+

WO2001077260A1 - Combustible destine a un systeme de piles a combustible - Google Patents

Combustible destine a un systeme de piles a combustible Download PDF

Info

Publication number
WO2001077260A1
WO2001077260A1 PCT/JP2001/003089 JP0103089W WO0177260A1 WO 2001077260 A1 WO2001077260 A1 WO 2001077260A1 JP 0103089 W JP0103089 W JP 0103089W WO 0177260 A1 WO0177260 A1 WO 0177260A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
volume
fuel cell
cell system
less
Prior art date
Application number
PCT/JP2001/003089
Other languages
English (en)
French (fr)
Inventor
Kenichirou Saitou
Iwao Anzai
Osamu Sadakane
Michiro Matsubara
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU46885/01A priority Critical patent/AU4688501A/en
Priority to JP2001575114A priority patent/JP4598890B2/ja
Publication of WO2001077260A1 publication Critical patent/WO2001077260A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel used for a fuel cell system.
  • hydrogen is advantageous in that it does not require a special reformer, but because it is a gas at room temperature, it has problems with storage and mounting on vehicles, etc. Special equipment power is required. Also, there is a high risk of bow I fire, so care must be taken when handling.
  • methanol is advantageous in that it is relatively easy to reform hydrogen, but the power generation capacity per weight ⁇ ! Because it is toxic, it requires careful handling. In addition, since it is corrosive, special equipment is required for storage and supply. As described above, no fuel has yet been developed to achieve the full potential of the fuel cell system. In particular, as the fuel for a fuel cell system, it is often the power generation amount per weight, it generation amount of C 0 2 emissions per often, good fuel economy power s of the entire fuel cell system, evaporative emission (evaporative E Mission ) Low power, reforming catalyst, water gas shift reaction catalyst, carbon monoxide removal catalyst, fuel cell stack, etc.
  • evaporative emission evaporative E Mission
  • the system startup time power s It must be short, have good storage stability, and have good handling properties such as the bow I fire point.
  • the amount of power generated by subtracting the required amount of heat is the power generation of the entire fuel cell system. Therefore, the temperature force required for reforming the fuel 5 'low force 5' preheating energy J is more advantageous, and the system start-up time force S is shorter and more advantageous. It is also necessary that the calorific value per weight be small.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a fuel containing a specific amount of a carbon hydride compound having a specific carbon number is suitable for a fuel cell system.
  • the fuel for a fuel cell system according to the present invention is:
  • the content of hydrocarbon compounds having 4 carbon atoms is 15% by volume or less, the content of hydrocarbon compounds having 5 carbon atoms is 5% by volume or more, and the content of hydrocarbon compounds having 6 carbon atoms is contained. Is 10% by volume or more, the total content of hydrocarbon compounds having 7 and 8 carbon atoms is 20% by volume or more, and the total content of hydrocarbon compounds having 10 or more carbon atoms is 2% by volume. It is not more than 0% by volume.
  • the fuel containing the specific amount of the carbon hydride compound having the specific carbon number satisfy the following additional requirements.
  • a fuel for a fuel cell system having a saturated content of 30% by volume or more having a saturated content of 30% by volume or more.
  • a fuel for a fuel cell system having an aromatic content of 50% by volume or less is a fuel for a fuel cell system having an aromatic content of 50% by volume or less.
  • FIG. 1 is a flowchart of a steam reforming type fuel cell system used for evaluating the fuel for a fuel cell system of the present invention.
  • FIG. 2 is a front chart of a partial oxidation fuel cell system used for evaluating fuel for a fuel cell system of the present invention.
  • the amount of the hydrocarbon compound having a specific carbon number is as follows.
  • the content of hydrocarbon compounds with 4 carbon atoms indicates the content of hydrocarbon compounds with 4 carbon atoms based on the total amount of fuel, and keeps the amount of evaporative gas (evaporation) low. From the point of 3 'good, such as flash point, it is necessary to be 15% by volume or less, force is required, 10% by volume or less force is preferable, 5% by volume or less Force most preferred.
  • the content of the hydrocarbon compounds having 5 carbon atoms indicates the content of hydrocarbon compounds having a carbon number of 5 relative to the fuel total amount, it is often the power generation amount per weight, CO 2 occurs It must be at least 5% by volume because of the large amount of power generated per unit and the good fuel efficiency of the fuel cell system as a whole, and at least 10% by volume. Force s, preferably 15% by volume or more, more preferably 20% by volume or more, even more preferably 25% by volume or more, and more preferably 30% by volume or more. s most preferred.
  • the content of hydrocarbon compounds with 6 carbon atoms indicates the content of hydrocarbon compounds with 6 carbon atoms based on the total amount of fuel. 10% by volume or more is required because of the overall fuel efficiency, s, good, etc. Power S is required, 15% by volume or more is preferable, 20% by volume or more is more preferable, and 25% by volume is more preferable More preferably, it is more preferably at least 30% by volume.
  • the total content (V. (C 7 ten C 8)), the hydrocarbon compound fuels total amount number 7 and the carbon relative to the 8 hydrocarbon compounds having 7 and 8 carbon atoms the total amount, it is often the power generation amount per weight, C0 2 that the power generation amount of emissions per often, the fuel cell system as a whole fuel power s of, etc. good, is 20 capacity% or more Force 5 'is required, preferably at least 25% by volume, more preferably at least 30% by volume, even more preferably at least 35% by volume, and at least 40% by volume preferable.
  • the content of the hydrocarbon compound having 10 or more carbon atoms means that the amount of power generation per CO 2 generation amount is large, the fuel efficiency of the fuel cell system as a whole is good, and the deterioration of the Bji catalyst is low.
  • Small initial capacity s Because of the ability to last for a long time, etc., the total amount of hydrocarbon compounds having 10 or more carbon atoms (V (do +)) should be 20% by volume or less based on the total amount of fuel. %, More preferably 5% by volume or less.
  • V (C 4 ), V (C 5 ), V (C 6 ), V (Cv + Ce), and V (C io +) described above are values determined by the gas chromatography method shown below. is there .
  • a column of methyl silicon capillary ram is used for the column, helium or nitrogen is used for the carrier gas, and a hydrogen ionization detector (FID) is used for the detector.
  • the power ram length is 25 to 50 m
  • the carrier gas flow is 0.5 to 1.5 ml Zmin, split ratio 1: 50-1: 250, inlet temperature 150-250 ° C, initial column temperature—10-10 ° C, final column temperature 150-250.
  • C detector temperature 150-250 ° C It is a value measured under the conditions.
  • the sulfur content of the fuel of the present invention the deterioration of the fuel cell system such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, a fuel cell stack, etc. is small and the initial capacity S is small.
  • the amount is 50 mass ppm or less, more preferably 30 mass ppm or less, even more preferably 10 mass ppm or less, based on the total fuel amount. it is even more preferably more that ppm or less, 0.1 ppm by mass or less der Rukoto force 5 'most preferred.
  • the sulfur content is 1 mass ppm or more
  • the sulfur content measured according to JISK 2541 “Sulfur content test method for crude oil and petroleum products” is used. If the sulfur content is less than 1 mass PPm, ASTM D4045-96 “Standard Test It means the sulfur content measured by the "Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetr”.
  • the content of each of the saturated component, the olefin component and the aromatic component is not limited, but the saturated component (V (S)) is 30% by volume or more, and the olefin component (V (0)) is 35% by volume. % Or less, and the aromatic content (V (Ar)) is preferably 50% by volume or less.
  • the saturated component (V (S)) is 30% by volume or more
  • the olefin component (V (0)) is 35% by volume. % Or less
  • the aromatic content (V (Ar)) is preferably 50% by volume or less.
  • V (S) is often power generation amount per weight, C0 that power generation amount per 2 generation amount is large, good fuel economy force of the entire fuel cell system, it is not less THC force S in the exhaust gas, the system Because of the short start-up force S, it should be at least 30% by volume, preferably at least 40% by volume, more preferably at least 50% by volume, even more preferably at least 60% by volume. Even more preferably, it is even more preferably 70% by volume or more, even more preferably 80% by volume or more, even more preferably 90% by volume or more. It is most preferable that the capacity is not less than% by volume.
  • the force S is preferably 35% by volume or less, more preferably 25% by volume or less, and still more preferably 20% by volume or less. Even more preferably, it is 5% by volume or less, and most preferably, it is 10% by volume or less. .
  • the power s' is preferably 50% by volume or less, and more preferably 45% by volume or less. More preferably, it is even more preferably 40% by volume or less, still more preferably 35% by volume or less, even more preferably 30% by volume or less, and more preferably 20% by volume or less. still more preferably Ri by further that, 1 0 more preferably from more or less volume percent, that force s most preferably less than 5 volume%.
  • the preferred range of the sulfur content and the preferred range of the aromatic content be satisfied while two, since the deterioration of the three-way catalyst is small and the initial performance can be maintained for a long time.
  • V (S), V (0) and V (A r) are all values measured by the fluorescent indicator adsorption method of JIS K 2'53 36 "Petroleum products-hydrocarbon type test method".
  • the paraffin content is at least 60% by volume, more preferably at least 65% by volume, even more preferably at least 70% by volume, and at least 75% by volume. Is still more preferably 80% by volume or more, still more preferably 85% by volume or more, even more preferably 85% by volume or more, and even more preferably 90% by volume or more. Most preferably, it is 95% by volume or more.
  • the above-mentioned saturated content and paraffin content are values determined by the above-described gas chromatography method.
  • the percentage of branched paraffin in the paraffin should be 30% by volume or more.
  • the force S is preferably 50% by volume or more, more preferably 50% by volume or more, and most preferably 70% by volume or more.
  • the above-mentioned paraffin content and the amount of branched paraffin are values determined by the above-mentioned gas chromatography method.
  • the fuel production base material of the present invention are light naphtha, desulfurized full-range naphtha obtained by desulfurizing a naphtha fraction obtained by distilling crude oil, desulfurized light naphtha, isomerized gasoline, and alkylate.
  • Desulfurized hydrocarbons such as desulfurized alkylate and desulfurized isobutane and desulfurized lower-olefin Low-sulfurized alkylate, desulfurized light cracked gasoline obtained by desulfurizing a light fraction of cracked gasoline, light fraction of GTL, desulfurized LPG obtained by desulfurizing LPG, etc.
  • additives such as a lubricity improver can also be added.
  • the colorant is preferably 10 ppm or less, more preferably 5 ppm or less, since the deterioration of the reforming catalyst is small and the initial ability s can be maintained for a long time.
  • the antioxidant is preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 1 ppm or less, and most preferably 1 ppm or less.
  • the metal deactivator is preferably 50 ppm or less, more preferably 30 ppm or less, still more preferably 1 Oppm or less, and most preferably 5 ppm or less.
  • the corrosion inhibitor is preferably 5 Oppm or less, more preferably 3 Oppm or less, further preferably 1 Oppm or less, more preferably 5 ppm or less.
  • the content of the detergent is preferably 300 ppm or less, more preferably 200 pm or less, and preferably 100 ppm or less.
  • the lubricity improver preferably has a force of 300 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less.
  • the fuel of the present invention is used as a fuel for a fuel cell system.
  • the fuel cell system according to the present invention includes a fuel reformer, a carbon monoxide purifying device, a fuel cell, and the like, and the fuel of the present invention is suitably used for any fuel cell system.
  • the fuel reformer is for reforming the fuel to obtain hydrogen, which is the fuel of the fuel cell.
  • a reformer specifically, for example,
  • a steam reforming reformer that mixes fuel with heated gas and steam and heats it in a catalyst such as copper, nickel, platinum, or ruthenium to obtain a product containing hydrogen as a main component.
  • the heated and vaporized fuel is mixed with steam and air, and the partial oxidation reforming of (2) is performed in the former stage of the catalyst layer of copper, nickel, platinum, ruthenium, etc., and in the latter stage, the partial oxidation reaction
  • the steam reforming of (1) is performed by utilizing the heat generation of the steam to form a partial oxygen-steam reforming reformer that obtains a product containing hydrogen as a main component.
  • the carbon monoxide purifier removes carbon monoxide contained in the gas generated by the above reformer and becomes a catalyst poison of the fuel cell.
  • a selective oxidation reactor that converts carbon monoxide into carbon dioxide by mixing the reformed gas with compressed air and reacting it in a catalyst such as platinum or ruthenium is mentioned. used.
  • fuel cells include polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells (SOFC). ) And the like.
  • PEFC polymer electrolyte fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • the fuel cell system as described above is used for electric vehicles, conventional hybrid vehicles with an engine and electricity, portable power supplies, distributed power supplies, home power supplies, cogeneration systems, and the like.
  • the properties of the base material used for each fuel in the examples and comparative examples are shown in Tables 1 and 2.
  • the heat capacity and latent heat of vaporization are the contents of each component determined by the gas chromatography method described above. And the unit for each component described in “Vo 1.1, Cha. 1 Gene ra 1 Data, Table 1 C 1” of “Techni cal Data Book—Petro 1 eum Refining”. It was calculated based on the numerical value per weight.
  • Table 3 shows the properties of each fuel used in Examples and Comparative Examples.
  • the fuel and water were vaporized by electric heating and charged to a reformer, which was filled with a noble metal catalyst and maintained at a specified temperature with an electric heater, to generate reformed gas rich in hydrogen.
  • the temperature of the reformer was set to the lowest temperature at which reforming was performed completely at the initial stage of the test (the lowest temperature at which the reformed gas did not contain THC power).
  • the reformed gas is guided to a carbon monoxide treatment device (water gas shift reaction) together with water vapor, and the carbon monoxide in the reformed gas is converted to carbon dioxide.
  • the generated gas is then guided to a polymer electrolyte fuel cell to generate electricity. Done.
  • Fig. 1 shows a flowchart of the steam reforming type fuel cell system used for the evaluation.
  • the fuel was vaporized by electric heating, filled with a precious metal catalyst together with preheated air, and led to a reformer maintained at 110 ° C by an electric heater to generate a hydrogen-rich reformed gas.
  • the reformed gas is led to a carbon monoxide treatment device (water gas shift reaction) together with water vapor to convert carbon monoxide in the reformed gas into carbon dioxide, and the generated gas is guided to a polymer electrolyte fuel cell to generate electricity.
  • a carbon monoxide treatment device water gas shift reaction
  • Figure 2 shows a flowchart of the partial oxidation fuel cell system used for the evaluation.
  • Evaluation H 2 CO in the reformed gas generated from the reformer immediately after the start of the test, were measured for C 0 2, THC amount. Also, H 2, CO, fuel C 0 2, immediately after the evaluation test started was measured for THC content and start 1 0 0 hour after the reformed gas generated carbon monoxide processor power et immediately after the start of the evaluation test was measured the amount of power generated by the battery, the amount of fuel consumed, and the amount of CO 2 emitted from the fuel cell. The amount of heat (preheat amount) required to guide each fuel to a predetermined reformer temperature was calculated from the heat capacity and latent heat of vaporization.
  • Bj performance degradation rate of the quality catalyst (power generation 100 hours after test start / power generation immediately after test start)
  • thermal efficiency power generation immediately after test start
  • preheat amount ratio preheat amount Z power generation amount
  • a sample filling hose was attached to the filler port of a 20-litre gasoline carrying can, and the attachment part was completely sealed. Each liter was filled with 5 liters of fuel while the vent valve of the can was open. After filling, the air vent valve was closed and left for 30 minutes. After standing, an activated carbon adsorption device was attached to the tip of the air release valve, and the valve was opened. Immediately, 10 liters of each fuel was supplied from the filler port. Five minutes after refueling, leaving the air release valve open, the activated carbon was allowed to absorb steam, and then the weight of the activated carbon was measured. The test was performed at a constant temperature of 25 ° C.
  • Each fuel was filled in a pressure-resistant sealed container together with oxygen, heated to 100 ° C., allowed to stand for 24 hours while maintaining the temperature, and evaluated by the real gum test method specified in JIS K2261.
  • Table 4 shows the measured values and calculated values.
  • Optimum plasticizer temperature 1 ⁇ ° c
  • the fuel for a fuel cell system of the present invention is a fuel that can obtain high-output electric energy with a small performance deterioration ratio and that satisfies various performances for a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

燃料電池システム用燃料
技術分野
本発明は、 燃料電池システムに用いられる燃料に関する。 書
背景技術
近年、 将来の地球環境に対する危機感の高まりから、 地球にやさしいエネルギ 一供給システムの開発力求められている。 特に、 地球温暖化防止のための c o 2 の低減、 T H C (排出ガス中の未反応の炭化水素) 、 N O x、 P M (排出ガス中 の粒子状物質:すす、 燃料 ·潤滑油の高沸点 ·高分子の未燃成分) 等有害物質の 低減を、 高度に達成すること力 s要求されている。 そのシステムの具体例としては 、 従来のオット一'ディーゼルシステムに代わる自動車動力システム、 あるいは 火力に代わる発電システムが挙げられる。
そこで、 理想に近いエネルギー効率を持ち、 基本的には H 2 0と C 02 しカ^ 出しない燃料電池が、 社会の要望に応えるにもつとも有望なシステムと期待され ている。 そして、 このようなシステムの達成のためには、 機器の技術開発だけで はなく、 それに最適な燃料の開発が必要不可欠である。
従来、 燃料電池システム用の燃料としては、 水素、 メタノール、 炭化水素系燃 料が考えられている。
燃料電池システム用の燃料として、 水素は、 特別の改質装置を必要としない点 で有利であるが、 常温で気体のため、 貯蔵性並びに車両等への搭載性に問題があ り、 供給に特別な設備力必要である。 また弓 I火の危険性も高く取り扱いに注意が 必要である。
一方、 メタノールは、 水素への改質カ 匕較的容易である点で有利であるが、 重 量あたりの発電量力^!、さく、 有毒のため取り扱いにも注意力必要である。 また、 腐食性があるため、 貯蔵 ·供給に特殊な設備が必要である。 このように、 燃料電池システムの能力を充分に発揮させるための燃料は未だ開 発されていない。 特に、 燃料電池システム用燃料としては、 重量当りの発電量が 多いこと、 C 02発生量当りの発電量が多いこと、 燃料電池システム全体として の燃費力 s良いこと、 蒸発ガス (エバポェミッション) 力 S少ないこと、 改質触媒、 水性ガスシフト反応触媒、一酸ィヒ炭素除去触媒、 燃料電池スタック等、 燃料電池 システムの劣化が小さく初期性能力長時間持続できる と、 システムの起動時間 力 s短いこと、 貯蔵安定性や弓 I火点など取り扱い性が良好なことなどが求められる なお、 燃料電池システムでは、 燃料および改質器を所定の温度に保つこと力 S必 要なため、 発電量からそれに必要な熱量 (予熱及び反応に伴う吸発熱をバランス させる熱量) を差し引いた発電量が、 燃料電池システム全体の発電量となる。 し たがって、 燃料を改質させるために必要な温度力5'低い方力 5'予熱量力 J、さく有利に なり、 更にシステムの起動時間力 S短く有利になり、 また燃料の予熱に必要な重量 当りの熱量カ小さいことも必要である。 予熱が十分でない場合、 排出ガス中に未 反応の炭化水素 (T H C ) が多くなり、 重量当りの発電量を低下させるだけでな く、 大気汚染の原因となる可能性がある。 逆に言えば、 同一システムを同一温度 で稼働させた場合に、 丁11 (カ5'少なく、 水素への変換率力高い方力 s有利である。 本発明は、 このような状 を鑑み、 上記したような要求性状をパランス良く満 たした燃料電池システムに適した燃料を提供することを目的とする。 発明の開示 '
本発明者らは、 上記課題を解決するため鋭意研究を重ねた結果、 特定の炭素数 の炭ィヒ水素化合物を特定量含有する燃料が、 燃料電池システムに適していること を見出した。
すなわち、 本発明に係る燃料電池システム用燃料は、
( 1 ) 炭素数 4の炭化水素化合物の含有量が 1 5容量%以下であり、 炭素数 5の 炭化水素化合物の含有量が 5容量%以上であり、 炭素数 6の炭化水素化合物の含 有量が 1 0容量%以上であり、 炭素数 7と炭素数 8の炭化水素化合物の合計含有 量が 2 0容量%以上であり、 炭素数 1 0以上の炭化水素化合物の合計含有量が 2 0容量%以下であるものである。
上記特定の炭素数の炭ィヒ水素化合物を特定量含有する燃料に、 更に、 以下のよ うな付加的要件を満たすものがより好ましい。
( 2 ) 硫黄分含有量が 5 0質量 p p m以下である燃料電池システム用燃料。
( 3 ) 飽和分が 3 0容量%以上である燃料電池システム用燃料。
( 4 ) ォレフィン分が 3 5容量%以下である燃料電池システム用燃料。
( 5 ) 芳香族分が 5 0容量%以下である燃料電池システム用燃料。
( 6 ) 飽和分中のパラフィン分の割合が 6 0容量%以上である燃料電池システム 用燃料。
( 7 ) パラフィン分中の分岐型パラフィンの割合が 3 0容量%以上である燃料電 池システム用燃料。 図面の簡単な説明
第 1図は、 本発明の燃料電池システム用燃料の評価に用いた水蒸気改質型燃料 電池システムのフローチヤ一卜である。 第 2図は、 本発明の燃料電池システム用 燃料の評価に用いた部分酸化型燃料電池システムのフ口一チャートである。 発明を実施するための最良の形態
以下、 本発明の内容をさらに詳細に説明する。
本発明において、 特定の炭素数の炭化水素化合物量は次のようなものである。 炭素数 4の炭化水素化合物の含有量 (V ( C 4 ) ) は、 燃料全量を基準とした 炭素数 4の炭化水素化合物の含有量を示し、 蒸発ガス (エバポェミッション) の 量を低く押さえることができ、 引火点等の取扱性力3'良い点から、 1 5容量%以下 であること力 s必要であり、 1 0容量%以下であること力 s好ましく、 5容量%以下 であること力最も好ましい。
炭素数 5の炭化水素化合物の含有量 (V ( C 5 ) ) は、 燃料全量を基準とした 炭素数 5の炭化水素化合物の含有量を示し、 重量当りの発電量が多いこと、 C O 2発生量当りの発電量が多いこと、 燃料電池システム全体としての燃費が良いこ となどから、 5容量%以上であることが必要であり、 1 0容量%以上であること 力 s好ましく、 15容量%以上であることがより好ましく、 20容量%以上である ことがさらにより好ましく、 25容量%以上であることがさらにより一層好まし く、 30容量%以上であること力 s最も好ましい。
炭素数 6の炭化水素化合物の含有量 (V (C6 ) ) は、 燃料全量を基準とした 炭素数 6の炭化水素化合物の含有量を示し、 重量当りの発電量が多いこと、 燃料 電池システム全体としての燃費力 s、良いことなどから、 10容量%以上であること 力 S必要であり、 15容量%以上であること力 S好ましく、 20容量%以上であるこ とがより好ましく、 25容量%以上であることがさらにより好ましく、 30容量 %以上であることが最も好ましい。
また、 本発明においては、 炭素数 7および 8の炭化水素化合物の合計含有量 ( V. ( C 7 十 C 8 ) ) は、 燃料全量を基準とした炭素数 7および 8の炭化水素化合 物の合計含有量を示し、 重量当りの発電量が多いこと、 C02発生量当りの発電 量が多いこと、 燃料電池システム全体としての燃費力 s、良いことなどから、 20容 量%以上であること力5'必要であり、 25容量%以上であること力好ましく、 30 容量%以上であることがより好ましく、 35容量%以上であることがさらにより 好ましく、 40容量%以上であること力 s最も好ましい。
また、 本発明においては、 炭素数 10以上の炭化水素化合物の含有量は、 CO 2発生量当りの発電量が多いこと、 燃料電池システム全体としての燃費が良いこ と、 Bji質触媒の劣化が小さく初期性能力 s長時間持続できることなどから、 燃料全 量を基準として炭素数 10以上の炭化水素化合物の合計量 (V (do+ ) ) が 2 0容量%以下であること力 S好ましく、 10容量%以下であることがより好ましく 、 5容量%以下であること力 S最も好ましい。
なお、 上記した V (C4 ) 、 V (C5 ) 、 V (C6 ) 、 V (Cv+Ce ) , V ( C io+ ) 、 は、 以下に示すガスクロマトグラフィー法により定量される値である 。 すなわち、 カラムにはメチルシリコンのキヤビラリ一力ラム、 キャリアガスに はヘリウムまたは窒素を、 検出器には水素イオン化検出器 (F I D) を用い、 力 ラム長 25〜50m、 キャリアガス流量 0. 5〜1. 5ミリリットル Zmi n、 分割比 1 : 50〜1 : 250、 注入口温度 150〜250°C、 初期カラム温度— 10〜10°C、 終期カラム温度 150〜250。C、 検出器温 150〜250°Cの 条件で測定した値である。
また、 本発明の燃料の硫黄分含有量については何ら制限はないが、 改質触媒、 水性ガスシフト反応触媒、 一酸化炭素除去触媒、 燃料電池スタック等、 燃料電池 システムの劣化が小さく初期性能力 S長時間持続できることなどから、 燃料全量基 準で、 50質量 ppm以下であること力 S好ましく、 30質量 ppm以下であるこ とがより好ましく、 10質量 ppm以下であることがさらにより好ましく、 1質 量 ppm以下であることがさらにより一層好ましく、 0. 1質量 ppm以下であ ること力5'最も好ましい。
ここで、 硫黄分とは、 1質量 ppm以上の場合、 J I S K 2541 「原油 及び石油製品一硫黄分試験方法」 により測定される硫黄分を、 1質量 PPm未満 の場合、 ASTM D4045-96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetr 」 によ り測定される硫黄分を意味している。
本発明において、 飽和分、 ォレフィン分および芳香族分の各含有量にはなんら 制限はないが、 飽和分 (V (S) ) は 30容量%以上、 ォレフィン分 (V (0) ) は 35容量%以下、 芳香族分 (V (Ar) ) は 50容量%以下であること力好 ましい。 以下、 これらを個別に説明する。
V (S) は、 重量当りの発電量が多いこと、 C02 発生量当りの発電量が多い こと、 燃料電池システム全体としての燃費力良いこと、 排出ガス中の THC力 S少 ないこと、 システムの起動時間力 S短いことなどから、 30容量%以上であること 力 s好ましく、 40容量%以上であることがより好ましく、 50容量%以上である ことがさらにより好ましく、 60容量%以上であることがさらにより一層好まし く、 70容量%以上であることがさらにより一層好ましく、 80容量%以上であ ることがさらにより一層好ましく、 90容量%以上であることがさらにより一層 好ましく、 95容量%以上であること力最も好ましい。
V (0) は、 重量当りの発電量が多いこと、 C02発生量当りの発電量が多い こと、 改質触媒の劣化が小さく初期性能力 S長時間持続できるこど、 貯蔵安定性が 良好なことなどから、 35容量%以下であること力 S好ましく、 25容量%以下で あることがより好ましく、 20容量%以下であることがさらにより好ましく、 1 5容量%以下であることがさらにより一層好ましく、 1 0容量%以下であること 力 S最も好ましい。 .
V (A r ) は、 重量当りの発電量が多いこと、 C 0 2発生量当りの発電量が多 いこと、 燃料電池システム全体としての燃費力 S良いこと、 排出ガス中の T H Cが 少ないこと、 システムの起動時間が短いこと、 改質触媒の劣化が小さく初期性能 力 s長時間持続できることなどから、 5 0容量%以下であること力 s'好ましく、 4 5 容量%以下であることがより好ましく、 4 0容量%以下であることがさらにより 好ましく、 3 5容量%以下であることがさらにより一層好ましく、 3 0容量%以 下であることがさらにより一層好ましく、 2 0容量%以下であることがさらによ り一層好ましく、 1 0容量%以下であることがさらにより一層好ましく、 5容量 %以下であること力 s最も好ましい。
そして、 上記硫黄分の好ましい範囲と上記芳香族分の好ましい範囲が二つなが らに満足することが、 3質触媒の劣化が小さく初期性能を長く維持できることか ら、 最も好ましい。
上記の V ( S ) 、 V ( 0 ) および V (A r ) は、 全て J I S K 2' 5 3 6 「 石油製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定される値で ある。
また、 本発明において、 燃料の飽和分中めパラフィン分の割合については何ら 制限はないが、 重量当りの発電量が多いことなどから、 C 02発生量当りの発電 量が多いこと、 飽和分中のパラフィン分の割合が 6 0容量%以上であること力好 ましく、 6 5容量%以上であることがより好ましく、 7 0容量%以上であること がさらにより好ましく、 7 5容量%以上であることがさらにより一層好ましく、 8 0容量%以上であることがさらにより一層好ましく、 8 5容量%以上であるこ とがさらにより一層好ましく、 9 0容量%以上であることがさらにより一層好ま しく、 9 5容量%以上であること力 s最も好ましい。
上記の飽和分およびパラフィン分は、 上記したガスクロマトグラフィー法によ り定量された値である。
また、 上記パラフィン分中の分岐型パラフィンの割合については何ら制限はな いが、 重量当りの発電量が多いこと、 C 0 2発生量当りの発電量が多いこと、 燃 料電池システム全体としての燃費力 S良いこと、 排出ガス中の T H Cが少ないこと 、 システムの起動時間力 s短いことなどから、 パラフィン分中の分岐型パラフィン の割合が 3 0容量%以上であること力 S好ましく、 5 0容量%以上であることがよ り好ましく、 7 0容量%以上であること力 S最も好ましい。
上記のパラフィン分および分岐型パラフィンの量は、 上記したガスクロマトグ ラフィ一法により定量された値である。
本発明の燃料の製造方法については、 特に制限はない。 具体的には例えば、 原 油を常圧蒸留して得られる軽質ナフサ、 原油を常圧蒸留して得られる重質ナフサ 、 原油を蒸留して得られるナフサ留分を脱硫処理した脱硫フルレンジナフサ B、 軽質ナフサを脱硫した脱硫軽質ナフサ、 重質ナフサを脱硫した脱硫重質ナフサ、 軽質ナフサを異性化装置でィソパラフィンに転ィヒして得られる異性ィヒガソリン、 ィソブタン等の炭化水素に低級ォレフィンを付加,(アルキル化) することによつ て得られるアルキレート、 アルキレートを脱硫処理した脱硫アルキレート、 脱硫 されたィソブタン等の炭化水素と脱硫された低級ォレフィンによる低硫黄アルキ レート、 接触改質法で得られる改質ガソリン、 改質ガソリンより芳香族分を抽出 した残分であるラフィネート、 改質ガソリンの軽質留分、 改質ガソリンの中重質 留分、 5質ガゾリンの重質留分、 接触分解法、 水素化分解法等で得られる分解ガ ソリン、 分解ガソリンの軽質留分、 分解ガソリンの重質留分、 分解ガソリンを脱 硫処理した脱硫分解ガソリン、 分解ガソリンの軽質留分を脱硫処理した脱硫軽質 分解ガソリン、 分解ガソリンの重質留分を脱硫処理した脱硫重質分解ガソリン、 天然ガス等を一酸化炭素と水素に分解した後に F— T (Fischer-Tropsch ) 合成 で得られる 「G T L (Gas to Liquids) 」 の軽質留分、 L P Gを脱硫処理した 脱硫 L P G、 等の基材を 1種または 2種以上を用いて製造される。 また、 上記の 基材を 1種または 2種以上を混合した後に、 水素化あるいは吸着等によって脱硫 することによつても製造できる。
これらの中でも、 本発明の燃料の製造基材として好ましいものとしては、 軽質 ナフサ、 原油を蒸留して得られるナフサ留分を脱硫処理した脱硫フルレンジナフ サ 脱硫軽質ナフサ、 異性化ガソリン、 アルキレートを脱硫処理した脱硫アル キレート、 脱硫されたイソブタン等の炭化水素と脱硫された低級ォレフィンによ る低硫黄アルキレート、 分解ガソリンの軽質留分を脱硫処理した脱硫軽質分解ガ ソリン、 G T Lの軽質留分、 L P Gを脱硫処理した脱硫 L P G、 等が挙げられる 本発明の燃料電池システム用燃料には、 識別のために着色剤、 酸化安定度向上 のために酸化防止剤、 金属不活性化剤、 腐食防止のための腐食防止剤、 燃料ライ ンの清浄性維持のために清浄剤、 潤滑性向上のための潤滑性向上剤等の添加剤を 添加することもできる。
しカ 、 改質触媒の劣化が小さく初期性能力 s長時間維持できることから、 着色 剤は 10 p pm以下が好ましく、 5 p pm以下がより好ましい。 同様の理由によ り、 酸化防止剤は 300 p p m以下が好ましく、 200 p p m以下がより好まし く、 1 O Oppm以下が更により好ましく、 1 Oppm以下が最も好ましい。 同 様の理由により金属不活性化剤は 50 p p m以下が好ましく、 30 p p m以下が より好ましく、 1 Oppm以下が更により好ましく、 5 ppm以下が最も好まし レ、。 また、 同様に改質触媒の劣化が小さく初期性能を長時間維持できることから 、 腐食防止剤は 5 Oppm以下が好ましく、 3 Oppm以下がより好ましく、 1 Oppm以下力 s更により好ましく、 5 ppm以下が最も好ましい。 同様の理由に より清浄剤は 300ppm以下が好ましく、 200pm以下がより好ましく、 1 00 p p m以下がもつとも好ましい。 同様の理由により潤滑性向上剤は 300 p pm以下力 S好ましく、 200ppm以下がより好ましく、 100pm以下がもつ とも好ましい。
本発明の燃料は、 燃料電池システム用燃料として用いられる。 本発明でいう燃 料電池システムには、 燃料の改質器、 一酸化炭素浄化装置、 燃料電池等が含まれ るが、 本発明の燃料は如何なる燃料電池システムにも好適に用いられる。
燃料の改質器は、 燃料を改質して燃料電池の燃料である水素を得るためのもの である。 改質器としては、 具体的には、 例えば、
(1) 加熱気ィヒした燃料と水蒸気を混合し、 銅、 ニッケル、 白金、 ルテニウム等 の触媒中で加熱反応させることにより、 水素を主成分とする生成物を得る水蒸気 改質型改質器、
(2) 加熱気化した燃料を空気と混合し、 銅、 ニッケル、 白金、 ルテニウム等の 触媒中または無触媒で反応させることにより、 水素を主成分とする生成物を得る 部分酸化型改質器、
(3) 加熱気化した燃料を水蒸気及び空気と混合し、 銅、 ニッケル、 白金、 ルテ ユウム等の触媒層前段にて、 (2) の部分酸化型改質を行ない、 後段にて部分酸 化反応の熱発生を利用して、 (1) の水蒸気型改質を行なうことにより、 水素を 主成分とする生成物を得る部分酸ィヒ ·水蒸気改質型改質器、
等が挙げられる。
一酸化炭素浄化装置とは、 上記の改質装置で生成されたガスに含まれ、 燃料電 池の触媒毒となる一酸化炭素の除去を行なうものであり、 具体的には、
(1) 改質ガスと加熱気ィヒした水蒸気を混合し、 銅、 ニッケル、 白金、 ルテユウ ム等の触媒中で反応させることにより、 一酸化炭素と水蒸気より二酸化炭素と水 素を生成物として得る水性ガスシフト反応器、
(2) 改質ガスを圧縮空気と混合し、 白金、 ルテニウム等の触媒中で反応させる ことにより、 一酸化炭素を二酸化炭素に変換する選択酸化反応器等が挙げられ、 これらを単独または組み合わせて使用される。
燃料電¾としては、 具体的には、 例えば、 固体高分子型燃料電池 (PEFC) 、 リン酸型燃料電池 (PAFC) 、 溶融炭酸塩型燃料電池 (MCFC) 、 固体酸 化物型燃料電池 (SOFC) 等が挙げられる。
また、 上記したような燃料電池システムは、 電気自動車、 従来エンジンと電気 のハイブリツド自動車、 可搬型電源、 分散型電源、 家庭用電源、 コ一ジヱネレー シヨンシステム等に用いられる。 実施例
実施例および比較例の各燃料に用いた基材の性状等を第 1表及び第 2表に示す なお、 熱容量及び蒸発潜熱は、 上記したガスクロマトグラフィー法により定量 された各成分毎の含有量と、 「Techni ca l Data Book— Pe t r o 1 e um R e f i n i n g」 の 「V o 1. 1, Cha . 1 Gene r a 1 Data, Tab l e 1 C 1」 に記載されている各成分ごとの単位 重量当たりの数値を基に計算で求めた。
また、 実施例および比較例に用いた各燃料の性状等を第 3表に示す。
第 1表
Figure imgf000013_0001
11
差替え用紙(規則 26) 第 1表(続き)
Figure imgf000014_0001
12
差替え用紙 (規則 26)
Figure imgf000015_0001
13
え用紙(規則 26) 第 2表 (続き)
Figure imgf000016_0001
14
差替え用紙(規則 26) 混合割合 LPG ■■■■ 2% 2% 脱硫 LPG 2% 脱硫フルレンジナフサ 100%
脱硫フルレンジナフサ B
GTLナフサ 100%
異性化ガソリン 10% 10% アルキレート 10% 20% 低硫黄アルキレ一卜 10% スゾレフオランラフイネ一卜 10% 10% 軽質分解ガソリン 40% 重質分解ガソリン 5%
分解ガソリン 40%
脱硫軽質分解ガソリン
脱硫分解ガソリン 45% 改質ガソリン 17% 17% 軽質改質ガソリン 3% 4% 3% 中重質改質ガソリン 30% 重質改質ガソリン 3% 4% 3% 性状 硫黄分 質 ppm 0.3 0.1 39.0 4.0 0.6 炭素数割合
炭素数 4 容量% 1.6 2.1 6.8 9.8 7.3 炭素数 5 容量% 12.5 12.4 18.2 21.5 19.6 炭素数 6 容量% 19.7 19J 22.8 13J 23.6 炭素数 7 . 容量% 20.9 21.0 18.3 14.9 18.0 炭素数 8 容量% 24.3 23.6 20.2 30.9 19.7 炭素数 7+8 容量% 45.2 44.6 38.5 45.8 37.7 炭素数 9 容量% 18.5 17.7 9.3 6.9 8.6 炭素数 10以上 容量% 2.5 3.5 4.3 2.3 3.2 組成
飽和分 容量% ' 92.8 100.0 58.7 45.2 62.1 才レフィン分 容量% 0.0 0.0 18.5 21.6 15.8 芳香族分 容量% 6.6 0.0 22.8 33.2 22.0 飽和分中のパラフィン 容量% 85.5 100.0 94.0 97.3 94.7 ハ°ラフィン中の分枝ハ°ラフィン 容量% 44.4 53.5 80.5 83.0 80.9 密度 g/cm3 0.7085 0.6825 0.7316 0.7348 0.7257 首発^ 1鼋 kJ/kg 44230 44580 43560 43190 43580 熱容量 (液体) kJ/kg-°C 2.105 2.167 2.027 1.970 2.048 熱容量 (気体) kJ/kg-°C 1.523 1.590 1.444 1.401 1.458 発潜熱 kJ/kg 317.2 309.5 329.9 336.2 330.0
15
差替え用紙(規則 26) 第 3表 (続き)
実施例 6 I 施例6比較例 1 比較例2
Figure imgf000018_0001
16
差替え用紙(規則 26) これら各燃料について、 燃料電池システム評価試験、 蒸発ガス試験、 貯蔵安定 性試験を行なった。
燃料電池システム評価試験
( 1 ) 水蒸気改質型
燃料と水を電気加熱により気化させ、 貴金属系触媒を充填し電気ヒ一ターで所 定の温度に維持した改質器に導き、 水素分に富む改質ガスを発生させた。
改質器の温度は、 試験の初期段階において改質カ S完全に行なわれる最低の温度 (改質ガスに T H C力含まれない最低温度) とした。
改質ガスを水蒸気と共に一酸化炭素処理装置 (水性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成したガスを固体高分子 , 型燃料電池に導き発電を行なった。
評価に用いた水蒸気改質型の燃料電池システムのフローチャートを第 1図に示 す。
( 2 ) 部分酸化型
燃料を電気加熱により気化させ、 予熱した空気と共に貴金属系触媒を充填し電 気ヒーターで 1 1 0 0 °Cに維持した改質器に導き、 水素分に富む改質ガスを発生 させた。
改質ガスを水蒸気と共に一酸化炭素処理装置 (水性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成したガスを固体高分子 型燃料電池に導き発電を行なった。 ,
評価に用いた部分酸化型の燃料電池システムのフローチャートを第 2図に示す
( 3 ) 評価方法
評価試験開始直後に改質器から発生する改質ガス中の H 2 、 C O、 C 0 2 、 T H C量について測定を行った。 同じく、 評価試験開始直後に一酸化炭素処理装置 力ら発生する改質ガス中の H 2 、 C O、 C 02 、 T H C量について測定を行った 評価試験開始直後および開始 1 0 0時間後の燃料電池における発電量、 燃料消 費量、 並びに燃料電池から排出される C O 2量について測定を行なった。 各燃料を所定の改質器温度にまで導くために要する熱量 (予熱量) は、 熱容量 、 蒸発潜熱から計算した。
また、 これら測定値'計算値および燃料発熱量から、 Bj(質触媒の性能劣化割合 (試験開始 1 0 0時間後の発電量/試験開始直後の発電量) 、 熱効率 (試験開始 直後の発電量 Z燃料発熱量) 、 予熱量割合 (予熱量 Z発電量) を計算した。 蒸発ガス試験
2 0リツトルのガソリン携行缶の給油口に試料充填用ホースを装着し、 装着部 を完全にシールした。 缶の空気抜きバルブは開けたまま、 各燃料を 5リットル充 填した。 充填後に空気抜きバルブを閉め、 3 0分間放置した。 放置後、 空気抜き バルブの先に活性炭吸着装置を取付けてバルブを開けた。 直ちに給油口から各燃 料を 1 0リツトル給油した。 給油後 5分間、 空気抜きバルブを開けたまま放置し 活性炭に蒸気を吸収させ、 その後に活性炭の重量增を測定した。 なお、 試験は 2 5 °Cの一定温度下で行なった。
貯蔵安定度試験
各燃料を耐圧密閉容器に酸素と共に充填し、 1 0 0 °Cに加熱、 温度を保ったま ま 2 4時間放置した後、 J I S K 2 2 6 1に定める実在ガム試験法にて評価を 行なった。
各測定値 ·計算値を第 4表に示す。
第 4表
匕較例 1 ϊヒ較 評価結果
水蒸気改質 Br法による発電
(改質器温度気-最適改質器温度1))
最適改ネ質器温度 1〉 °c
電気エネルギー KJ/燃料 kg 初期性能
1 00時間後
性能劣化割合 1 00時間後
熱効率 初期性能
C02発生量 . S 2性 3 kg/燃料 kg 初期性能
C02当りエネルキ' - KJ ^ ¾/C02-kg 初期性能
予熱量 3) KJ/撚料 kg
予熱量割合 4)
*!5分酸化改質法による発電 (改質器温度 1 100°C)
初初初 11
JJ其其其 ¾
性性性性時時
B
熱効率 2) 後後
C02発生量
C02当りエネルキ
3)
4)
予熱量割合
蒸発ガス試験
蒸発ガス発生量 g/test
貯蔵安定度試験
実在ガム mg/1 00ml
Figure imgf000021_0001
1 )改質ガス中に THCが含まれない最低温度
2)電気エネルギー Z燃料発熱量
3) '燃料を所定の改質器温度に導くために必要な熱量
4)予熱量 電気エネルギー
産業上の利用可能性
上記の通り、 本発明の燃料電池システム用燃料は、 性能劣化割合の少ない電気 エネルギーを高出力で得ることができる他、 燃料電池用として各種性能を満足す る燃料である。

Claims

請 求 の 範 囲
1 . 炭素数 4の炭化水素化合物の含有量が 1 5容量%以下であり、 炭素数 5の 炭化水素化合物の含有量が 5容量%以上であり、 炭素数 6の炭化水素化合物の含 有量が 1 0容量%以上であり、 炭素数 7と炭素数 8の炭化水素化合物の合計含有 量が 2 0容量%以上であり、 炭素数 1 0以上の炭化水素化合物の合計含有量が 2
0容量%以下である燃料電池システム用燃料。
2 . 硫黄分含有量が 5 0質量 p p m以下である請求の範囲第 1項記載の燃料電 池システム用燃料。
3 . 飽和分が 3 0容量%以上である請求の範囲第 1項または第 2項記載の燃料 電池システム用燃料。
4. ォレフィン分が 3 5容量%以下である請求の範囲第 1項〜第 3項何れかに 記載の燃料電池システム用燃料。
5 . 芳香族分が 5 0容量%以下である請求の範囲第 1項〜第 4項何れかに記載 の燃料電池システム用燃料。
6 . 飽和分中のパラフィン分の割合が 6 0容量%以上である請求の範囲第 1項 〜第 5項何れかに記載の燃料電池システム用燃料。
7 . パラフィン分中の分岐型パラフィンの割合が 3 0容量%以上である請求の 範囲第 1項〜第 6項何れかに記載の燃料電池システム用燃料。
PCT/JP2001/003089 2000-04-10 2001-04-10 Combustible destine a un systeme de piles a combustible WO2001077260A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU46885/01A AU4688501A (en) 2000-04-10 2001-04-10 Fuel for use in fuel cell system
JP2001575114A JP4598890B2 (ja) 2000-04-10 2001-04-10 燃料電池システム用燃料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-107836 2000-04-10
JP2000107836 2000-04-10

Publications (1)

Publication Number Publication Date
WO2001077260A1 true WO2001077260A1 (fr) 2001-10-18

Family

ID=18620779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003089 WO2001077260A1 (fr) 2000-04-10 2001-04-10 Combustible destine a un systeme de piles a combustible

Country Status (3)

Country Link
JP (1) JP4598890B2 (ja)
AU (1) AU4688501A (ja)
WO (1) WO2001077260A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560771A (en) * 2017-03-23 2018-09-26 Bae Systems Plc Electrical power generation on a vehicle
GB2560773A (en) * 2017-03-23 2018-09-26 Bae Systems Plc Electrical power generation on a vehicle
US11434021B2 (en) 2017-03-23 2022-09-06 Bae Systems Plc Electrical power generation on a vehicle
US11505328B2 (en) 2017-03-23 2022-11-22 Bae Systems Plc Electrical power generation on a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150380A (ja) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd 改良灯油
JPH03199294A (ja) * 1989-12-27 1991-08-30 Sekiyu Sangyo Katsuseika Center 石油系燃料を分解脱硫し改質原料とする方法
JPH0570780A (ja) * 1991-09-12 1993-03-23 Sekiyu Sangyo Kasseika Center 中軽質油の深度脱硫方法
JPH11236580A (ja) * 1997-12-18 1999-08-31 Idemitsu Kosan Co Ltd 無鉛ガソリン組成物
JP2000012061A (ja) * 1998-06-23 2000-01-14 Masayoshi Ishida 燃料電池発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150380A (ja) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd 改良灯油
JPH03199294A (ja) * 1989-12-27 1991-08-30 Sekiyu Sangyo Katsuseika Center 石油系燃料を分解脱硫し改質原料とする方法
JPH0570780A (ja) * 1991-09-12 1993-03-23 Sekiyu Sangyo Kasseika Center 中軽質油の深度脱硫方法
JPH11236580A (ja) * 1997-12-18 1999-08-31 Idemitsu Kosan Co Ltd 無鉛ガソリン組成物
JP2000012061A (ja) * 1998-06-23 2000-01-14 Masayoshi Ishida 燃料電池発電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560771A (en) * 2017-03-23 2018-09-26 Bae Systems Plc Electrical power generation on a vehicle
GB2560773A (en) * 2017-03-23 2018-09-26 Bae Systems Plc Electrical power generation on a vehicle
US11434021B2 (en) 2017-03-23 2022-09-06 Bae Systems Plc Electrical power generation on a vehicle
US11505328B2 (en) 2017-03-23 2022-11-22 Bae Systems Plc Electrical power generation on a vehicle

Also Published As

Publication number Publication date
AU4688501A (en) 2001-10-23
JPWO2001077260A1 (ja) 2004-01-15
JP4598890B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2002031090A1 (fr) Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction
JP4598892B2 (ja) 燃料電池システム用燃料
JP4598894B2 (ja) 燃料電池システム用燃料
JP4583666B2 (ja) 燃料電池システム用燃料
WO2001077259A1 (fr) Combustible destine a un dispositif de pile a combustible
JP4598893B2 (ja) 燃料電池システム用燃料
WO2001077260A1 (fr) Combustible destine a un systeme de piles a combustible
JP4598889B2 (ja) 燃料電池システム用燃料
US6837909B2 (en) Fuel for use in a fuel cell system
JP4598898B2 (ja) 燃料電池システム用燃料
JP4632281B2 (ja) 燃料電池システム用燃料
JP4598891B2 (ja) 燃料電池システム用燃料
JP4598897B2 (ja) 燃料電池システム用燃料
JP4598895B2 (ja) 燃料電池システム用燃料
JP4598896B2 (ja) 燃料電池システム用燃料
JP4601869B2 (ja) 燃料電池システム用燃料
WO2002000813A1 (fr) Combustible pour dispositif de pile à combustible
JP2004027082A (ja) 燃料電池システム用燃料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 575114

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载