WO2001088019A1 - Materiau a base de polymeres biodegradables et son procede de preparation - Google Patents
Materiau a base de polymeres biodegradables et son procede de preparation Download PDFInfo
- Publication number
- WO2001088019A1 WO2001088019A1 PCT/FR2001/001496 FR0101496W WO0188019A1 WO 2001088019 A1 WO2001088019 A1 WO 2001088019A1 FR 0101496 W FR0101496 W FR 0101496W WO 0188019 A1 WO0188019 A1 WO 0188019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecule
- polysaccharide
- biodegradable polymer
- particles
- material according
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 80
- 229920002988 biodegradable polymer Polymers 0.000 title claims abstract description 63
- 239000004621 biodegradable polymer Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 37
- 239000002245 particle Substances 0.000 claims abstract description 82
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 71
- 239000005017 polysaccharide Substances 0.000 claims abstract description 71
- 239000013598 vector Substances 0.000 claims abstract description 46
- 239000000126 substance Substances 0.000 claims abstract description 9
- 150000004676 glycans Chemical class 0.000 claims abstract 3
- 150000004804 polysaccharides Chemical class 0.000 claims description 73
- 229920001610 polycaprolactone Polymers 0.000 claims description 55
- 230000006870 function Effects 0.000 claims description 44
- 229920000642 polymer Polymers 0.000 claims description 41
- 229920001577 copolymer Polymers 0.000 claims description 31
- 239000002105 nanoparticle Substances 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 229920002307 Dextran Polymers 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000002253 acid Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 16
- 239000004632 polycaprolactone Substances 0.000 claims description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- 229920001661 Chitosan Polymers 0.000 claims description 13
- 239000011149 active material Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 13
- 229920000728 polyester Polymers 0.000 claims description 12
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 10
- 229920002674 hyaluronan Polymers 0.000 claims description 10
- 229960003160 hyaluronic acid Drugs 0.000 claims description 10
- 150000002148 esters Chemical class 0.000 claims description 9
- -1 poly (alkylene d-tartrate Chemical compound 0.000 claims description 9
- 108090001090 Lectins Proteins 0.000 claims description 8
- 102000004856 Lectins Human genes 0.000 claims description 8
- 239000002523 lectin Substances 0.000 claims description 8
- 229920000954 Polyglycolide Polymers 0.000 claims description 7
- 102000004169 proteins and genes Human genes 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 7
- 230000008685 targeting Effects 0.000 claims description 7
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 7
- 239000013543 active substance Substances 0.000 claims description 6
- 238000007306 functionalization reaction Methods 0.000 claims description 6
- 239000011859 microparticle Substances 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 4
- 235000010443 alginic acid Nutrition 0.000 claims description 4
- 229920000615 alginic acid Polymers 0.000 claims description 4
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 229920001059 synthetic polymer Polymers 0.000 claims description 4
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 3
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 3
- 229920002101 Chitin Polymers 0.000 claims description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 3
- 229920002732 Polyanhydride Polymers 0.000 claims description 3
- 229920001710 Polyorthoester Polymers 0.000 claims description 3
- 229920001218 Pullulan Polymers 0.000 claims description 3
- 239000004373 Pullulan Substances 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229940072056 alginate Drugs 0.000 claims description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 3
- 230000004071 biological effect Effects 0.000 claims description 3
- 150000001720 carbohydrates Chemical class 0.000 claims description 3
- 235000014633 carbohydrates Nutrition 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 235000010980 cellulose Nutrition 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229920000669 heparin Polymers 0.000 claims description 3
- 229960002897 heparin Drugs 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 150000002632 lipids Chemical class 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000001630 malic acid Substances 0.000 claims description 3
- 235000011090 malic acid Nutrition 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 150000007523 nucleic acids Chemical class 0.000 claims description 3
- 108020004707 nucleic acids Proteins 0.000 claims description 3
- 102000039446 nucleic acids Human genes 0.000 claims description 3
- 239000001814 pectin Substances 0.000 claims description 3
- 235000010987 pectin Nutrition 0.000 claims description 3
- 229920001277 pectin Polymers 0.000 claims description 3
- 229920000962 poly(amidoamine) Polymers 0.000 claims description 3
- 229920001308 poly(aminoacid) Polymers 0.000 claims description 3
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 235000019423 pullulan Nutrition 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 230000001225 therapeutic effect Effects 0.000 claims description 3
- 229920001285 xanthan gum Polymers 0.000 claims description 3
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 claims description 2
- 229920002558 Curdlan Polymers 0.000 claims description 2
- 239000001879 Curdlan Substances 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000000227 bioadhesive Substances 0.000 claims description 2
- 229920001400 block copolymer Polymers 0.000 claims description 2
- 235000019316 curdlan Nutrition 0.000 claims description 2
- 229940078035 curdlan Drugs 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 239000012634 fragment Substances 0.000 claims description 2
- 229960000292 pectin Drugs 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 229920001221 xylan Polymers 0.000 claims description 2
- 150000004823 xylans Chemical class 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 24
- 229960002086 dextran Drugs 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 230000002209 hydrophobic effect Effects 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000008346 aqueous phase Substances 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000002077 nanosphere Substances 0.000 description 5
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000035587 bioadhesion Effects 0.000 description 4
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000004452 microanalysis Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229940045110 chitosan Drugs 0.000 description 3
- 229940113088 dimethylacetamide Drugs 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Substances OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 239000002088 nanocapsule Substances 0.000 description 2
- XZZXKVYTWCYOQX-UHFFFAOYSA-J octanoate;tin(4+) Chemical compound [Sn+4].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O XZZXKVYTWCYOQX-UHFFFAOYSA-J 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 210000001539 phagocyte Anatomy 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- TWNIBLMWSKIRAT-FPRJBGLDSA-N (1r,2r,3s,4r,5r)-6,8-dioxabicyclo[3.2.1]octane-2,3,4-triol Chemical compound O1[C@@]2([H])OC[C@]1([H])[C@H](O)[C@H](O)[C@H]2O TWNIBLMWSKIRAT-FPRJBGLDSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-Fructose Natural products OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Chemical group O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000010666 Lens esculenta Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010064983 Ovomucin Proteins 0.000 description 1
- 229920001100 Polydextrose Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241001415846 Procellariidae Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920001963 Synthetic biodegradable polymer Polymers 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical group O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 108091000699 pea lectin Proteins 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 229920001553 poly(ethylene glycol)-block-polylactide methyl ether Polymers 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 235000013856 polydextrose Nutrition 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 229940035658 visco-gel Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
Definitions
- the present invention relates to new materials based on biodegradable polymers and polysaccharides, vectors derived from these materials preferably in the form of particles, and their uses as biological vectors for active materials.
- Vectorization is an operation aimed at modulating and if possible completely controlling the distribution of a substance, by associating it with an appropriate system called a vector.
- a vector In the vectorization field, three main functions are to be ensured:
- the general principle of vectorization is also to make the distribution of the active substance as independent as possible from the properties of the active substance itself and to subject it to that of suitable vectors chosen according to the objective envisaged.
- the in vivo fate of the vector is conditioned by its size, its physicochemical characteristics and, in particular, its surface properties which determine the interactions with the components of the living environment.
- First generation vectors are systems designed to release an active ingredient within the target. It is necessary in this case to use a particular mode of administration. These vectors of relatively large size (greater than a few tens of microns) are either solid systems (microspheres) or hollow systems (microcapsules), containing an active substance, for example anticancer, in the dissolved or dispersed state in the constituent material of these systems.
- the materials which can be used are of variable nature (wax, ethylcellulose, polylactic acid, copolymers of lactic and glycolic acids) biodegradable or not.
- Second generation vectors are vectors capable, without any particular mode of administration, of transporting an active principle to the intended target. More precisely, these are vectors whose size is less than a micrometer and whose distribution in the organism is totally a function of their unique physico-chemical properties.
- vesicular vectors of the liposome type which are vectors constituted by one or more internal cavities containing an aqueous phase
- the nanocapsules which are vesicular vectors formed by an oily cavity surrounded by a wall of a polymeric nature.
- nanospheres which consist of a polymer matrix which can encapsulate active ingredients.
- nanoparticles includes nanospheres as well as nanocapsules.
- the active ingredients are generally incorporated at the level of the nanoparticles either during the polymerization process of the monomers from which the nanoparticles are derived, or by adsorption on the surface of the already formed nanoparticles, or during the manufacture of the particles from the preformed polymers.
- the present invention relates very particularly to the field of vectors of the nano- and micro-particle type and their applications.
- Different types of nano- and micro-particles are already proposed in the literature. Conventionally, they derive from a material obtained by direct polymerization of monomers (for example cyanoacrylates), by crosslinking, or else they are produced from preformed polymers: poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly ( ⁇ -caprolactone) ( PCL), and their copolymers, such as for example poly (lactic acid-co-glycolic acid) (PLGA), etc.
- a new type of particle has been obtained from a material derived from the catalytic polymerization of monomers (such as for example lactide or caprolactone), on the skeleton of a polysaccharide.
- monomers such as for example lactide or caprolactone
- this type of material has the main drawback of not being able to guarantee a reproducible composition.
- all the hydroxyl functions present on the backbone of the polysaccharide considered are capable of initiating the polymerization of the monomers.
- a very large number of chains of variable size derived from the monomer are thus formed on the skeleton, which "mask" this skeleton.
- the present invention has for first object a new composite material with controlled structure deriving from the coupling of biodegradable polymer chains directly on the backbone of polysaccharides. Its second object relates to a vector based on this material, preferably in the form of particles, and more preferably in the form of nanoparticles.
- the invention also aims in a third object, the use of this vector, preferably of particles, in particular as biological vehicles.
- the first aspect of the invention relates to a material with a controlled chemical structure composed of at least one biodegradable polymer and of a polysaccharide with a linear, branched or crosslinked backbone, characterized in that it derives from the controlled functionalization d 'at least one molecule of said biodegradable polymer or one of its derivatives by covalent grafting directly at the level of its polymeric structure, of at least one molecule of said polysaccharide.
- the material developed according to the present invention has the first advantage of having a controlled chemical structure and therefore of being therefore perfectly reproducible. Its chemical composition is clearly identified.
- the claimed material preferably consists of at least 90% by weight and more preferably entirely of a copolymer derived from the controlled functionalization of at least one molecule of a biodegradable polymer or of one of its derivatives by covalent grafting directly at the level of its polymeric structure of at least one molecule of a polysaccharide with a linear, branched or crosslinked backbone.
- the claimed material does not contain a starting molecule, that is to say of said biodegradable polymer or of said polysaccharide.
- the material claimed is therefore different from a mixture of polymeric nature in which the expected copolymer would be present but where the starting polymers would also remain, in very variable quantities.
- a mixture of polymeric nature 0 cannot be used as such to prepare nano- or microparticles.
- the claimed material has a polydispersity less than or equal to 2 and preferably less than 1.5.
- the claimed material is obtained by coupling directly, at the level of the polysaccharide molecule, with one or more identical or different molecules of biodegradable polymer.
- This covalent bond between the two types of molecule can be of various natures.
- the covalent bond o established between the two molecules is of the ester or amide type. More preferably, it derives from the reaction between a carboxylic function, if necessary activated, present on the biodegradable polymer and a hydroxyl or amine function present on the polysaccharide.
- the preferred activated functions of the acid are the N-hydroxysuccinimide ester, the acid chloride and the imidazolide derived from carbonyl diimidazole.
- This reactive function, preferably carboxylic can either be naturally present on the skeleton of the biodegradable polymer or have been introduced there before at the level of its skeleton, so as to allow its subsequent coupling with a polysaccharide molecule.
- This activation of a function present on one of the molecules, preferably a carboxylic function on the biodegradable polymer, is particularly advantageous when it is desired to prevent the manifestation of a parasitic secondary reaction, such as for example an intramolecular reaction.
- a parasitic secondary reaction such as for example an intramolecular reaction.
- the carboxylic function present on the biodegradable polymer of so as to favor the kinetics of its coupling reaction with the hydroxyl function of the polysaccharide to the detriment of that of an intramolecular reaction at the level of the polysaccharide molecule.
- the reproducibility and homogeneity of the corresponding material are thus ensured.
- the material according to the invention also has the advantage of having satisfactory biodegradability due to the nature of the polymers which constitute it.
- biodegradable is intended to denote any polymer which dissolves or degrades in a period acceptable for the application for which it is intended, usually in in vivo therapy. Generally, this period should be less than 5 years and more preferably one year when a corresponding physiological solution is exposed with a pH of 6 to 8 and at a temperature between 25 ° C and 37 ° C.
- the chains of biodegradable polymers according to the invention are or are derived from synthetic or natural biodegradable polymers.
- polyesters PLA, PGA, PCL, and their copolymers, such as for example PLGA. Indeed, their biodegradability and biocompatibility have been widely established.
- Other synthetic polymers are also being investigated. These are polyanhydrides, poly (alkylcyanoacrylates), polyorthoesters, polyphosphazenes, polyamino acids, polyamidoamines, polymethylidenemalonate, polysiloxane, polyesters such as polyhydroxybutyrate or poly (malic acid), as well as their copolymers and derivatives.
- Natural biodegradable polymers proteins such as albumin or gelatin, or polysaccharides such as alginate, dextran or chitosan may also be suitable.
- biodegradable polymers are particularly interesting because their bioerosion is observed quickly.
- these polymers are not always suitable for being coupled with one or more polysaccharides because they have almost no reactive groups, especially in the case of biodegradable polyesters (PLA, PCL, ...), and / or because these reactive groups only exist at the chain end. Consequently, the coupling of these polymers with a polysaccharide implies a prior functionalization of their chains with reactive groups while controlling the nature of the groups naturally present at the chain end.
- - n and m represent independently of each other, either 0 or 1,
- - R represents a C 1 -C 20 alkyl group, a polymer different from the biodegradable polymer [for example poly (ethylene glycol)
- PEG poly(ethylene glycol)
- Pluronic® polymer a copolymer containing PEG blocks or ethylene oxide units, such as for example a Pluronic® polymer]
- a protected reactive function present on the polymer eg BOC-NH-
- a function carboxyl activated or not or a hydroxyl function
- - R 2 represents a hydroxyl function or a carboxylic function activated or not.
- Polyesters are especially preferred as biodegradable polymers according to the invention: poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly ( ⁇ -caprolactone) (PCL), and their copolymers, such as for example poly (lactic acid-co-glycolic acid) (PLGA), synthetic polymers such as polyanhydrides, poly (alkylcyanoacrylates), polyorthoesters, polyphosphazenes, polyamides (eg polycaprolactam), polyamino acids, polyamidoamines, polymethylidene malonate, poly (alkylene d-tartrate ), polycarbonates, polysiloxane, polyesters such as polyhydroxybutyrate or polyhydroxyvalerate, or poly (malic acid), as well as the copolymers of these materials and their derivatives.
- PLA poly (lactic acid)
- PGA poly (glycolic acid)
- PCL poly ( ⁇ -caprolactone)
- PA poly (lactic acid-co-g
- the material according to the invention is particularly advantageous in terms of bioadhesion and targeting properties for the particles which are derived therefrom at the level of organs and / or cells. It is in particular through the choice of the associated polysaccharide, and in particular its composition and its structural organization at the particle level, that this second aspect is more precisely achieved.
- the polysaccharide (s) used according to the invention are polysaccharides with a linear, branched or crosslinked structure, modified or not.
- Modified polysaccharide is understood to mean any polysaccharide which has undergone a change in its skeleton, such as for example the introduction of reactive functions, the grafting of chemical entities (molecules, aliphatic links, PEG chains, etc.). Of course, this modification must relate to few of the hydroxyl or amino groups present on the skeleton, so as to leave the vast majority of them free to then allow the coupling of biodegradable polymers. Thus, there are commercially available polysaccharides modified by grafting biotin, fluorescent compounds, etc. Other polysaccharides grafted with hydrophilic chains (eg PEG) have been described in the literature.
- PEG polysaccharides grafted with hydrophilic chains
- polysaccharides which are very particularly suitable for the invention are or are derived from D-glucose (cellulose, starch, dextran), D-galactose, D-mannose, D-fructose (galactosan, manane, fructosan). The majority of these polysaccharides contain the elements carbon, oxygen and hydrogen.
- the polysaccharides according to the invention can also contain sulfur and / or nitrogen.
- hyaluronic acid (composed of N-acetyl glucosamine and glucuronic acid units), chitosan, chitin, heparin or ovomucoid contain nitrogen, while agar, polysaccharide extracted from seaweed , contains sulfur in the form of acid sulfate (> CH-O-SOgH). Chondroitin-sulfuric acid contains sulfur and nitrogen simultaneously.
- the polysaccharide has a molecular weight greater than or equal to 6000 g / mole.
- n varies between 10 and 620 and preferably between 33 and 220.
- the molar mass varies between 5 10 3 and 5 10 6 g / mole, preferably between 5 10 4 and 2 10 6 g / mole.
- the molar mass varies between 6 10 3 and 6 10 5 g / mole, preferably between 6 10 3 and 15 10 4 g / mole g / mole.
- polydextroses such as dextran, chitosan, pullulan, starch, amilose, hyaluronic acid, heparin, amilopectin, cellulose, pectin, alginate, curdlan, fucan, succinoglycan, chitin, xylan, xanthan, arab
- the material according to the invention in the form of a copolymer, can include the biodegradable polymer and the polysaccharide in a mass ratio varying from 1: 20 to 20: 1 and preferably from 2: 9 to 2: 1.
- the copolymers constituting the claimed material can be in the form of di-block copolymers, have a comb structure or a crosslinked structure.
- the preferred nature of the backbone is a polysaccharide, and the preferred nature of the grafts is a biodegradable polymer.
- Di-block or comb copolymers can be obtained by varying the polysaccharide: biodegradable polymer molar ratio during synthesis.
- the crosslinked structure copolymers can be obtained from biodegradable polymers comprising at least two reactive functions.
- the second aspect of the present invention relates to a process for preparing the claimed material.
- this process comprises bringing together at least one molecule of a biodegradable polymer or one of its derivatives carrying at least one reactive function F1 with at least one molecule of a polysaccharide with a linear, branched or crosslinked backbone and carrying at least one reactive function F2 capable of reacting with the function F1, under conditions suitable for the reaction between the functions F1 and F2 to establish a covalent bond between the said molecules and in that the said material is recovered.
- the claimed preparation process does not require the use of a catalyst like conventional methods.
- This specificity of the claimed process is therefore particularly advantageous in terms of safety and biodegradability in the resulting material.
- it is a quantitative reaction, that is to say at least one F1 function present on the polysaccharide molecules reacts with an F2 function present on a biodegradable polymer molecule.
- the reaction is carried out under conditions such that the manifestation of any parasitic reaction is prevented, in particular the involvement of one of the functions F1 or F2 in another reaction than the expected coupling reaction. It is thus intended to avoid the intramolecular reactions mentioned above.
- the reactive function present on the biodegradable polymer is an acid function or an activated acid function and the reactive function on the polysaccharide is a hydroxyl or amine function.
- the polysaccharide and the biodegradable polymer or derivative are brought together in a mass ratio varying from 1: 20 to 20: 1.
- the coupling reaction can be carried out by activation for example with dicyclohexylcarbodiimide (DCC) or carbonyldiimidazole (DCI).
- DCC dicyclohexylcarbodiimide
- DCI carbonyldiimidazole
- biodegradable polysaccharides and polymers meet the definitions proposed above.
- they can be derived from molecules of polysaccharides or biodegradable polymers, natural and which have been modified so as to be functionalized in accordance with the present invention.
- a third aspect of the invention relates to vectors made of a material according to the invention. These vectors are preferably particles having a size between 50 nm and 500 ⁇ m and preferably between 80 nm and 100 ⁇ m.
- the size of these can be fixed.
- the particles have a size between 1 and 1000 nm and are then called nanoparticles.
- Particles varying in size from 1 to several thousand microns refer to microparticles.
- the claimed nanoparticles or microparticles can be prepared according to methods already described in the literature, such as for example the solvent emulsion / evaporation technique [R. Gurny et al. "Development of biodegradable and injectable latices for controlled release of potent drugs” Drug Dev. Ind. Pharm., Vol 7, p. 1-25 1981)]; the nanoprecipitation technique using a water-miscible solvent (FR 2 608 988 and EP 274 691). There are also variants of these methods.
- the so-called “double-emulsion” technique which is advantageous for the encapsulation of hydrophilic active principles, consists in dissolving these in an aqueous phase, in forming an emulsion of the water / oil type with an organic phase containing the polymer. , then to form an emulsion of the water / oil / water type using a new aqueous phase containing a surfactant. After evaporation of the organic solvent, nano- or micro-spheres are recovered.
- a particularly advantageous new method has also been developed by the inventors which comprises:
- the polymers and copolymers constituting the claimed material comprise, as biodegradable polymer, a polycaprolactone derivative, and more preferably a polycaprolactone derivative with a molecular weight of less than 5000 g / mol.
- the material according to the present invention has the major advantage of having surfactant properties, by its amphiphilic nature. These properties can therefore be exploited advantageously during the preparation of particles, for example, so as to avoid the use of surfactants, systematically used in the above-mentioned processes. Indeed, these are not always biocompatible and are difficult to remove at the end of the process.
- Another advantage of the material according to the present invention is to offer the possibility of modulating the properties which intervene in the process of manufacturing particles through the choice: - of the mass ratio of biodegradable polymer polysaccharide and / or
- copolymers hydrosoluble or insoluble in water having hydrophilic-lipophilic balances which can vary between 2 and 18 (thus making it possible to stabilize water / oil or oil / water emulsions).
- a material derived from at least one polyester molecule linked by an ester or amide type bond to at least one polysaccharide molecule chosen from dextran , chitosan, hyaluronic acid and amilose are particles composed of a material derived from a block of polycaprolactone or of poly (lactic acid) linked by an ester or amide bond to at least one polysaccharide molecule chosen from dextran, chitosan, hyaluronic acid and amilose.
- particle structures obtainable from the material according to the invention and the abovementioned methods can be variable.
- the polysaccharide can be disposed either exclusively at the level of the aqueous inclusions, or at the level of these inclusions and of the surface of the particles. It can also protect the encapsulated active principles (proteins, peptides, etc.) from interactions, often denaturing, with the hydrophobic biodegradable polymer and the organic solvent;
- hydrophilic core structure polysaccharide
- hydrophobic ring biodegradable polymer
- micellar structure obtained thanks to the self-association of a material in accordance with the invention in the aqueous phase, and - a so-called gel structure formed by crosslinking of the polysaccharides with biodegradable polymers comprising at least two reactive functions.
- the particles preferably degrade over a period of between one hour and several weeks.
- the particles according to the invention can contain an active substance which can be hydrophilic, hydrophobic or amphiphilic and biologically active.
- biological active materials mention may more particularly be made of peptides, proteins, carbohydrates, nucleic acids, lipids, polysaccharides or their mixtures. They may also be synthetic organic or inorganic molecules which, administered in vivo to an animal or to a patient, are capable of inducing a biological effect and / or manifesting therapeutic activity. It can thus be antigens, enzymes, hormones, receptors, peptides, vitamins, minerals and / or steroids.
- the particles can thus include magnetic particles, radio-opaque materials (such as air or barium) or fluorescent compounds.
- fluorescent compounds such as rhodamine or Nile red can be included in particles with a hydrophobic core.
- gamma emitters for example Indium or Technetium
- Hydrophilic fluorescent compounds can also be encapsulated in the particles, but with a lower yield compared to hydrophobic compounds, due to the lower affinity with the matrix.
- Commercial magnetic particles with controlled surface properties can also be incorporated into the particle matrix or covalently attached to one of their constituents.
- the active material can be incorporated into these particles during their formation process or, on the contrary, be loaded at the level of the particles once they are obtained.
- the particles in accordance with the invention can comprise up to 95% by weight of an active material.
- the active ingredient can thus be present in an amount varying from 0.001 to 990 mg / g of particle and preferably from 0.1 to 500 mg / g. It should be noted that in the case of the encapsulation of certain macromolecular compounds (DNA, oligonucleotides, proteins, peptides, etc.) even lower charges may be sufficient.
- the particles according to the invention can be administered in different ways, for example by the oral, parenteral, ocular, pulmonary, nasal, vaginal, cutaneous, buccal routes, etc.
- the non-invasive oral route is a preferred route.
- particles administered orally can undergo different processes: translocation (capture and then passage of the digestive epithelium by intact particles), bioadhesion (immobilization of particles on the surface of the mucosa by a membership mechanism) and transit.
- translocation capture and then passage of the digestive epithelium by intact particles
- bioadhesion immobilization of particles on the surface of the mucosa by a membership mechanism
- transit transit.
- the surface properties play a major role.
- the particles according to the invention have numerous hydroxyl functions on the surface, proves to be particularly advantageous for binding a biologically active molecule to it, a molecule intended for targeting or which can be detected. It is thus possible to envisage functionalizing the surface of these particles so as to modify their surface properties and / or target them more specifically towards certain tissues or organs.
- the particles thus functionalized can be maintained at the target level by the use of a magnetic field, during medical imaging or while an active compound is released.
- targeting molecule type ligands such as receptors, lectins, antibodies or fragments thereof can be attached to the surface of the particles. This type of functionalization falls within the competence of a person skilled in the art.
- the coupling of these ligands or molecules on the surface of the particles can be carried out in different ways. It can be carried out covalently by attaching the ligand to the polysaccharide covering the particles or non-covalently, that is to say by affinity. Thus, certain lectins could be attached by specific affinity to the polysaccharides located on the surface of particles according to the present invention, thereby enhancing the cell recognition properties of these particles. It may also be advantageous to graft the ligand via a spacer arm, to allow it to reach its target in an optimal conformation. Alternatively, the ligand can be carried by another polymer used in the composition of the particles.
- the invention also relates to the use of the vectors and preferably of the particles obtained according to the invention for encapsulating one or more active materials as defined above.
- Another aspect of the invention also relates to pharmaceutical or diagnostic compositions comprising vectors and preferably particles according to the invention, where appropriate associated with at least one pharmaceutically acceptable and compatible vehicle.
- the particles can be administered in enteric capsules, or incorporated into gels, implants or tablets. They can also be prepared directly in an oil (such as Migliol®) and this suspension administered in a capsule or injected at a specific site (for example tumor). These particles are in particular useful as stealth vectors, that is to say capable of escaping the immune defense system of the organism and / or as bioadhesive vectors.
- Figure 1 Representation using an optical microscope of R-PCL-COOH particles manufactured according to Example 13 (polymer synthesized according to Example 1).
- Figure 2 Distribution of hydrodynamic diameters of R-PCL-COOH particles.
- the acid and ⁇ -caprolactone were introduced into a flask surmounted by a condenser ascending. After purging the reagents, the flask was introduced into an oil bath thermostatically controlled at 225 ° C. The reaction continued for 3 h 30 min under an inert atmosphere (argon). It was stopped by immersion of the balloon in an ice bath. The solid obtained was dissolved hot in 15 ml THF, then was precipitated at room temperature with cold methanol.
- Mn number-average molar masses
- Mw number-average molar masses
- CES steric exclusion chromatography
- a number average molar mass equal to 3200 g / mole was determined by titration with a 10 "2 M KOH / EtOH solution of the polymer samples of approximately 100 mg dissolved in an acetone-water mixture.
- the bifunctionalized polymer HOOC-PCL-COOH was synthesized according to the procedure of Example 1.
- the succinic acid (99.9%, AIdrich) used as initiator was dried under vacuum at 110 ° C for 24 hours.
- the monomer ( ⁇ -caprolactone) was purified by distillation on calcium hydride.
- the polymerization from 0.2 g of succinic acid and 4 g of ⁇ -caprolactone made it possible to obtain after 3 hours of reaction 3.2 g of polymer (yield by weight 76% after four successive precipitations).
- the assay of the terminal COOH groups with KOH / EtOH 10 "2 M made it possible to determine an acidity corresponding to a molar mass of 3500 g / mole.
- Mn is equal to 4060 g / mole and Mw to 4810 g / mole, the polydispersity index is 1, 2.
- the monomer (D, L-lactide) was purified by two recrystallizations from ethyl acetate followed by sublimation.
- the catalyst (tin octanoate) was purified by distillation under very high vacuum.
- the capric acid used as initiator was purified by recrystallization from ethyl acetate, then anhydrous by azeotropic distillation with benzene.
- the capric acid (0.12 g) and the D, L-lactide (3.5 g) were introduced into a two-necked tube fitted with an ascending cooler connected to a vacuum / argon ramp.
- the reaction flask was inert, then 7 ml of anhydrous toluene were added through the septum.
- 0.284 g of catalyst was introduced and the reaction was immediately started by immersion of the flask in an oil bath at 120 ° C. After 4 hours, the reaction was stopped, the toluene was evaporated, and the polymer called R-PLA-COOH was dissolved in dichloromethane and precipitated with ethanol. After four successive precipitations, a constant acidity was obtained in the polymer, which was then dried.
- the molar mass Mw determined by CES is 22 Kg / mole.
- the assay of the terminal groups with KOH / EtOH 10 "2 M made it possible to determine an acidity corresponding to a molar mass of 21 Kg / mole.
- PCL or PLA polymers monofunctionalized at the chain end with an alcohol group were synthesized according to the protocol of Example 3, but by substituting for the acid initiator, an initiator alcohol, for example C 7 H 15 OH.
- the acid initiator the poly (ethylene glycol) comprising at one end of a chain a methoxy group and at the other a carboxylic acid group (MeO-PEG-COOH) (Shearwater Polymers, 5000 g / mole) was dried before the reaction.
- the lactide was purified by two recrystallizations (ethyl acetate) and by sublimation.
- the mass ratio of MeO-PEG-COOH: lactide reagents was 1: 9 and the MeO-PEG-COOH: catalyst molar ratio was 1: 1.
- the polymerization continued for 2 h under an inert atmosphere at reflux of toluene (solvent). After evaporation of the toluene, the copolymer is purified by two successive precipitations.
- the mass Mw determined by CES is 42 kg / mole. EXAMPLE 6.
- the acid function of the R-PCL-COOH polymers is transformed in the activated ester by reacting it with N-hydroxy succinimide (NHSI), in the presence of dicyclohexyl carbodiimide (DCC), in a DMF: CH 2 mixture.
- the DCC was added in slight molar excess (1, 1) relative to the R-PCL-COOH chains and the NHSI in excess relative to the -COOH functions.
- the reagents were dissolved in a minimum volume of solvent, with slight heating. The reaction takes place at 50 ° C for 24 hours under an inert atmosphere.
- the coupling reaction takes place for 144 hours at 70 ° C under argon.
- the transesterification reaction takes place with the release of NHSI.
- the final product is washed with water to remove the NHSI and water-soluble copolymers, then with dichloromethane to extract traces of unreacted polyester.
- a comb-type Dex-PCL copolymer is obtained with a yield of 40%, comprising a skeleton of dextran (Dex) (molar mass 40,000 g / mole) and side links of PCL linked by ester bridges.
- the copolymer is purified at the end of the reaction. Its overall composition is determined by elementary microanalysis and by NMR. The copolymer contains 33% by weight of PCL.
- R-PCL-COOH (Example 1) are anhydrated by azeotropic distillation, then dried under vacuum at 40-50 ° C, overnight, directly in the 50 ml reaction flask topped with an ascending cooler and connected to an empty ramp / argon. 5 ml of dry THF are then added to the flask. After dissolution of the acid, 0.243 g of carbonyl diimidazole (CDI) is added to the flask, which dissolves quickly. The inert mixture is brought to reflux of THF. CO 2 is observed. After 3 hours, the THF is evaporated.
- CDI carbonyl diimidazole
- the Dex-PCL copolymers were dissolved in dimethyl acetamide (DMAC) at concentrations of 5 mg / ml. The volumes injected were 100 ⁇ l. The eluent was DMAC containing 0.4% LiBr, at a flow rate of 0.5 ml / min. The molar masses were determined by the method of universal calibration. Some examples are shown in Table 1.
- Dex-PCL7 is derived from the presence of 5% dextran and 95% PCL.
- Dex-PCL5 is derived from the presence of 20% dextran and 80% PCL.
- Dex-PCL3 is derived from the presence of dextran at 33% and PCL at 67%.
- Mn number-average molar mass
- Rgw average radius of gyration in weight dn / dc: variation of the specific refractive index with the concentration.
- the three copolymers have a low polydispersity and weight-average molar masses of between 11,000 and 19,000 g / mole.
- 0.2g amilose (Fluka, extracted from potatoes) are dissolved in 8ml DMSO.
- the result is a cloudy solution, to which is added 0.2 g of R-PCL-ester of NHSI (Example 6) dissolved in 3 ml DMSO.
- This mixture is incubated at 70 ° C for 144 h. After evaporation of the solvents, the solid is taken up with 200 ml of water and 200 ml of chloroform in a separating funnel.
- the intermediate phase containing the amphiphilic polymer is recovered and extracted once again, then dried. This treatment is a variant of the purification method of Example 7.
- the yield by weight after the second extraction is 38% (wt).
- Chitosan-polycaprolactone copolymer is obtained according to the protocol of Example 9. The synthesis was carried out from crude chitosan (Fluka, 150 000 g / mol) and the yield for obtaining the copolymer was 22% by 'weight. According to elementary microanalysis, the copolymer contains 67% by weight of PCL. It is of the comb type, with a skeleton of chitosan and side links of PCL mainly linked by amide bonds.
- Hyaluronic acid (Accros, molar mass greater than 10 6 g / mole) in the form of sodium carboxylate is dissolved in MilliQ water, and converted into the free acid form using a cation super-exchange resin , and freeze-dried.
- the product thus obtained is fairly soluble in DMSO and allows the coupling with the NHSI ester of R-PCL-COOH, according to the protocol of Examples 7 and 9.
- the hyaluronic acid-PCL comb type copolymer is recovered in the aqueous phase. There is no intermediate phase.
- this copolymer contains 18% by weight of PCL.
- R-PCL-COOH nanoparticles A well-defined mass of R-PCL-COOH synthesized according to Example 1 is dissolved in acetone to obtain a concentration of 20 mg / ml. A volume of water equal to twice the volume of acetone is poured dropwise. Spontaneously, the polymer forms nanospheres with an average diameter of 210 nm (measured after the evaporation of the solvent), in the absence of surfactant.
- a well defined mass of Dex-PCL copolymer synthesized according to Example 7 is introduced into dichloromethane to obtain a concentration of 10 mg / ml.
- the polymer is dispersed and swollen by the solvent, but it does not dissolve.
- a volume of water two to twenty times greater than the volume of dichloromethane is added.
- a coarse emulsion is first formed, then refined using ultrasound.
- the amphiphilic copolymer stabilizes the emulsion, thus avoiding the need to add surfactants. After evaporation of the organic solvent, nanoparticles are obtained.
- the average particle diameter is determined by light scattering (PCS).
- PCS light scattering
- Particles were formed according to the protocol of Example 14, except that instead of water, an acetate buffer solution pH4.8 saturated with chitosan was used. Spherical particles were thus obtained.
- the tritiated PLA was encapsulated as a radioactive marker in Dex-PCL nanoparticles (Example 7) to allow precise determination of the localization of the particles (inside or on the surface of the cells or in the culture medium). This marking was found to be perfectly stable in the culture medium, thus authorizing these studies.
- Caco2 cells were grown in 24-well plates, with medium change (1.5 ml / DMEM well 4.5 g / l glucose, 15% fetal vow serum) every 1 or 2 days until confluence.
- the medium is removed, 1.5 ml of Hank's medium are added, the mixture is waited for 2 hours and then the nanosphere suspensions containing well-defined quantities of particles are added (in a total volume 100 ⁇ l).
- the activity per well in the culture medium was fixed at 0.1 ⁇ Ci.
- the supernatant was removed, the cells were washed twice with PBS, then lysed for 1 h with 1 ml of 0.1 M NaOH. radioactivity was counted in the supernatant, the washings and the cell lysate.
- the quantity of Dex-PCL nanoparticles associated with Caco2 cells is double compared to those in polyester (PLA, Phusis, Mw 40,000 g / mole) manufactured by the nanoprecipitation technique (Example 10) in the presence of Pluronic®. Thus, 2.5% and 1.1% respectively of the nanoparticles are associated with the cells.
- a suspension of radiolabelled nanoparticles made from Dex-PCL (Example 7) is brought into contact with a solution of pea lectin (Lens culinaris) in excess relative to the particles, so as to saturate the surface of the latter. in affinity adsorbed lectin.
- the quantity of nanoparticles associated with Caco2 cells is significantly increased compared to those not covered with lectin. Thus, 3.5% of the nanoparticles introduced into each well are associated with the cells, compared to 2.5% in the absence of lectin.
- the capacity of nanoparticles coated with dextran (made from Dex-PCL, example 7) to avoid capture by phagocyte cells (J774) was compared with those of the same size (approximately 200 nm) and coated with PEG 5000 g / mole (made from PEG-PLA synthesized according to Example 4, from Me-O-PEG-OH 5000 g / mole and lactide, with a molar mass of the PLA block of 50,000 g / mole).
- the J774 cells were cultured in 24-well plates, in DMEM medium containing 4.5 g / 1 glucose and 10% fetal wish serum.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002408870A CA2408870A1 (fr) | 2000-05-16 | 2001-05-16 | Materiau a base de polymeres biodegradables et son procede de preparation |
AU62427/01A AU6242701A (en) | 2000-05-16 | 2001-05-16 | Material based on biodegradable polymers and method for preparing same |
JP2001585235A JP2004521152A (ja) | 2000-05-16 | 2001-05-16 | 生分解ポリマーを基にした材料及びその製造方法 |
EP01936544A EP1285021A1 (fr) | 2000-05-16 | 2001-05-16 | Materiau a base de polymeres biodegradables et son procede de preparation |
US10/276,178 US20040013626A1 (en) | 2000-05-16 | 2001-05-16 | Material based on biodegradable polymers and method for preparing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0006232A FR2809112B1 (fr) | 2000-05-16 | 2000-05-16 | Materiaux a base de polymeres biodegradables et son procede de preparation |
FR00/06232 | 2000-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001088019A1 true WO2001088019A1 (fr) | 2001-11-22 |
Family
ID=8850277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2001/001496 WO2001088019A1 (fr) | 2000-05-16 | 2001-05-16 | Materiau a base de polymeres biodegradables et son procede de preparation |
Country Status (7)
Country | Link |
---|---|
US (1) | US20040013626A1 (fr) |
EP (1) | EP1285021A1 (fr) |
JP (1) | JP2004521152A (fr) |
AU (1) | AU6242701A (fr) |
CA (1) | CA2408870A1 (fr) |
FR (1) | FR2809112B1 (fr) |
WO (1) | WO2001088019A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2842737A1 (fr) * | 2002-07-25 | 2004-01-30 | Centre Nat Rech Scient | Particules revetues en surface de hyaluronane ou d'un de ses derives et leur utilisation a titre de vecteurs biologiques pour des matieres actives |
WO2004104292A3 (fr) * | 2003-05-13 | 2005-01-20 | Du Pont | Methode de fabrication d'articles contenant un polyester antimicrobien, presentant une durabilite au lavage elevee et articles ainsi fabriques |
WO2005023906A1 (fr) * | 2003-09-08 | 2005-03-17 | Chugai Seiyaku Kabushiki Kaisha | Produit de modification d'acide hyaluronique et vecteur de medicament fabrique a partir de ce dernier |
WO2006069578A1 (fr) * | 2004-12-30 | 2006-07-06 | Novozymes Biopolymer A/S | Acide hyaluronique lie a un polymere d'un alphahydroxyacide |
US9486409B2 (en) | 2006-12-01 | 2016-11-08 | Anterios, Inc. | Peptide nanoparticles and uses therefor |
US9724299B2 (en) | 2006-12-01 | 2017-08-08 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US10016451B2 (en) | 2007-05-31 | 2018-07-10 | Anterios, Inc. | Nucleic acid nanoparticles and uses therefor |
US10532019B2 (en) | 2005-12-01 | 2020-01-14 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US11311496B2 (en) | 2016-11-21 | 2022-04-26 | Eirion Therapeutics, Inc. | Transdermal delivery of large agents |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2555467C (fr) * | 2004-02-09 | 2012-10-09 | Noxxon Pharma Ag | Procede de production de conjugues de polysaccharides et de polynucleotides |
JP4566189B2 (ja) * | 2004-03-15 | 2010-10-20 | テルモ株式会社 | 癒着防止材 |
US7919112B2 (en) * | 2004-08-26 | 2011-04-05 | Pathak Holdings, Llc | Implantable tissue compositions and method |
WO2006080508A1 (fr) | 2005-01-31 | 2006-08-03 | Bioserentach Co., Ltd. | Préparation d’absorption transdermique, feuille contenant une préparation d’absorption transdermique et support de préparation d’absorption transdermique |
CN102167890A (zh) * | 2006-07-28 | 2011-08-31 | 比澳格(香港)有限公司 | 适用于制备可生物降解的聚合物组合物的母料及其制备方法 |
US20100086615A1 (en) * | 2007-04-27 | 2010-04-08 | Kyushu University, National University Corporation | Agent for treatment of pulmonary disease |
DE102007038125A1 (de) | 2007-08-03 | 2009-02-05 | Aesculap Ag | Kombination zum Verkleben von biologischen Geweben |
WO2009081287A2 (fr) * | 2007-12-21 | 2009-07-02 | University Of Guelph | Nanoparticules de polysaccharide |
WO2009100422A2 (fr) * | 2008-02-08 | 2009-08-13 | Zimmer, Inc. | Système d'administration de médicament comprenant des microparticules et système de gélification |
PT2251006T (pt) | 2008-02-22 | 2017-10-13 | Toray Industries | Micropartículas e suas composições farmacêuticas |
EP2213315A1 (fr) | 2009-01-30 | 2010-08-04 | Mero S.r.L. | Hydrogel antibactérien et son utilisation en orthopédie |
JP5574445B2 (ja) * | 2009-03-06 | 2014-08-20 | 国立大学法人 岡山大学 | 生分解性多孔質中空微粒子、その製造方法および用途 |
IT1401498B1 (it) | 2010-07-30 | 2013-07-26 | Mero Srl | Idrogelo a base di acido ialuronico e suo uso in ortopedia |
CA2957970A1 (fr) | 2014-08-15 | 2016-02-18 | The Johns Hopkins University Technology Ventures | Materiau composite pour une restauration de tissu |
US10299745B2 (en) * | 2014-12-29 | 2019-05-28 | Loyola University Of Chicago | Traceable devices for gastrointestinal use and methods of use and manufacturing the same |
WO2019180047A1 (fr) * | 2018-03-19 | 2019-09-26 | Algipharma As | Utilisation d'oligomères d'alginate pour améliorer la translocation de micro/nanoparticules à travers des couches de mucus |
JP2021522938A (ja) | 2018-05-09 | 2021-09-02 | ザ ジョンズ ホプキンス ユニバーシティ | 細胞及び組織の送達のためのナノファイバー−ハイドロゲル複合体 |
BR112020022853A2 (pt) * | 2018-05-09 | 2021-02-23 | The Johns Hopkins University | população de microesferas, formulação, biomaterial, kit, método para realizar um procedimento, complexo de microesferas |
CN113621139B (zh) * | 2021-08-24 | 2022-09-13 | 濮阳市盛源石油化工(集团)有限公司 | 一种葡聚糖基两亲嵌段共聚物及其制备方法 |
CN116285178B (zh) * | 2023-02-20 | 2024-06-25 | 蚌埠医学院 | 一种土壤杆菌胞外多糖食品包装膜的制备方法及其应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993023456A1 (fr) * | 1992-05-12 | 1993-11-25 | Regents Of The University Of Minnesota | Compositions biodegradables de polymeres synthetiques et naturels |
WO1995003357A1 (fr) * | 1993-07-23 | 1995-02-02 | Massachusetts Institute Of Technology | Particules biodegradables |
WO1995003356A1 (fr) * | 1993-07-23 | 1995-02-02 | Massachusetts Institute Of Technology | Nanoparticules et microparticules de copolymeres multibloc hydrophiles-hydrophobes non lineaires |
WO1997015389A1 (fr) * | 1995-10-25 | 1997-05-01 | Macromed, Inc. | Preparation, par un procede de fusion, de microspheres biodegradables contenant des peptides |
US6007845A (en) * | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
-
2000
- 2000-05-16 FR FR0006232A patent/FR2809112B1/fr not_active Expired - Fee Related
-
2001
- 2001-05-16 US US10/276,178 patent/US20040013626A1/en not_active Abandoned
- 2001-05-16 JP JP2001585235A patent/JP2004521152A/ja active Pending
- 2001-05-16 WO PCT/FR2001/001496 patent/WO2001088019A1/fr not_active Application Discontinuation
- 2001-05-16 CA CA002408870A patent/CA2408870A1/fr not_active Abandoned
- 2001-05-16 EP EP01936544A patent/EP1285021A1/fr not_active Withdrawn
- 2001-05-16 AU AU62427/01A patent/AU6242701A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993023456A1 (fr) * | 1992-05-12 | 1993-11-25 | Regents Of The University Of Minnesota | Compositions biodegradables de polymeres synthetiques et naturels |
WO1995003357A1 (fr) * | 1993-07-23 | 1995-02-02 | Massachusetts Institute Of Technology | Particules biodegradables |
WO1995003356A1 (fr) * | 1993-07-23 | 1995-02-02 | Massachusetts Institute Of Technology | Nanoparticules et microparticules de copolymeres multibloc hydrophiles-hydrophobes non lineaires |
US6007845A (en) * | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
WO1997015389A1 (fr) * | 1995-10-25 | 1997-05-01 | Macromed, Inc. | Preparation, par un procede de fusion, de microspheres biodegradables contenant des peptides |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004014347A1 (fr) * | 2002-07-25 | 2004-02-19 | Centre National De La Recherche Scentifique | Centre national de la recherche scientifique |
FR2842737A1 (fr) * | 2002-07-25 | 2004-01-30 | Centre Nat Rech Scient | Particules revetues en surface de hyaluronane ou d'un de ses derives et leur utilisation a titre de vecteurs biologiques pour des matieres actives |
WO2004104292A3 (fr) * | 2003-05-13 | 2005-01-20 | Du Pont | Methode de fabrication d'articles contenant un polyester antimicrobien, presentant une durabilite au lavage elevee et articles ainsi fabriques |
US7629000B2 (en) | 2003-05-13 | 2009-12-08 | E.I. Du Pont De Nemours And Company | Method for making antimicrobial polyester-containing articles with improved wash durability and articles made thereby |
KR101121403B1 (ko) * | 2003-09-08 | 2012-04-12 | 추가이 세이야쿠 가부시키가이샤 | 히알루론산 수식물, 및 그것을 사용한 약물 담체 |
WO2005023906A1 (fr) * | 2003-09-08 | 2005-03-17 | Chugai Seiyaku Kabushiki Kaisha | Produit de modification d'acide hyaluronique et vecteur de medicament fabrique a partir de ce dernier |
US7767806B2 (en) | 2003-09-08 | 2010-08-03 | Chugai Seiyaku Kabushiki Kaisha | Hyaluronic acid modification products and drug carriers using them |
JP4755496B2 (ja) * | 2003-09-08 | 2011-08-24 | 中外製薬株式会社 | ヒアルロン酸修飾物、及びそれを用いた薬物担体 |
WO2006069578A1 (fr) * | 2004-12-30 | 2006-07-06 | Novozymes Biopolymer A/S | Acide hyaluronique lie a un polymere d'un alphahydroxyacide |
US10532019B2 (en) | 2005-12-01 | 2020-01-14 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US10576034B2 (en) | 2005-12-01 | 2020-03-03 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US9486409B2 (en) | 2006-12-01 | 2016-11-08 | Anterios, Inc. | Peptide nanoparticles and uses therefor |
US9724299B2 (en) | 2006-12-01 | 2017-08-08 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US10285941B2 (en) | 2006-12-01 | 2019-05-14 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US10758485B2 (en) | 2006-12-01 | 2020-09-01 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US10905637B2 (en) | 2006-12-01 | 2021-02-02 | Anterios, Inc. | Peptide nanoparticles and uses therefor |
US10016451B2 (en) | 2007-05-31 | 2018-07-10 | Anterios, Inc. | Nucleic acid nanoparticles and uses therefor |
US11311496B2 (en) | 2016-11-21 | 2022-04-26 | Eirion Therapeutics, Inc. | Transdermal delivery of large agents |
Also Published As
Publication number | Publication date |
---|---|
JP2004521152A (ja) | 2004-07-15 |
US20040013626A1 (en) | 2004-01-22 |
FR2809112B1 (fr) | 2004-05-07 |
CA2408870A1 (fr) | 2001-11-22 |
FR2809112A1 (fr) | 2001-11-23 |
AU6242701A (en) | 2001-11-26 |
EP1285021A1 (fr) | 2003-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001088019A1 (fr) | Materiau a base de polymeres biodegradables et son procede de preparation | |
TWI306869B (en) | Amphiphilic block copolymers and nano particles comprising the same | |
EP1131056B1 (fr) | Particules a base de polyaminoacide(s) et leurs procedes de fabrication | |
CN102770477A (zh) | 用于药物递送的生物可降解的嵌段聚合物及其相关方法 | |
EP1372618A1 (fr) | Suspension colloidale de nanoparticules a base d' un copolymere amphiphile | |
WO2001037809A1 (fr) | Suspension colloidale de particules submicroniques de vectorisation de principes actifs et leur mode de preparation | |
US7682635B2 (en) | Aqueous dispersions of nanometric or micrometric particles for encapsulating chemical compounds | |
Shi et al. | Hemoglobin conjugated micelles based on triblock biodegradable polymers as artificial oxygen carriers | |
EP0301969B1 (fr) | Microparticules comportant un polymère biodégradable contrôlant la libération d'un principe actif antimalarique, compositions pharmaceutiques en comprenant et procédé de préparation | |
CA2748713A1 (fr) | Composition comprenant un actif de faible solubilite aqueuse | |
FR2830017A1 (fr) | Materiau compose d'au moins un polymere biodegradable et de cyclodextrines | |
Stoikov et al. | Macrocycle-based oligo-and polylactides: synthesis and prospects of application | |
Sardo et al. | Inulin-g-poly-D, L-lactide, a sustainable amphiphilic copolymer for nano-therapeutics | |
CN114948863A (zh) | 一种用于治疗动脉粥样硬化的药物 | |
EP1511471B1 (fr) | Suspension colloidale de particules submicronique de vectorisation de principes actifs et leur mode de preparation | |
CN112168975A (zh) | 一种抗肿瘤靶向药物缓释载体、制剂及其制备方法 | |
EP1355627A1 (fr) | Copolymere a structure sequencee compose d'un segment saccharidique lie a au moins un segment hydrophobe bioerodable, et particules correspondantes | |
Ahmed et al. | Morphological and spectroscopical characterization of hyperbranched polyamidoamine–zwitterionic chitosan-encapsulated 5-FU anticancer drug | |
KR101156094B1 (ko) | 약물송달을 위한 양친성 PHA-mPEG 공중합 나노 컨테이너 | |
CN1931370A (zh) | 一种糖肽缀合物微球或微囊及其制备方法 | |
CN111410757B (zh) | 一种可降解及环境响应性复合物微凝胶的制备方法 | |
Bajgai et al. | Physicochemical characterization of self-assembled poly (∈-caprolactone) grafted dextran nanoparticles | |
WO2001062805A1 (fr) | Polymeres et matrices cationiques bioeliminables a degradation controlee | |
Carrazzone et al. | Reprinted (adapted) with permission from: Carrazzone RJ et al. Antioxid. Redox Signal. 2020 33, 79-95. Copyright 2020 Mary Ann Liebert Inc. https://doi. org/10.1089/ars. 2019.7864 | |
CN117064852A (zh) | 一种具有还原响应性的海藻酸盐-ss-布洛芬衍生物基抗肿瘤靶向药物胶束的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2408870 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001936544 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001936544 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10276178 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001936544 Country of ref document: EP |