht jedoch eine Verbindung der Verteil- und Sammelkanäle für das Kühlmittel zu dem jeweiligen Hohlraum der Bipolarplatte. Vorzugsweise ist diese Verbindung in entsprechender Weise wie bei den Verteil- und Sammelkanälen für Sauerstoff und Wasserstoff an den Membran- Elektroden-Einheiten in Form von Stichkanälen realisiert (parallel zur Plattenebene).The bipolar plates are preferably formed with at least one cavity for the passage of a cooling medium. For example, they can be double-walled or can also be run through by cooling channels running in the plane of the bipolar plates. In the case of the double-walled design, it is advisable to fill the cavity with a nonwoven, preferably a nonwoven made of electrically conductive plastic, in order to achieve a coolant distribution that is as uniform as possible when viewed over the surface. An electrically conductive fleece creates the required electrical connection between the walls of a double-walled bipolar plate. This electrical connection could also be ensured by means of correspondingly conductive frames which surround the walls of the bipolar plate. In order to introduce the coolant into the bipolar plates (but not into the anode and cathode compartments) and to pull them out of the bipolar plates again, the plastic frames of the bipolar plates and preferably also the end plates as well as the plastic frames of the membrane electrode units are in addition to the distribution and collection channels for oxygen and hydrogen also with distribution and collection channels for a cooling medium (perpendicular to the The board). However, only in the plastic frame of the bipolar plates is there a connection of the distribution and collecting channels for the coolant to the respective cavity of the bipolar plate. This connection is preferably implemented in the same way as in the case of the distribution and collection channels for oxygen and hydrogen on the membrane electrode units in the form of branch channels (parallel to the plate level).
Vorteilhaft kann die Membran-Elektroden-Einheit jeweils mit einem Kunststoffrahmen aus nicht leitendem Kunststoff umspritzt sein. Geeignete Kunststoffe sind beispielsweise - jedoch nicht ausschließlich- cis-Poly(acetylen) (PAC), trans-Poly(acetylen) (PAC), Poly (p-phenylen) (PPP), Poly(m-phenylen) (PMP), Poly(pyrrol) (PPY), Poly(thiophen) (PTP),The membrane electrode unit can advantageously be extrusion-coated with a plastic frame made of non-conductive plastic. Suitable plastics are - but not exclusively - cis-poly (acetylene) (PAC), trans-poly (acetylene) (PAC), poly (p-phenylene) (PPP), poly (m-phenylene) (PMP), poly (pyrrole) (PPY), poly (thiophene) (PTP),
Poly(p-phenylensulfid) (PPS) oder Poly(azasulfen) (PAS).Poly (p-phenylene sulfide) (PPS) or poly (aza sulfen) (PAS).
Bevorzugterweise sind die Verteil- und Sammelkanäle für die einzelnen Medien (Sauerstoff, Wasserstoff, Kühlmedium) in den Kunststoffrahmen jeweils so angeordnet, daß die Kanäle für die Zu- und Ableitung eines Mediums jeweils auf einander diametral gegenüberliegenden Seiten der Kunststoffrahmen liegen.Preferably, the distribution and collection channels for the individual media (oxygen, hydrogen, cooling medium) are each arranged in the plastic frame so that the channels for the supply and discharge of a medium are each on diametrically opposite sides of the plastic frame.
Regelmäßig ist die Membran der Membran-Elektroden-Einheit mit einem Katalysator beschichtet (bedampfte Folie). Bevorzugterweise besteht der verwendete Katalysator aus Edelmetallen, Raney-Nickel, Wolframcarbid, Molybdän- oder Wolframsulfiden oder ausThe membrane of the membrane electrode unit is regularly coated with a catalyst (vapor-coated film). The catalyst used preferably consists of noble metals, Raney nickel, tungsten carbide, molybdenum or tungsten sulfides or
Phthalocyanin- oder anderen Chelat-Komplexen. Es sind jedoch auch andere Katalysator-Materialien denkbar.Phthalocyanine or other chelate complexes. However, other catalyst materials are also conceivable.
Vorzugsweise können die Bipolarplatten in Form einer Wabenstruktur aus Metall oder zwei elektrisch leitend verbundenen Metallfolien hergestellt sein.The bipolar plates can preferably be produced in the form of a honeycomb structure made of metal or two electrically connected metal foils.
Bevorzugterweise bestehen die Endplatten der erfindungsgemäßen Brennstoffzeile aus elektrisch leitendem Kunststoff. Dabei weisen die Endplatten zweckmäßig Anschlüsse für die Gasversorgung und die Kühlung sowie Anschlüsse zum Abgreifen des Stromes auf. Im Interesse einer möglichst guten Verteilung der Gasströme in den Kathoden- undThe end plates of the fuel line according to the invention preferably consist of electrically conductive plastic. The end plates expediently have connections for the gas supply and cooling and connections for tapping the current. In the interest of the best possible distribution of the gas flows in the cathode and
Anodenräumen empfiehlt es sich, zwischen der Membran-Elektroden-Einheit und der Bipoiarplatte jeweils ein Vlies, vorzugsweise ein Vlies aus elektrisch leitendem Kunststoff oder Metall anzuordnen.
Die erfindungsgemäßen Brennstoffzellen besitzen eine Reihe von Vorteilen. Die Brennstoffzellen weisen eine leichtere Bauweise auf und sind einfacher und schneller herstellbar. Durch die Fügetechnik des Verschweißens oder Klebens der einzelnen Platten (Endplatten, Bipolarplatten, Membran-Elektroden-Einheiten) sind keine gesonderten Dichtungen notwendig. Ferner können in den Rahmen die Versorgungskanäle für Brennstoffgas und Oxidationsmittel und Kanäle für Kühlmedien integriert werden, indem für diese Medien beim Spritzgießen entsprechende Passagen eingeformt werden. Es bedarf keiner besonderen Spannelemente, um die einzelnen Bauteile der Brennstoffzelle abgedichtet zusammenzuhalten. Die erfindungsgemäßen Brennstoffzellen sind somit wesent- lieh leichter und vor allem kostengünstiger in Massenfertigung herstellbar. Da die einzelnen Elemente und Module der Brennstoffzellen gespritzt werden, können Stacks kontinuierlich, beispielsweise in einer Fertigungsstraße, hergestellt werden. Damit entfällt die herkömmliche teure und aufwendige Einzelfertigung der Stacks. Ferner können durch den Kunststoffrahmen die einzelnen Elemente dicht miteinander verschweißt werden, ohne daß in aufwendiger Weise eine Dichtung zwischen die einzelnen Elemente eingelegt werden muß. Gleichzeitig werden die Kanäle für die Reaktionspartner und die Kühlung in den Kunststoffrahmen integriert. Damit entfällt eine sonst aufwendige zusätzliche Verlegung einer Vielzahl von Versorgungs- und Kühlleitungen. Es brauchen nur einzelne Zuleitungen bis zu den entsprechenden Anschlüssen an den beiden Endplatten eines Stacks geführt zu werden.In anode compartments, it is advisable to arrange a fleece, preferably a fleece made of electrically conductive plastic or metal, between the membrane-electrode unit and the bipolar plate. The fuel cells according to the invention have a number of advantages. The fuel cells have a lighter design and are easier and faster to manufacture. Due to the joining technique of welding or gluing the individual plates (end plates, bipolar plates, membrane electrode units), no separate seals are necessary. Furthermore, the supply ducts for fuel gas and oxidizing agents and ducts for cooling media can be integrated into the frame by molding appropriate passages for these media during injection molding. No special clamping elements are required to hold the individual components of the fuel cell together in a sealed manner. The fuel cells according to the invention are thus significantly lighter and, above all, less expensive to manufacture in mass production. Since the individual elements and modules of the fuel cells are injection molded, stacks can be produced continuously, for example in a production line. This eliminates the traditional, expensive and complex individual production of the stacks. Furthermore, the individual elements can be tightly welded to one another by the plastic frame without the need for a gasket to be inserted between the individual elements in a complex manner. At the same time, the channels for the reactants and cooling are integrated into the plastic frame. This eliminates the otherwise complex additional laying of a large number of supply and cooling lines. Only individual feed lines need to be routed to the corresponding connections on the two end plates of a stack.
Anhand der Figuren 1 bis 4 werden Ausführungsbeispiele der Erfindung erläutert. Es zeigen:Exemplary embodiments of the invention are explained with reference to FIGS. 1 to 4. Show it:
Fig. 1 eine Aufsicht auf eine Membran-Elektroden-Einheit,1 is a plan view of a membrane electrode assembly,
Fig. 2a bis 2c Querschnitte durch eine Membran-Elektroden-Einheit gemäß Figur 1 in unterschiedlichen Teilabschnitten des Rahmens,2a to 2c cross sections through a membrane electrode unit according to Figure 1 in different sections of the frame,
Fig. 3 einen Querschnitt durch eine Brennstoffzeile in einem ersten Ausführungsbeispiel undFig. 3 shows a cross section through a fuel line in a first embodiment and
Fig. 4. einen Querschnitt durch eine Brennstoffzelle in einem zweiten Ausführungs- beispiel.
Figur 1 zeigt eine Membran-Elektroden-Einheit 1 , welche aus einer beidseitig mit einem Katalysator (z. B. Raney-Nickel) bedampften Folie besteht und von einem Rahmen 2 aus einem elektrisch nichtleitenden Kunststoff umgeben ist. In dem Rahmen 2 sind senkrecht zur Bildebene verlaufende Kanäle 3, 4, 5, 6, 7 und 8 vorgesehen, durch welche unterschiedliche Medien geleitet werden. In der dargestellten Ausführungsform sind die Bohrungen 3 und 4 für die Zu- bzw. Ableitung von Wasserstoff als Brenngas vorgesehen. Durch die Bohrungen 6 und 7 wird das Oxidationsmittel (Sauerstoff oder Luft) zu- bzw. abgeführt. Schließlich kann durch die weiteren Bohrungen 5 und 8 ein Kühlmedium zu- bzw. abgeleitet werden, welches die bei der Verbrennung entstehende Wärme abführt.4 shows a cross section through a fuel cell in a second exemplary embodiment. FIG. 1 shows a membrane-electrode unit 1, which consists of a film vapor-coated on both sides with a catalyst (eg Raney nickel) and is surrounded by a frame 2 made of an electrically non-conductive plastic. In the frame 2, channels 3, 4, 5, 6, 7 and 8 are provided which run perpendicular to the image plane and through which different media are passed. In the illustrated embodiment, the bores 3 and 4 are provided for the supply or discharge of hydrogen as the fuel gas. The oxidizing agent (oxygen or air) is supplied or discharged through the holes 6 and 7. Finally, through the further bores 5 and 8, a cooling medium can be fed in or out, which dissipates the heat generated during the combustion.
Die Folie der Membran-Elektroden-Einheit 1 weist an ihren Rändern zahlreiche kreisförmige Löcher auf, die von dem Kunststoff des durch Spritzgießen erzeugten Kunststoffrahmens 2 beidseitig durchdrungen sind, so daß die Folie formschlüssig in dem Kunststoffrahmen 2 gehalten wird. Ferner sind in Figur 1 zwei Stichkanäle 14, 1 1 dargestellt, die von dem Verteilkanal 6 für die Luftzufuhr abzweigen bzw. zum Sammelkanal 7 für die Luftabfuhr führen. Beide Stichkanäle 14, 1 1 enden beispielsweise auf der Unterseite der Membran-Elektroden-Einheit 1. In diesem Fall gibt es dann in entsprechender Weise zwei (nicht dargestellte) Stichkanäle, die von der Zuleitung (Verteilkanal 3) bzw. von der Ableitung (Sammelkanal 4) für den Brennstoff abzweigen und auf der Oberseite der Membran-Elektrodeneinheit enden. Somit wird jeweils die eine Fläche (Kathodenraum) der Membran-Elektroden-Einheit 1 mit Sauerstoff und die andere Fläche (Anodenraum) mit Brennstoff ver- und entsorgt. Die Kanäle 5, 8 für das Kühlmedium weisen keine Stichkanäle im Rahmen 2 der Membran-Elektroden-Einheit 1 auf, da das Kühlmedium (z. B. Wasser) nicht in den Anoden- und den Kathodenraum eindringen darf. Nur ein Kunststoffrahmen einer Bipolarplatte weist Verbindungskanäle zu den jeweiligenThe film of the membrane electrode assembly 1 has numerous circular holes at its edges, which are penetrated on both sides by the plastic of the plastic frame 2 produced by injection molding, so that the film is held in the plastic frame 2 in a form-fitting manner. Furthermore, FIG. 1 shows two branch channels 14, 11 which branch off from the distribution channel 6 for the air supply or lead to the collecting channel 7 for the air removal. Both branch channels 14, 1 1 end, for example, on the underside of the membrane electrode unit 1. In this case, there are two branch channels (not shown) in a corresponding manner, which originate from the supply line (distribution channel 3) or from the discharge line (collecting channel 4) branch off for the fuel and end on the top of the membrane electrode assembly. Thus, one surface (cathode compartment) of the membrane electrode assembly 1 is supplied and disposed of with oxygen and the other surface (anode compartment) with fuel. The channels 5, 8 for the cooling medium have no branch channels in the frame 2 of the membrane electrode unit 1, since the cooling medium (eg water) must not penetrate into the anode and cathode compartments. Only a plastic frame of a bipolar plate has connecting channels to the respective one
Verteil- und Sammelkanälen 5, 8 für das Kühlmedium auf.Distribution and collection channels 5, 8 for the cooling medium.
Die Figuren 2a, 2b und 2c zeigen Querschnitte durch eine Membran-Elektroden-Einheit 1 gemäß Figur 1. Dabei zeigt Figur 2a einen Querschnitt A in der Nähe des Verteilkanals 7, Figur 2b einen Querschnitt B in der Nähe des Verteilkanals 5 und Figur 2c schließlich einen Querschnitt C in der Nähe des Verteilkanals 3. Das Brenngas und das Oxidationsmittel werden jeweils an einander gegenüberliegen Ecken des Rahmens 2 auf jeweils verschiedene Seiten der Membran-Elektroden-Einheit 1 geleitet und dort zur Reaktion gebracht. Das Oxidationsmittel strömt durch den Verteilkanal 6 im Rahmen 2 und gelangt durch den Stichkanal 14 (Fig. 2a) auf die linke Seite der Membran-Elektroden-Einheit 1
(Kathodenraum) und verteilt sich über die Fläche der Membran-Elektroden-Einheit 1 , um danach an der dem Ventilkanal 6 diametral gegenüberliegenden Ecke des Rahmens 2 über den Stichkanal 11 (Fig. 2c) in den Sammelkanal 7 als Kathodenabgas abgeführt zu werden. In entsprechender Weise wird der Brennstoff (z. B. ein wasserstoffreiches Gas) durch den Verteilkanal 3 und den Stichkanal 15 (Fig. 2c) auf die rechte Seite derFigures 2a, 2b and 2c show cross sections through a membrane electrode assembly 1 according to Figure 1. Figure 2a shows a cross section A near the distribution channel 7, Figure 2b shows a cross section B near the distribution channel 5 and Figure 2c finally a cross section C in the vicinity of the distribution channel 3. The fuel gas and the oxidizing agent are each directed at opposite corners of the frame 2 to different sides of the membrane electrode assembly 1 and reacted there. The oxidizing agent flows through the distribution channel 6 in the frame 2 and passes through the branch channel 14 (FIG. 2a) to the left side of the membrane electrode unit 1 (Cathode space) and is distributed over the surface of the membrane electrode unit 1, in order to then be discharged as cathode exhaust gas at the corner of the frame 2 diametrically opposite the valve channel 6 via the branch channel 11 (FIG. 2c) into the collecting channel 7. In a corresponding manner, the fuel (for example a hydrogen-rich gas) is passed through the distribution channel 3 and the branch channel 15 (FIG. 2c) to the right side of the
Membran-Elektroden-Einheit 1 geführt, flächig verteilt und nach Ablauf der Oxidations- reaktion als Anodenabgas an der dem Verteilkanal 3 diametral gegenüberliegenden Ecke des Rahmens 2 durch den Stichkanal 16 in den Sammelkanal 4 (Fig. 2a) abgeleitet. Wie Fig. 2b zeigt, haben die beiden Verteil- und Sammelkanäle 5, 8 für das Kühlmedium keine Öffnung zur Membran-Elektroden-Einheit 1 hin, sondern dienen lediglich der Leitungsverbindung zu den (nicht dargestellten) Bipolarplatten, die sich beiderseits unmittelbar an die Membran-Elektroden-Einheit 1 anschließen.Membrane electrode unit 1 guided, distributed over a large area and, after the oxidation reaction has ended, discharged as anode exhaust gas at the corner of the frame 2 diametrically opposite the distribution channel 3 through the branch channel 16 into the collecting channel 4 (FIG. 2a). As FIG. 2b shows, the two distribution and collecting channels 5, 8 for the cooling medium do not have an opening to the membrane electrode unit 1, but only serve as a line connection to the (not shown) bipolar plates, which are directly on both sides of the membrane - Connect electrode unit 1.
In Figur 3 ist eine Brennstoffzelle in einer ersten Ausführungsform schematisch darge- stellt. Hierbei sind die Membran-Elektroden-Einheiten 1 in einen Rahmen 2 aus elektrisch nichtleitendem Kunststoff und die Bipolarplatten 10, die in diesem Fall doppelwandig ausgeführt und von einem Kühlmedium durchströmbar sind, in einen Rahmen 12 aus elektrisch leitendem Kunststoff eingespritzt. Zur Herstellung doppelwandiger Bipolarplatten 10 können jeweils einzelne plattenförmige Wände separat gefertigt und mit einem Rahmen aus Kunststoff versehen werden, wobei anschließend jeweils ein Paar solcher plattenförmiger Wände aufeinandergelegt (gegebenenfalls mit einem dazwischen eingefügten Vlies) und an den Rahmen miteinander verschweißt werden. In die Zwischenräume zwischen den Bipolarplatten 10 und den Membran-Elektroden-Einheiten 1 und in die Hohlräume der doppelwandigen Bipolarplatten 10 können Vliese 9 eingelegt werden, welche beispielsweise aus einem elektrisch leitenden Kunststoff bestehen. Figur 3 zeigt ausschnittsweise die typische Anordnung der einzelnen Module einer Brennstoffzelle, welche aus einer ersten Membran-Elektroden-Einheit 1 , einer ersten Bipolarpiatte 10, einer zweiten Membran-Elektroden-Einheit 1 , einer zweiten Bipolarplatte 10 und einer dritten Membran-Elektroden-Einheit 1 besteht. In dieser Weise könnten sich noch beliebig viele Plattenmodule anschließen. Die vollständige Brennstoffzelle wird dann auf der linken und rechten Seite jeweils im unmittelbaren Anschluß an eine Membran-Elektroden-Einheit von einer einfachen Polplatte als Endplatte abgeschlossen. Die Kanäle für die Verteilung der Medien verlaufen durch die Rahmen 2, 12, sind aber nicht im einzelnen dargestellt.
In Figur 4 ist nun eine weitere Ausführungsform einer erfindungsgemäßen Brennstoffzelle dargestellt, in welcher die Bipolarplatten 10 keinen körperlich getrennt ausgeführten Rahmen aufweisen. In diesem Fall sind die Bipolarplatten einstückig aus einem vorzugsweise leitfähigen Kunststoff mit einer Ausdehnung gefertigt worden, welche dem Rahmen 2 der Membran-Elektroden-Einheit 1 entspricht. In den Zwischenräumen zwischen den Membran-Elektroden-Einheiten 1 und den Bipolarplatten 10 sind vorzugsweise wiederum leitfähige Vliese 9 angeordnet. Bevorzugterweise kann das Vlies 9 aus leitendem Kunst-stoff bestehen.A fuel cell in a first embodiment is shown schematically in FIG. Here, the membrane-electrode units 1 are injected into a frame 2 made of electrically non-conductive plastic and the bipolar plates 10, which in this case are double-walled and through which a cooling medium can flow, are injected into a frame 12 made of electrically conductive plastic. For the production of double-walled bipolar plates 10, individual plate-shaped walls can be manufactured separately and provided with a frame made of plastic, a pair of such plate-shaped walls then being placed one on top of the other (optionally with a fleece inserted between them) and welded to the frame. In the spaces between the bipolar plates 10 and the membrane electrode assemblies 1 and in the cavities of the double-walled bipolar plates 10, nonwovens 9 can be inserted, which for example consist of an electrically conductive plastic. FIG. 3 shows a section of the typical arrangement of the individual modules of a fuel cell, which consists of a first membrane electrode unit 1, a first bipolar plate 10, a second membrane electrode unit 1, a second bipolar plate 10 and a third membrane electrode unit 1 exists. In this way, any number of plate modules could be connected. The complete fuel cell is then closed on the left and right side in each case in direct connection to a membrane electrode unit by a simple pole plate as the end plate. The channels for the distribution of the media run through the frames 2, 12, but are not shown in detail. A further embodiment of a fuel cell according to the invention is now shown in FIG. 4, in which the bipolar plates 10 do not have a physically separate frame. In this case, the bipolar plates are made in one piece from a preferably conductive plastic with an expansion that corresponds to the frame 2 of the membrane electrode assembly 1. Conductive nonwovens 9 are in turn preferably arranged in the spaces between the membrane electrode assemblies 1 and the bipolar plates 10. The fleece 9 can preferably consist of conductive plastic.
Zur einfachen Montage der erfindungsgemäßen Brennstoffzellen werden die Membran- Elektroden-Einheiten 1 , bei denen die Membran auf Polymerbasis ausgebildet und mit dem Katalysator bedampft ist, und die Bipolarplatten 10 jeweils mit einem Kunststoffrahmen 2, 12 umspritzt, in den die Verteil- und Sammelkanäle 3, 4, 5, 6, 7, 8 für die einzelnen Medien eingeformt sind. Die so gebildeten plattenförmigen Bauelemente werden so aufeinandergelegt, daß die entsprechenden Kanäle fluchtend aneinander anschließen und werden anschließend miteinander zu einer Baugruppe verschweißt oder verklebt. Auf diese Weise können Stacks beliebiger Größe aufgebaut werden.For simple assembly of the fuel cells according to the invention, the membrane electrode units 1, in which the membrane is formed on a polymer basis and vapor-coated with the catalyst, and the bipolar plates 10 are in each case encapsulated with a plastic frame 2, 12, into which the distribution and collection channels 3 , 4, 5, 6, 7, 8 are molded for the individual media. The plate-shaped components formed in this way are placed one on top of the other in such a way that the corresponding channels connect flush with one another and are then welded or glued to one another to form an assembly. In this way, stacks of any size can be built.
Die Umspritzung der einzelnen Platten der Brennstoffzelle erlaubt eine besonders billige und schnelle Fertigung von Brennstoffzellen in beliebiger Größe und Leistungsfähigkeit.The encapsulation of the individual plates of the fuel cell allows a particularly cheap and fast production of fuel cells of any size and performance.
Durch die erfindungsgemäße Einformung von Kanälen 3, 4, 5, 6, 7 und 8 für die Zu- und Abführung von für die Reaktion erforderlichen Stoffen und von Kühlmittel werden entsprechende apparativ aufwendige Zusatzeinrichtungen überflüssig und bisher erforder- liehe Arbeitsschritte bei der Herstellung der Brennstoffzelle eingespart. Die Modulbauweise der einzelnen Elemente der Brennstoffzelle erlaubt es zudem, den Aufbau der Zellen ohne großen Aufwand zu modifizieren. Durch Wahl elektrisch nichtleitender Kunststoffe für die Rahmen der Membran-Elektroden-Einheiten 1 wird erreicht, daß die Bipolarplatten von vornherein gegeneinander isoliert sind.
BezugszeichenlisteThe inventive shaping of channels 3, 4, 5, 6, 7 and 8 for the supply and discharge of substances required for the reaction and of coolant means that additional equipment which is expensive in terms of equipment is superfluous and previously required work steps in the production of the fuel cell are saved , The modular design of the individual elements of the fuel cell also allows the structure of the cells to be modified with little effort. By choosing electrically non-conductive plastics for the frame of the membrane electrode assemblies 1 it is achieved that the bipolar plates are insulated from one another from the outset. LIST OF REFERENCE NUMBERS
I Membran-Elektroden-Einheit 2 Rahmen (nichtleitender Kunststoff)I membrane electrode unit 2 frames (non-conductive plastic)
3 Verteilkanal für Wasserstoff3 distribution channel for hydrogen
4 Sammelkanal für Wasserstoff4 collecting channel for hydrogen
5 Verteilkanal für Kühlmedium5 distribution channel for cooling medium
6 Verteilkanal für Luft 7 Sammelkanal für Luft 8 Sammelkanal für Kühlmedium6 Distribution channel for air 7 Collection channel for air 8 Collection channel for cooling medium
9 Vlies9 fleece
10 Bipolarplatte10 bipolar plate
I I Stichkanal (Luftzufuhr)I I branch duct (air supply)
12 Rahmen (leitender Kunststoff) 14 Stichkanal (Luftzufuhr)12 frame (conductive plastic) 14 branch duct (air supply)
15 Stichkanal (Brennstoffzufuhr)15 branch channel (fuel supply)
16 Stichkanal (Brennstoffabfuhr)
16 branch channel (fuel discharge)
Claims
1. Brennstoffzelle mit einem Stapel von mit ihren Flachseiten hintereinander ange-1. Fuel cell with a stack of flat sides arranged one behind the other
5 ordneten Membran-Elektroden-Einheiten (1), die beidseitig mit einem Katalysator beschichtet sind und die jeweils durch eine Bipolarplatte (10) voneinander getrennt sind und wobei vor der ersten und hinter der letzten Membran-Elektroden-Einheit (1) jeweils eine einfache Polplatte als erste bzw. zweite Endplatte angeordnet ist, wobei ferner der Stapel von Verteil- (3, 6) und Sammelkanälen (4, 7) zur Zu- bzw. Abfuhr o von Wasserstoff und Sauerstoff bezüglich der zwischen einer Membran-Elektroden-5 arranged membrane-electrode units (1) which are coated on both sides with a catalyst and which are each separated by a bipolar plate (10) and with a simple one in front of the first and one behind the last membrane-electrode unit (1) Pole plate is arranged as the first or second end plate, the stack of distribution (3, 6) and collecting channels (4, 7) for supplying and removing o and hydrogen with respect to the between a membrane electrode
Einheit (1) und den beiden angrenzenden Bipolarplatten (10) bzw. zwischen einer Bipolarplatte (10) und einer Endplatte jeweils gebildeten Kathoden- und Anodenräume durchzogen ist und wobei von den Verteil- (3, 6) und Sammelkanälen (4, 7) Stichkanäle zu den entsprechenden Kathoden- oder Anodenräumen abzweigen, 5 dadurch gekennzeichnet,Unit (1) and the two adjacent bipolar plates (10) or between a bipolar plate (10) and an end plate each formed cathode and anode spaces and with the distribution (3, 6) and collecting channels (4, 7) branch channels branch off to the corresponding cathode or anode compartments, 5 characterized in
- daß die Membran-Elektroden-Einheiten (1), die Bipolarplatten (10) und die Endplatten jeweils einzeln von einem Kunststoff rahmen (2,12) umgeben sind,- That the membrane electrode units (1), the bipolar plates (10) and the end plates are each individually surrounded by a plastic frame (2,12),
- daß die Verteil- (3, 6) und Sammelkanäle (4, 7) sowie die Stichkanäle in den Kunststoffrahmen (2,12) angeordnet sind und 0 - daß die Kunststoffrahmen (2, 12) zur abgedichteten Verbindung der Verteil- und- That the distribution (3, 6) and collecting channels (4, 7) and the branch channels in the plastic frame (2,12) are arranged and 0 - that the plastic frame (2, 12) for the sealed connection of the distribution and
Sammelkanäle in den einzelnen Kunststoffrahmen (2,12) miteinander verklebt oder verschweißt sind.Collection channels in the individual plastic frame (2,12) are glued or welded together.
2. Brennstoffzelle nach Anspruch 1 , 5 dadurch gekennzeichnet, daß die Membran-Elektroden-Einheiten (1) jeweils mit dem Kunststoffrahmen (12) umspritzt sind.2. Fuel cell according to claim 1, 5 characterized in that the membrane electrode units (1) are in each case encapsulated with the plastic frame (12).
3. Brennstoffzelle nach Anspruch 1 oder 2, 0 dadurch gekennzeichnet, daß die Bipolarplatten (10) jeweils mit dem Kunststoffrahmen (12) umspritzt sind3. Fuel cell according to claim 1 or 2, 0 characterized in that the bipolar plates (10) are in each case encapsulated with the plastic frame (12)
4. Brennstoffzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, 5 daß die Bipolarplatten (10) jeweils insgesamt als integrales Bauteil aus einem4. Fuel cell according to claim 1 or 2, characterized in 5 that the bipolar plates (10) each as a whole as an integral component from one
Kunststoff gebildet sind. Plastic are formed.
5. Brennstoffzelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Bipolarplatten (10) mindestens einen Hohlraum zur Durchleitung eines Kühlmediums aufweisen und die Kunststoffrahmen (2,12) mit Verteil- (5) und Sammelkanälen (8) für das Kühlmedium versehen sind, wobei die Verteil- (5) und5. Fuel cell according to one of claims 1 to 4, characterized in that the bipolar plates (10) have at least one cavity for the passage of a cooling medium and the plastic frame (2,12) with distribution (5) and collecting channels (8) for the cooling medium are provided, the distribution (5) and
Sammelkanäle (8) in den Kunststoffrahmen (12) der Bipolarplatten (10) jeweils eine Verbindung zu dem Hohlraum, insbesondere eine Verbindung in Form eines Stichkanals, aufweisen.Collection channels (8) in the plastic frame (12) of the bipolar plates (10) each have a connection to the cavity, in particular a connection in the form of a branch channel.
6. Brennstoffzelle nach Anspruch 5, dadurch gekennzeichnet, daß die Bipolarplatten (10) doppelwandig ausgebildet sind.6. Fuel cell according to claim 5, characterized in that the bipolar plates (10) are double-walled.
7. Brennstoffzelle nach Anspruch 6, dadurch gekennzeichnet, daß die Bipolarplatten (10) mit einem Vlies (9), insbesondere einem Vlies (9) aus elektrisch leitendem Kunststoff gefüllt sind.7. Fuel cell according to claim 6, characterized in that the bipolar plates (10) are filled with a fleece (9), in particular a fleece (9) made of electrically conductive plastic.
8. Brennstoffzelle nach Anspruch 5, dadurch gekennzeichnet, daß die Bipolarplatten (10) von Kühlkanälen durchzogen sind.8. Fuel cell according to claim 5, characterized in that the bipolar plates (10) are traversed by cooling channels.
9. Brennstoffzelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Verteil- (3, 5, 6) und Sammelkanäle (4, 7, 8) durch Spritzgießen angeformt sind.9. Fuel cell according to one of claims 1 to 8, characterized in that the distribution (3, 5, 6) and collecting channels (4, 7, 8) are integrally formed by injection molding.
10. Brennstoffzelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Verteilkanäle (3, 5, 6) und die Sammelkanäle (4, 7, 8) für die Zu- und Ableitung von Wasserstoff, Sauerstoff und Kühlmedium jeweils auf einander diametral gegenüberliegenden Seiten der Kunststoffrahmen (2,12) angeordnet sind.10. Fuel cell according to one of claims 1 to 9, characterized in that the distribution channels (3, 5, 6) and the collecting channels (4, 7, 8) for the supply and discharge of hydrogen, oxygen and cooling medium each diametrically on each other opposite sides of the plastic frame (2,12) are arranged.
11. Brennstoffzelle nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Bipolarplatten (10) einen Kunststoffrahmen (12) aus elektrisch leitendem Kunststoff aufweisen. 11. Fuel cell according to one of claims 1 to 10, characterized in that the bipolar plates (10) have a plastic frame (12) made of electrically conductive plastic.
12. Brennstoffzelle nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Membran-Elektroden-Einheiten (1) jeweils einen Kunststoffrahmen (2) aus elektrisch nichtleitendem Kunststoff aufweisen.12. Fuel cell according to one of claims 1 to 11, characterized in that the membrane electrode units (1) each have a plastic frame (2) made of electrically non-conductive plastic.
13. Brennstoffzelle nach Anspruch 12, dadurch gekennzeichnet, daß der elektrisch nichtleitende Kunststoff s-Poly(acetylen) (PAC), trans- Poly(acetylen) (PAC), Poly(p-phenyien) (PPP), Poly( -phenylen) (PMP), Poly(pyrrol) (PPY), Poly(thiophen) (PTP), Poly(p-phenylensulfid) (PPS) oder13. Fuel cell according to claim 12, characterized in that the electrically non-conductive plastic s-poly (acetylene) (PAC), trans-poly (acetylene) (PAC), poly (p-phenylene) (PPP), poly (-phenylene) (PMP), poly (pyrrole) (PPY), poly (thiophene) (PTP), poly (p-phenylene sulfide) (PPS) or
Poly(azasulfen) (PAS) ist.Poly (aza sulfen) (PAS) is.
14. Brennstoffzelle nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der für die Membran-Elektroden-Einheiten (1 ) verwendete Katalysator aus14. Fuel cell according to one of claims 1 to 13, characterized in that the catalyst used for the membrane electrode units (1)
Edelmetallen, Raney-Nickel, Wolframcarbid, Molybdän- oder Wolframsulfiden oder aus Phthalocyanin- oder anderen Chelat-Komplexen besteht.Precious metals, Raney nickel, tungsten carbide, molybdenum or tungsten sulfides or phthalocyanine or other chelate complexes.
15. Brennstoffzelle nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß die Bipolarplatten (10) jeweils in Form einer Wabenstruktur aus Metall oder zwei elektrisch leitend verbundenen Metallfolien hergestellt sind.15. Fuel cell according to one of claims 5 to 8, characterized in that the bipolar plates (10) are each made in the form of a honeycomb structure made of metal or two electrically connected metal foils.
16. Brennstoffzelle nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Endplatten aus elektrisch leitendem Kunststoff bestehen.16. Fuel cell according to one of claims 1 to 15, characterized in that the end plates consist of electrically conductive plastic.
17. Brennstoffzelle nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Endplatten Anschlüsse für die Gasversorgung und die Kühlung sowie zum17. Fuel cell according to one of claims 1 to 16, characterized in that the end plates connections for gas supply and cooling and for
Abgreifen des elektrischen Stromes aufweisen.Have tapping of the electrical current.
18. Brennstoffzelle nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß zwischen einer Bipolarplatte (10) und einer Membran-Elektroden-Einheit (1 ) jeweils ein Vlies (9), insbesondere ein Vlies (9) aus elektrisch leitendem Kunststoff oder Metall, angeordnet ist. 18. Fuel cell according to one of claims 11 to 17, characterized in that between a bipolar plate (10) and a membrane electrode unit (1) each have a fleece (9), in particular a fleece (9) made of electrically conductive plastic or metal , is arranged.
19. Brennstoffzelle nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der elektrisch leitende Kunststoff dotiertes s-Poly(acetylen) (PAC), dotiertes fra/7s-Poly(acetylen) (PAC), dotiertes Poly(p-phenylen) (PPP), dotiertes Poly (m-phenylen) (PMP), dotiertes Poly(pyrrol) (PPY), dotiertes Polyfthiophen) (PTP), dotiertes Poly(p-phenylensulfid) (PPS) oder dotiertes Poly(azasulfen) (PAS) ist.19. Fuel cell according to one of claims 11 to 18, characterized in that the electrically conductive plastic doped s-poly (acetylene) (PAC), doped fra / 7s-poly (acetylene) (PAC), doped poly (p-phenylene) (PPP), doped poly (m-phenylene) (PMP), doped poly (pyrrole) (PPY), doped polyfthiophene) (PTP), doped poly (p-phenylene sulfide) (PPS) or doped poly (azasulfen) (PAS) is.
20. Fahrzeug mit einer Brennstoffzelle nach einem der Ansprüche 1 bis 19. 20. Vehicle with a fuel cell according to one of claims 1 to 19.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10025207.9 | 2000-05-18 | ||
DE10025207A DE10025207A1 (en) | 2000-05-18 | 2000-05-18 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001089019A1 true WO2001089019A1 (en) | 2001-11-22 |
Family
ID=7643064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/001860 WO2001089019A1 (en) | 2000-05-18 | 2001-05-11 | Fuel cell stack with frame elements |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10025207A1 (en) |
WO (1) | WO2001089019A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7067213B2 (en) | 2001-02-12 | 2006-06-27 | The Morgan Crucible Company Plc | Flow field plate geometries |
WO2009100944A1 (en) * | 2008-02-15 | 2009-08-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fuel cell and method for producing the same |
US7838139B2 (en) | 2002-06-24 | 2010-11-23 | The Morgan Crucible Company Plc | Flow field plate geometries |
US8153316B2 (en) | 2002-11-15 | 2012-04-10 | 3M Innovative Properties Company | Unitized fuel cell assembly and cooling apparatus |
WO2013093130A1 (en) * | 2011-12-21 | 2013-06-27 | Ingeteam Power Technology, S.A. | Electrochemical cell and reactor comprising same |
CN110783600A (en) * | 2019-10-01 | 2020-02-11 | 深圳市世椿智能装备股份有限公司 | Double-adhesive-tape dispensing method for hydrogen fuel cell electrode plate |
CN113403663A (en) * | 2021-06-07 | 2021-09-17 | 华东理工大学 | Preparation method of polyaniline-based composite coating applied to stainless steel bipolar plate |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10245475B4 (en) * | 2002-09-24 | 2004-11-18 | Reinz-Dichtungs-Gmbh & Co. Kg | bipolar |
DE102004028142B4 (en) * | 2004-06-10 | 2009-01-08 | Sartorius Stedim Biotech Gmbh | Bipolarseparator |
DK2730680T3 (en) | 2012-11-08 | 2016-07-25 | Siemens Ag | A cooling plate to an electrolyzer, electrolyzer and the process for the preparation of a bipolar plate |
SE544014C2 (en) * | 2018-06-26 | 2021-11-02 | Powercell Sweden Ab | Manufacturing arrangement for a fuel cell stack and method for manufactur-ing a fuel cell stack |
GB2576952B (en) * | 2018-09-10 | 2021-11-17 | Euro Energy Solutions Ltd | Fuel Cells and Components thereof |
DE102023117129A1 (en) | 2023-06-29 | 2025-01-02 | Audi Aktiengesellschaft | Method for producing a joining unit, and joining unit, in particular an energy storage unit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4048386A (en) * | 1975-08-14 | 1977-09-13 | Stamicarbon B.V. | Process for making an electrochemical cell or battery, e.g. a fuel cell or fuel cell battery, and a cell or battery made by the process |
US4590135A (en) * | 1984-05-11 | 1986-05-20 | Occidental Chemical Corporation | Fuel cell structures |
US5187025A (en) * | 1992-02-03 | 1993-02-16 | Analytic Power Corp. | Unitized fuel cell structure |
JPH07235314A (en) * | 1994-02-21 | 1995-09-05 | Toyota Motor Corp | Cell for solid high polymer fuel cell and its manufacture |
JPH07249417A (en) * | 1994-03-10 | 1995-09-26 | Toyota Motor Corp | Unit cell for fuel cell and manufacture thereof |
WO1999060641A2 (en) * | 1998-05-14 | 1999-11-25 | Siemens Aktiengesellschaft | Fuel cell stack with liquid cooling and method for cooling a fuel cell stack |
WO2000026979A1 (en) * | 1998-10-30 | 2000-05-11 | Siemens Aktiengesellschaft | Frame element for a laminated pem fuel cell and production method thereof |
-
2000
- 2000-05-18 DE DE10025207A patent/DE10025207A1/en not_active Ceased
-
2001
- 2001-05-11 WO PCT/DE2001/001860 patent/WO2001089019A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4048386A (en) * | 1975-08-14 | 1977-09-13 | Stamicarbon B.V. | Process for making an electrochemical cell or battery, e.g. a fuel cell or fuel cell battery, and a cell or battery made by the process |
US4590135A (en) * | 1984-05-11 | 1986-05-20 | Occidental Chemical Corporation | Fuel cell structures |
US5187025A (en) * | 1992-02-03 | 1993-02-16 | Analytic Power Corp. | Unitized fuel cell structure |
JPH07235314A (en) * | 1994-02-21 | 1995-09-05 | Toyota Motor Corp | Cell for solid high polymer fuel cell and its manufacture |
JPH07249417A (en) * | 1994-03-10 | 1995-09-26 | Toyota Motor Corp | Unit cell for fuel cell and manufacture thereof |
WO1999060641A2 (en) * | 1998-05-14 | 1999-11-25 | Siemens Aktiengesellschaft | Fuel cell stack with liquid cooling and method for cooling a fuel cell stack |
WO2000026979A1 (en) * | 1998-10-30 | 2000-05-11 | Siemens Aktiengesellschaft | Frame element for a laminated pem fuel cell and production method thereof |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7067213B2 (en) | 2001-02-12 | 2006-06-27 | The Morgan Crucible Company Plc | Flow field plate geometries |
US7838139B2 (en) | 2002-06-24 | 2010-11-23 | The Morgan Crucible Company Plc | Flow field plate geometries |
US8153316B2 (en) | 2002-11-15 | 2012-04-10 | 3M Innovative Properties Company | Unitized fuel cell assembly and cooling apparatus |
WO2009100944A1 (en) * | 2008-02-15 | 2009-08-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fuel cell and method for producing the same |
WO2013093130A1 (en) * | 2011-12-21 | 2013-06-27 | Ingeteam Power Technology, S.A. | Electrochemical cell and reactor comprising same |
US9752240B2 (en) | 2011-12-21 | 2017-09-05 | Ingeteam Power Technology, S.A. | Electrochemical cell and reactor formed by the cell |
CN110783600A (en) * | 2019-10-01 | 2020-02-11 | 深圳市世椿智能装备股份有限公司 | Double-adhesive-tape dispensing method for hydrogen fuel cell electrode plate |
CN113403663A (en) * | 2021-06-07 | 2021-09-17 | 华东理工大学 | Preparation method of polyaniline-based composite coating applied to stainless steel bipolar plate |
Also Published As
Publication number | Publication date |
---|---|
DE10025207A1 (en) | 2001-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0876686B1 (en) | Fluid-cooled fuel cell with distribution ducts | |
DE19502391C1 (en) | Membrane electrode unit formed by combining flat single cells and their use | |
DE69936421T2 (en) | SEPARATOR FOR A UNIT CELL OF A FUEL CELL AND THIS USING FUEL CELL | |
DE102015225228A1 (en) | Bipolar plate for a fuel cell and fuel cell stack with such | |
EP2356714B1 (en) | Fuel cell without bipolar plates | |
DE102016225651A1 (en) | END CELL HEATING ARRANGEMENT AND FUEL CELL STACK WITH THE SAME | |
DE102011118817A1 (en) | FUEL CELL separator | |
DE102017101276A1 (en) | Bipolar plate seal assembly and fuel cell stack with such | |
WO2001089019A1 (en) | Fuel cell stack with frame elements | |
DE102014210358A1 (en) | FUEL CELL STACK WITH A DUMMY CELL | |
DE102006009844A1 (en) | Bipolar plate, in particular for a fuel cell stack of a vehicle | |
DE102008056900A1 (en) | Bipolar plate for a fuel cell assembly, in particular for the arrangement between two adjacent membrane-electrode assemblies in a fuel cell stack | |
WO2010115495A2 (en) | Bipolar plate for fuel or electrolyte cells | |
DE102018200673A1 (en) | Bipolar plate, fuel cell and a motor vehicle | |
DE112005001970B4 (en) | The separator plate | |
DE102016121506B4 (en) | Bipolar plate and fuel cell with such a | |
EP2130256B1 (en) | Lightweight fuel cell stack | |
DE112006000324B4 (en) | Fuel cell assembly, fuel cell module and fuel cell device | |
DE102020212104A1 (en) | Fuel cell assembly and method for manufacturing a fuel cell assembly | |
WO2021260113A1 (en) | Fuel cell assembly and method for producing a fuel cell assembly | |
DE102017220354A1 (en) | fuel cell device | |
DE102020128317A1 (en) | Bipolar plate, fuel cell and fuel cell stack | |
DE102013219010A1 (en) | Functionalized membrane, functionalized bipolar plate and fuel cell | |
WO2013110509A2 (en) | Electrical energy store | |
DE60303459T2 (en) | ELECTROCHEMICAL MEMBRANE GENERATOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |