+

WO2001086037A1 - Appareil de cristallogenese et procede de cristallogenese - Google Patents

Appareil de cristallogenese et procede de cristallogenese Download PDF

Info

Publication number
WO2001086037A1
WO2001086037A1 PCT/JP2001/003782 JP0103782W WO0186037A1 WO 2001086037 A1 WO2001086037 A1 WO 2001086037A1 JP 0103782 W JP0103782 W JP 0103782W WO 0186037 A1 WO0186037 A1 WO 0186037A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
solution
dielectric
solid member
crystal
Prior art date
Application number
PCT/JP2001/003782
Other languages
English (en)
French (fr)
Inventor
Shigeru Inoue
Akira Sanjoh
Koji Akioka
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Publication of WO2001086037A1 publication Critical patent/WO2001086037A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Definitions

  • the present invention relates to an apparatus for growing crystals of a necessary substance, and more particularly to an apparatus applied to crystallization of various biopolymers such as proteins and enzymes.
  • Crystallization of biological macromolecules such as proteins is carried out in the same manner as in the case of low molecular weight compounds such as ordinary inorganic salts, by removing the solvent from water or a non-aqueous solution containing the macromolecules so that they become supersaturated and crystallized. It is fundamental to grow.
  • Typical methods for this include a batch method, a dialysis method, and a gas-liquid phase diffusion method, which are properly used depending on the type, amount, and properties of the sample.
  • FIG. 1A and 1B schematically show the hanging drop method and the sitting drop method included in the gas-liquid phase diffusion method.
  • a mother liquor 221 containing a biomolecule to be crystallized is dripped in a closed container 220 containing a precipitant 222.
  • a mother liquor 221 containing a biopolymer to be crystallized is placed on a plate 233 in a closed container 230.
  • the precipitant 222 is contained in another container 231 in the closed container 230. In these methods, equilibrium is slowly established by evaporation of the precipitant and volatile components in the mother liquor.
  • An object of the present invention is to provide an apparatus capable of promoting crystallization of a biopolymer. Specifically, an object of the present invention is to reduce the influence of convection in a solution due to the effect of gravity on the crystallization of various biopolymers and biological tissues mainly composed of biopolymers. And a device capable of controlling nucleation.
  • a further object of the present invention is to provide an apparatus capable of suppressing or controlling the mass production of microcrystals and obtaining a large crystal capable of X-ray structure analysis. It is a further object of the present invention to provide an apparatus for enabling crystallization with a small amount of a biopolymer solution.
  • an apparatus for growing crystals of a biopolymer contained in a solution comprises: a solid member having a surface for growing crystals in contact with a solution; a solution and a solid member in contact with the solution; and a direction from the solution to the solid member or from the solid member. Means for applying an electric field in a direction to the solution.
  • at least a portion of the solid member that contacts the solution is formed of a dielectric.
  • the solid member has at least a first region and a second region that are in contact with the solution via the dielectric and are adjacent to each other, and when a predetermined electric field is applied through a means for applying an electric field.
  • the capacitance per unit area of the first region is different from the capacitance per unit area of the second region, so that either the surface of the first region or the surface of the second region is different. It promotes crystal growth more than the other.
  • the solid member can be composed of a plurality of types of dielectrics, and the dielectric in the first region and the dielectric in the second region can have different dielectric constants from each other.
  • the solid member may be a combination of a semiconductor and one or more dielectrics, and the dielectric may be laminated on the semiconductor.
  • the dielectric in the first region and the dielectric in the second region have different relative dielectric constants from each other. Can be.
  • the solid member is composed of a semiconductor having a different conductivity type and a 1 '
  • it can be a combination with two or more kinds of dielectrics, and the dielectrics can be laminated on a semiconductor.
  • the semiconductor forming the first region and the semiconductor forming the cable 2 region can be of different conductivity types.
  • the device according to the invention further comprises an electrically insulating enclosure formed on the solid member for retaining the solution on the first and second regions.
  • the device according to the present invention can have a structure in which one of the first region and the second region protrudes from the solution more than the other.
  • the means for applying an electric field consists of a pair of electrodes which respectively contact the solution and the solid member.
  • one of the surface of the first region and the surface of the second region can be smaller than the other. In that case, crystal growth can be promoted on the surface of the region having the smaller area.
  • the device according to the present invention is a device for growing a crystal of a biopolymer contained in a solution, comprising: a solid member having a surface on which a crystal is grown by contacting the solution; and a solid member.
  • An enclosure wall provided on the solid member to hold the solution on the surface of the solid member, and an electrode attached to the enclosure wall, at least a portion of the solid member surrounded by the enclosure wall is formed of a dielectric.
  • the dielectric has at least a first dielectric and a second dielectric, and the first dielectric and the second dielectric have different dielectric constants from each other.
  • a method for growing a crystal of a biopolymer contained in a solution using the above-described apparatus comprises the steps of: holding a solution containing a biopolymer on a solid member; and applying an electric field to the solution and the solid member in contact with the solution in a direction from the solution to the solid member or from the solid member to the solution.
  • the growth of biomolecular crystals is promoted more than either one of the surface of the first region and the surface of the second region.
  • the present invention also provides another method for growing crystals of a biopolymer contained in a solution using the above-described apparatus.
  • the method comprises the steps of: A step of holding a solution containing a biopolymer on a member, a step of applying a voltage to the electrodes of the device to generate electric charges on the surfaces of the first dielectric and the second dielectric, Maintaining contact between the surface of the charged first dielectric and the surface of the second dielectric and the solution, wherein the surface of the first dielectric or the surface of the second dielectric is provided. In either case, the growth of the crystal of the biopolymer is promoted more than the other.
  • FIG. 1A and 1B are schematic diagrams showing a conventional crystal growth apparatus.
  • FIG. 2 is a schematic sectional view showing a specific example of the device according to the present invention.
  • FIG. 3 is a schematic diagram showing a state in which biopolymers to be crystallized gather in the first region in the apparatus shown in FIG.
  • FIG. 4 is a schematic sectional view showing another embodiment of the device according to the present invention.
  • FIG. 5 is a diagram showing the relationship between capacitance and voltage for the device shown in FIG.
  • FIG. 6 is a schematic sectional view showing a solid member of the device according to the present invention.
  • FIG. 7 is a schematic sectional view showing another solid member of the device according to the present invention.
  • FIG. 8 is a schematic sectional view showing a further solid component of the device according to the invention.
  • FIG. 9 is a schematic sectional view showing another solid member of the device according to the present invention.
  • FIG. 10 is a schematic diagram showing a state in which the biopolymer to be crystallized in the device according to the present invention gathers in the protruding first region.
  • FIG. 11 is a schematic diagram showing how a biopolymer to be crystallized is attracted to an electrode in the device according to the present invention.
  • FIG. 12A is a schematic sectional view showing another specific example of the device according to the present invention
  • FIGS. 12B and 12C are schematic sectional views of electrodes of the device.
  • FIG. 13 is a schematic view showing a state in which a crystal grows in the narrowed first region in the device according to the present invention.
  • FIG. 14 is a schematic diagram showing patterns of the first and second regions used in the device according to the present invention.
  • FIG. 15 is a schematic diagram showing another pattern of the first and second regions used in the device according to the present invention.
  • FIG. 16 shows another pattern of the first and second regions used in the device according to the invention. It is a schematic diagram which shows a turn.
  • FIG. 17 is a schematic plan view showing a further specific example of the device according to the present invention.
  • FIG. 2 shows an example of the device according to the present invention.
  • the crystal growth apparatus 10 has a pair of opposing electrodes 11a and 11b, and a solid member 12 provided on the electrode 11a.
  • the device 10 has a structure 15 for securely damping the flow of the solution 14 containing the biopolymer to be crystallized on the solid member 12, and the structure 15 is an electric device.
  • the structure 15 is typically an electrically insulating enclosure formed on the solid member 12.
  • the electrode 11 b contacts the solution 14 held on the solid member 12.
  • An electric field is generated by applying a voltage between the electrodes 11a and 11b.
  • the direction of the electric field is the direction from the solution 14 to the solid member 12 or the opposite direction.
  • the solid member 12 has a first region 12a and a second region 12b adjacent thereto.
  • the first region 12a has a surface area in contact with the solution 14 smaller than that of the second region 12b, and is arranged so as to be surrounded by the second region 12b.
  • the first region 12a is made of a first dielectric
  • the second region 12b is made of a second dielectric having a dielectric constant different from that of the first dielectric. Therefore, the capacitance per unit area in the first region 12a is different from the capacitance per unit area in the second region 12b.
  • the surface of the first region 12a agglutinates biomolecules such as proteins on the surface of the solid member 12 in contact with the solution 14 by stronger electric action, and more strongly adsorbs them. It is an area to be made.
  • the surface of the second region 12b is a region that does not adsorb much biomolecules such as proteins. This is achieved by making the capacitance per unit area of the first region larger than the capacitance per unit area of the second region, as described below. This is realized by making the relative permittivity of the second dielectric material larger than that of the second dielectric.
  • the capacitance per unit area of the first dielectric is C 1 and its relative permittivity is ⁇ 1
  • the capacitance per unit area of the second dielectric is C 2 and its relative permittivity is ⁇ 2
  • C2 ( £ 1 / / £ 2)
  • the applied charge voltage will cause a different charge density in each region.
  • C 1 is sufficiently larger than C 2 growing. Therefore, when a predetermined voltage Vg is applied between the electrode 11a and lib in the device 10 shown in FIG. 2, for example, as schematically shown in FIG. A high density of charges can be generated on the surface of the first region 12a.
  • Vg a predetermined voltage
  • the electrode 11 a is positive and the electrode 11 b is negative.
  • a high-density positive charge can be generated on the surface of the first region 12a, and the molecule 16 can be selectively adsorbed thereon. By this selective adsorption, crystal nuclei can be formed on the first region 12a, and crystal growth can be advanced. If the biopolymer to be crystallized is positively charged, a high-density negative charge may be generated in the first region 12a by applying a reverse electric field. As described above, in the device according to the present invention, by applying a voltage, the charge density generated in the first region and the charge density generated in the second region are positively differentiated, and the charged biopolymer is converted into a specific region. Can be absorbed and assembled.
  • the first region and the second region may each be formed from a plurality of materials. Also in this case, by making the electric capacity per unit area of the first region different from the electric capacity per unit area of the second region, the charge density generated in each region can be made different.
  • the capacitance C 1 of the first region is the capacitance C d 1 of the dielectric and the capacitance of the semiconductor near the dielectric (capacity of the depletion layer) C s 1 Can be obtained as a combined capacitance connected in series.
  • the capacitance C 2 of the second region can be obtained as a combined capacitance of the capacitance C d 2 of the dielectric and the capacitance C s 2 of the semiconductor.
  • FIG. 4 shows a specific example of the device according to the present invention using a semiconductor.
  • the crystal growth apparatus 40 includes a semiconductor substrate 42 such as a silicon substrate, a first dielectric layer 43 a and a second dielectric layer 43 b formed thereon, and both dielectric layers 43. It has an electrode 41 that contacts the solution 44 held on a and 43b. Adjacent first dielectric layers 43a 'and second dielectric layers 43b are provided on the same substrate 42 at substantially the same height. If necessary, the device 40 may be used to reliably block the flow of the solution 44 containing the biopolymer to be crystallized on the first dielectric layer 43a and the second dielectric layer 43b. It has a structure 45, and the structure 45 is made of an electrically insulating material.
  • Structure 45 is typically an electrically insulating enclosure.
  • the semiconductor substrate 42 also has a function as an electrode, and an electric field is generated by applying a voltage between the semiconductor 42 and the electrode 41.
  • the direction of the electric field is the direction from the solution 44 to the semiconductor substrate 42 or the opposite direction.
  • the first region 46a is formed by the first dielectric layer 43a and the portion of the semiconductor substrate 42 thereunder, and the second dielectric layer 43b and the lower half thereof are formed.
  • the second region 46 b is formed by the portion of the conductive substrate 42.
  • the first region 46a is arranged such that the area of the surface in contact with the solution 44 is smaller than that of the second region 46b, and is surrounded by the second region 46b. Since the first dielectric layer 43a and the second dielectric layer 43b have different relative dielectric constants, when a predetermined voltage is applied, as described later, a unit of the first region is used.
  • the capacitance C 1 per area is different from the capacitance C 2 per unit area of the second region, and the values of C 1 and C 2 change depending on the applied voltage.
  • the surface of the first region 46a is a region in which biopolymers such as proteins are aggregated by stronger electric action and are more strongly adsorbed.
  • the surface of the second region 46b is a region that does not adsorb much biomolecules such as proteins. this is, This is realized by making the relative permittivity of the first dielectric layer 43a larger than the relative permittivity of the second dielectric layer 43b.
  • a protein solution electrolytic solution
  • Vg voltage
  • the capacitance per unit area of the first dielectric layer is C d 1
  • its relative permittivity is ⁇ 1
  • the capacitance per unit area of the second dielectric layer is C d 2
  • the rate is ⁇ 2
  • C d 2 ( ⁇ 2 / ⁇ 1)
  • C d 1 the semiconductor substrate is an n-type silicon substrate
  • the C 1 -V characteristics of the first region and the C 2 -V characteristics of the second region are as shown in FIG. 5, for example.
  • C 1 is the combined capacitance of the capacitance C d 1 of the dielectric layer in the first region and the capacitance C s 1 of the semiconductor present in the first region
  • C 2 is the capacitance of the dielectric layer in the second region.
  • the capacitance of a semiconductor changes according to the applied voltage because the state of the depletion layer (width of the depletion layer) generated near the dielectric of the semiconductor changes according to the value of the applied voltage. Therefore, as shown in FIG. 5, the combined capacitance of the first region and the combined capacitance of the second region are not constant but change with various voltages. In this way, by combining the dielectric and the semiconductor, a region where the capacitance can be changed according to the value of the voltage can be formed.
  • the combined capacitance C1 of the first region is approximately equal to the dielectric layer capacitance Cd1 of the first region.
  • the combined capacitance C2 in the second region is approximately equal to the dielectric layer capacitance Cd2 in the second region. Therefore, in the case of Vg * VO or V3 * Vg, the capacitance difference between both regions is equal to the capacitance difference between the dielectric layers.
  • the capacitance difference between the two regions can be adjusted according to the value of Vg.
  • the charge density generated on the surface of each region can be made different, and the charge density between the first region and the second region can be adjusted by adjusting the applied voltage within an appropriate range.
  • the difference can be adjusted.
  • the capacitance can be changed by changing the voltage, and the difference in charge density between the two regions can be changed. This means that the same equipment can be used to change the crystallization conditions and select more appropriate crystallization conditions.
  • different dielectric layers 61 and 62 may be formed at the same height on a substrate 60 such as a semiconductor substrate as shown in FIG. 6, or as shown in FIG.
  • the dielectric layer 72 forming one region may be formed so as to protrude from the dielectric layer 71 forming the second region.
  • the capacitance is proportional to the relative permittivity of the dielectric and is inversely proportional to the thickness of the dielectric, the capacitance per unit area of the first region is sufficiently larger than that of the second region. In order to achieve this, not only the permittivity but also the thickness must be appropriately selected.
  • the conductivity type of the semiconductor in the first region may be different from the conductivity type of the semiconductor in the second region.
  • a region 83 made of p-type silicon is formed on a part of the n-type silicon substrate 81, and a dielectric layer 82 is formed thereon.
  • the first region 86a includes a p-type Si, a portion of the dielectric layer 82 thereon, and a portion of the n-type Si below the p-type Si
  • the second region 86b includes The remaining n-type Si portion and the portion of the dielectric layer 82 thereon are formed. The same dielectric is used for the first and second regions.
  • the first region 96a has a protruding shape.
  • the n-type silicon substrate 91 projections 93 made of p-type silicon are formed, which are covered with a dielectric layer 92.
  • the first region 96 a is composed of a p-type Si and a portion of the dielectric layer 92 thereon and an n-type Si below the p-type Si, and the second region 96 b The remaining n-type Si portion and the portion of the dielectric layer 92 thereon are formed.
  • the same dielectric is used for the first and second regions.
  • the first region has a structure protruding from the second region.
  • the CI-V characteristics in the first region are different from the C2-V characteristics in the second region. This is because the conductivity type of the semiconductor is different between the two regions. Therefore, when a voltage is applied between the solution and the back surface of the substrate, as in the case where the material of the dielectric is changed as described above, the value of the voltage per unit area of the first region can be selected by appropriately selecting the value of the voltage.
  • the capacitance and the capacitance per unit area of the second region can be made different, so that the charge density generated on the surface of the first region and the capacitance of the second region The charge density generated on the surface can be different.
  • the voltage applied to the device according to the present invention is preferably a DC voltage such that the polarity of the electrode in contact with the solution is the same as the charge polarity of the biopolymer to be crystallized contained in the solution.
  • a negative voltage is applied to the electrode that contacts the solution.
  • the type, thickness, and applied voltage of the dielectric in each region are selected such that the capacitance per unit area of the first region is larger than the capacitance per unit area of the second region. With this selection, as schematically shown in FIG. 10, the charge density generated on the surface of the first region 102 becomes larger than the charge density generated on the surface of the second region 102.
  • the protein molecules 104 can be more strongly aggregated and adsorbed on the surface of the first region.
  • the magnitude of the voltage is desirably selected, for example, in the range of V0 to V3 shown in FIG. For example, it can be selected in the range of 15V to 0V.
  • the protein molecule 104 is connected to the electrode 101 as schematically shown in FIG. It is thought that the protein molecule 104 cannot move to the first region and cannot aggregate into the first region 102.
  • the applied voltage may be an AC voltage obtained by biasing a positive or negative DC voltage.
  • the voltage can be applied at the appropriate intensity and for the required time.
  • the voltage may be applied until crystal nuclei are formed, and the voltage application may be stopped after the nuclei are formed.
  • a structure that blocks the flow of the solution is created as shown in Fig. 2 or Fig. 4, and the inside of the structure
  • the electrodes can be arranged to cover the structure. Instead, a hole may be provided in a part of the electrode, and after the electrode is placed on the structure, the biopolymer solution may be supplied from the hole until it comes into contact with the electrode.
  • the biopolymer solution may be held on the substrate by surface tension, and the electrode may be held in contact with the solution.
  • an electrically insulating enclosure wall 1 25 is provided so as to surround the surface of the first area 1 26a and the surface of the second area 1 26b, Fence
  • the electrode 125 is attached to the inner surface of the electrode 125 in contact with the solution 124.
  • a second dielectric film 123b is formed on a large part of the semiconductor substrate 122, and the first dielectric film 123a is formed only in a part thereof in a predetermined pattern. Have been.
  • the first dielectric film 123a is formed so as to protrude from the surface of the second dielectric film 123b (to have a convex part).
  • An enclosure wall 125 made of an electrically insulating material is formed on the second dielectric film 123 b, and an electrode 121 in contact with the solution 124 is provided on the enclosure wall 125. Further, an electrode 127 for connection to a power supply is arranged also on the back surface of the semiconductor substrate 122.
  • the electrode 121 can be formed by using a general semiconductor integrated circuit manufacturing technique such as a sputtering method.
  • the electrode 121 has, for example, a ⁇ r layer 121 a with a thickness of about 1 001 111 and a thickness of about 20011111 as shown in FIG. It can have a two-layer structure consisting of a t-layer 12 1 b force.
  • the electrode 127 has a layer 501 a having a thickness of about 501 111, a layer 127 b having a thickness of about 30011111, and a layer 127 b having a thickness of about 50! ! ! ! ! It can have a three-layer structure consisting of the layer ⁇ 27 c.
  • the first region preferably has a convex portion as shown in FIG. 7, FIG. 9 or FIG. If crystals are grown on the projections, the crystals can be easily separated and collected from the upper surface of the projections having a relatively small area.
  • the projection has a width such that the biopolymer crystal protrudes and grows. That is, it is desirable that the width of the projection is smaller than the diameter of the crystal to be obtained.
  • the surface 132a on which the biopolymer is to be strongly electrostatically adsorbed is provided on the protruding portion.
  • the protrusions are provided so as to protrude from the surface 132 b where the biopolymer is not easily adsorbed.
  • the surface on which the organic molecules are to be adsorbed is provided on the projection. Usually, this surface is provided on top of the protrusion.
  • 132a has a width d such that the biopolymer crystal 134 can grow out of the surface 132a. That is, the width is smaller than the size (diameter) of the crystal to be formed.
  • the width of the projection surface By setting the width of the projection surface in this way, the contact area between the grown crystal and the projection surface is limited.
  • the convex part table The surface has limited adsorption power to crystals, making it easier to take out grown crystals.
  • the width is set in an appropriate range according to the molecular species to be crystallized.
  • crystals having a diameter of about 0.2 to about 0.5 mm are generally suitable for X-ray crystal structure analysis, so a width smaller than that diameter, for example, a width of 10 to 200 in Preferably, 10 to:
  • the width of L 0 ⁇ is more preferable.
  • the arrangement pattern of the region where crystallization is to be suppressed (second region) and the region where crystallization is to be promoted (first region) is arbitrary.
  • second region an arrangement in which the first region 141 is surrounded by the second region 142 is preferably used.
  • first region 151 having a predetermined width may be arranged at predetermined intervals with respect to the second region 152, as shown in FIG.
  • the first region 161 having a predetermined shape and area may be arranged in a matrix at a predetermined distance from the second region 162.
  • the surface of the second regions 142, 152, 162 is significantly wider than the surface of the first regions 141, 151, 161.
  • These structures can be formed using general semiconductor integrated circuit manufacturing techniques such as a film forming technique, a photolithography technique, and an etching technique.
  • the dielectric used in the present invention include, for example, aluminum oxide (specific one ⁇ 1 2 0 3, yA 1 2 0 3), titanium oxide, metal acid I arsenide materials such as copper oxide, aluminum nitride, nitride titanium , Tungsten nitride, tantalum nitride, metal nitrides such as TaSiN and WSin, and semiconductor compounds (oxides and nitrides) such as silicon oxide and silicon nitride.
  • Preferred semiconductors for use in the present invention include silicon, gallium, arsenic (GaAs), gallium phosphorus (GaP), and the like.
  • the second dielectric film which covers the majority of the substrate surface can be used S i 0 2, S i 3 in the first dielectric film to form a protrusion N 4 and A 1 2 ⁇ 3 can be used.
  • the dielectric constant of the S i 0 2 is the relative dielectric constant of about 3.
  • S i 3 N 4 is a dielectric constant of about 7.
  • a 1 2 0 3 is about 9.5.
  • a solution in which the target protein is dissolved is placed at a predetermined position (dam or enclosure wall) of the apparatus.
  • an appropriate voltage is applied between the electrodes of the device for the required time. For example, a voltage is applied until crystal nuclei are formed.
  • the state of crystal growth can be observed on a closed glass container or with a microscope.
  • the precipitant may be placed in a separate container and sealed with the apparatus of the present invention, or a storage section 172 for storing the precipitant in the semiconductor substrate 17 1 as shown in FIG. 17 may be formed.
  • the precipitant 173 may be stored therein and the entire surface may be covered with a glass lid 174.
  • Such a reservoir can be easily prepared by anisotropically wet-etching the silicon substrate with a K ⁇ H etching solution or the like.
  • a biopolymer is selectively adsorbed to the surface of a specific area of a solid member by electric action, thereby reducing the influence of convection on the biopolymer. Nucleation can be stabilized. Further, according to the present invention, the crystallization conditions can be easily changed by changing the applied voltage.
  • the present invention can be used for purifying or crystallizing various biopolymers, particularly biopolymer electrolytes, in the pharmaceutical industry, the food industry, and the like.
  • the present invention is particularly preferably applied to purify or crystallize proteins such as enzymes and membrane proteins, polypeptides, peptides, polysaccharides, nucleic acids, and complexes and derivatives thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Peptides Or Proteins (AREA)

Description

明細書 結晶成長装置および結晶成長方 ¾ 技術分野
本発明は、 必要な物質の結晶を成長させるための装置に関し、 特に、 タンパク 質、 酵素等の種々の生体高分子の結晶化に適用される装置に関する。
背景技術
タンパク質等の生体高分子の結晶化は、 通常の無機塩等の低分子量化合物の場 合と同様、 高分子を含む水または非水溶液から溶媒を奪う処理を施すことにより、 過飽和状態にして、 結晶を成長させるのが基本となっている。 このための代表的 な方法として、 バッチ法、 透析法および気液相間拡散法があり、 これらは、 試料 の種類、 量、 性質等によって使い分けられている。
図 1 Aおよび図 1 Bは、 気液相間拡散法に含まれるハンギングドロップ法およ びシッティングドロップ法を概略的に示す。 図 1 Aに示すハンギングド口ップ法 では、 沈殿剤 2 2 2を収容する密閉容器 2 2 0内において、 結晶化すべき生体高 分子を含む母液 2 2 1が垂下される。 図 1 Bに示すシッティングドロップ法では、 密閉容器 2 3 0内において、 プレート 2 3 3上に結晶化すべき生体高分子を含む 母液 2 2 1が置かれる。 沈殿剤 2 2 2は、 密閉容器 2 3 0内において、 別の容器 2 3 1に収容される。 これらの方法では、 沈殿剤およぴ母液中の揮発成分の蒸発 によって、 緩やかに平衡が成立する。
X線結晶構造解析により生体高分子の 3次元構造を決定するためには、 目的と する物質を抽出 ·精製後、 結晶化することが必須となる。 生体高分子の結晶を得 るためには、 非常に多くの実験条件による探索が必要であり、 結晶成長が X線結 晶解析の分野でのボトルネックとなっている。
発明の開示
本発明の目的は、 生体高分子の結晶化を助長できる装置を提供することである。 具体的には、 本発明の目的は、 種々の生体高分子および生体高分子から主とし て構成される生体組織の結晶化において、 重力の影響による溶液内の対流の影響 を低減し、 核形成を制御できる装置を提供することである。
さらなる本発明の目的は、 微結晶の大量生成を抑制または制御し、 X線構造解 析を可能にし得る大型の結晶を得ることができる装置を提供することである。 さらなる本発明の目的は、 少量の生体高分子溶液で、 結晶化を可能にするため の装置を提供することである。
さらに本発明の目的は、 少量の溶液で結晶化を可能にするための装置を提供す ることにある。
さらに本発明の目的は、 生体高分子の結晶を調製するための方法を提供するこ とである。
本発明により、 溶液中に含まれる生体高分子の結晶を成長させるための装置が 提供される。 該装置は、 溶液に接触させて、 結晶を成長させるための表面を有す る固体部材と、 該溶液およびそれに接触する固体部材に、 該溶液から該固体部材 への方向または該固体部材から該溶液への方向の電界をかけるための手段とを備 える。 本発明による装置において、 固体部材の少なくとも溶液に接触する部分は 誘電体で形成されている。 固体部材は、 その誘電体を介して溶液に接触しかつ互 いに隣合う、 第 1領域および第 2領域を少なくとも有し、 電界をかけるための手 段を介して所定の電界をかけたとき、 第 1領域の単位面積当たりの静電容量と第 2領域の単位面積当たりの静電容量とが異なっており、 それによつて、 第 1領域 の表面または第 2領域の表面のいずれか一方で他方よりも結晶の成長が促進され る。
本発明による装置において、 固体部材は、 複数種の誘電体からなることができ、 第 1領域の誘電体と第 2領域の誘電体とは、 互いに異なる比誘電率を有すること ができる。
また、 本発明による装置において、 固体部材は、 半導体と 1種または 2種以上 の誘電体との組合せとすることができ、 誘電体は、 半導体上に積層することがで きる。 この場合、 1種の半導体上に 2種以上の誘電体を積層してもよく、 第 1領 域の誘電体と第 2領域の誘電体とは、 互いに異なる比誘電率を有するものとする ことができる。
さらに本発明による装置において、 固体部材は、 導電型の異なる半導体と 1'種 または 2種以上の誘電体との組合せとすることができ、 誘電体は半導体上に積層 することができる。 この場合、 第 1領域を形成する半導体と索 2領域を形成する 半導体は、 互いに異なる導電型とすることができる。
好ましい態様において、 本発明による装置は、 第 1領域および第 2領域上に溶 液を保持するため、 固体部材上に形成される電気絶縁性の囲い壁をさらに備える。 また、 本発明による装置は、 第 1領域および第 2領域のいずれか一方が他方よ り、 溶液に対して突出する構造を有することができる。
本発明による装置において、 典型的に、 電界をかけるための手段は、 溶液およ び固体部材にそれぞれ接触する一対の電極からなる。
本発明による装置において、 第 1の領域の表面および第 2の領域の表面のいず れか一方の面積は他方の面積より小さくすることができる。 その場合、 より小さ い面積を有する領域の表面において、 結晶の成長が促進され得る。
好ましい態様において、 本発明による装置は、 溶液中に含まれる生体高分子の 結晶を成長させるための装置であって、 溶液に接触させて、 結晶を成長させる表 面を有する固体部材と、 固体部材の表面に溶液を保持するために、 固体部材上に 設けられた囲い壁と、 囲い壁に取り付けられた電極とを備え、 固体部材の少なく とも囲い壁で取り囲まれた部分は誘電体で形成されており、 誘電体は、 第 1の誘 電体と第 2の誘電体を少なくとも有し、 第 1の誘電体と前記第 2の誘電体は互い に異なる比誘電率を有していることを特徴とする。
本発明により、 上述した装置を使用して溶液中に含まれる生体高分子の結晶を 成長させるための方法が提供される。 当該方法は、 固体部材上に生体高分子を含 む溶液を保持する工程と、 溶液およびそれに接触する固体部材に、 溶液から固体 部材への方向または固体部材から溶液への方向の電界をかけて、 第 1の領域の表 面および第 2の領域の表面に電荷を生じさせる工程と、 電荷を有する第 1領域の 表面および第 2領域の表面と、溶液との接触を維持する工程とを備え、 そこにおい て、 第 1領域の表面または第 2領域の表面のいずれか一方で他方よりも生体高分 子の結晶の成長が促進される。
また、 本発明により、 上述した装置を使用して溶液中に含まれる生体高分子の 結晶を成長させるためのもう一つの方法が提供される。 当該方法は、 装置の固体 部材上に生体高分子を含む溶液を保持する工程と、 装置の電極に電圧を印加して、 第 1の誘電体の表面および第 2の誘電体の表面に電荷を生じさ'せる工程と、 電荷 を有する第 1の誘電体の表面および第 2の誘電体の表面と溶液との接触を維持す る工程とを備え、 そこにおいて、 第 1の誘電体の表面または第 2の誘電体の表面 のいずれか一方で他方よりも生体高分子の結晶の成長が促進される。
図面の簡単な説明
図 1 Aおよび図 1 Bは、 従来の結晶成長装置を示す模式図である。
囱 2は、 本発明による装置の具体例を示す概略断面図である。 ·' 図 3は、 図 2に示す装置において結晶化すべき生体高分子が第 1領域に集まつ ていく様子を示す模式図である。
図 4は、 本発明による装置のもう一つの具体例を示す概略断面図である。
図 5は、 図 4に示す装置について、 容量と電圧の関係を示す図である。
図 6は、 本発明による装置の固体部材を示す概略断面図である。
図 7は、 本発明による装置のもう一つの固体部材を示す概略断面図である。 図 8は、 本発明による装置のさらなる固体部材を示す概略断面図である。
図 9は、 本発明による装置の他の固体部材を示す概略断面図である。
図 1 0は、 本発明による装置において結晶化すべき生体高分子が突出した第 1 の領域に集まっていく様子を示す模式図である。
図 1 1は、 本発明による装置において結晶化すべき生体高分子が電極に引き付 けられる様子を示す模式図である。
図 1 2 Aは、 本発明による装置の他の具体例を示す概略断面図であり、 図 1 2 Bおよび図 1 2 Cは該装置が有する電極の概略断面図である。
図 1 3は、 本発明による装置において幅の狭くされた第 1領域で結晶が成長す る様子を示す模式図である。
図 1 4は、 本発明による装置において用いられる第 1および第 2領域のパター ンを示す模式図ヤある。
図 1 5は、 本発明による装置において用いられる第 1および第 2領域のもう一 つのパターンを示す模式図である。
図 1 6は、 本発明による装置において用いられる第 1および第 2領域の他のパ ターンを示す模式図である。
図 1 7は、 本発明による装置のさらなる具体例を示す概略 面図である。 発明を実施するための最良の形態
図 2に本発明による装置の一例を示す。 結晶成長装置 1 0は、 対抗する一対の 電極 1 1 aおよび 1 1 b、 ならびに電極 1 1 a上に設けられる固体部材 1 2を有 する。 必要に応じて装置 1 0は、 固体部材 1 2上で結晶化すべき生体高分子を含 む溶液 1 4の流れを確実にせき止めるための構造物 1 5を有し、 構造物 1 5は、 電気絶縁材料からなる。 構造物 1 5は、 典型的には、 固体部材 1 2上に形成され る電気絶縁性の囲い壁である。 電極 1 1 bは、 固体部材 1 2上に保持された溶液 1 4に接触する。 電極 1 1 aと 1 1 bとの間に電圧を印加することで、 電界が生 じる。 電界の方向は、 溶液 1 4から固体部材 1 2への方向、 またはその逆方向で ある。
装置 1 0において固体部材 1 2は、 第 1領域 1 2 aとそれに隣接する第 2領域 1 2 bとを有する。 第 1領域 1 2 aは、 その溶液 1 4と接触する表面の面積が第 2領域 1 2 bのそれよりも狭く、 第 2領域 1 2 bに取囲まれるように配置されて いる。 第 1領域 1 2 aは第 1の誘電体からなり、 第 2領域 1 2 bは第 1の誘電体 と異なる比誘電率を有する第 2の誘電体からなる。 したがって、 第 1領域 1 2 a における単位面積当たりの静電容量と第 2領域 1 2 bにおける単位面積当たりの 静電容量は異なる。 装置 1 0において、 第 1領域 1 2 aの表面は、 溶液 1 4と接 触する固体部材 1 2の表面のうち、 蛋白質等の生体高分子をより強い電気的作用 で凝集させ、 より強く吸着させる領域となる。 第 2領域 1 2 bの表面は、 蛋白質 等の生体高分子をあまり吸着させない領域となる。 これは、 以下に説明するよう に、 第 1領域の単位面積当たりの静電容量を第 2領域の単位面積当たりの静電容 量より大きぐすることによって、 具体的には、 第 1の誘電体の比誘電率を第 2の 誘電体の比誘電率より大きくすることによって実現される。
第 1の誘電体の単位面積当たりの静電容量を C 1、 その比誘電率を ε 1とし、 第 2の誘電体の単位面積当たりの静電容量を C 2、 その比誘電率を ε 2とする。 また、 第 1の誘電体と第 2の誘電体は同じ厚みを有する。 この時、 印加電圧 V g の値の関わらず、 次の関係が成立する。 C 1= (£ 1// £ 2) C2
各領域で単位面積当たりの静電容量が異なる場合、 電圧を印'加すれば各領域に 生じる電荷密度も異なる。 図 2に示す装置 10の場合、 ε 1が ε 2よりも十分に 大きくなるよう材料を選択して第 1の誘電体および第 2の誘電体を形成すると、 C 1は C 2よりも十分に大きくなる。 したがって、 図 2に示す装置 10において 所定の電圧 V gを電極 1 1 aと l i bとの間に印加すれば、 たとえば図 3に模式 的に示すように、 第 2領域 12 bの表面より十分に高い密度の電荷を、 第 1領域 1 2 aの表面に生じさせることができる。 図 3に模式的に示すように、 溶液 14 に含まれる結晶化すべき生体高分子 16 (たとえばタンパク質) が負に荷電して いる場合、 電極 1 1 aが正、 電極 1 1 bが負となるように電圧 Vgを選定するこ とで、 第 1領域 12 aの表面に高い密度の正の電荷を発生させて、 その上に選択 的に分子 1 6を吸着させることができると考えられる。 この選択的な吸着によつ て第 1領域 1 2 a上で、 結晶核を形成させ、 結晶の成長を進めることができる。 結晶化すべき生体高分子が正に荷電しているならば、 逆方向の電界をかけ、 第 1 領域 12 aに高い密度の負の電荷を発生させればよい。 このように、 本発明によ る装置では、 電圧をかけることにより、 積極的に、 第 1領域に生じる電荷密度と 第 2領域に生じる電荷密度を異ならしめ、 帯電した生体高分子を特定の領域に吸 着、 集合させることができる。
本発明において、 第 1領域および第 2領域は、 それぞれ複数の材料から形成さ れていてもよい。 この場合も、 第 1領域の単位面積当たりの電気容量と第 2領域 の単位面積当たりの電気容量を異ならせることで、 各領域に生じる電荷密度を異 ならせることができる。
たとえば、 各領域が誘電体と半導体の組合せからなる場合、 第 1領域の諍電容 量 C 1は、 誘電体の容量 C d 1と誘電体近傍の半導体の容量(空乏層の容量) C s 1を直列接続した合成容量として求めることができる。 第 2領域の静電容量 C 2 についても同様に誘電体の容量 C d 2と半導体の容量 C s 2の合成容量としてと して求めることができる。
C 1 = 1/ ( 1/C d 1 + 1/C s 1)
C 2=1/ (1/C d 2+ 1/C s 2) 第 1および第 2領域とも同じ半導体を用いる一方、 第 1領域の誘電体と第 2領 域の誘電体とを異なる材質で形成すれば、 各領域の合成容量は異なる。 これによ り、 電圧を印加した際の第 1領域における C— V特性と第 2領域における C一 V 特性とを異ならせることができる。 そして、 当該印加電圧を適当に調整すること により、 第 1領域の単位面積当たりの静電容量 C 1と第 2領域の単位面積当たり の静電容量 C 2とを異ならせることができるし、 その異なる度合いも調整するこ とができる。
半導体を用いた本発明による装置の具体例を図 4に示す。 結晶成長装置 4 0は、 シリコン基板等の半導体基板 4 2、 その上に形成された第 1の誘電体層 4 3 aお よび第 2の誘電体層 4 3 b、 ならびに両誘電体層 4 3 aおよび 4 3 b上に保持さ れる溶液 4 4に接触する電極 4 1を有する。 隣合う第 1の誘電体層 4 3 a 'と第 2 の誘電体層 4 3 bは、 ほぼ同じ高さで、 同じ基板 4 2上に設けられている。 必要 に応じて装置 4 0は、 第 1の誘電体層 4 3 aと第 2の誘電体層 4 3 b上で結晶化 すべき生体高分子を含む溶液 4 4の流れを確実にせき止めるための構造物 4 5を 有し、 構造物 4 5は、 電気絶縁材料からなる。 構造物 4 5は、 典型的には、 電気 絶縁性の囲い壁である。 半導体基板 4 2は、 電極としての機能も有し、 半導体 4 2と電極 4 1との間に電圧を印加することで、 電界が生じる。 電界の方向は、 溶 液 4 4から半導体基板 4 2への方向、 またはその逆方向である。
装置 4 0において、 第 1の誘電体層 4 3 aおよびその下の半導体基板 4 2の部 分によって第 1領域 4 6 aが形成され、 第 2の誘電体層 4 3 bおよびその下の半 導体基板 4 2の部分によって第 2領域 4 6 bが形成される。 第 1領域 4 6 aは、 その溶液 4 4と接触する表面の面積が第 2領域 4 6 bのそれよりも狭く、 第 2領 域 4 6 bに取囲まれるように配置されている。 第 1の誘電体層 4 3 aと第 2の誘 電体層 4 3 bとは、 異なる比誘電率を有するため、 所定の電圧が印加されるとき、 後述するように、 第 1領域の単位面積当たりの静電容量 C 1と第 2領域の単位面 積当たりの静電容量 C 2とは異なり、 また C 1および C 2の値は印加電圧により 変化する。 装置 4 0において、 第 1領域 4 6 aの表面は、 蛋白質等の生体高分子 をより強い電気的作用で凝集させ、 より強く吸着させる領域となる。 第 2領域 4 6 bの表面は、 蛋白質等の生体高分子をあまり吸着させない領域となる。 これは、 第 1の誘電体層 43 aの比誘電率を第 2の誘電体層 43 bの比誘電率より大きく することによって実現される。 '
装置 40上にたとえばタンパク質溶液 (電解溶液) を保持させ、 該溶液と基板 裏面間に電圧 Vgをかける。 第 1の誘電体層の単面積当たりの静電容量を C d 1、 その比誘電率を ε 1、 第 2の誘電体層の単位面積当たりの静電容量を C d 2、 そ の比誘電率を ε 2とすると、 C d 2= ( ε 2/ε 1) C d 1となる。 また、 半導体 基板を n型シリコン基板とすると、 第 1領域の C 1-V特性、 第 2領域の C 2 - V 特性は、 たとえば図 5に示すようになる。 この場合、 C 1は、 第 1領域の誘電体 層の容量 C d 1と第 1領域に存在する半導体の容量 C s 1の合成容量であり、 C 2は、 第 2領域の誘電体層の容量 C d 2と第 2領域に存在する半導体の容量 C s 2の合成容量である。 半導体の容量は、 当該半導体の誘電体近傍に生じる空乏層 の状態 (空乏層の幅) が印加される電圧の値に応じて変化するため、 印加電圧に より変化する。 そのため、 図 5に示すように、 第 1領域の合成容量および第 2領 域の合成容量は、 種々の電圧に対して一定ではなく、 変化する。 このように、 誘 電体と半導体とを組合せれば、 電圧の値に応じて容量が変化し得る領域を形成す ることができる。
図 5において、 Vgく VIまたは V3く Vgでは、 第 1領域の合成容量 C 1は 第 1領域の誘電体層容量 C d 1に近似的に等しくなる。 同様に、 Vg<VOまた は V 2 < V gでは、 第 2領域の合成容量 C 2は第 2領域の誘電体層容量 C d 2に 近似的に等しくなる。 従って、 Vgく VOまたは V3く Vgでは、 両領域間の容 量差は、 誘電体層間の容量差に等しくなる。 一方、 VO≤Vg≤V3では、 Vg の値に応じて、 両領域間の容量差を調整することができる。 たとえば、 Vg=Va では両領域間の容量差が最大となり、 Vg=Vb では両領域間の容量差が最小と なる。 このようにして、 それぞれの領域の表面に生じる電荷密度を異ならせるこ とができ、 しかも、 印加する電圧を適当な範囲で調整することにより、 第 1領域 と第 2領域との間の電荷密度差を調整できる。 半導体と誘電体とを組合せれば、 電圧の変化によって容量を変化させ、 両領域間の電荷密度の差を変化させること ができる。 このことは、 同一の装置で、 結晶化の条件を変化させ、 より適当な結 晶化条件を選択できることにつながる。 本発明による装置では、 図 6に示すように半導体基板等の基板 6 0上に同じ高 さで異なる誘電体層 6 1および 6 2を形成してもよいし、 図 7'に示すように第 1 領域を形成する誘電体層 7 2が第 2領域を形成する誘電体層 7 1から突出するよ うに形成してもよい。 ただし、 静電容量は、 誘電体の比誘電率に比例するととも に誘電体の厚さに反比例するため、 第 1領域の単位面積当たりの静電容量が第 2 領域のそれよりも十分に大きくなるようにするためには、 誘電率だけでなく厚さ も適当に選定する必要がある。
また本発明による装置では、 図 8または図 9に示すように、 第 1領域め半導体 の導電型と第 2領域の半導体の導電型を異ならせてもよい。 装置 8 0では、 n型 シリコン基板 8 1の一部に p型シリコンからなる領域 8 3が形成され、 それらの 上に誘電体層 8 2が形成されている。 第 1の領域 8 6 aは、 p型 S iとその上の 誘電体層 8 2の部分と p型 S iの下の n型 S iの部分からなり、 第 2の領域 8 6 bは、 それ以外の n型 S iの部分とその上の誘電体層 8 2の部分からなる。 第 1 および第 2の領域とも同じ誘電体を用いている。 装置 8 0では、 基板 8 1内に両 導電型の領域が形成され、 それらが誘電体層 8 2で覆われている。 一方、 装置 9 0において、 第 1の領域 9 6 aは突出した形状を有する。 n型シリコン基板 9 1 上には、 p型 リコンからなる凸部 9 3が形成され、 それらは誘電体層 9 2で覆 われている。 第 1の領域 9 6 aは、 p型 S i とその上の誘電体層 9 2の部分と p 型 S iの下の n型 S iの部分からなり、 第 2の領域 9 6 bは、 それ以外の n型 S iの部分とその上の誘電体層 9 2の部分からなる。 第 1および第 2の領域とも同 じ誘電体を用いている。 第 1の領域は、 第 2の領域から突出した構造を有する。 これらの構造は、 イオン注入、 リソグラフィ一等、 半導体集積回路の製造プロセ スに使用される通常の技法によつて容易に形成することができる。
図 8およぴ図 9に示す装置でも、 第 1領域での C I— V特性は、 第 2領域での C 2—V特性と異なる。 これは、 両領域間で、 半導体の導電型が異なっているか らである。 したがって、 前述の誘電体の材質を変えたときと同様、 溶液と基板裏 面との間に電圧を印加した際、 その電圧の値を適当に選定することにより、 第 1 領域の単位面積当たりの静電容量と第 2領域の単位面積当たりの静電容量とを異 ならせることができ、 その結果、 第 1領域の表面に生じる電荷密度と第 2領域の 表面に生じる電荷密度を異ならせることができる。
本発明による装置に印加する電圧は、 溶液に接触する電極の極性が溶液中に含 まれる結晶化すべき生体高分子の帯電極性と同極性になるような、 直流電圧が望 ましい。 たとえば、 溶液中の結晶化すべきタンパク質分子が負に帯電する場合、 溶液に接触する電極には負の電圧を印加する。 そして、 第 1領域の単位面積当た りの静電容量が第 2領域の単位面積当たりの静電容量に比べ大きくなるように各 領域の誘電体の種類、 厚さおよび印加電圧を選定する。 このように選定すること で、 図 1 0に模式的に示すように、 第 1領域 1 0 2の表面に生じる電荷密度は第 2領域の表面に生じる電荷密度に比べ大きくなり、 電気的作用によりタンパク質 分子 1 0 4を第 1領域の表面により強く凝集させ、 吸着させることができると考 えられる。 電圧の大きさは、 半導体基板を有する装置の場合には、 たとえば、 図 5に示す V 0〜V 3の範囲で選定することが望ましい。 たとえば、 一 1 5 V〜0 Vの範囲で選定することができる。 逆に、 電極 1 0 1に印加する電圧の極性が溶 液中のタンパク質の帯電極性と異極性であると、 図 1 1に模式的に示すように、 タンパク質分子 1 0 4が電極 1 0 1側に移動し、 第 1領域 1 0 2にタンパク質分 子 1 0 4を凝集できなくなると考えられる。
また、 印加する電圧は、 正または負の直流電圧をバイアスした交流電圧とする こともできる。
電圧は、 適当な強さで必要な時間、 印加することができる。 電圧は結晶核が形 成されるまで印加し、 核形成後は電圧の印加を停止してもよい。
生体高分子溶液を基板上に保持し、 その溶液に電極を接触させるには、 図 2ま たは図 4に示すように、 溶液の流れをせき止める構造物 (ダム) を作り、 該構造 物内を溶液で満たした後、 該構造物に蓋をするように電極を配置できる。 その代 わりに、 電極の一部に孔を設けておき、 電極を該構造物上に載置した後、 当該孔 力 ら生体高分子溶液を電極に接触するまで供給してもよレ、。 一方、 生体高分子溶 液を基板上に表面張力により保持し、 その溶液に接触するように電極を保持して もよい。
作業性を考慮すると、 図 1 2 Aに示すように、 第 1領域 1 2 6 aの表面と第 2 領域 1 2 6 bの表面を取り囲むように電気絶縁性の囲い壁 1 2 5を設け、 囲い壁 1 25の内面に溶液 1 24に接触する電極 1 2 1を取り付けた構造が好ましい。 装置 1 20において、 半導体基板 1 22上の大部分には第 2の誘電体膜 1 2 3 b が形成されており、 一部分にのみ第 1の誘電体膜 1 23 aが所定のパターンで形 成されている。 第 1の誘電体膜 1 2 3 aは第 2の誘電体膜 1 2 3 bの表面から突 出するように (凸部を有するように) 形成されている。 第 2の誘電体膜 1 2 3 b 上には、 電気絶縁材料からなる囲い壁 1 25が形成され、 囲い壁 1 2 5上に溶液 1 24と接触する電極 1 2 1が設けられる。 さらに、 半導体基板 1 22の裏面に も、 電源との接続用の電極 1 2 7が配置されている。 これらの H極 1 2 1および
1 2 7は、 一般的な半導体集積回路の製造技術であるスパッタリング法などを用 いて形成することができる。 電極 1 2 1は、 たとえば、 図 1 2 Bに示すように、 厚さ約 1 001 111の〇 r層 1 2 1 aおよび厚さ約 20011111の? t層 1 2 1 b力 らなる 2層構造とすることができる。 また、 電極 1 27は、 たとえば図 1 2 Cに 示すように、 厚さ約 501 111の丁 i層 1 27 a、 厚さ約 30011111の〇11層1 2 7 b、 厚さ約 50!!!!!の 層丄 27 cからなる 3層構造とすることができる。 また、 成長した生体高分子の結晶の取り出し易さの観点から、 第 1領域は、 図 7、 図 9または図 1 2に示すように凸部を有することが好ましい。 凸部上に結晶 を成長させれば、 比較的面積の小さい凸部の上面から容易に結晶を分離し、 回収 することができる。 特に、 凸部は生体高分子の結晶がはみ出して成長するような 幅を有することが望ましい。 すなわち、 凸部の幅は得るべき結晶の径より小さい ことが望ましい。
たとえば、 図 1 3に示すように、 本発明による装置において、 生体高分子を強 く静電吸着させるべき表面 1 3 2 aは、 突出した部分に与えることが好ましい。 図 1 3に示すように、 凸部は、 生体高分子が吸着しにくい表面 1 3 2 bからせり 出すように設けられる。 凸部上には、 有機分子を吸着すべき表面が与えられる。 通常、 この表面は凸部の頂上に与えられる。 加えて、 図 1 3に示すように、 表面
1 3 2 aは、 生体高分子の結晶 1 34が表面 1 3 2 aをはみ出して成長できるよ うな幅 d を有することが好ましい。 すなわち、 幅 は、 形成すべき結晶のサ ィズ (径) より狭いものである。 凸部表面の幅をこのように設定することに よって、 成長した結晶と凸部表面との接触面積は制限される。 こうして、 凸部表 面の結晶に対する吸着力を制限し、 成長した結晶を取り出しやすくしている。 幅 は、 結晶化すべき分子種に応じて適当な範囲に設定される。 たとえば、 タン パク質の場合、 約 0. 2〜約 0. 5 mmの径を有する結晶が一般に X線結晶構造 解析に適しているため、 その径より小さい幅、 たとえば 10〜200 inの幅が 好ましく、 10〜: L 0 Ομπιの幅がより好ましい。
本発明による装置において、 結晶化を抑制すべき領域 (第 2領域) と結晶化を 促進すべき領域 (第 1領域) の配置パターンは、 任意である。 たとえば、 図 14 に示すように、 第 1領域 141が第 2領域 142に囲まれるような配置は好まし く使用される。 そのほか、 図 1 5に示すように、 第 2領域 1 52に対し、 所定の 幅を有する複数の第 1領域 151を所定の間隔をあけて配置してもよいし、 図 1 6に示すように、 第 2領域 162に対し、 所定の形状おょぴ面積を有する第 1領 域 161を、 所定の間隔をあけてマトリクス状に配置してもよい。 いずれの場合 も、 第 2領域 142、 152、 162の表面は、 第 1領域 141、 151、 16 1の表面より顕著に広い。
これらの構造は、 成膜技術、 フォトリソグラフィ一技術、 エツチング技術など 一般的な半導体集積回路の製造技術を用いて形成できる。
本発明に使用される誘電体には、 たとえば、 酸化アルミニウム (ひ一 Α 1203、 y-A 1203) 、 酸化チタン、 酸化銅などの金属酸ィヒ物、 窒化アルミニウム、 窒 化チタン、 窒化タングステン、 窒化タンタル、 T a S i N、 WS i Nなどの金属 窒化物、 酸化シリコン、 窒化シリコンなどの半導体化合物 (酸化物、 窒化物) な どがある。 本発明に使用される好ましい半導体には、 シリコン、 ガリウム, ヒ素 (G a A s) 、 ガリウム ' リン (G a P) などがある。
たとえば、 図 1 2に示す装置において、 基板表面の大部分を被う第 2の誘電体 膜に S i 02を用いることができ、 凸部を形成する第 1の誘電体膜に S i 3N4や A 123を用いることができる。 S i 02の比誘電率は約 3. 9、 S i 3N4の比 誘電率は約 7. 5、 A 1203の比誘電率は約 9.5である。
図 2、 図 4、 図 1 2で示されるような本発明による装置を用いてタンパク質の 結晶を成長させるには、 目的とするタンパク質が溶解した溶液を装置の所定の場 所 (ダムまたは囲い壁の内側) に供給、 貯留し、 溶液と電極が接触する状態を保 ち、 装置全体を沈殿剤とともにガラス製の容器などで密封し、 冷喑所に結晶が十 分な大きさに成長するまで保管する。 たとえば、 約 1 0 0時間程度保管する。 こ の際、 適当な強さの電圧を必要な時間、 装置の電極間に印加する。 たとえば、 結 晶核が形成されるまで電圧を印加する。 結晶が成長する様子は、 ガラス製の密閉 容器の上か 顕微鏡により観察できる。
沈殿剤は、 別の容器に入れて本発明の装置とともに密封してもよいし、 図 1 7 に示すように半導体基板 1 7 1に沈殿剤を貯留するための貯留部 1 7 2を形成し、 そこに沈殿剤 1 7 3を貯留して表面全体をガラス製の蓋 1 7 4で覆ってもよい。 このような貯留部はシリコン基板を K〇 Hエツチング液などで異方性ウエットェ ッチングすることで容易に作製できる。
産業上の利用可能性
本発明によれば、 固体部材の特定の領域表面に選択的に生体高分子を電気的作 用により吸着させ、 それによつて、 対流の生体高分子への影響を低減し、 生体高 分子の結晶核の形成を安定化させることができる。 また本発明によれば、 印加す る電圧を変化させることにより、 結晶化の条件を容易に変化させることができる。 本発明は、 製薬産業や食品産業等において、 種々の生体高分子、 特に生体高分 子電解質を精製または結晶化するために用いることができる。 本発明は特に、 酵 素および膜タンパク質等のタンパク質、 ポリペプチド、 ペプチド、 ポリサッカラ イド、 核酸、 ならびにこれらの複合体および誘導体等を精製または結晶化させる ため好ましく適用される。

Claims

請求の範囲
1. 溶液 (1 4, 44, 1 24) 中に含まれる生体高分子の結晶を成長させるた めの装置 (1 0, 40, 1 20) であって、
前記溶液 (1 4, 44, 1 24) に接触させて、 結晶を成長させる表面を有す る固体部材 (1 2, 43 a, 43 b, 1 2 3 a, 1 2 3 b) と、
前記溶液 (1 4, 44, 1 24) およびそれに接触する前記固体部材 (1 2, 43 a, 4 3 b, 1 2 3 a, 1 23 b) に、 前記溶液 (14, 44, 1 24) ら前記固体部材 (1 2, 43 a, 43 b, 1 2 3 a, 1 2 3 b) への方向または 前記固体部材 (1 2, 43 a, 43 b, 1 2 3 a, 1 23 b) から前記溶液 ( 1 4, 44, 1 24) への方向の電界をかけるための手段 ( 1 1 a, l i b, 4 1, 1 2 1) とを備え、
前記固体部材 (1 2, 43 a, '43 b, 1 2 3 a, 1 2 3 b) の少なくとも前 記溶液 (1 4, 44, 1 24) に接触する部分は誘電体で形成されており、 前記固体部材 (1 2, 43 a, 43 b, 1 2 3 a, 1 2 3 b) は、 前記誘電体 を介して前記溶液に接触しかつ互いに隣合う、 第 1領域 (1 2 a, 4 3 a, 1 2 6 a) および第 2領域 (1 2 b, 43 b, 1 2 6 b ) を少なくとも有し、
前記電界をかけるための手段 (1 1 a, l i b, 4 1, 1 2 1) を介して所定 の電界をかけたとき、 前記第 1領域 (1 2 a , 4 3 a, 1 26 a) の単位面積当 たりの静電容量と前記第 2領域 (1 2 b, 4 3 b, 1 26 b) の単位面積当たり の静電容量とが異なっており、 それによつて、 前記第 1領域 (1 2 a , 43 a , 1 26 a) の表面または前記第 2領域 (1 2 b, 43 b, 1 26 b) の表面のい ずれか一方で他方よりも前記結晶の成長が促進される、 結晶成長装置 (1 0, 4 0, 1 20) 。
2. 前記固体部材 (1 2, 43 a, 43 b, 1 2 3 a , 1 2 3 b) は、 複数種の 誘電体からなり、
前記第 1領域 (1 2 a, 43 a , 1 26 a ) の誘電体と前記第 2領域 ( 1 2 b, 43 b, 1 26 b) の誘電体とは、 互いに異なる比誘電率を有する、 請求項 1に 記載の結晶成長装置。
3. 前記固体部材は、 半導体 (60, 70, 8 1, 8 3, 9 1, 9 3, 1 2 2) と 1種または 2種以上の誘電体 (6 1, 6 2, 7 1, 7 2, 8 2, 9 2, 1 2 3 a , 1 23 b) との組合せであり、
前記誘電体 (6 1, 6 2, 7 1, 72, 8 2, 9 2, 1 2 3 a, 1 23 b) は、 前記半導体 (60, 70, 8 1, 8 3, 9 1, 9 3, 1 2 2) 上に積層されてい る、 請求項 1に記載の結晶成長装置。
4. 1種の半導体 (60, 70, 1 22) 上に 2種以上の誘電体 (6 1, 6 2, 7 1, 7 2, 1 23 a, 1 23 b ) が積層されており、
前記第 1領域の誘電体 (6 1, 72, 1 2 3 a) と前記第 2領域の誘電体 (6 2, 7 1, 1 2 3 b) とは、 互いに異なる比誘電率を有する、 請求項 3に記載の
5. 前記固体部材は、 導電型の異なる半導体 (8 1, 8 3, 9 1, 9 3) と 1種 または 2種以上の誘電体 (8 2, 9 2) との組合せであり、
前記誘電体 (8 2, 9 2) は前記半導体 (8 1, 8 3, 9 1, 9 3) 上に積層 されており、
前記第 1領域 (8 6 a, 96 a) を形成する半導体 (8 3, 9 3) と前記第 2 領域 (8 6 b, 96 b) を形成する半導体 (8 1, 9 1) は、 互いに異なる導電 型である、 請求項 1に記載の結晶成長装置。
6. 前記第 1領域 ( 1 2 a, 43 a , 1 2 6 a) および前記第 2領域 (1 2 b, 4 3 b, 1 26 b) 上に前記溶液 (14, 44, 1 24) を保持するため、 前記 固体部材 (1 2, 43 a, 43 b, 1 23 a, 1 23 b) 上に形成される電気絶 縁性の囲い壁 (1 5, 45, 1 25) をさらに備える、 請求項 1〜5のいずれか 1項に記載の結晶成長装置。
7. 前記第 1領域 (72, 96 a , 1 26 a ) および前記第 2領域 ( 7 1 , 9 6 b, 1 26 b) のいずれか一方が他方より、 前記溶液 (1 24) に対して突出す る構造を有する、 請求項 1〜 6のいずれか 1項に記載の結晶成長装置。
8. 前記電界をかけるための手段 (1 1 a, 1 1 b) 力 前記溶液 (14) およ び前記固体部材 (1 2) にそれぞれ接触する一対の電極 (1 1 a, l i b) から なる、 請求項 1〜 7のいずれか 1項に記載の結晶成長装置。
9. 前記第 1の領域 (1 2 a, 4 3 a , 6 1, 7 2, 86 a, 96 a , 1 26 a, 1 4 1, 1 5 1, 1 6 1) の表面および前記第 2の領域 (1 2 b, 4 3 b, 6 2, 7 1, 8 6 b, 96 b, 1 26 b, 1 4 2, 1 5 2, 1 6 2) の表面のいずれか 一方の面積が他方の面積より小さく、
より小さい面積を有する領域の表面において、 前記結晶の成長が促進される、 請求項 1〜 8のいずれか 1項に記載の結晶成長装置。
1 0. 溶液 (1 4, 44, 1 24) 中に含まれる生体高分子の結晶を成長させる ための装置 (1 0, 40, 1 20) であって、
前記溶液 (14, 44, 1 24) に接触させて、 結晶を成長させる表面を有す る固体部材 (1 2, 43 a, 4 3 b, 1 23 a, 1 2 3 b) と、
前記固体部材 (1 2, 4 3 a, 43 b, 1 2 3 a , 1 23 b) の表面に前記溶 液 (1 4, 44, 1 24) を保持するために、 前記固体部材 (1 2, 43 a, 4 3 b, 1 23 a , 1 23 b) 上に設けられた囲い壁 (1 5, 45, 1 25) と、 前記囲い壁 (1 5, 45, 1 2 5) に取り付けられた電極 (1 1 a, l i b, 4 1, 1 2 1) とを備え、
前記固体部材 (1 2, 4 3 a , 4 3 b, 1 23 a, 1 23 b) の少なくとも前 記囲い壁 (1 5, 45, 1 25) で取り囲まれた部分は誘電体で形成されており、 前記誘電体は、 第 1の誘電体 (1 2 a, 4 3 a , 1 2 3 a ) と第 2の誘電体 (1 2 b, 4 3 b, 1 23 b) を少なくとも有し、
前記第 1の誘電体 (1 2 a, 4 3 a , 1 23 a) と前記第 2の誘電体 ( 1 2 b,
4 3 b, 1 2 3 b) は互いに異なる比誘電率を有していることを特徴とする、 結 晶成長装置 (1 0, 40, 1 20) 。
1 1. 請求項 1〜9のいずれか 1項に記載の装置 (1 0, 40, 1 20) を使用 して、 溶液 (14, 44, 1 24) 中に含まれる生体高分子の結晶を成長させる ための方法であって、
前記固体部材 (1 2, 4 3 a , 4 3 b, 1 2 3 a , 1 23 b) 上に生体高分子 を含む溶液 (14, 44, 1 24) を保持する工程と、
前記溶液 (14, 44, 1 24) およびそれに接触する前記固体部材 (1 2, 4 3 a , 43 b, 1 23 a, 1 2 3 b) に、 前記溶液 (14, 44, 1 24) 力 ら前記固体部材 (1 2, 43 a, 43 b, 1 2 3 a, 1 23 b) への方向または 前記固体部材 (1 2, 43 a, 4 3 b, 1 23 a, 1 23 b) から前記溶液 ( 1 4, 44, 1 24) への方向の電界をかけて、 前記第 1の領域 (1 2 a, 43 a, 1 26 a) の表面および前記第 2の領域 (1 2 b, 43 b, 1 26 b) の表面に 電荷を生じさせる工程と、
前記電荷を有する前記第 1領域 (1 2 a , 43 a, 1 26 a) の表面および前 記第 2領域 (1 2 b, 43 b, 1 26 b) の表面と前記溶液 (1 4, 44, 1 2 4) との接触を維持する工程とを備え、
前記第 1領域 (1 2 a, 43 a , 1 26 a) の表面または前記第 2領域 ( 1 2 b, 43 b, 1 26 b) の表面のいずれか一方で他方よりも前記生体高分子の結 晶の成長が促進される、 結晶成長方法。
1 2. 請求項 1 0に記載の装置 (1 0, 40, 1 20) を使用して、 溶液 (14, 44, 1 24) 中に含まれる生体高分子の結晶を成長させるための方法であって、 前記固体部材 (1 2, 43 a , 43 b, 1 23 a, 1 23 b) 上に生体高分子 を含む溶液 (14, 44, 1 24) を保持する工程と、
前記電極 (1 1 a, l i b, 4 1, 1 2 1 ) に電圧を印加して、 前記第 1の誘 電体 (1 2 a, 43 a , 1 23 a) の表面および前記第 2の誘電体 (1 2 b, 4 3 b, 1 23 b) の表面に電荷を生じさせる工程と、
前記電荷を有する前記第 1の誘電体 (1 2 a, 43 a, 1 2 3 a) の表面およ び前記第 2の誘電体 (1 2 b, 4 3 b, 1 23 b) の表面と前記溶液 (1 4, 4 4, 1 24) との接触を維持する工程とを備え、
前記第 1の誘電体 (1 2 a, 4 3 a, 1 2 3 a) の表面または前記第 2の誘電 体 (1 2 b, 43 b, 1 23 b) の表面のいずれか一方で他方よりも前記生体高 分子の結晶の成長が促進される、 結晶成長方法。
PCT/JP2001/003782 2000-05-12 2001-05-01 Appareil de cristallogenese et procede de cristallogenese WO2001086037A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000140192A JP2001322900A (ja) 2000-05-12 2000-05-12 結晶成長装置
JP2000-140192 2000-05-12

Publications (1)

Publication Number Publication Date
WO2001086037A1 true WO2001086037A1 (fr) 2001-11-15

Family

ID=18647524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003782 WO2001086037A1 (fr) 2000-05-12 2001-05-01 Appareil de cristallogenese et procede de cristallogenese

Country Status (2)

Country Link
JP (1) JP2001322900A (ja)
WO (1) WO2001086037A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837400A1 (fr) * 2002-03-25 2003-09-26 Centre Nat Rech Scient Dispositif de cristallisation d'une macromolecule chargee en solution
WO2004081264A1 (en) * 2003-03-14 2004-09-23 Reijonen, Mika, Tapio Method and apparatus for the crystallization of one or more compounds
WO2010100847A1 (ja) * 2009-03-03 2010-09-10 独立行政法人国立高等専門学校機構 生体高分子の結晶化装置、生体高分子の結晶化溶液セル、生体高分子の配向制御方法、生体高分子の結晶化方法、及び生体高分子の結晶

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20050812A0 (fi) * 2005-08-10 2005-08-10 Mika Tapio Reijonen Menetelmä ja laite sähkökentän käyttämisestä aineen tai aineiden kiteytymisen hallitsemiseksi
CN108164059A (zh) * 2018-01-30 2018-06-15 浙江工业大学膜分离与水处理协同创新中心湖州研究院 一种膜法处理煮茧废水及回收丝胶蛋白的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063199A (ja) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd 結晶成長方法および結晶成長用装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063199A (ja) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd 結晶成長方法および結晶成長用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANJOH A. ET AL.: "Spatiotemporal protein crystal growth studies using microfluidic silicon devices", JOURNAL OF CRYSTAL GROWTH, vol. 196, January 1999 (1999-01-01), pages 691 - 702, XP002943490 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837400A1 (fr) * 2002-03-25 2003-09-26 Centre Nat Rech Scient Dispositif de cristallisation d'une macromolecule chargee en solution
WO2003080210A1 (fr) * 2002-03-25 2003-10-02 Centre National De La Recherche Scientifique (Cnrs) Dispositif de cristallisation d'une macromolecule chargee en solution
WO2004081264A1 (en) * 2003-03-14 2004-09-23 Reijonen, Mika, Tapio Method and apparatus for the crystallization of one or more compounds
WO2010100847A1 (ja) * 2009-03-03 2010-09-10 独立行政法人国立高等専門学校機構 生体高分子の結晶化装置、生体高分子の結晶化溶液セル、生体高分子の配向制御方法、生体高分子の結晶化方法、及び生体高分子の結晶
JP5626914B2 (ja) * 2009-03-03 2014-11-19 独立行政法人国立高等専門学校機構 生体高分子の結晶化装置、生体高分子の結晶化溶液セル、生体高分子の配向制御方法、生体高分子の結晶化方法、及び生体高分子の結晶
US8945303B2 (en) 2009-03-03 2015-02-03 Institute Of National Colleges Of Technology, Japan Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal

Also Published As

Publication number Publication date
JP2001322900A (ja) 2001-11-20

Similar Documents

Publication Publication Date Title
EP0821987B1 (en) Method of controlling crystallisation of organic compounds and use of solid-state component in said method
CN102598232B (zh) 有机半导体膜的制造方法及有机半导体膜阵列
US6258331B1 (en) Apparatus for growing crystals
TW307893B (ja)
WO1997049845A1 (fr) Procede de cristallogenese, element solide et dispositif de cristallogenese utilises dans ledit procede
KR20000011051A (ko) 고체 물질의 박막을 얻는 방법 및 이 방법의 적용
WO2001086037A1 (fr) Appareil de cristallogenese et procede de cristallogenese
US9222170B2 (en) Deposition of rutile films with very high dielectric constant
JP2001213699A (ja) 結晶調製用装置、結晶調製方法および該装置用キット
TWI248662B (en) Method for fabricating an integrated semiconductor circuit having a strongly polarizable dielectric of ferroelectric
JP3360616B2 (ja) 結晶成長方法および結晶成長用装置
JP3146983B2 (ja) 結晶成長方法および結晶成長用装置
JP3146984B2 (ja) 結晶成長方法、結晶成長用固体素子および結晶成長用装置
JP3147013B2 (ja) 結晶成長用装置
JP3146990B2 (ja) 結晶成長用固体素子、結晶成長用装置および結晶成長方法
JPS63160374A (ja) 有機半導体デバイス
EP1223235A1 (en) Apparatus and method for separating organic molecules and method for forming crystal of organic molecules
KR100305749B1 (ko) 금속강유전성반도체전개효과트란지스터의제조방법
JP3297702B2 (ja) 結晶成長用装置
Hahn et al. Di–σ and Dative Binding of Benzene and Pyridine on a Si (5, 5, 12)-2× 1
JPS6310570A (ja) 有機半導体デバイス
KR100861356B1 (ko) 반도체 장치의 캐패시터 제조 방법
JP3485355B2 (ja) 半導体装置の製造方法
JPH11238863A (ja) 半導体デバイスのキャパシタの製造方法
Lupascu et al. Models and Mechanisms

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载