WO2001074873A1 - A novel polypeptide - homo dna mismatch repair protein 9 and polynucleotide encoding said polypeptide - Google Patents
A novel polypeptide - homo dna mismatch repair protein 9 and polynucleotide encoding said polypeptide Download PDFInfo
- Publication number
- WO2001074873A1 WO2001074873A1 PCT/CN2001/000343 CN0100343W WO0174873A1 WO 2001074873 A1 WO2001074873 A1 WO 2001074873A1 CN 0100343 W CN0100343 W CN 0100343W WO 0174873 A1 WO0174873 A1 WO 0174873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- polynucleotide
- mismatch repair
- repair protein
- dna mismatch
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 227
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 183
- 230000033607 mismatch repair Effects 0.000 title claims abstract description 150
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 112
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 112
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 112
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 110
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 100
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 claims abstract description 90
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 31
- 201000010099 disease Diseases 0.000 claims abstract description 27
- 239000005557 antagonist Substances 0.000 claims abstract description 17
- 201000011510 cancer Diseases 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims abstract description 7
- 208000026278 immune system disease Diseases 0.000 claims abstract description 5
- 208000031886 HIV Infections Diseases 0.000 claims abstract description 3
- 208000037357 HIV infectious disease Diseases 0.000 claims abstract 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims abstract 2
- 239000000523 sample Substances 0.000 claims description 63
- 239000012634 fragment Substances 0.000 claims description 40
- 238000009396 hybridization Methods 0.000 claims description 36
- 230000014509 gene expression Effects 0.000 claims description 34
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 26
- 239000013598 vector Substances 0.000 claims description 26
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 19
- 101000901659 Homo sapiens Myotonin-protein kinase Proteins 0.000 claims description 17
- 102000048595 human DMPK Human genes 0.000 claims description 17
- 102000039446 nucleic acids Human genes 0.000 claims description 16
- 108020004707 nucleic acids Proteins 0.000 claims description 16
- 230000000295 complement effect Effects 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 14
- 239000013604 expression vector Substances 0.000 claims description 13
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 239000013612 plasmid Substances 0.000 claims description 11
- 230000027455 binding Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000012216 screening Methods 0.000 claims description 10
- 239000000556 agonist Substances 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 8
- 241000700605 Viruses Species 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 238000000338 in vitro Methods 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 206010061218 Inflammation Diseases 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 5
- 229940079593 drug Drugs 0.000 claims description 5
- 230000004054 inflammatory process Effects 0.000 claims description 5
- 230000000692 anti-sense effect Effects 0.000 claims description 4
- 238000001727 in vivo Methods 0.000 claims description 4
- 230000003278 mimic effect Effects 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 238000005215 recombination Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 238000002493 microarray Methods 0.000 claims description 3
- 230000006798 recombination Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 208000022602 disease susceptibility Diseases 0.000 claims description 2
- 208000014951 hematologic disease Diseases 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 5
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 238000010188 recombinant method Methods 0.000 abstract description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 abstract 2
- 235000018102 proteins Nutrition 0.000 description 168
- 108020004414 DNA Proteins 0.000 description 145
- 210000004027 cell Anatomy 0.000 description 64
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 42
- 230000001605 fetal effect Effects 0.000 description 33
- 210000001519 tissue Anatomy 0.000 description 26
- 229940024606 amino acid Drugs 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 22
- 150000001413 amino acids Chemical group 0.000 description 21
- 239000002299 complementary DNA Substances 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 17
- 108091028043 Nucleic acid sequence Proteins 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 14
- 210000000349 chromosome Anatomy 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 239000013615 primer Substances 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 210000001541 thymus gland Anatomy 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 210000003205 muscle Anatomy 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 108090000994 Catalytic RNA Proteins 0.000 description 4
- 102000053642 Catalytic RNA Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 238000000636 Northern blotting Methods 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 208000037824 growth disorder Diseases 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 108091092562 ribozyme Proteins 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 101150106774 9 gene Proteins 0.000 description 3
- 238000000018 DNA microarray Methods 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- 206010012559 Developmental delay Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 210000002458 fetal heart Anatomy 0.000 description 3
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 210000003917 human chromosome Anatomy 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 210000002429 large intestine Anatomy 0.000 description 3
- 201000010260 leiomyoma Diseases 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000000813 small intestine Anatomy 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 210000001685 thyroid gland Anatomy 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 206010010356 Congenital anomaly Diseases 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108020003215 DNA Probes Proteins 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 208000012239 Developmental disease Diseases 0.000 description 2
- 206010058314 Dysplasia Diseases 0.000 description 2
- 108010067770 Endopeptidase K Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 101000577853 Homo sapiens DNA mismatch repair protein Mlh1 Proteins 0.000 description 2
- 101000829958 Homo sapiens N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 208000036626 Mental retardation Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102100023315 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Human genes 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000014107 chromosome localization Effects 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 108060003552 hemocyanin Proteins 0.000 description 2
- 102000049917 human MLH1 Human genes 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- ZPDKTVJZFVWAOC-UHFFFAOYSA-N 4-hydroxy-1,3,2,4lambda5-dioxathiaphosphetane 4-oxide Chemical compound S1OP(O1)(O)=O ZPDKTVJZFVWAOC-UHFFFAOYSA-N 0.000 description 1
- AFMZNQYNOSEBLP-YGOYTEALSA-N 5-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)-2-prop-2-ynyloxolan-2-yl]pyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(N)=CN1[C@]1(CC#C)O[C@H](CO)[C@@H](O)C1 AFMZNQYNOSEBLP-YGOYTEALSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 206010003598 Atelectasis Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 206010007747 Cataract congenital Diseases 0.000 description 1
- 241000905957 Channa melasoma Species 0.000 description 1
- 206010009269 Cleft palate Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010057042 Congenital cutis laxa Diseases 0.000 description 1
- 206010018325 Congenital glaucomas Diseases 0.000 description 1
- 206010010506 Congenital hydrocephalus Diseases 0.000 description 1
- 206010068321 Congenital inguinal hernia Diseases 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 102100037700 DNA mismatch repair protein Msh3 Human genes 0.000 description 1
- 101710200523 DNA polymerase 3 Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 101100096502 Danio rerio spring gene Proteins 0.000 description 1
- 206010011882 Deafness congenital Diseases 0.000 description 1
- 206010061619 Deformity Diseases 0.000 description 1
- 206010012565 Developmental glaucoma Diseases 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 206010013613 Double ureter Diseases 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 101150071246 Hexb gene Proteins 0.000 description 1
- 208000002291 Histiocytic Sarcoma Diseases 0.000 description 1
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 1
- 208000000203 Hyaline Membrane Disease Diseases 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 208000032571 Infant acute respiratory distress syndrome Diseases 0.000 description 1
- 208000035478 Interatrial communication Diseases 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 240000000233 Melia azedarach Species 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101100096504 Mus musculus Spring1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 1
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 1
- 108010010712 MutL Proteins Proteins 0.000 description 1
- 102000016077 MutL Proteins Human genes 0.000 description 1
- 108700024836 MutS Homolog 3 Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028974 Neonatal respiratory distress syndrome Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100037482 PMS1 protein homolog 1 Human genes 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 206010035603 Pleural mesothelioma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010063493 Premature ageing Diseases 0.000 description 1
- 208000032038 Premature aging Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 101710089165 Protein white Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 208000007123 Pulmonary Atelectasis Diseases 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101100426090 Rattus norvegicus Trim9 gene Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 108700029450 S cerevisiae PMS1 Proteins 0.000 description 1
- BFDMCHRDSYTOLE-UHFFFAOYSA-N SC#N.NC(N)=N.ClC(Cl)Cl.OC1=CC=CC=C1 Chemical compound SC#N.NC(N)=N.ClC(Cl)Cl.OC1=CC=CC=C1 BFDMCHRDSYTOLE-UHFFFAOYSA-N 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000004350 Strabismus Diseases 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 208000037432 Thymic tumor Diseases 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 206010046798 Uterine leiomyoma Diseases 0.000 description 1
- 206010046879 Vaginal atresia Diseases 0.000 description 1
- 208000001910 Ventricular Heart Septal Defects Diseases 0.000 description 1
- 101100096505 Xenopus laevis spring1 gene Proteins 0.000 description 1
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 1
- UCUJUFDOQOJLBE-UHFFFAOYSA-N [Cl].[Ca] Chemical compound [Cl].[Ca] UCUJUFDOQOJLBE-UHFFFAOYSA-N 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000006154 adenylylation Effects 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000013914 atrial heart septal defect Diseases 0.000 description 1
- 206010003664 atrial septal defect Diseases 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 201000006491 bone marrow cancer Diseases 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 206010008129 cerebral palsy Diseases 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- BKHZIBWEHPHYAI-UHFFFAOYSA-N chloroform;3-methylbutan-1-ol Chemical compound ClC(Cl)Cl.CC(C)CCO BKHZIBWEHPHYAI-UHFFFAOYSA-N 0.000 description 1
- 201000001352 cholecystitis Diseases 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical group BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 201000008825 fibrosarcoma of bone Diseases 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 102000055647 human CSF2RB Human genes 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 206010021093 hypospadias Diseases 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 238000010841 mRNA extraction Methods 0.000 description 1
- 201000006812 malignant histiocytosis Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 101150049514 mutL gene Proteins 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 201000010193 neural tube defect Diseases 0.000 description 1
- 201000002652 newborn respiratory distress syndrome Diseases 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000003695 paranasal sinus Anatomy 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229930000184 phytotoxin Natural products 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 1
- 208000009138 pulmonary valve stenosis Diseases 0.000 description 1
- 208000030390 pulmonic stenosis Diseases 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009834 selective interaction Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 201000009377 thymus cancer Diseases 0.000 description 1
- 208000013076 thyroid tumor Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 208000024363 trachea neoplasm Diseases 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 201000003130 ventricular septal defect Diseases 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide-human DNA mismatch repair protein 9 and a polynucleotide sequence encoding the polypeptide. The invention also relates to a method and application for preparing the polynucleotide and polypeptide. Background technique
- DNA polymerase can occasionally catalyze the incorporation of the wrong base that cannot form a hydrogen bond with the template. This replication error is usually corrected immediately by the DNA polymerase 3'-5 proofreading function before the next nucleotide polymerization reaction begins. However, under certain conditions, DNA polymerases leave very few erroneous bases on the DNA strand without correction. It is estimated that the frequency of such errors is 10-8. However, the mutation frequency that people actually measure is 10- ie or 10- u . Because the integrity and accuracy of DNA is fundamental to life, another repair system, called the mismatch repair system, has evolved in cells, giving a second chance to correct errors. (Modr ich P. Annu. Rev. Biochem.
- the adenine adenylation is the identification mark of mismatch repair. According to the characteristics brought by aberranty, the mismatch repair system can The template strand and the nascent strand are identified, thereby correcting unpaired bases on the nascent, ensuring a high degree of accuracy and integrity.
- DM mismatch repair protein is an important component protein in the mismatch repair system.
- DM mismatch repair protein exists in many organisms, for example, mutL protein of E. coli; hexB protein of streptococcus; PMS1 and MLH1 proteins of yeast; Human MLH1 (MutL homologue-1) protein and so on.
- DNA mismatch repair proteins contain a conserved region that contains the following consistent sequence fragments: GF-RGEAL, this sequence fragment is contained in the DNA mismatch repair proteins of many different organisms, and this structural motif It plays a very important role in the process of protein's normal physiological function.
- yeast DNA mismatch repair protein showed that if Pro640 becomes Leu, it will cause complete loss of protein function.
- DNA mismatch repair protein (DNA mi sma tch repa ir protein drawing R) has a strong interaction with a new human exonuclease.
- DNA repair protein White works with many proteins to repair DNA.
- the human DNA mismatch repair protein 9 protein plays an important role in regulating important functions of the body, such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulatory processes, so there has been a need in the art to identify more involved in these The process of human DNA mismatch repair protein 9 protein, especially the amino acid sequence of this protein is identified. Isolation of the newcomer DNA mismatch repair protein 9 protein encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding DNA. Disclosure of invention
- Another object of the invention is to provide a polynucleotide encoding the polypeptide.
- Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a human DNA mismatch repair protein 9.
- Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding human MA mismatch repair protein 9.
- Another object of the present invention is to provide a method for producing human DNA mismatch repair protein 9.
- Another object of the present invention is to provide antibodies against the polypeptide-to-human DNA mismatch repair protein 9 of the present invention.
- Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide-to-human DNA mismatch repair protein 9 of the present invention.
- Another object of the present invention is to provide diagnostic treatments related to human DNA mismatch repair protein 9 abnormalities. Methods of disease.
- the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
- the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
- the present invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
- sequence of the polynucleotide is one selected from the group consisting of: (a) having SEQ ID NO: 1
- the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
- the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
- the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of human DNA mismatch repair protein 9 protein, which comprises utilizing the polypeptide of the invention.
- the invention also relates to compounds obtained by this method.
- the invention also relates to a method for detecting a disease or disease susceptibility related to abnormal expression of human DM mismatch repair protein 9 protein in vitro, which comprises detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting The amount or biological activity of a polypeptide of the invention in a biological sample.
- the invention also relates to a pharmaceutical composition
- a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
- the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human DNA mismatch repair protein 9.
- Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DM or RM, they can be single-stranded or double-stranded, representing the sense or antisense strand.
- amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof Minute.
- amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
- a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
- the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence.
- Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
- Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
- “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
- Insertion refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
- Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
- Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
- immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
- An "agonist” refers to a molecule that, when combined with human DNA mismatch repair protein 9, causes a change in the protein to regulate the activity of the protein.
- An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind human DNA mismatch repair protein 9.
- Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human DNA mismatch repair protein 9 when combined with human DNA mismatch repair protein 9.
- Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates or any other molecule that can bind to human DNA mismatch repair protein 9.
- Regular refers to a change in the function of human DNA mismatch repair protein 9, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of human Di mismatch repair protein 9. change.
- Those skilled in the art can purify human DNA mismatch repair protein 9 using standard protein purification techniques. Basic The pure human DNA mismatch repair protein 9 can generate a single main band on a non-reducing polyacrylamide gel. The purity of the human DNA mismatch repair protein 9 polypeptide can be analyzed by amino acid sequence.
- Complementary refers to polynucleotides that naturally bind through base-pairing under conditions of acceptable salt concentration and temperature.
- sequence "C-T-G-A” can be combined with the complementary sequence "G-A-C-T”.
- the complementarity between two single-stranded molecules may be partial or complete.
- the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
- “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
- Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern imprinting or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that conditions with reduced stringency allow non-specific binding, because conditions with reduced stringency require that the two sequences bind to each other as either specific or selective interactions.
- Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Clus ter method (Higg ins, DG and PM Sharp (1988) Gene 73: 237-244). 0 The Clus ter method compares each pair by checking the distance between all pairs. Group sequences are arranged in clusters. The clusters are then assigned in pairs or groups.
- the percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence A and sequence X 1 00 The number of residues in sequence A-the interval residues in sequence A The number of spacer residues in sequence B can also be determined by Clus ter method or using methods known in the art such as Jotun Hein. The percent identity between nucleic acid sequences (Hein J., (1990) Methods in emzumology 183: 625-645 ) 0 "Similarity" refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
- Amino acids used for conservative substitutions may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
- Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
- Antisense strand refers to a nucleic acid strand that is complementary to a “sense strand.”
- Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives encode major organisms that retain natural molecules Peptides with chemical properties.
- Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and? It can specifically bind to the epitope of human DNA mismatch repair protein 9.
- a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
- isolated refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring).
- a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
- Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
- isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
- polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
- isolated human MA mismatch repair protein 9 means that human DM mismatch repair protein 9 is substantially free of other proteins, lipids, sugars, or other substances that are naturally associated with it.
- Those skilled in the art can purify human DNA mismatch repair protein 9 using standard protein purification techniques. Substantially pure polypeptides produce a single main band on a non-reducing polyacrylamide gel. The purity of the human DNA mismatch repair protein 9 peptide can be analyzed by amino acid sequence.
- the present invention provides a novel polypeptide-to-human DNA mismatch repair protein 9 which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
- the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
- the polypeptides of the invention may be naturally purified products, or chemically synthesized products, or produced using recombinant techniques from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells). Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
- the invention also includes fragments, derivatives and analogs of human DM mismatch repair protein 9.
- fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human DNA mismatch repair protein 9 of the present invention.
- a fragment, derivative, or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution The amino acid may or may not be encoded by the genetic codon; or ( ⁇ ) such one or more of the amino acids A group on a residue is substituted by another group to include a substituent; or (II) a method in which the mature polypeptide is fused with another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); Or (IV) a polypeptide sequence (such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protease sequence) formed by fusing an additional amino acid sequence into a mature polypeptide, as described herein, such a fragment , Derivatives and analogs are considered to be within the knowledge of those skilled in the art.
- the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
- the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
- the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a full-length polynucleotide sequence of 1486 bases, and its open reading frames 631-873 encode 80 amino acids.
- this peptide has a similar expression profile with human DNA mismatch repair protein 11, and it can be inferred that the human DNA mismatch repair protein 9 has a function similar to that of human DNA mismatch repair protein 1 1.
- the polynucleotide of the present invention may be in the form of DNA or RNA.
- DNA forms include cDNA, genomic DM, or synthetic DNA.
- DNA can be single-stranded or double-stranded.
- DM can be a coding chain or a non-coding chain.
- the coding region sequence encoding the mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
- a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but having a sequence different from the coding region shown in SBQ ID NO: 1 in the present invention.
- the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
- polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
- the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
- Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
- an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
- the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
- the present invention particularly relates to the present invention under strict conditions.
- the polynucleotide is a polynucleotide that can hybridize.
- “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% Fico ll, 42 ° C, etc .; or (3) only between the two sequences Hybridization occurs only when the identity is at least 95%, and more preferably 97%.
- the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
- nucleic acid fragments that hybridize to the sequences described above.
- a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 cores. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding human DNA mismatch repair protein 9.
- polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
- the specific polynucleotide sequence encoding the human DNA mismatch repair protein 9 of the present invention can be obtained by various methods.
- polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or CDM libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
- the DM fragment sequence of the present invention can also be obtained by the following methods: 1) separating a double-stranded DNA sequence from genomic DNA; 2) chemically synthesizing the DM sequence to obtain the double-stranded DM of the polypeptide.
- genomic DNA isolation is the least commonly used. Direct chemical synthesis of DM sequences is often the method of choice. The more commonly used method is the separation of cDM sequences.
- the standard method for isolating the cDM of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDM library.
- Q i agene There are many mature techniques for extracting mRM, and kits are also commercially available (Q i agene).
- the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Labora tory Manua, Cold Sprue Harbor Labora tory. New York, 1989).
- Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
- genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DM-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determining the level of human DNA mismatch repair protein 9 transcripts; ( 4) Detecting gene-expressed protein products by immunological techniques or by measuring biological activity. The above methods can be used alone or in combination.
- the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides. In addition, the length of the probe is usually within 2000 nucleotides. 43 is preferably within 1000 nucleotides.
- the probe used herein is generally a DNA sequence chemically synthesized based on the gene sequence information of the present invention. The genes or fragments of the present invention can of course be used as probes. DNA probes can be labeled with radioisotopes, fluorescein or enzymes (such as alkaline phosphatase).
- immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein products of human DNA mismatch repair protein 9 gene expression.
- ELISA enzyme-linked immunosorbent assay
- a method (Saikii, et al. Science 1985; 230: 1350-1354) using DNA technology to amplify DNA / MA by PCR is preferably used to obtain the gene of the present invention.
- the RACE method RACE-cMA terminal rapid amplification method
- the primers for PCR may be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
- the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
- polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, the sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
- the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using human DNA mismatch repair protein 9 coding sequence, and a recombinant technology to produce the polypeptide of the present invention. method.
- a polynucleotide sequence encoding a human DNA mismatch repair protein 9 can be inserted into a vector to form a recombinant vector containing the polynucleotide of the present invention.
- vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
- Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, eta l.
- any plasmid and vector can be used to construct a recombinant expression vector.
- An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
- the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenovirus enhancers.
- the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
- selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
- GFP fluorescent protein
- tetracycline or ampicillin resistance for E. coli.
- a polynucleotide encoding human DNA mismatch repair protein 9 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or a recombinant vector.
- the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
- coli Streptomyces
- bacterial cells such as Salmonella typhimurium
- fungal cells such as yeast
- plant cells such as fly S2 or Sf 9
- animal cells such as CH0, COS or Bowes melanoma cells.
- Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
- the host is a prokaryote such as E. coli
- competent cells capable of absorbing DM may be harvested after exponential growth phase, treated with CaC l 2 method used in steps well known in the art. The alternative is to use MgC l 2 .
- transformation can also be performed by electroporation.
- the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
- the polynucleotide sequence of the present invention can be used to express or produce recombinant human DNA mismatch repair protein 9 (Science, 1984; 224: 1431). Generally, the following steps are taken:
- the medium used in the culture may be selected from various conventional mediums depending on the host cells used. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
- a suitable method such as temperature conversion or chemical induction
- the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
- recombinant proteins can be separated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
- conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography
- FIG. 1 is a comparison diagram of gene chip expression profiles of DM mismatch repair protein 9 and human DNA mismatch repair protein 11 of the present invention.
- the upper graph is a graph of the expression profile of human DNA mismatch repair protein 9 and the lower graph is the graph of the expression profile of human DNA mismatch repair protein 11.
- 1 indicates fetal kidney
- 2 indicates fetal large intestine
- 3 indicates fetal small intestine
- 4 indicates fetal muscle
- 5 indicates fetal brain
- 6 indicates fetal bladder
- 7 indicates non-starved L02
- 8 indicates L0 2 +, l hr
- 9 means ECV304 PMA-
- 10 means ECV304 PMA +
- 11 means fetal liver
- 12 means normal liver
- 1 means thyroid
- 14 means skin
- 15 means fetal lung
- 16 means lung
- 17 means lung cancer
- 18 means fetal spleen
- 19 Indicates the spleen
- 20 indicates the prostate
- 21 indicates the fetal heart
- 22 indicates the heart
- 23 indicates muscle
- 24 indicates testes
- 25 indicates fetal thymus
- 26 indicates thymus.
- Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of human DM mismatch repair protein 9 isolated.
- 9kDa is the molecular weight of the protein.
- the arrow indicates the isolated protein band.
- Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
- Quik mRNA Isolat ion Kit product of Qiegene was used to isolate poly (A) niRNA 2ug poly (A) mRNA from total RNA by reverse transcription to form CDM.
- the Smart cDNA Cloning Kit purchased from Clontech was used to insert the CDM fragment into the multiple cloning site of pBSK (+) vector (Clontech) to transform DH5a.
- the bacteria formed a cDNA library.
- Dye terminate cycle react ion sequencing kit Perkin-Elmer
- ABI 377 automatic sequencer Perkin-Elmer
- the determined cDNA sequence was compared with the public DNA sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0480f 04 was new DNA.
- a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
- CDNA was synthesized using fetal brain total RNA as a template and ol igo-dT as a primer for reverse transcription reaction. After purification using Qiagene's kit, the following primers were used for PCR amplification:
- Pr imer 1 5'- CCAGTTGACTGCCAAGTCCTCCAA-3 '(SEQ ID NO: 3)
- Pr imer2 5'- GTCTTCAATAAGGCTTTATTTAAT-3 '(SEQ ID NO: 4)
- Pr imerl is a forward sequence starting at lbp at the 5 ′ end of SEQ ID NO: 1;
- Pr imer 2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
- the amplified product was purified using a QIAGEN kit and ligated to a pCR vector (Invitrogen) using a TA cloning kit.
- the DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as l-1486bp shown in SEQ ID NO: 1.
- Example 3 Northern blot analysis of human DNA mismatch repair protein 9 gene expression:
- the method includes acid thiocyanate Guanidine phenol-chloroform extraction. I.e. with 4M guanidinium isothiocyanate -25mM sodium citrate, 0. 2 M sodium acetate ( ⁇ 4 ⁇ 0) of the tissue was homogenized, 1 volume of phenol and 1/5 volume of chloroform - isoamyl alcohol (49 : 1), centrifuge after mixing. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
- a 32P-labeled probe (about 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM H 2 P0 4 (pH7.4)-5 x SSC-5 x Denhardt's solution and 200 g / ml salmon sperm DNA. After hybridization, the filter was washed in 1 x SSC-0.1 ° / »SDS at 55 ° C for 30 min. Then, Phosphor Imager was used for analysis and quantification.
- Example 4 In vitro expression, isolation and purification of recombinant human DNA mismatch repair protein 9
- Primer 3 5 '-CATGCTAGCATGCTCCACATTCTGTCTTTACTG- 3' (Seq ID No: 5)
- Primer4 5'-CATGGATCCCTAAGCAGATGGAGTCCTAAGGCG-3 '(Seq ID No: 6)
- the 5' ends of these two primers contain Nhel and BamHI digestion sites, respectively, followed by the 5 'and 3' coding sequences of the target gene Nhel and BamHI restriction sites correspond to selective endonuclease sites on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3).
- the PCR reaction was performed using pBS-0480f04 plasmid containing the full-length target gene as a template.
- PCR reaction conditions are as follows: a total volume of 50 ⁇ 1 contains 10 pg of pBS-0480f 04 plasmid, primers? 1 ⁇ 1116: "-3 and?]: 111] 6]: -4 points and another!] Is 10 1101, Advantage polymerase Mix (Clontech) 1 ⁇ 1. Cycle parameters: 94.C 20s, 60 ° C 30s , 68. C 2 min, a total of 25 cycles. Digestion of the amplified product and plasmid pET-28 (+) with Nhel and BamHI, respectively, to recover large fragments and ligate with T4 ligase.
- the ligation product was converted with chlorine Calcium bacillus DH5a was cultured overnight on LB plates containing kanamycin (final concentration 30 g / mi), and positive clones were selected by colony PCR method and sequenced. Positive clones with correct sequence (pET- 0480f04)
- the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
- the host strain BL21 (pET -0480f04) Incubate at 37 ° C to logarithmic growth phase, add IPTG to a final concentration of 1 ol / L, and continue to cultivate for 5 hours. Centrifuge to collect bacteria, ultrasonically break bacteria, and centrifuge to collect the supernatant. Histidine (6His-Tag) binding affinity chromatography column His. Bind Quick CartridgeC Novagen) Chromatography to obtain a purified protein of human DNA mismatch repair protein by electrically 9. SDS-PAGB swimming, a single band was obtained at 9 kDa ( Figure 2).
- the band was transferred to a PVDF membrane and the N-terminal amino acid sequence was analyzed by the Edams hydrolysis method. As a result, the 15 amino acids at the N-terminus were identical to the 15 amino acid residues at the N-terminus shown in SEQ ID NO: 2.
- NH2-Met-Leu-Hi s-I le-Leu-Ser-Leu-Leu-Met-Leu-Cys-Leu-Leu-Pro-Al a- C00H (SEQ ID NO: 7).
- the peptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
- hemocyanin and bovine serum albumin For methods, see: Avrameas, et al. I. leg unochemi s try, 1969; 6: 43. Rabbits were immunized with 4 mg of the i-blue protein peptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin peptide complex plus incomplete Freund's adjuvant was used to boost the immunity once.
- a titer plate coated with a 15 ⁇ g / ral bovine serum albumin peptide complex was used as an ELISA to determine the antibody titer in rabbit serum.
- Protein A-Sepharose was used to isolate total IgG from antibody-positive rabbit serum.
- the peptide was bound to a cyanogen bromide-activated Sepharos B column, and the anti-peptide antibody was separated from the total I gG by affinity chromatography.
- the immunoprecipitation method proved that the purified antibody could specifically bind to human DNA mismatch repair protein 9.
- Example 6 Application of the polynucleotide fragment of the present invention as a hybridization probe
- Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
- the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
- the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
- the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
- Filter hybridization methods include dot blotting, Southern blotting, Northern blotting, and copying methods. They all use the same steps of hybridization after fixing the polynucleotide sample to be tested on the filter.
- the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer, so that the non-specific binding site of the sample on the filter is saturated with the carrier and the synthetic polymer.
- the pre-hybridization solution is then replaced with a hybridization buffer containing the labeled probe and incubated to hybridize the probe to the target nucleic acid.
- the unhybridized probes are removed by a series of membrane washing steps.
- This embodiment utilizes higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
- the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; A needle is an oligonucleotide fragment that is partially identical or complementary to the polynucleotide SEQ ID NO: 1 of the present invention.
- the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
- oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
- the preferred range of probe size is 18-50 nucleotides
- the GC content is 30% -70%, and the non-specific hybridization increases when it exceeds;
- Probe 1 (probel), which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 ("Nt):
- Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence of the gene fragment of SEQ ID NO: 1 or its complementary fragment (41M):
- PBS phosphate buffered saline
- step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
- NC film nitrocellulose
- the 32 P-Probe (the second peak is free ⁇ - 32 P-dATP) is prepared.
- the sample membrane was placed in a plastic bag, and 3-lOrag prehybridization solution (10xDenhardt's; 6xSSC, 0.1 mg / ml) was added.
- CT DM calf thymus DNA
- Gene microarrays or DNA microarrays are new technologies currently being developed by many national laboratories and large pharmaceutical companies. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information.
- the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research on the function of new genes; search for and screen new tissue-specific genes, especially diseases related genes such as tumors; diagnosis of diseases such as heredity disease.
- the specific method steps have been reported in the literature. For example, see DeRis i, JL, Lyer, V. & Brown ; P. 0. (1997) Science 278, 680-686. And Hel le, RA, Schema, M., Chai, A., Shalom, D., (1997) PNAS 94: 2150-2155.
- a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were respectively amplified by PCR, and the concentration of the amplified product was adjusted to about 500 ng / ul after purification.
- the spots were spotted on a glass medium using a Cartesian 7500 spotter (purchased from Cartesian Company, USA) The distance between them is 280 ⁇ m.
- the spotted slides were hydrated, dried, and cross-linked in a UV cross-linking instrument. After elution, the DNA was fixed on the glass slide to prepare a chip.
- the specific method steps are variously reported in the literature.
- the sample post-processing steps in this embodiment are:
- Total mRNA was extracted from human mixed tissues and specific tissues (or stimulated cell lines) in one step, and mRM was purified by Ol igotex mRNA Midi Kit (purchased from QiaGen), and another 1 J was separated by reverse transcription.
- the fluorescent reagent Cy 3dUTP (5-Amino-propargy 1-2 '-deoxyur idine 5'-tr iphate coupled to Cy3 f luorescent dye, purchased from Amersham Pharaacia Biotech) was used to label the mRNA of human mixed tissue, and the fluorescent reagent Cy5dUTP (5 -Amino- propargyl- 2'- deoxyur idine 5 '-triphate coupled to Cy5 f luorescent dye, purchased from Amersham Phamacia Biotech Company, labeled mRNA of specific tissue (or stimulated cell line) of the body, and purified the probe to prepare a probe.
- Cy 3dUTP 5-Amino-propargy 1-2
- the probes from the above two tissues and the chips were respectively hybridized in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, and the washing solution (1 x SSC, 0.2% SDS) was used at room temperature. After washing, scanning was performed with a ScanArray 3000 scanner (purchased from General Scanning, USA), and the scanned images were analyzed by Imagene software (Biodiscovery, USA) to calculate the Cy3 / Cy5 ratio of each point.
- the above specific tissues are divided into thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, L02 cell line stimulated by arsenic for 1 hour, L02 cell line stimulated by arsenic for 6 hours prostate, heart, lung cancer, fetal bladder, fetal small intestine, fetal large intestine, fetal thymus, fetal muscle, fetal liver, fetal kidney, fetal spleen, fetal brain, Fetal lung and fetal heart.
- polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, adrenal deficiency, skin diseases, various inflammations, HIV infections and immune diseases.
- DNA mismatch repair protein is an important component protein in the mismatch repair system.
- DM mismatch repair protein exists in many organisms.
- human MLH1 (Mutl homo l ogue-1) protein is a DNA mismatch repair protein.
- All DNA mismatch repair proteins contain a conserved sequence fragment. Mutations in this sequence fragment can cause loss of protein function. Therefore, abnormal expression of a polypeptide containing a DNA mismatch repair protein-specific sequence will affect the correct transcription of DM, and further cause certain diseases such as tumors, growth and development disorders, and inflammation.
- the abnormal expression of the human DNA mismatch repair protein 9 of the present invention will produce various diseases, especially tumors, embryonic developmental disorders, growth disorders, and inflammation. These diseases include, but are not limited to:
- Tumors of various tissues gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma, Knot cancer, malignant histiocytosis, melanoma, teratoma, sarcoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, Colon cancer, thymic tumor, nasal cavity and sinus tumor, nasopharyngeal cancer, laryngeal cancer, tracheal tumor, pleural mesothelioma, fibroid, fibrosarcoma, lupus, liposarcoma, leiomyoma
- Embryonic disorders congenital abortion, cleft palate, limb absentness, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney disease, double ureter, crypto, congenital inguinal hernia, double uterus, vaginal atresia, hypospadias , Bisexual deformity, Atrial septal defect, Ventricular septal defect, Pulmonary stenosis, Arterial duct occlusion, Neural tube defect, Congenital hydrocephalus, Iris defect, Congenital cataract, Congenital glaucoma or cataract, Congenital deafness
- Growth and development disorders mental retardation, cerebral palsy, brain development disorders, mental retardation, familial cerebral nucleus dysplasia syndrome, strabismus, skin, fat and muscular dysplasia such as congenital skin laxity, premature aging Disease, congenital keratosis, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation
- the abnormal expression of the human DNA mismatch repair protein 9 of the present invention will also produce certain hereditary, hematological and immune system diseases.
- the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human DNA mismatch repair protein 9.
- Agonist enhances human DM mismatch repair protein 9 to stimulate cell proliferation And other biological functions, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
- mammalian cells or a membrane preparation expressing human DNA mismatch repair protein 9 can be cultured with labeled human DNA mismatch repair protein 9 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
- Antagonists of human DNA mismatch repair protein 9 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human DNA mismatch repair protein 9 can bind to human DNA mismatch repair protein 9 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot exert its biology Features.
- human DNA mismatch repair protein 9 can be added to a bioanalytical assay to determine whether the compound can affect the interaction between human DNA mismatch repair protein 9. and its receptor. Is an antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same way as for screening compounds described above.
- Peptide molecules capable of binding to human DNA mismatch repair protein 9 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, generally 9 molecules of human DNA mismatch repair protein should be labeled.
- the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
- the present invention also provides antibodies against human DM mismatch repair protein 9 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments generated from Fab expression libraries.
- Polyclonal antibodies can be produced by injecting human DNA mismatch repair protein 9 directly into immunized animals (such as rabbits, mice, rats, etc.).
- immunized animals such as rabbits, mice, rats, etc.
- a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's Agent.
- Techniques for preparing monoclonal antibodies to human DNA mismatch repair protein 9 include, but are not limited to, hybridoma technology (Kohler and Miste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta cells Hybridoma technology, EBV-hybridoma technology, etc.
- Chimeric antibodies that bind human constant regions and non-human variable regions can be produced using existing techniques (Morrson et al, PNAS, 1985, 81: 6851) and existing techniques for producing single-chain antibodies (US Pa t No. 4946778) can also be used to produce single chain antibodies against human DNA mismatch repair protein 9.
- Antibodies against human DM mismatch repair protein 9 can be used in immunohistochemical techniques to detect human DNA mismatch repair protein 9 in biopsy specimens.
- Monoclonal antibodies that bind to human DNA mismatch repair protein 9 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis. Antibodies can also be used to design immunotoxins that target a particular part of the body. For example, human DM mismatch repair protein 9 high affinity monoclonal antibodies can covalently bind to bacterial or phytotoxins (such as diphtheria toxin, ricin, ormosine, etc.).
- a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
- This hybrid antibody can be used to kill human DNA mismatch repair protein 9 positive cell.
- the antibodies of the present invention can be used to treat or prevent diseases related to human DM mismatch repair protein 9.
- Administration of an appropriate dose of antibody can stimulate or block the production or activity of human DNA mismatch repair protein 9.
- the invention also relates to a diagnostic test method for quantitative and localized detection of human DNA mismatch repair protein 9 levels.
- tests are well known in the art and include FISH assays and radioimmunoassays.
- the level of human DNA mismatch repair protein 9 detected in the test can be used to explain the importance of human DNA mismatch repair protein 9 in various diseases and to diagnose diseases in which human DNA mismatch repair protein 9 plays a role.
- polypeptide of the present invention can also be used for peptide mapping analysis.
- the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
- Polynucleotides encoding human DNA mismatch repair protein 9 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of human DNA mismatch repair protein 9.
- Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human DNA mismatch repair protein 9 to inhibit endogenous human DNA mismatch repair protein 9 activity.
- a mutated human DNA mismatch repair protein 9 may be shortened and lack human signaling mismatch repair protein 9. Although it can bind to downstream substrates, it lacks signaling activity. Therefore, recombinant gene therapy vectors can be used to treat diseases caused by abnormal expression or activity of human DM mismatch repair protein 9.
- Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, and parvovirus can be used to transfer a polynucleotide encoding human DNA mismatch repair protein 9 into a cell.
- Methods for constructing recombinant viral vectors carrying a polynucleotide encoding human DNA mismatch repair protein 9 can be found in the existing literature (Sambrook, et al.).
- a polynucleotide encoding a human DNA mismatch repair protein can be packaged into liposomes and transferred into cells.
- Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
- a vector such as a virus, phage, or plasmid
- Oligonucleotides including antisense RNA and DNA
- ribozymes that inhibit human DNA mismatch repair protein 9 raRNA are also within the scope of the present invention.
- a ribozyme is an enzyme-like RNA molecule that can specifically decompose a specific MA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
- the RNA and DNA and ribozymes can be obtained by any existing RNA or DNA synthesis technology, such as the technology for the synthesis of oligonucleotides by solid-phase phosphoramidite chemical synthesis, which is widely used.
- Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the MA. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of a nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the ribonucleoside linkages should use phosphate thioester or peptide bonds instead of phosphodiester bonds.
- the polynucleotide encoding human DM mismatch repair protein 9 can be used for the diagnosis of diseases related to human DNA mismatch repair protein 9.
- the polynucleotide encoding human DM mismatch repair protein 9 can be used to detect the expression of human DNA mismatch repair protein 9 or the abnormal expression of human DNA mismatch repair protein 9 in a disease state.
- the DNA sequence encoding human DNA mismatch repair protein 9 can be used to hybridize biopsy specimens to determine the expression of human DNA mismatch repair protein 9.
- Hybridization techniques include Southern blotting, Nor thern imprinting, and in situ hybridization. These techniques and methods are all mature and open technologies, and related kits are commercially available.
- a part or all of the polynucleotides of the present invention can be used as probes to be fixed on a micro array or a DNA chip (also called a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissues.
- Human DNA mismatch repair protein 9 specific primers for RNA-polymerase chain reaction (RT-PCR) in vitro amplification can also detect human DNA mismatch repair protein 9 transcription products.
- Detection of mutations in the human DNA mismatch repair protein 9 gene can also be used to diagnose human DNA mismatch repair protein 9-related diseases.
- Human DNA mismatch repair protein 9 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type human DM mismatch repair protein 9 DNA sequence. Mutations can be detected using well-known techniques such as Southern blotting, MA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression. Therefore, Nor thern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
- the sequences of the invention are also valuable for chromosome identification.
- the sequence specifically targets a specific position on a human chromosome and can hybridize to it.
- specific sites for each gene on the chromosome need to be identified.
- only a few chromosome markers based on actual sequence data are available for marking chromosome positions.
- an important first step is to locate these DM sequences on a chromosome.
- PCR primers (preferably 15-35bp) are prepared based on cDNA, and the sequences can be located on chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
- PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
- oligonucleotide primers of the present invention by a similar method, a set of fragments from a specific chromosome can be utilized Or a large number of genomic clones to achieve sublocalization.
- Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and hybrid pre-selection to construct a chromosome-specific CDM library.
- Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
- FISH Fluorescent in situ hybridization
- the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mende lian Inher i tance in Man (available online with Johns Hopkins Univer s Wetch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
- cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. Based on the resolution capabilities of current physical mapping and gene mapping technologies, cDNAs that are accurately mapped to disease-related chromosomal regions can be one of 50 to 500 potentially pathogenic genes (assuming
- the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
- suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
- the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
- the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
- a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
- these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
- the polypeptides of the invention can be used in combination with other therapeutic compounds.
- the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
- Human DNA mismatch repair protein 9 is administered in an amount effective to treat and / or prevent a specific indication.
- the amount and dose range of human DNA mismatch repair protein 9 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
The invention discloses a new kind of polypeptide - HOMO DNA mismatch repair protein 9 and polynucleotide encoding said polypeptide and a process for producing said polypeptide by DNA recombinant methods. It also discloses the method of applying the polypeptide for the treatment of various kinds of diseases, such as cancer, hemopathy, HIV infection, immune disease and phlogosis, antagonist and the therapeutic use of the polypeptide is also disclosed. In addition, it refers to the use of polynucleotide encoding said HOMO DNA mismatch repair protein 9.
Description
N01/00343 一种新的多肽一一人 DM错配修复蛋白 9和编码这种多肽的多核苷酸 技术领域 N01 / 00343 A new polypeptide one-to-one DM mismatch repair protein 9 and a polynucleotide encoding the polypeptide TECHNICAL FIELD
本发明属于生物技术领域,具体地说,本发明描述了一种新的多肽一一人 DNA 错配修复蛋白 9 , 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核苷酸 和多肽的制备方法和应用。 背景技术 The present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide-human DNA mismatch repair protein 9 and a polynucleotide sequence encoding the polypeptide. The invention also relates to a method and application for preparing the polynucleotide and polypeptide. Background technique
DNA聚合酶偶尔能催化不能与模板形成氢键的错误碱基的掺入。 这种复制 错误通常由 DNA聚合酶 3' —一 5, 的校对功能立即进行纠正, 然后才开始下一个 核苷酸的聚合反应。 然而在某些特殊条件下, DNA聚合酶将极少数的错误碱基 遗留在 DNA链上而没有进行纠正。 据估计, 这种错误的频率为 10- 8。 然而, 人们 实际测量到的突变频率为 10— ie或 10- u。 由于 DNA的完整性和精确性是生命的根本 所在, 因而细胞中演化出另一个修复系统, 叫做错配修复系统, 给予第二次纠 正错误的机会。 (Modr ich P. Annu. Rev. Biochem. 56: 435-466 (1987) ) 腺嘌呤的曱基化则是错配修复的识别标志, 根据曱基化带来的特征, 错配 修复系统就可以识别出模板链和新生链, 从而纠正新生上的不配对碱基, 保证 了高度的精确性和完整性。 DNA polymerase can occasionally catalyze the incorporation of the wrong base that cannot form a hydrogen bond with the template. This replication error is usually corrected immediately by the DNA polymerase 3'-5 proofreading function before the next nucleotide polymerization reaction begins. However, under certain conditions, DNA polymerases leave very few erroneous bases on the DNA strand without correction. It is estimated that the frequency of such errors is 10-8. However, the mutation frequency that people actually measure is 10- ie or 10- u . Because the integrity and accuracy of DNA is fundamental to life, another repair system, called the mismatch repair system, has evolved in cells, giving a second chance to correct errors. (Modr ich P. Annu. Rev. Biochem. 56: 435-466 (1987)) The adenine adenylation is the identification mark of mismatch repair. According to the characteristics brought by aberranty, the mismatch repair system can The template strand and the nascent strand are identified, thereby correcting unpaired bases on the nascent, ensuring a high degree of accuracy and integrity.
DM错配修复蛋白是错配修复系统中重要的组成蛋白, DM错配修复蛋白在 很多生物体内都有存在, 例如, 大肠杆菌的 mutL蛋白; 链球菌的 hexB蛋白; 酵 母的 PMS1和 MLH1蛋白; 人的 MLH1 ( MutL homologue-1 ) 蛋白等等。 DM mismatch repair protein is an important component protein in the mismatch repair system. DM mismatch repair protein exists in many organisms, for example, mutL protein of E. coli; hexB protein of streptococcus; PMS1 and MLH1 proteins of yeast; Human MLH1 (MutL homologue-1) protein and so on.
所有的 DNA 错配修复蛋白均含有一保守的区域, 该区域含有以下一致的序 列片段: G-F- R-G-E-A-L, 在众多不同生物的 DNA错配修复蛋白中均含有这一序 列片段, 这一结构基序在蛋白发挥正常生理学功能的过程中起着极为重要的作 用。 对酵母的 DNA错配修复蛋白研究的结果显示, Pro640如果变为 Leu则会造 成蛋白功能的完全失去。 DNA 错配修复蛋白具体的结构及其与功能的关系请参 阅相关文献。 ( Gene 1998 Jun 15; 213 (1-2): 159-67 ) All DNA mismatch repair proteins contain a conserved region that contains the following consistent sequence fragments: GF-RGEAL, this sequence fragment is contained in the DNA mismatch repair proteins of many different organisms, and this structural motif It plays a very important role in the process of protein's normal physiological function. The results of research on yeast DNA mismatch repair protein showed that if Pro640 becomes Leu, it will cause complete loss of protein function. For the specific structure of DNA mismatch repair protein and its relationship with function, please refer to related literature. (Gene 1998 Jun 15; 213 (1-2): 159-67)
根据巳有的研究, 如果编码人 DM错配修复蛋白的基因发生突变, 则会导 致可遗传的 non - po lypos i s colorecta l cancer (匿 CC) 。 ( Gene 1998 Jun 15; 21 3 (l-2) : 159-67 ) According to some studies, if the gene encoding the human DM mismatch repair protein is mutated, it can lead to heritable non-po lypos i s colorecta l cancer (CC). (Gene 1998 Jun 15; 21 3 (l-2): 159-67)
最近的研究结果显示, DNA 错配修复蛋白(DNA mi sma tch repa i r protein 画 R)与一种新的人核酸外切酶有很强的相互作用, 我们可以推测, DNA 修复蛋
白是与很多蛋白结合在一起对 DNA 的修复起作用的。 (Cancer Re s 1998 Oct 15; 58 (20) : 4537-42 ) Recent research results show that DNA mismatch repair protein (DNA mi sma tch repa ir protein drawing R) has a strong interaction with a new human exonuclease. We can speculate that the DNA repair protein White works with many proteins to repair DNA. (Cancer Res 1998 Oct 15; 58 (20): 4537-42)
也有研究表明, DNA 错配修复蛋白在细胞周期过程中, 对于 DNA 复制中可 能出现的错误碱基的掺入有着重要的修复作用, 从而保证了细胞有丝分裂过程 遗传的忠实性。 ( Cancer Res 1998 Feb 15; 58 (4) : 767-78 ) Studies have also shown that DNA mismatch repair proteins play an important role in repairing the incorporation of wrong bases that may occur in DNA replication during the cell cycle, thereby ensuring the genetic loyalty of the cell mitosis process. (Cancer Res 1998 Feb 15; 58 (4): 767-78)
通过基因芯片的分析发现, 在胸腺、 睾丸、 肌肉、 脾脏、 肺、 皮肤、 甲状 腺、 肝、 PMA+的 Ecv304细胞株、 PMA -的 Ecv304细胞株、 未饥饿的 L02细胞株、 砷刺激 1小时的 L02细胞株、 砷刺激 6小时的 L02细胞株前列腺、 心、 肺癌、 胎膀胱、 胎小肠、 胎大肠、 胎胸腺、 胎肌、 胎肝、 胎肾、 胎脾、 胎脑、 胎肺以 及胎心中, 本发明的多肽的表达谱与人 DM 错配修复蛋白 11 的表达谱非常近 似, 因此二者功能也可能类似。 本发明被命名为人 DNA错配修复蛋白 9„ Gene chip analysis revealed that in the thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L0 2 cell line, arsenic stimulated for 1 hour L02 cell line, arsenic stimulated L02 cell line for 6 hours prostate, heart, lung cancer, fetal bladder, fetal small intestine, fetal large intestine, fetal thymus, fetal muscle, fetal liver, fetal kidney, fetal spleen, fetal brain, fetal lung and fetal heart However, the expression profile of the polypeptide of the present invention is very similar to the expression profile of human DM mismatch repair protein 11, so the functions of the two may also be similar. The invention is named as human DNA mismatch repair protein 9
由于如上所述人 DNA 错配修复蛋白 9 蛋白在调节细胞分裂和胚胎发育等机 体重要功能中起重要作用, 而且相信这些调节过程中涉及大量的蛋白, 因而本 领域中一直需要鉴定更多参与这些过程的人 DNA错配修复蛋白 9蛋白, 特别是 鉴定这种蛋白的氨基酸序列。 新人 DNA错配修复蛋白 9 蛋白编码基因的分离也 为研究确定该蛋白在健康和疾病状态下的作用提供了基础。 这种蛋白可能构成 开发疾 1病诊断和 /或治疗药的基础, 因此分离其编码 DNA是非常重要的。 发明的公开 As mentioned above, the human DNA mismatch repair protein 9 protein plays an important role in regulating important functions of the body, such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulatory processes, so there has been a need in the art to identify more involved in these The process of human DNA mismatch repair protein 9 protein, especially the amino acid sequence of this protein is identified. Isolation of the newcomer DNA mismatch repair protein 9 protein encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding DNA. Disclosure of invention
本发明的一个目的是提供分离的新的多肽一一人 DNA 错配修复蛋白 9 以及 其片段、 类似物和衍生物。 It is an object of the present invention to provide isolated novel polypeptides-human DNA mismatch repair protein 9 and fragments, analogs and derivatives thereof.
本发明的另一个目的是提供编码该多肽的多核苷酸。 Another object of the invention is to provide a polynucleotide encoding the polypeptide.
本发明的另一个目的是提供含有编码人 DNA 错配修复蛋白 9 的多核苷酸的 重组载体。 Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a human DNA mismatch repair protein 9.
本发明的另一个目的是提供含有编码人 MA 错配修复蛋白 9 的多核苷酸的 基因工程化宿主细胞。 Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding human MA mismatch repair protein 9.
本发明的另一个目的是提供生产人 DNA错配修复蛋白 9的方法。 Another object of the present invention is to provide a method for producing human DNA mismatch repair protein 9.
本发明的另一个目的是提供针对本发明的多肽一一人 DNA 错配修复蛋白 9 的抗体。 Another object of the present invention is to provide antibodies against the polypeptide-to-human DNA mismatch repair protein 9 of the present invention.
本发明的另一个目的是提供了针对本发明多肽一一人 DNA错配修复蛋白 9的 模拟化合物、 拮抗剂、 激动剂、 抑制剂。 Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide-to-human DNA mismatch repair protein 9 of the present invention.
本发明的另一个目的是提供诊断治疗与人 DNA 错配修复蛋白 9 异常相关的
疾病的方法。 Another object of the present invention is to provide diagnostic treatments related to human DNA mismatch repair protein 9 abnormalities. Methods of disease.
本发明涉及一种分离的多肽, 该多肽是人源的, 它包含: 具有 SEQ ID No. 2 氨基酸序列的多肽、 或其保守性变体、 生物活性片段或衍生物。 较佳地, 该多 肽是具有 SEQ ID NO: 2氨基酸序列的多肽。 The present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof. Preferably, the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
. 本发明还涉及一种分离的多核苷酸, 它包含选自下组的一种核苷酸序列或 其变体: The present invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
(a)编码具有 SEQ ID No. 2氨基酸序列的多肽的多核苷酸; (a) a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID No. 2;
(b)与多核苷酸(a)互补的多核苷酸; (b) a polynucleotide complementary to the polynucleotide (a);
(c)与(a)或(b)的多核苷酸序列具有至少 70%相同性的多核苷酸。 (c) A polynucleotide having at least 70% identity to a polynucleotide sequence of (a) or (b).
更佳地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ ID NO: 1 中 More preferably, the sequence of the polynucleotide is one selected from the group consisting of: (a) having SEQ ID NO: 1
631-873位的序列; 和(b)具有 SEQ ID NO: 1中 1-1486位的序列。 A sequence of positions 631-873; and (b) a sequence of positions 1-1486 in SEQ ID NO: 1.
本发明另外涉及一种含有本发明多核苷酸的载体, 特别是表达载体; 一种 用该载体遗传工程化的宿主细胞, 包括转化、 转导或转染的宿主细胞; 一种包 括培养所述宿主细胞和回收表达产物的制备本发明多肽的方法。 The present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
本发明还涉及一种能与本发明多肽特异性结合的抗体。 The invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
本发明还涉及一种筛选的模拟、 激活、 拮抗或抑制人 DNA错配修复蛋白 9蛋 白活性的化合物的方法, 其包括利用本发明的多肽。 本发明还涉及用该方法获 得的化合物。 The invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of human DNA mismatch repair protein 9 protein, which comprises utilizing the polypeptide of the invention. The invention also relates to compounds obtained by this method.
本发明还涉及一种体外检测与人 DM错配修复蛋白 9蛋白异常表达相关的疾 病或疾病易感性的方法, 包括检测生物样品中所述多肽或其编码多核苷酸序列中 的突变, 或者检测生物样品中本发明多肽的量或生物活性。 The invention also relates to a method for detecting a disease or disease susceptibility related to abnormal expression of human DM mismatch repair protein 9 protein in vitro, which comprises detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting The amount or biological activity of a polypeptide of the invention in a biological sample.
本发明也涉及一种药物组合物, 它含有本发明多肽或其模拟物、 激活剂、 拮 抗剂或抑制剂以及药学上可接受的载体。 The invention also relates to a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
本发明还涉及本发明的多肽和 /或多核苷酸在制备用于治疗癌症、 发育性 疾病或免疫性疾病或其它由于人 DNA错配修复蛋白 9表达异常所引起疾病的药 物的用途。 The present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human DNA mismatch repair protein 9.
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。 Other aspects of the invention will be apparent to those skilled in the art from the disclosure of the techniques herein.
本说明书和权利要求书中使用的下列术语除非特别说明具有如下的含义: "核酸序列" 是指寡核苷酸、 核苷酸或多核苷酸及其片段或部分, 也可以 指基因组或合成的 DM或 RM, 它们可以是单链或双链的, 代表有义链或反义链。 类似地, 术语 "氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及其片段或部
分。 当本发明中的 "氨基酸序列" 涉及一种天然存在的蛋白质分子的氨基酸序 列时, 这种 "多肽" 或 "蛋白质" 不意味着将氨基酸序列限制为与所述蛋白质 分子相关的完整的天然氨基酸。 The following terms used in this specification and claims have the following meanings unless specifically stated: "Nucleic acid sequence" refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DM or RM, they can be single-stranded or double-stranded, representing the sense or antisense strand. Similarly, the term "amino acid sequence" refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof Minute. When the "amino acid sequence" in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide" or "protein" does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
蛋白质或多核苷酸 "变体" 是指一种具有一个或多个氨基酸或核苷酸改变 的氨基酸序列或编码它的多核苷酸序列。 所述改变可包括氨基酸序列或核苷酸 序列中氨基酸或核苷酸的缺失、 插入或替换。 变体可具有 "保守性" 改变, 其 中替换的氨基酸具有与原氨基酸相类似的结构或化学性质, 如用亮氨酸替换异 亮氨酸。 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。 A "variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it. The changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence. Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
"缺失" 是指在氨基酸序列或核苷酸序列中一个或多个氨基酸或核苷酸的 缺失。 "Deletion" refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
"插入" 或 "添加" 是指在氨基酸序列或核苷酸序列中的改变导致与天然存在 的分子相比, 一个或多个氨基酸或核苷酸的增加。 "替换" 是指由不同的氨基酸或 核苷酸替换一个或多个氨基酸或核苷酸。 "Insertion" or "addition" refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule. "Replacement" refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
"生物活性" 是指具有天然分子的结构、 调控或生物化学功能的蛋白质。 类似 地, 术语 "免疫学活性" 是指天然的、 重组的或合成蛋白质及其片段在合适的动 物或细胞中诱导特定免疫反应以及与特异性抗体结合的能力。 "Biological activity" refers to a protein that has the structure, regulation, or biochemical function of a natural molecule. Similarly, the term "immunologically active" refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
"激动剂" 是指当与人 DNA错配修复蛋白 9结合时, 一种可引起该蛋白质改 变从而调节该蛋白质活性的分子。 激动剂可以包括蛋白质、 核酸、 碳水化合物 或任何其它可结合人 DNA错配修复蛋白 9的分子。 An "agonist" refers to a molecule that, when combined with human DNA mismatch repair protein 9, causes a change in the protein to regulate the activity of the protein. An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind human DNA mismatch repair protein 9.
"拮抗剂" 或 "抑制物" 是指当与人 DNA错配修复蛋白 9结合时, 一种可封 闭或调节人 DNA错配修复蛋白 9的生物学活性或免疫学活性的分子。 拮抗剂和抑 制物可以包括蛋白质、 核酸、 碳水化合物或任何其它可结合人 DNA错配修复蛋 白 9的分子。 An "antagonist" or "inhibitor" refers to a molecule that can block or regulate the biological or immunological activity of human DNA mismatch repair protein 9 when combined with human DNA mismatch repair protein 9. Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates or any other molecule that can bind to human DNA mismatch repair protein 9.
"调节" 是指人 DNA错配修复蛋白 9的功能发生改变, 包括蛋白质活性的升 高或降低、 结合特性的改变及人 Di 错配修复蛋白 9的任何其它生物学性质、 功 能或免疫性质的改变。 "Regulation" refers to a change in the function of human DNA mismatch repair protein 9, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of human Di mismatch repair protein 9. change.
"基本上纯1'是指基本上不含天然与其相关的其它蛋白、脂类、糖类或其它物质。 本领域的技术人员能用标准的蛋白质纯化技术纯化人 DNA错配修复蛋白 9。 基本上 纯的人 DNA错配修复蛋白 9在非还原性聚丙烯酰胺凝胶上能产生单一的主带。人 DNA 错配修复蛋白 9多肽的纯度可用氨基酸序列分析。 "Substantially pure 1 'means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated. Those skilled in the art can purify human DNA mismatch repair protein 9 using standard protein purification techniques. Basic The pure human DNA mismatch repair protein 9 can generate a single main band on a non-reducing polyacrylamide gel. The purity of the human DNA mismatch repair protein 9 polypeptide can be analyzed by amino acid sequence.
"互补的" 或 "互补" 是指在允许的盐浓度和温度条件下通过碱基配对的 多核苷酸天然结合。 例如, 序列 "C- T- G- A" 可与互补的序列 "G- A- C- T" 结合。
两个单链分子之间的互补可以是部分的或全部的。 核酸链之间的互补程度对于 核酸链之间杂交的效率及强度有明显影响。 "Complementary" or "complementary" refers to polynucleotides that naturally bind through base-pairing under conditions of acceptable salt concentration and temperature. For example, the sequence "C-T-G-A" can be combined with the complementary sequence "G-A-C-T". The complementarity between two single-stranded molecules may be partial or complete. The degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
"同源性" 是指互补的程度, 可以是部分同源或完全同源。 "部分同源" 是指一种部分互补的序列, 其至少可部分抑制完全互补的序列与靶核酸的杂 交。 这种杂交的抑制可通过在严格性程度降低的条件下进行杂交 (Southern印 迹或 Northern印迹等) 来检测。 基本上同源的序列或杂交探针可竟争和抑制完 全同源的序列与靶序列在的严格性程度降低的条件下的结合。 这并不意味严格 性程度降低的条件允许非特异性结合, 因为严格性程度降低的条件要求两条序 列相互的结合为特异性或选择性相互作用。 "Homology" refers to the degree of complementarity and can be partially homologous or completely homologous. "Partial homology" refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern imprinting or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that conditions with reduced stringency allow non-specific binding, because conditions with reduced stringency require that the two sequences bind to each other as either specific or selective interactions.
"相同性百分率" 是指在两种或多种氨基酸或核酸序列比较中序列相同或 相似的百分率。 可用电子方法测定相同性百分率, 如通过 MEGALIGN程序 ( Lasergene sof tware package, DNASTAR, Inc. , Madi son Wi s. ) 。 MEGALIGN 程序可根据不同的方法如 Clus ter法比较两种或多种序列(Higg ins , D. G. 和 P. M. Sharp (1988) Gene 73: 237-244) 0 Clus ter法通过检查所有配对之间的距 离将各组序列排列成簇。 然后将各簇以成对或成组分配。 两个氨基酸序列如序 列 A和序列 B之间的相同性百分率通过下式计算: 序列 A与序列 B之间匹配的残基个数 X 1 00 序列 A的残基数一序列 A中间隔残基数一序列 B中间隔残基数 也可以通过 Clus ter法或用本领域周知的方法如 Jotun Hein 测定核酸序列 之间的相同性百分率(Hein J., (1990) Methods in emzumology 183: 625-645) 0 "相似性" 是指氨基酸序列之间排列对比时相应位置氨基酸残基的相同或 保守性取代的程度。 用于保守性取代的氨基酸例如, 带负电荷的氨基酸可包括 天冬氨酸和谷氨酸; 带正电荷的氨基酸可包括赖氨酸和精氨酸; 具有不带电荷 的头部基团有相似亲水性的氨基酸可包括亮氨酸、 异亮氨酸和缬氨酸; 甘氨酸 和丙氨酸; 天冬酰胺和谷氨酰胺; 丝氨酸和苏氨酸; 苯丙氨酸和酪氨酸。 "Percent identity" refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Clus ter method (Higg ins, DG and PM Sharp (1988) Gene 73: 237-244). 0 The Clus ter method compares each pair by checking the distance between all pairs. Group sequences are arranged in clusters. The clusters are then assigned in pairs or groups. The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence A and sequence X 1 00 The number of residues in sequence A-the interval residues in sequence A The number of spacer residues in sequence B can also be determined by Clus ter method or using methods known in the art such as Jotun Hein. The percent identity between nucleic acid sequences (Hein J., (1990) Methods in emzumology 183: 625-645 ) 0 "Similarity" refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences. Amino acids used for conservative substitutions, for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
"反义" 是指与特定的 DNA或 RNA序列互补的核苷酸序列。 "反义链" 是指 与 "有义链" 互补的核酸链。 "Antisense" refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence. "Antisense strand" refers to a nucleic acid strand that is complementary to a "sense strand."
"衍生物" 是指 HFP或编码其的核酸的化学修饰物。 这种化学修饰物可以是 用烷基、 酰基或氨基替换氢原子。 核酸衍生物可编码保留天然分子的主要生物
学特性的多肽。 "Derivative" refers to a chemical modification of HFP or a nucleic acid encoding it. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives encode major organisms that retain natural molecules Peptides with chemical properties.
"抗体" 是指完整的抗体分子及其片段, 如 Fa、 ?(^') 2及? , 其能特异 性结合人 DNA错配修复蛋白 9的抗原决定簇。 "Antibody" refers to a complete antibody molecule and its fragments, such as Fa,? (^ ') 2 and? It can specifically bind to the epitope of human DNA mismatch repair protein 9.
"人源化抗体" 是指非抗原结合区域的氨基酸序列被替换变得与人抗体更 为相似, 但仍保留原始结合活性的抗体。 A "humanized antibody" refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
"分离的" 一词指将物质从它原来的环境 (例如, 若是自然产生的就指其 天然环境) 之中移出。 比如说, 一个自然产生的多核苷酸或多肽存在于活动物 中就是没有被分离出来, 但同样的多核苷酸或多肽同一些或全部在自然系统中 与之共存的物质分开就是分离的。 这样的多核苷酸可能是某一载体的一部分, 也可能这样的多核苷酸或多肽是某一组合物的一部分。 既然载体或组合物不是 它天然环境的成分, 它们仍然是分离的。 The term "isolated" refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system. Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天 然的物质, 原始环境即是天然环境) 。 如活体细胞内的天然状态下的多聚核苷 酸和多肽是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存 在的其他物质中分开, 则为分离纯化的。 As used herein, "isolated" refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment). For example, polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
如本文所用, "分离的人 MA错配修复蛋白 9" 是指人 DM错配修复蛋白 9 基本上不含天然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技术 人员能用标准的蛋白质纯化技术纯化人 DNA 错配修复蛋白 9。 基本上纯的多肽 在非还原聚丙烯酰胺凝胶上能产生单一的主带。 人 DNA错配修复蛋白 9 多肽的 纯度能用氨基酸序列分析。 As used herein, "isolated human MA mismatch repair protein 9" means that human DM mismatch repair protein 9 is substantially free of other proteins, lipids, sugars, or other substances that are naturally associated with it. Those skilled in the art can purify human DNA mismatch repair protein 9 using standard protein purification techniques. Substantially pure polypeptides produce a single main band on a non-reducing polyacrylamide gel. The purity of the human DNA mismatch repair protein 9 peptide can be analyzed by amino acid sequence.
本发明提供了一种新的多肽一一人 DNA错配修复蛋白 9 , 其基本上是由 SEQ ID NO: 2所示的氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多肽、 合成 多肽, 优选重组多肽。 本发明的多肽可以是天然纯化的产物, 或是化学合成的产 物, 或使用重组技术从原核或真核宿主(例如, 细菌、 酵母、 高等植物、 昆虫和哺 乳动物细胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化 的, 或可以是非糖基化的。 本发明的多肽还可包括或不包括起始的甲硫氨酸残基。 The present invention provides a novel polypeptide-to-human DNA mismatch repair protein 9 which is basically composed of the amino acid sequence shown in SEQ ID NO: 2. The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide. The polypeptides of the invention may be naturally purified products, or chemically synthesized products, or produced using recombinant techniques from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells). Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
本发明还包括人 DM错配修复蛋白 9 的片段、 衍生物和类似物。 如本发明 所用, 术语 "片段" 、 "衍生物" 和 "类似物" 是指基本上保持本发明的人 DNA 错配修复蛋白 9 相同的生物学功能或活性的多肽。 本发明多肽的片段、 衍生物 或类似物可以是: ( I ) 这样一种, 其中一个或多个氨基酸残基被保守或非保 守氨基酸残基 (优选的是保守氨基酸残基) 取代, 并且取代的氨基酸可以是也 可以不是由遗传密码子编码的; 或者 ( Π ) 这样一种, 其中一个或多个氨基酸
残基上的某个基团被其它基团取代包含取代基; 或者 ( Π Ι ) 这样一种, 其中 成熟多肽与另一种化合物 (比如延长多肽半衰期的化合物, 例如聚乙二醇) 融 合; 或者 (IV ) 这样一种, 其中附加的氨基酸序列融合进成熟多肽而形成的多 肽序列 (如前导序列或分泌序列或用来纯化此多肽的序列或蛋白原序列) 通过 本文的阐述, 这样的片段、 衍生物和类似物被认为在本领域技术人员的知识范 围之内。 The invention also includes fragments, derivatives and analogs of human DM mismatch repair protein 9. As used in the present invention, the terms "fragment", "derivative" and "analog" refer to a polypeptide that substantially maintains the same biological function or activity of the human DNA mismatch repair protein 9 of the present invention. A fragment, derivative, or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution The amino acid may or may not be encoded by the genetic codon; or (Π) such one or more of the amino acids A group on a residue is substituted by another group to include a substituent; or (II) a method in which the mature polypeptide is fused with another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); Or (IV) a polypeptide sequence (such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protease sequence) formed by fusing an additional amino acid sequence into a mature polypeptide, as described herein, such a fragment , Derivatives and analogs are considered to be within the knowledge of those skilled in the art.
本发明提供了分离的核酸 (多核苷酸) , 基本由编码具有 SEQ ID NO: 2 氨 基酸序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID N0: 1 的 核苷酸序列。 本发明的多核苷酸是从人胎脑组织的 cDNA 文库中发现的。 它包 含的多核苷酸序列全长为 1486个碱基, 其开放读框 631- 873编码了 80个氨基 酸。 根据基因芯片表达谱比较发现, 此多肽与人 DNA 错配修复蛋白 11 有相似 的表达谱, 可推断出该人 DNA错配修复蛋白 9具'有人 DNA错配修复蛋白 1 1相 似的功能。 The present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2. The polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1. The polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a full-length polynucleotide sequence of 1486 bases, and its open reading frames 631-873 encode 80 amino acids. According to the comparison of gene chip expression profiles, it was found that this peptide has a similar expression profile with human DNA mismatch repair protein 11, and it can be inferred that the human DNA mismatch repair protein 9 has a function similar to that of human DNA mismatch repair protein 1 1.
本发明的多核苷酸可以是 DNA形式或是 RNA形式。 DNA形式包括 cDNA、 基 因组 DM或人工合成的 DNA。 DNA可以是单链的或是双链的。 DM可以是编码链 或非编码链。 编码成熟多肽的编码区序列可以与 SEQ ID N0: 1 所示的编码区序 列相同或者是简并的变异体。 如本发明所用, "简并的变异体" 在本发明中是 指编码具有 SEQ ID NO: 2 的蛋白质或多肽, 但与 SBQ ID NO: 1 所示的编码区序 列有差别的核酸序列。 The polynucleotide of the present invention may be in the form of DNA or RNA. DNA forms include cDNA, genomic DM, or synthetic DNA. DNA can be single-stranded or double-stranded. DM can be a coding chain or a non-coding chain. The coding region sequence encoding the mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant. As used herein, a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but having a sequence different from the coding region shown in SBQ ID NO: 1 in the present invention.
编码 SEQ ID N0: 2的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序列; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附 加编码序列) 以及非编码序列。 The polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附加 编码和 /或非编码序列的多核苷酸。 The term "polynucleotide encoding a polypeptide" refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨基 酸序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以是天 然发生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取代变异 体、 缺失变异体和插入变异体。 如本领域所知的, 等位变异体是一个多核苷酸 的替换形式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质 上改变其编码的多肽的功能。 The invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention. Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants. As known in the art, an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有至 少 50% , 优选具有 70%的相同性) 。 本发明特别涉及在严格条件下与本发明所
述多核苷酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低 离子强度和较高温度下的杂交和洗脱, 如 0. 2xSSC, 0. 1%SDS, 6(TC ;或(2)杂交 时加用变性剂, 如 50% (v/v)甲酰胺, 0. 1%小牛血清 / 0. l%Fico l l , 42 °C等; 或(3) 仅在两条序列之间的相同性至少在 95%以上,更好是 97%以上时才发生杂交。 并 且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO: 2 所示的成熟多肽有相同的 生物学功能和活性。 The invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences). The present invention particularly relates to the present invention under strict conditions. The polynucleotide is a polynucleotide that can hybridize. In the present invention, "strict conditions" means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% Fico ll, 42 ° C, etc .; or (3) only between the two sequences Hybridization occurs only when the identity is at least 95%, and more preferably 97%. Moreover, the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
本发明还涉及与以上所描述的序列杂交的核酸片段。 如本发明所用, "核 酸片段"的长度至少含 10个核苷酸, 较好是至少 20-30个核苷酸, 更好是至少 50-60 个核苷酸, 最好是至少 100 个核苷酸以上。 核酸片段也可用于核酸的扩 增技术(如 PCR)以确定和 /或分离编码人 DNA错配修复蛋白 9的多核苷酸。 The invention also relates to nucleic acid fragments that hybridize to the sequences described above. As used in the present invention, a "nucleic acid fragment" contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 cores. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding human DNA mismatch repair protein 9.
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的编码人 DNA 错配修复蛋白 9 的特异的多核苷酸序列能用多种方法 获得。 例如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不局限 于: 1)用探针与基因组或 cDM 文库杂交以检出同源的多核苷酸序列, 和 2)表 达文库的抗体筛选以检出具有共同结构特征的克隆的多核苷酸片段。 The polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity. The specific polynucleotide sequence encoding the human DNA mismatch repair protein 9 of the present invention can be obtained by various methods. For example, polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or CDM libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
本发明的 DM片段序列也能用下列方法获得: 1)从基因组 DNA分离双链 DNA 序列; 2)化学合成 DM序列以获得所述多肽的双链 DM。 The DM fragment sequence of the present invention can also be obtained by the following methods: 1) separating a double-stranded DNA sequence from genomic DNA; 2) chemically synthesizing the DM sequence to obtain the double-stranded DM of the polypeptide.
上述提到的方法中, 分离基因组 DNA 最不常用。 DM 序列的直接化学合成 是经常选用的方法。 更经常选用的方法是 cDM序列的分离。 分离感兴趣的 cDM 的标准方法是从高表达该基因的供体细胞分离 mRNA并进行逆转录, 形成质粒或 噬菌体 cDM 文库。 提取 mRM 的方法巳有多种成熟的技术, 试剂盒也可从商业 途径获得(Q i agene)。 而构建 cDNA 文库也是通常的方法(Sambrook, et a l. , Molecular Cloning, A Labora tory Manua l , Cold Spr ing Harbor Labora tory. New York, 1989)。 还可得到商业供应的 cDNA 文库, 如 Clontech 公司的不同 cDNA 文库。 当结合使用聚合酶反应技术时, 即使极少的表达产物也能克隆。 Of the methods mentioned above, genomic DNA isolation is the least commonly used. Direct chemical synthesis of DM sequences is often the method of choice. The more commonly used method is the separation of cDM sequences. The standard method for isolating the cDM of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDM library. There are many mature techniques for extracting mRM, and kits are also commercially available (Q i agene). The construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Labora tory Manua, Cold Sprue Harbor Labora tory. New York, 1989). Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
可用常规方法从这些 cDNA 文库中筛选本发明的基因。 这些方法包括(但不 限于): (l) DM-DNA或 DNA-RNA杂交; (2)标志基因功能的出现或丧失; (3)测定 人 DNA错配修复蛋白 9的转录本的水平; (4)通过免疫学技术或测定生物学活性, 来检测基因表达的蛋白产物。 上述方法可单用> 也可多种方法联合应用。 The genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DM-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determining the level of human DNA mismatch repair protein 9 transcripts; ( 4) Detecting gene-expressed protein products by immunological techniques or by measuring biological activity. The above methods can be used alone or in combination.
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部分同 源, 其长度至少 10个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个核苷 酸, 最好是至少 100个核苷酸。 此外, 探针的长度通常在 2000个核苷酸之内,
43 较佳的为 1000个核苷酸之内。 此处所用的探针通常是在本发明的基因序列信息 的基础上化学合成的 DNA序列。 本发明的基因本身或者片段当然可以用作探针。 DNA探针的标记可用放射性同位素, '荧光素或酶(如碱性磷酸酶)等。 In the method (1), the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides. In addition, the length of the probe is usually within 2000 nucleotides. 43 is preferably within 1000 nucleotides. The probe used herein is generally a DNA sequence chemically synthesized based on the gene sequence information of the present invention. The genes or fragments of the present invention can of course be used as probes. DNA probes can be labeled with radioisotopes, fluorescein or enzymes (such as alkaline phosphatase).
在第(4)种方法中, 检测人 DNA错配修复蛋白 9基因表达的蛋白产物可用免 疫学技术如 Wes tern印迹法, 放射免疫沉淀法, 酶联免疫吸附法(ELISA)等。 In the (4) method, immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein products of human DNA mismatch repair protein 9 gene expression.
应 用 PCR 技 术 扩 增 DNA/MA 的 方 法 (Sa ik i , et a l. Science 1985; 230: 1350-1354)被优选用于获得本发明的基因。 特别是很难从文库中得到 全长的 cDNA 时, 可优选使用 RACE法(RACE - cMA末端快速扩增法), 用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择, 并可用常 规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RNA片段。 A method (Saikii, et al. Science 1985; 230: 1350-1354) using DNA technology to amplify DNA / MA by PCR is preferably used to obtain the gene of the present invention. In particular, when it is difficult to obtain a full-length cDNA from a library, the RACE method (RACE-cMA terminal rapid amplification method) may be preferably used. The primers for PCR may be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods. The amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
如上所述得到的本发明的基因, 或者各种 DNA 片段等的多核苷酸序列可用 常规方法如双脱氧链终止法(Sanger et a l. PNAS , 1977 , 74: 5463- 5467)测定。 这类多核苷酸序列测定也可用商业测序试剂盒等。为了获得全长的 cDNA序列, 测 序需反复进行。 有时需要测定多个克隆的 cDNA 序列, 才能拼接成全长的 cDNA 序列。 The polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, the sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或直接 用人 DNA错配修复蛋白 9 编码序列经基因工程产生的宿主细胞, 以及经重组技 术产生本发明所述多肽的方法。 The present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using human DNA mismatch repair protein 9 coding sequence, and a recombinant technology to produce the polypeptide of the present invention. method.
本发明中, 编码人 DNA错配修复蛋白 9 的多核苷酸序列可插入到载体中, 以构成含有本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知的细 菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆' 转录病毒或其它载体。 在本发明中适用的载体包括但不限于: 在细菌中表达的 基于 T7 启动子的表达载体(Rosenberg, e t a l. Gene, 1987, 56: 125) ; 在哺乳 动物细胞中表达的 pMSXND 表达载体(Lee and Na thans , J Bio Chera. 263: 3521 , 1988)和在昆虫细胞中表达的来源于杆状病毒的载体。 总之, 只要能 在宿主体内复制和稳定, 任何质粒和载体都可以用于构建重组表达载体。 表达 载体的一个重要特征是通常含有复制起始点、 启动子、 标记基因和翻译调控元 件。 In the present invention, a polynucleotide sequence encoding a human DNA mismatch repair protein 9 can be inserted into a vector to form a recombinant vector containing the polynucleotide of the present invention. The term "vector" refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art. Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, eta l. Gene, 1987, 56: 125) expressed in bacteria; pMSXND expression vectors expressed in mammalian cells ( Lee and Na thans, J Bio Chera. 263: 3521, 1988) and baculovirus-derived vectors expressed in insect cells. In short, as long as it can be replicated and stabilized in the host, any plasmid and vector can be used to construct a recombinant expression vector. An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
本领域的技术人员熟知的方法能用于构建含编码人 DNA错配修复蛋白 9 的 DNA 序列和合适的转录 /翻译调控元件的表达载体。 这些方法包括体外重组 DM 技术、 DNA合成技术、 体内重组技术等(Sambroook, et al . Molecular Cloning, a Laboratory Manua l , cold Spr ing Harbor Labora tory. New York, 1989) 。
所述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 l ac或 t rp启动子; λ噬菌体的 PL启 动子; 真核启动子包括 CMV 立即早期启动子、 HSV 胸苷激酶启动子、 早期和晚 期 SV40 启动子、 反转录病毒的 LTRs 和其它一些已知的可控制基因在原核细胞 或真核细胞或其病毒中表达的启动子。 表达载体还包括翻译起始用的核糖体结 合位点和转录终止子等。 在载体中插入增强子序列将会使其在高等真核细胞中 的转录得到增强。 增强子是 DNA表达的顺式作用因子, 通常大约有 10到 300个 碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚期 一侧的 100到 270个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤增强 子以及腺病毒增强子等。 Methods well known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human DNA mismatch repair protein 9 and suitable transcription / translation regulatory elements. These methods include in vitro recombinant DM technology, DNA synthesis technology, in vivo recombination technology, etc. (Sambroook, et al. Molecular Cloning, a Laboratory Manua, Cold Spooning Harbor Labora tory. New York, 1989). The DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the l ac or trp promoter of E. coli; the PL promoter of lambda phage; eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, and the early and late SV40 promoters Promoters, retroviral LTRs, and other known promoters that control the expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenovirus enhancers.
此外, 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择 转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗 性以及绿色荧光蛋白(GFP) , 或用于大肠杆菌的四环素或氨苄青霉素抗性等。 In addition, the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture. Fluorescent protein (GFP), or tetracycline or ampicillin resistance for E. coli.
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如启动 子、 增强子等) 和选择性标记基因。 Those of ordinary skill in the art will know how to select appropriate vector / transcription control elements (such as promoters, enhancers, etc.) and selectable marker genes.
本发明中, 编码人 DNA错配修复蛋白 9 的多核苷酸或含有该多核苷酸的重 组载体可转化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基因工 程化宿主细胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低等真核细 胞, 如酵母细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大肠 杆菌, 链霉菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如酵母; 植物细胞; 昆虫细胞如果蝇 S2或 Sf 9 ; 动物细胞如 CH0、 COS或 Bowes黑素瘤细胞等。 In the present invention, a polynucleotide encoding human DNA mismatch repair protein 9 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or a recombinant vector. The term "host cell" refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E. coli, Streptomyces; bacterial cells such as Salmonella typhimurium; fungal cells such as yeast; plant cells; insect cells such as fly S2 or Sf 9; animal cells such as CH0, COS or Bowes melanoma cells.
用本发明所述的 DNA序列或含有所述 DNA序列的重组载体转化宿主细胞可 用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆菌时, 能 吸收 DM 的感受态细胞可在指数生长期后收获, 用 CaC l 2法处理, 所用的步骤 在本领域众所周知。 可供选择的是用 MgC l2。 如果需要, 转化也可用电穿孔的方 法进行。 当宿主是真核生物, 可选用如下的 DNA 转染方法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包装等。 Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art. When the host is a prokaryote such as E. coli, competent cells capable of absorbing DM may be harvested after exponential growth phase, treated with CaC l 2 method used in steps well known in the art. The alternative is to use MgC l 2 . If necessary, transformation can also be performed by electroporation. When the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
通过常规的重组 DM 技术, 利用本发明的多核苷酸序列可用来表达或生产 重组的人 DNA错配修复蛋白 9 (Sc ience , 1984 ; 224: 1431)。 一般来说有以下步 骤: Using conventional recombinant DM technology, the polynucleotide sequence of the present invention can be used to express or produce recombinant human DNA mismatch repair protein 9 (Science, 1984; 224: 1431). Generally, the following steps are taken:
(1) .用本发明的编码人 人 DNA错配修复蛋白 9的多核苷酸 (或变异体), 或 用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2) .在合适的培养基中培养宿主细胞; (1) using the polynucleotide (or variant) encoding human human DNA mismatch repair protein 9 of the present invention, or transforming or transducing a suitable host cell with a recombinant expression vector containing the polynucleotide; (2) culturing host cells in a suitable medium;
(3) .从培养基或细胞中分离、 纯化蛋白质。 (3) Isolate and purify protein from culture medium or cells.
在步囅 ( 2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自各种 常规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适当 的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择的启动子, 将 细胞再培养一段时间。 In step (2), the medium used in the culture may be selected from various conventional mediums depending on the host cells used. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
在步骤 (3 ) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分泌到 细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法分 离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法包括但 并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层析、 离子交换层析、 高 效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。 附图的简要说明 In step (3), the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If desired, recombinant proteins can be separated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods. Brief description of the drawings
下列附图用于说明本发明的具体实施方案, 而不用于限定由权利要求书所 界定的本发明范围。 The following drawings are used to illustrate specific embodiments of the invention, but not to limit the scope of the invention as defined by the claims.
图 1是本发明人 DM错配修复蛋白 9和人 DNA错配修复蛋白 11的基因芯片表达 谱比较图。 上图是人 DNA错配修复蛋白 9的表达谱折方图, 下图是人 DNA错配修 复蛋白 11的表达谱折方图。 其中, 1表示胎肾, 2表示胎大肠, 3表示胎小肠, 4 表示胎肌, 5表示胎脑, 6表示胎膀胱, 7表示未饥饿 L02 , 8表示 L02+, l hr , As 3+, 9 表示 ECV304 PMA- , 10表示 ECV304 PMA+ , 11表示胎肝, 12表示正常肝, 1 3表示 甲状腺, 14表示皮肤, 15表示胎肺, 16表示肺, 17表示肺癌, 18表示胎脾, 19 表示脾脏, 20表示前列腺, 21表示胎心, 22表示心脏, 23表示肌肉, 24表示睾 丸, 25表示胎胸腺, 26表示胸腺。 FIG. 1 is a comparison diagram of gene chip expression profiles of DM mismatch repair protein 9 and human DNA mismatch repair protein 11 of the present invention. The upper graph is a graph of the expression profile of human DNA mismatch repair protein 9 and the lower graph is the graph of the expression profile of human DNA mismatch repair protein 11. Among them, 1 indicates fetal kidney, 2 indicates fetal large intestine, 3 indicates fetal small intestine, 4 indicates fetal muscle, 5 indicates fetal brain, 6 indicates fetal bladder, 7 indicates non-starved L02, 8 indicates L0 2 +, l hr, As 3+ , 9 means ECV304 PMA-, 10 means ECV304 PMA +, 11 means fetal liver, 12 means normal liver, 1 means thyroid, 14 means skin, 15 means fetal lung, 16 means lung, 17 means lung cancer, 18 means fetal spleen, 19 Indicates the spleen, 20 indicates the prostate, 21 indicates the fetal heart, 22 indicates the heart, 23 indicates muscle, 24 indicates testes, 25 indicates fetal thymus, and 26 indicates thymus.
图 2为分离的人 DM错配修复蛋白 9的聚丙烯酰胺凝胶电泳图(SDS- PAGE )。 Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of human DM mismatch repair protein 9 isolated.
9kDa为蛋白质的分子量。 箭头所指为分离出的蛋白条带。 实现本发明的最佳方式 9kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. The best way to implement the invention
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法,通常按照常规条件如 Sambrook等人, 分子克隆:实验室手册(New York: Co l d Spr ing Ha rbor Labora tory Pres s , 1989)中所述的条件, 或按照制造厂商所建
议的条件。 The present invention is further described below with reference to specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. The experimental methods without specific conditions in the following examples are generally in accordance with the general conditions such as those described in Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spr ing Harbor Labora tory Pres s, 1989) , Or as built by the manufacturer Agreed conditions.
实施例 1 : 人 DNA错配修复蛋白 9的克隆 Example 1: Cloning of human DNA mismatch repair protein 9
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 RNA。 用 Quik mRNA Isolat ion Ki t ( Qiegene 公司产品) 从总 RNA中分离 poly (A) niRNA 2ug poly (A) mRNA经逆转录 形成 cDM。用 Smart cDNA克隆试剂盒(购自 Clontech )将 cDM片段定向插入到 pBSK (+) 载体 (Clontech公司产品)的多克隆位点上, 转化 DH5 a , 细菌形成 cDNA文库。 用 Dye terminate cycle react ion sequencing ki t (Perkin-Elmer公司产品) 和 ABI 377自 动测序仪 (Perkin-Elmer公司)测定所有克隆的 5'和 3'末端的序列。 将测定的 cDNA序 '列与巳有的公共 DNA序列数据库 (Genebank ) 进行比较, 结果发现其中一个克隆 0480f 04的 cDNA序列为新的 DNA。 通过合成一系列引物对该克隆所含的插入 cDNA片段 进行双向测定。 结果表明, 0480f04克隆所含的全长 cDNA为 1486bp (如 Seq ID NO: 1 所示) , 从第 631bp至 873bp有一个 242bp的开放阅读框架 ( 0RF ) , 编码一个新的蛋 白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名为 pBS-0480f 04 , 编码的蛋白质命 名为人 DNA错配修复蛋白 9 实施例 2: 用 RT- PCR方法克隆编码人 DNA错配修复蛋白 9的基因 Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform. Quik mRNA Isolat ion Kit (product of Qiegene) was used to isolate poly (A) niRNA 2ug poly (A) mRNA from total RNA by reverse transcription to form CDM. The Smart cDNA Cloning Kit (purchased from Clontech) was used to insert the CDM fragment into the multiple cloning site of pBSK (+) vector (Clontech) to transform DH5a. The bacteria formed a cDNA library. Dye terminate cycle react ion sequencing kit (Perkin-Elmer) and ABI 377 automatic sequencer (Perkin-Elmer) were used to determine the sequences at the 5 'and 3' ends of all clones. The determined cDNA sequence was compared with the public DNA sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0480f 04 was new DNA. A series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions. The results show that the full-length cDNA contained in the 0480f04 clone is 1486bp (as shown in Seq ID NO: 1), and there is a 242bp open reading frame (0RF) from 631bp to 873bp, which encodes a new protein (such as Seq ID NO : Shown in 2). We named this clone pBS-0480f 04, and the encoded protein was named human DNA mismatch repair protein 9 Example 2: Using RT-PCR method to clone the gene encoding human DNA mismatch repair protein 9
用胎脑细胞总 RNA为模板, 以 ol igo-dT为引物进行逆转录反应合成 cDNA,用 Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增: CDNA was synthesized using fetal brain total RNA as a template and ol igo-dT as a primer for reverse transcription reaction. After purification using Qiagene's kit, the following primers were used for PCR amplification:
Pr imer 1: 5'- CCAGTTGACTGCCAAGTCCTCCAA-3' (SEQ ID NO: 3) Pr imer 1: 5'- CCAGTTGACTGCCAAGTCCTCCAA-3 '(SEQ ID NO: 3)
Pr imer2: 5'- GTCTTCAATAAGGCTTTATTTAAT-3' (SEQ ID NO: 4) Pr imer2: 5'- GTCTTCAATAAGGCTTTATTTAAT-3 '(SEQ ID NO: 4)
Pr imerl为位于 SEQ ID NO: 1的 5'端的第 lbp开始的正向序列; Pr imerl is a forward sequence starting at lbp at the 5 ′ end of SEQ ID NO: 1;
Pr imer2为 SEQ ID NO: 1的中的 3,端反向序列。 Pr imer 2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
- 扩增反应的条件: 在 50 μ 1的反应体积中含有 50mmol/L KCl' 10 ol/L Tr is- Cl (pH8. 5) , 1. 5mmol/L MgCl2, 200 μ mol/L dNTP, l Opmol引物, 1U的 Taq DNA聚合酶 (Clontech公司产品)。 在 PE9600型 DNA热循环仪(Perkin- Elmer公司)上按下列条件 反应 25个周期: 94 C 30sec; 55°C 30sec; 72°C 2min。 在 RT-PCR时同时设 β - act in 为阳性对照和模板空白为阴性对照。 扩增产物用 QIAGEN公司的试剂盒纯化, 用 TA克 隆试剂盒连接到 pCR载体上(Invi trogen公司产品) 。 DNA序列分析结果表明 PCR产 物的 DNA序列与 SEQ ID NO: 1所示的 l-1486bp完全相同。 实施例 3: Northern 印迹法分析人 DNA错配修复蛋白 9基因的表达: -Amplification conditions: 50 mmol / L KCl '10 ol / L Tr is- Cl (pH 8. 5), 1.5 mmol / L MgCl 2 , 200 μ mol / L dNTP, l Opmol primer, 1U Taq DNA polymerase (Clontech). The reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94 C 30sec; 55 ° C 30sec; 72 ° C 2min. During RT-PCR, β-act in was set as a positive control and template blank was set as a negative control. The amplified product was purified using a QIAGEN kit and ligated to a pCR vector (Invitrogen) using a TA cloning kit. The DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as l-1486bp shown in SEQ ID NO: 1. Example 3: Northern blot analysis of human DNA mismatch repair protein 9 gene expression:
用一步法提取总 RNA [Ana l. Biochem 1987, 162, 156-159]。 该法包括酸性硫氰
酸胍苯酚-氯仿抽提。 即用 4M异硫氰酸胍 -25mM柠檬酸钠, 0.2M乙酸钠 ( ρΗ4· 0 ) 对 组织进行匀浆, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1) , 混合后离 心。 吸出水相层, 加入异丙醇 (0.8体积) 并将混合物离心得到 RNA沉淀。 将得到的 RNA沉淀用 70%乙醇洗涤, 干燥并溶于水中。 用 20Mg RNA, 在含 20mM 3- ( N-吗啉代) 丙磺酸 ( H7.0 ) - 5mM乙酸钠 - ImM EDTA-2.2M甲醛的 1.2%琼脂糖凝胶上进行电泳。 然后转移至硝酸纤维素膜上。 用 a- 32P dATP通过随机引物法制备 32P-标记的 DNA探 针。 所用的 DNA探针为图 1所示的 PCR扩增的人 DNA错配修复蛋白 9编码区序列(631bp 至 873bp)。 将 32P-标记的探针 (约 2 χ 106cpm/ml ) 与转移了 RNA的硝酸纤维素膜在 一溶液中于 42°C杂交过夜, 该溶液包含 50%甲酰胺 - 25mM H2P04 ( pH7.4 ) -5 x SSC-5 xDenhardt's溶液和 200 g/ml鲑精 DNA。 杂交之后, 将滤膜在 1 x SSC- 0.1°/»SDS中于 55°C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 4: 重组人 DNA错配修复蛋白 9的体外表达、 分离和纯化 Total RNA was extracted in one step [Ana l. Biochem 1987, 162, 156-159]. The method includes acid thiocyanate Guanidine phenol-chloroform extraction. I.e. with 4M guanidinium isothiocyanate -25mM sodium citrate, 0. 2 M sodium acetate (ρΗ4 · 0) of the tissue was homogenized, 1 volume of phenol and 1/5 volume of chloroform - isoamyl alcohol (49 : 1), centrifuge after mixing. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water. Using 20 M g RNA, electrophoresis was performed on a 1.2% agarose gel containing 20 mM 3- (N-morpholino) propanesulfonic acid (H7.0)-5 mM sodium acetate-1 mM EDTA-2.2M formaldehyde. It was then transferred to a nitrocellulose membrane. Preparation 32 P- DNA probe labeled with a- 32 P dATP by random priming method. The DNA probe used is the sequence of the human DNA mismatch repair protein 9 coding region (631bp to 873bp) amplified by PCR as shown in FIG. A 32P-labeled probe (about 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM H 2 P0 4 (pH7.4)-5 x SSC-5 x Denhardt's solution and 200 g / ml salmon sperm DNA. After hybridization, the filter was washed in 1 x SSC-0.1 ° / »SDS at 55 ° C for 30 min. Then, Phosphor Imager was used for analysis and quantification. Example 4: In vitro expression, isolation and purification of recombinant human DNA mismatch repair protein 9
根据 SEQ ID N0: 1和图 1所示的编码区序列, 设计出一对特异性扩增引物, 序 列如下: According to SEQ ID NO: 1 and the coding region sequence shown in Figure 1, a pair of specific amplification primers was designed, the sequence is as follows:
Primer 3: 5 '-CATGCTAGCATGCTCCACATTCTGTCTTTACTG- 3 ' ( Seq ID No: 5 ) Primer 3: 5 '-CATGCTAGCATGCTCCACATTCTGTCTTTACTG- 3' (Seq ID No: 5)
Primer4: 5'-CATGGATCCCTAAGCAGATGGAGTCCTAAGGCG-3' (Seq ID No: 6 ) 此两段引物的 5'端分别含有 Nhel和 BamHI酶切位点, 其后分别为目的基因 5'端 和 3'端的编码序列, Nhel和 BamHI酶切位点相应于表达载体质粒 pET- 28b(+) (Novagen 公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含有全长目的基因的 pBS- 0480f04质粒为模板, 进行 PCR反应。 PCR反应条件为: 总体积 50 μ 1中含 pBS- 0480f 04 质粒 10pg、 引物?1^1116:"-3和?]:111]6]:-4分另!]为10 1101、 Advantage polymerase Mix (Clontech公司产品) 1 μ 1。 循环参数: 94。C 20s, 60°C 30s, 68。C 2 min,共 25个 循环。 用 Nhel和 BamHI分别对扩增产物和质粒 pET- 28 (+)进行双酶切,分别回收大片 段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH5a,在含卡那霉素 (终浓度 30 g/mi ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性克隆, 并进行 测序。 挑选序列正确的阳性克隆(pET- 0480f04) 用氯化钙法将重组质粒转化大肠 杆菌 BL21(DE3)plySs (Novagen公司产品)。 在含卡那霉素 (终浓度 30 g/ml ) 的 LB 液体培养基中, 宿主菌 BL21 (pET- 0480f04 ) 在 37°C培养至对数生长期, 加入 IPTG 至终浓度 1瞧 ol/L, 继续培养 5小时。 离心收集菌体, 经超声波破菌,离心收集上清, 用能与 6个组氨酸( 6His- Tag )结合的亲和层析柱 His. Bind Quick CartridgeC Novagen 公司产品)进行层析, 得到了纯化的目的蛋白人 DNA错配修复蛋白 9。 经 SDS-PAGB电
泳, 在 9kDa处得到一单一的条带 (图 2 ) 。 将该条带转移至 PVDF膜上用 Edams水解法 进行 N-端氨基酸序列分析, 结果 N-端 15个氨基酸与 SEQ ID NO: 2所示的 N-端 15个氨 基酸残基完全相同。 Primer4: 5'-CATGGATCCCTAAGCAGATGGAGTCCTAAGGCG-3 '(Seq ID No: 6) The 5' ends of these two primers contain Nhel and BamHI digestion sites, respectively, followed by the 5 'and 3' coding sequences of the target gene Nhel and BamHI restriction sites correspond to selective endonuclease sites on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). The PCR reaction was performed using pBS-0480f04 plasmid containing the full-length target gene as a template. The PCR reaction conditions are as follows: a total volume of 50 μ 1 contains 10 pg of pBS-0480f 04 plasmid, primers? 1 ^ 1116: "-3 and?]: 111] 6]: -4 points and another!] Is 10 1101, Advantage polymerase Mix (Clontech) 1 μ 1. Cycle parameters: 94.C 20s, 60 ° C 30s , 68. C 2 min, a total of 25 cycles. Digestion of the amplified product and plasmid pET-28 (+) with Nhel and BamHI, respectively, to recover large fragments and ligate with T4 ligase. The ligation product was converted with chlorine Calcium bacillus DH5a was cultured overnight on LB plates containing kanamycin (final concentration 30 g / mi), and positive clones were selected by colony PCR method and sequenced. Positive clones with correct sequence (pET- 0480f04) The recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method. In a LB liquid medium containing kanamycin (final concentration 30 g / ml), the host strain BL21 (pET -0480f04) Incubate at 37 ° C to logarithmic growth phase, add IPTG to a final concentration of 1 ol / L, and continue to cultivate for 5 hours. Centrifuge to collect bacteria, ultrasonically break bacteria, and centrifuge to collect the supernatant. Histidine (6His-Tag) binding affinity chromatography column His. Bind Quick CartridgeC Novagen) Chromatography to obtain a purified protein of human DNA mismatch repair protein by electrically 9. SDS-PAGB Swimming, a single band was obtained at 9 kDa (Figure 2). The band was transferred to a PVDF membrane and the N-terminal amino acid sequence was analyzed by the Edams hydrolysis method. As a result, the 15 amino acids at the N-terminus were identical to the 15 amino acid residues at the N-terminus shown in SEQ ID NO: 2.
实施例 5 抗人 DNA错配修复蛋白 9抗体的产生 Example 5 Production of anti-human DNA mismatch repair protein 9 antibodies
用多肽合成仪(PE公司产品) 合成下述人 DNA错配修复蛋白 9特异性的多肽: The following peptides specific for human DNA mismatch repair protein 9 were synthesized using a peptide synthesizer (product of PE):
NH2-Met-Leu-Hi s-I le-Leu-Ser-Leu-Leu-Met-Leu-Cys-Leu-Leu-Pro-Al a- C00H (SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合, 方法参见: Avrameas, et al. I腿 unochemi s try, 1969; 6: 43。 用 4mg上述 i蓝蛋 白多肽复合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽复合物加 不完全弗氏佐剂加强免疫一次。 采用经 15 y g/ral牛血清白蛋白多肽复合物包被 的滴定板做 ELISA测定兔血清中抗体的滴度。 用蛋白 A- Sepharose从抗体阳性的 家兔血清中分离总 IgG。 将多肽结合于溴化氰活化的 Sepharos B柱上, 用亲和 层析法从总 I gG中分离抗多肽抗体。 免疫沉淀法证明纯化的抗体可特异性地与 人 DNA错配修复蛋白 9结合。 实施例 6: 本发明的多核苷酸片段用作杂交探针的应用 NH2-Met-Leu-Hi s-I le-Leu-Ser-Leu-Leu-Met-Leu-Cys-Leu-Leu-Pro-Al a- C00H (SEQ ID NO: 7). The peptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively. For methods, see: Avrameas, et al. I. leg unochemi s try, 1969; 6: 43. Rabbits were immunized with 4 mg of the i-blue protein peptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin peptide complex plus incomplete Freund's adjuvant was used to boost the immunity once. A titer plate coated with a 15 μg / ral bovine serum albumin peptide complex was used as an ELISA to determine the antibody titer in rabbit serum. Protein A-Sepharose was used to isolate total IgG from antibody-positive rabbit serum. The peptide was bound to a cyanogen bromide-activated Sepharos B column, and the anti-peptide antibody was separated from the total I gG by affinity chromatography. The immunoprecipitation method proved that the purified antibody could specifically bind to human DNA mismatch repair protein 9. Example 6: Application of the polynucleotide fragment of the present invention as a hybridization probe
从本发明的多核苷酸中挑选出合适的寡核苷酸片段用作杂交探针有多方面的 用途, 如用该探针可与不同来源的正常组织或病理组织的基因组或 cDNA文库杂交 以鉴定其是否含有本发明的多核苷酸序列和检出同源的多核苷酸序列,进一步还可 用该探针检测本发明的多核苷酸序列或其同源的多核苷酸序列在正常组织或病理 组织细胞中的表达是否异常。 Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways. For example, the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected. Further, the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
本实施例的目的是从本发明的多核苷酸 SEQ ID NO: 1 中挑选出合适的寡核苷 酸片段用作杂交探针, 并用滤膜杂交方法鉴定一些组织中是否含有本发明的多核 苷酸序列或其同源的多核苷酸序列。 滤膜杂交方法包括斑点印迹法、 Southern 印 迹法、 Northern 印迹法和复印方法等, 它们都是将待测的多核苷酸样品固定在滤 膜上后使用基本相同的步骤杂交。 这些相同的步骤是: 固定了样品的滤膜首先用 不含探针的杂交缓冲液进行预杂交, 以使滤膜上样品的非特异性的结合部位被载 体和合成的多聚物所饱和。 然后预杂交液被含有标记探针的杂交缓冲液替换, 并 保温使探针与靶核酸杂交。 杂交步骤之后, 未杂交上的探针被一系列洗膜步骤除 掉。 本实施例利用较高强度的洗膜条件(如较低盐浓度和较高的温度), 以使杂交 背景降低且只保留特异性强的信号。 本实施例选用的探针包括两类: 第一类探针 是完全与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段; 第二类探
针是部分与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段。 本实施 例选用斑点印迹法将样品固定在滤膜上, 在较高强度的的洗膜条件下, 第一类探 针与样品的杂交特异性最强而得以保留。 The purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method. Acid sequence or a homologous polynucleotide sequence thereof. Filter hybridization methods include dot blotting, Southern blotting, Northern blotting, and copying methods. They all use the same steps of hybridization after fixing the polynucleotide sample to be tested on the filter. These same steps are as follows: The sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer, so that the non-specific binding site of the sample on the filter is saturated with the carrier and the synthetic polymer. The pre-hybridization solution is then replaced with a hybridization buffer containing the labeled probe and incubated to hybridize the probe to the target nucleic acid. After the hybridization step, the unhybridized probes are removed by a series of membrane washing steps. This embodiment utilizes higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals. The probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; A needle is an oligonucleotide fragment that is partially identical or complementary to the polynucleotide SEQ ID NO: 1 of the present invention. In this embodiment, the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
一、 探针的选用 First, the selection of the probe
从本发明的多核苷酸 SEQ ID NO: 1 中选择寡核苷酸片段用作杂交探针, 应遵 循以下原则和需要考虑的几个方面: The selection of oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
1 , 探针大小优选范围为 18- 50个核苷酸; 1. The preferred range of probe size is 18-50 nucleotides;
2 , GC含量为 30%- 70%, 超过则非特异性杂交增加; 2.The GC content is 30% -70%, and the non-specific hybridization increases when it exceeds;
3, 探针内部应无互补区域; 3. There should be no complementary regions inside the probe;
4, 符合以上条件的可作为初选探针, 然后进一步作计算机序列分析, 包括将该 初选探针分别与其来源序列区域 (即 SEQ ID NO: 1 ) 和其它巳知的基因组序列 及其互补区进行同源性比较, 若与非靶分子区域的同源性大于 85½或者有超过 15个连续碱基完全相同, 则该初选探针一般就不应该使用; 4. Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other unknown genomic sequences and their complements For homology comparison of the regions, if the homology with the non-target molecular region is greater than 85½ or there are more than 15 consecutive bases, the primary selection probe should generally not be used;
5 , 初选探针是否最终选定为有实际应用价值的探针还应进一步由实验确定。 5. Whether the preliminary selection probe is finally selected as a probe with practical application value should be further determined by experiments.
完成以上各方面的分析后挑选并合成以下二个探针: After completing the above analysis, select and synthesize the following two probes:
探针 1 ( probel ), 属于第一类探针, 与 SEQ ID NO: 1 的基因片段完全 同源或互补("Nt ): Probe 1 (probel), which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 ("Nt):
5'-TGCTCCACATTCTGTCTTTACTGATGCTGTGTCTTCTGCCT-3' ( SEQ ID NO: 8 ) 5'-TGCTCCACATTCTGTCTTTACTGATGCTGTGTCTTCTGCCT-3 '(SEQ ID NO: 8)
探针 2 ( probe2 ), 属于第二类探针, 相当于 SEQ ID NO: 1 的基因片段 或其互补片段的替换突变序列 (41M ): Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence of the gene fragment of SEQ ID NO: 1 or its complementary fragment (41M):
5 '-TGCTCCACATTCTGTCTTTACTGATGCTGTGTCTTCTGCCT- 3' ( SEQ ID NO: 9 ) 与以下具体实验步骤有关的其它未列出的常用试剂及其配制方法请参考文 献: DNA PROBES G. H. Kel ler; M. M. Manak; Stockton Press, 1989 (USA)以及更常用 的分子克隆实验手册书籍如 《分子克隆实验指南》 U 998 年第二版) [美]萨姆布 鲁克等著, 科学出版社。 5 '-TGCTCCACATTCTGTCTTTACTGATGCTGTGTCTTCTGCCT- 3' (SEQ ID NO: 9) For other commonly used reagents and their preparation methods related to the following specific experimental steps, please refer to the literature: DNA PROBES GH Kel ler; MM Manak; Stockton Press, 1989 ( USA) and more commonly used molecular cloning experiment manual books such as "Molecular Cloning Experiment Guide" U 998 Second Edition) [US] Sambruck et al., Science Press.
样品制备: Sample Preparation:
1 , 从新鲜或冰冻组织中提取 DNA 1.Extract DNA from fresh or frozen tissue
步骤: 1 ) 将新鲜或新鲜解冻的正常肝组织放入浸在冰上并盛有磷酸盐缓冲液 ( PBS ) 的平皿中。 用剪刀或手术刀将组织切成小块。 搡作中应保持组织湿润。 2 ) 以 lOOOg离心切碎组织 10分钟。 3 ) 用冷匀浆缓冲液( 0. 25mol/L蔗糖; 25mmol/L Tr is-HCl, pH7. 5; 25麵 ol/LnaCl ; 25mmol/L MgCl2 ) 悬浮沉淀 (大约 10ral /g )。 4 ) 在 4°C用电动匀浆器以全速匀浆组织悬液, 直至组织被完全破碎。 5 ) l OOOg 离心
10分钟。 6)用重悬细胞沉淀(每 O.lg最初组织样品加 l-5ml), 再以 lOOOg离心 10分钟。 7)用裂解缓冲液重悬沉淀(每 O.lg最初组织样品加 lml), 然后接以下 的苯酚抽提法。 Steps: 1) Place fresh or freshly thawed normal liver tissue in a plate immersed in ice and filled with phosphate buffered saline (PBS). Cut the tissue into small pieces with scissors or a scalpel. Tissue should be kept moist during operation. 2 ) Centrifuge the tissue at 1,000 g for 10 minutes. 3) Suspend the precipitate (approximately 10 ral / g) with a cold homogenate buffer solution (0.25 mol / L sucrose; 25 mmol / L Tris-HCl, pH 7.5; 25 ol / LnaCl; 25 mmol / L MgCl 2 ). 4) Homogenize the tissue suspension at 4 ° C at full speed with an electric homogenizer until the tissue is completely broken. 5) l OOOg centrifuge 10 minutes. 6) Resuspend the cell pellet (l-5 ml per 0.1 g of the original tissue sample), and centrifuge at 1,000 g for 10 minutes. 7) Resuspend the pellet in lysis buffer (1 ml per 0.1 g of the initial tissue sample), and then follow the phenol extraction method below.
2, DNA的苯酚抽提法 2, phenol extraction method for DNA
步驟: 1 )用 1- 10ml冷 PBS洗细胞, lOOOg离心 10分钟。 2 )用冷细胞裂解液 重悬浮沉淀的细胞( 1 X 108细胞 /ml ) 最少应用 lOGul 裂解缓冲液。 3 )加 SDS 至 终浓度为 1%, 如果在重悬细胞之前将 SDS直接加入到细胞沉淀中, 细胞可能会形 成大的团块而难以破碎, 并降低的总产率。 这一点在抽提 >107细胞时特别严重。 4) 加蛋白酶 K至终浓度 2G0ug/ml。 5 ) 50°C保温反应 1小时或在 37°C轻轻振摇过夜。 6)用等体积苯酚: 氯仿: 异戊醇 ( 25: 24: 1)抽提, 在小离心机管中离心 10分 钟。 两相应清楚分离, 否则重新进行离心。 7) 将水相转移至新管。 8)用等体积 氯仿: 异戊醇 (24: 1)抽提, 离心 10分钟。 9)将含 DNA的水相转移至新管。 然 后进行 DNA的纯化和乙醇沉淀。 Steps: 1) Wash the cells with 1-10 ml of cold PBS and centrifuge at 1,000 g for 10 minutes. 2) Resuspend the pelleted cells (1 × 10 8 cells / ml) with cold cell lysate and apply a minimum of 10 Gul lysis buffer. 3) Add SDS to a final concentration of 1%. If SDS is directly added to the cell pellet before resuspending the cells, the cells may form large clumps that are difficult to break, and reduce the overall yield. This is particularly serious when extracting> 10 7 cells. 4) Add proteinase K to a final concentration of 2 G0ug / ml. 5) Incubate at 50 ° C for 1 hour or shake gently at 37 ° C overnight. 6) Extract with an equal volume of phenol: chloroform: isoamyl alcohol (25: 24: 1) and centrifuge in a small centrifuge tube for 10 minutes. The two should be clearly separated, otherwise centrifuge again. 7) Transfer the water phase to a new tube. 8) Extract with an equal volume of chloroform: isoamyl alcohol (24: 1) and centrifuge for 10 minutes. 9) Transfer the DNA-containing aqueous phase to a new tube. The DNA was then purified and ethanol precipitated.
3, DNA的纯化和乙醇沉淀 3, DNA purification and ethanol precipitation
步骤: 1 )将 1/10体积 2fliol/L醋酸钠和 2倍体积冷 100%乙醇加到 MA溶液中, 混匀。 在 -20°C放置' 1小时或至过夜。 2) 离心 10分钟。 3)小心吸出或倒出乙醇。 4 )用 70°/»冷乙醇 500ul洗涤沉淀, 离心 5分钟。 5 )小心吸出或倒出乙醇。 用 500ul 冷乙醇洗潦沉淀, 离心 5分钟。 6) 小心吸出或倒出乙醇, 然后在吸水纸上倒置使 残余乙醇流尽。 空气干燥 10-15 分钟, 以使表面乙醇挥发。 注意不要使沉淀完全 干燥, 否则较难重新溶解。 7) 以小体积 TE或水重悬 DNA沉淀。 低速涡旋振荡或 用滴管吹吸, 同时逐渐增加 TE, 混合至 DNA充分溶解, 每 1- 5 χ 10δ细胞所提取的 大约加 lul。 Steps: 1) Add 1/10 volume of 2fliol / L sodium acetate and 2 volumes of cold 100% ethanol to the MA solution and mix well. Store at -20 ° C for '1 hour or overnight. 2) Centrifuge for 10 minutes. 3) Carefully aspirate or pour out the ethanol. 4) Wash the pellet with 500ul of 70 ° / »cold ethanol and centrifuge for 5 minutes. 5) Carefully aspirate or pour out the ethanol. Wash the pellet with 500ul of cold ethanol and centrifuge for 5 minutes. 6) Carefully aspirate or pour out the ethanol, then invert on the absorbent paper to drain off the residual ethanol. Air dry for 10-15 minutes to allow the surface ethanol to evaporate. Be careful not to allow the pellet to dry completely, otherwise it will be more difficult to re-dissolve. 7) Resuspend the DNA pellet in a small volume of TE or water. Vortex at low speed or blow with a dropper while gradually increasing TE, mix until the DNA is fully lysed, and add approximately 1 ul per 1- 5 x 10 δ cells.
以下第 8-13步骤仅用于必须除去污染时, 否则可直接进行第 14步骤。 The following steps 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
8 )将 RNA酶 A加到 DNA溶液中 , 终浓度为 100ug/ral, 37°C保温 30分钟。 ) 加 入 SDS和蛋白酶 K, 终浓度分别为 0.5½和 100ug/ml。 37°C保温 30分钟。 10)用 等体积的苯酚: 氯仿: 异戊醇 ( 25: 24: 1)抽提反应液, 离心 10 分钟。 11)小 心移出水相, 用等体积的氯仿: 异戊醇 (24: 1) 重新抽提, 离心 10 分钟。 12) 小心移出水相, 加 1/10体积 2mol/L醋酸钠和 2.5体积冷乙醇, 混匀置 -20°C 1小 时。 13)用 70%乙醇及 100%乙醇洗涤沉淀, 空气干燥, 重悬核酸, 过程同第 3-6 步骤。 14 )测定 A26Q和 A28Q以检测 DNA的纯度及产率。 15 )分装后存放于 -20°C。 样膜的制备: 8) Add RNase A to the DNA solution to a final concentration of 100ug / ral, and incubate at 37 ° C for 30 minutes. ) Add SDS and proteinase K to final concentrations of 0.5½ and 100ug / ml, respectively. Incubate at 37 ° C for 30 minutes. 10) Extract the reaction solution with an equal volume of phenol: chloroform: isoamyl alcohol (25: 24: 1) and centrifuge for 10 minutes. 11) Carefully remove the aqueous phase and re-extract with an equal volume of chloroform: isoamyl alcohol (24: 1) and centrifuge for 10 minutes. 12) Carefully remove the aqueous phase, add 1/10 volume of 2mol / L sodium acetate and 2.5 volumes of cold ethanol, and mix well at -20 ° C for 1 hour. 13) Wash the pellet with 70% ethanol and 100% ethanol, air dry, and resuspend the nucleic acid. The process is the same as steps 3-6. 14) A 26Q and A 28Q were measured to detect the purity and yield of DNA. 15) Store at -20 ° C after dispensing. Preparation of sample film:
1)取 4 x 2 张适当大小的硝酸纤维素膜(NC 膜), 用铅笔在其上轻轻标出点样
位置及样号, 每一探针需两张 NC膜, 以便在后面的实验步骤中分别用高强度条件 和强度条件洗膜 。 1) Take 4 x 2 sheets of nitrocellulose (NC film) of appropriate size, and mark the spot lightly with a pencil For location and sample number, two NC membranes are required for each probe, in order to wash the membranes with high-strength conditions and intensity conditions in the subsequent experimental steps.
2) 吸取及对照各 15微升, 点于样膜上, 在室温中晾干。 2) Pipette and control 15 microliters each, spot on the sample film, and dry at room temperature.
3 )置于浸润有 0. Imol/LNaOH, 1.5mol/LNaCl 的滤纸上 5分钟 (两次), 晾干置 于浸润有 0.5mol/L Tris-HCl ( pH7.0 ), 3mol/LNaCl 的滤纸上 5分钟 (两次), 晾 干。 3) Place on filter paper impregnated with 0.1 mol / L NaOH, 1.5 mol / L NaCl for 5 minutes (twice), dry and place on filter paper impregnated with 0.5 mol / L Tris-HCl (pH 7.0), 3 mol / L NaCl Allow to dry for 5 minutes (twice).
4) 夹于干净滤纸中, 以铝箔包好, 60- 80°C真空干燥 2小时。 4) Caught in clean filter paper, wrapped in aluminum foil, and dried under vacuum at 60-80 ° C for 2 hours.
探针的标记 Labeling of probes
1) 3μ lProbe ( 0.1OD/10 μ 1 ), 加入 2 μ IKinase缓冲液, 8-10 uCi γ- 32P- dATP+2U Kinase, 以补加至终体积 20 μ1。 1) 3 μl Probe (0.1OD / 10 μ 1), add 2 μ IKinase buffer, 8-10 uCi γ- 32 P- dATP + 2U Kinase, to make up to a final volume of 20 μ1.
2) 37 °C 保温 2小时。 2) Incubate at 37 ° C for 2 hours.
3)加 1/5体积的溴酚蓝指示剂 (BPB 3) Add 1/5 volume of bromophenol blue indicator (BPB
4)过 Sephadex G-50柱。 4) Pass Sephadex G-50 column.
5 ) 至有 32P- Probe洗出前开始收集第一峰 (可用 Monitor监测)。 5) Before the 32 P-Probe is washed out, start collecting the first peak (can be monitored by Monitor).
6) 5滴 /管, 收集 10- 15管。 6) 5 drops / tube, collect 10-15 tubes.
7)用液体闪烁仪监测同位素量 7) Monitor the amount of isotope with a liquid scintillator
8) 合并第一峰的收集液后即为所需制备的 32P- Probe (第二峰为游离 γ- 32P- dATP )。 8) After the collection of the first peak is combined, the 32 P-Probe (the second peak is free γ- 32 P-dATP) is prepared.
预杂交 Pre-hybridization
将样膜置于塑料袋中,加入 3- lOrag预杂交液(10xDenhardt's;6xSSC, 0. lmg/ml The sample membrane was placed in a plastic bag, and 3-lOrag prehybridization solution (10xDenhardt's; 6xSSC, 0.1 mg / ml) was added.
CT DM (小牛胸腺 DNA)。), 封好袋口后, 68°C水洛摇 2小时。 CT DM (calf thymus DNA). ), After sealing the bag, shake at 68 ° C for 2 hours.
杂交 Cross
将塑料袋剪去一角, 加入制备好的探针, 封好袋口后, 42°C水浴摇过夜。 洗膜: Cut a corner of the plastic bag, add the prepared probe, seal the bag, and shake it at 42 ° C in a water bath overnight. Wash film:
高强度洗膜: High-intensity washing film:
1) 取出已杂交好的样膜。 1) Take out the hybridized sample membrane.
2 ) 2xSSC, 0.1%SDS中, 40。C洗 15分钟 ( 2次)。 2) 2xSSC, 0.1% SDS, 40. C Wash for 15 minutes (twice).
3 ) 0. lxSSC, 0. P/oSDS中 , 40°C洗 15分钟 ( 2次)。 3) Wash in 0.1xSSC, 0.1P / oSDS at 40 ° C for 15 minutes (twice).
4) 0. IxSSC, 0.1%SDS中, 55°C洗 30分钟 ( 2次), 室温晾干。 4) 0. IxSSC, 0.1% SDS, wash at 55 ° C for 30 minutes (twice), and dry at room temperature.
低强度洗膜: Low-intensity washing film:
1) 取出已杂交好的样膜。 1) Take out the hybridized sample membrane.
2 ) 2xSSC, 0.1%SDS中, 37。C洗 15分钟 ( 2次)。
3 ) 0. lxSSC, 0. 1%SDS中, 37。C洗 15分钟 ( 2次)。 2) 2xSSC, 0.1% SDS, 37. C wash for 15 minutes (2 times). 3) 0.1xSSC, 0.1% SDS, 37. C wash for 15 minutes (2 times).
4 ) 0. lxSSC, 0. 1%SDS中, 40。C洗 15分钟 ( 2次), 室温晾干。 4) 0.1xSSC, 0.1% SDS, 40. Wash for 15 minutes (twice) and dry at room temperature.
X-光自显影: X-ray auto-development:
- 70°C, X-光自显影 (压片时间根据杂交斑放射性强弱而定)。 -70 ° C, X-ray autoradiography (press time depends on the radioactivity of the hybrid spot).
实验结果: Experimental results:
采用低强度洗膜条件所进行的杂交实验, 以上两个探针杂交斑放射性强弱没 有明显区别; 而釆用高强度洗膜条件所进行的杂交实验, 探针 1 的杂交斑放射性 强度明显强于另一个探针杂交斑的放射性强度。 因而可用探针 1 定性和定量地分 析本发明的多核苷酸在不同组织中的存在和差异表达。 实施例 7 DNA Microarray The hybridization experiments performed under low-intensity membrane washing conditions showed no significant difference in the radioactive intensity of the above two probes. However, in the hybridization experiments performed under high-intensity membrane washing conditions, the radioactive intensity of probe 1 was significantly stronger. To the radioactive intensity of the hybridization spot of another probe. Therefore, the presence and differential expression of the polynucleotide of the present invention in different tissues can be analyzed qualitatively and quantitatively with the probe 1. Example 7 DNA Microarray
基因芯片或基因微矩阵 (DNA Microarray )是目前许多国家实验室和大制药 公司都在着手研制和开发的新技术, 它是指将大量的靶基因片段有序地、 高密度 地排列在玻璃、 硅等载体上, 然后用荧光检测和计算机软件进行数据的比较和分 析, 以达到快速、 高效、 高通量地分析生物信息的目的。 本发明的多核苷酸可作 为靶 DNA 用于基因芯片技术用于高通量研究新基因功能; 寻找和筛选组织特异性 新基因特别是胂瘤等疾病相关新基因; 疾病的诊断, 如遗传性疾病。 其具体方法 步骤在文献中已有多种报道, 如可参阅文献 DeRis i, J. L. , Lyer, V. &Brown; P. 0. (1997) Science278, 680-686.及文献 Hel le, R. A. , Schema, M., Chai, A. , Shalom, D. , (1997) PNAS 94: 2150-2155. Gene microarrays or DNA microarrays are new technologies currently being developed by many national laboratories and large pharmaceutical companies. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information. The polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research on the function of new genes; search for and screen new tissue-specific genes, especially diseases related genes such as tumors; diagnosis of diseases such as heredity disease. The specific method steps have been reported in the literature. For example, see DeRis i, JL, Lyer, V. & Brown ; P. 0. (1997) Science 278, 680-686. And Hel le, RA, Schema, M., Chai, A., Shalom, D., (1997) PNAS 94: 2150-2155.
(一)点样 (A) spotting
各种不同的全长 cDNA共计 4000条多核苷酸序列作为靶 DNA,其中包括本发明 的多核苷酸。 将它们分别通过 PCR 进行扩增, 纯化所得扩增产物后将其浓度调到 500ng/ul左右, 用 Cartes ian 7500点样仪(购自美国 Car tes ian公司)点于玻璃介 质上, 点与点之间的距离为 280 μ ιη。 将点样后的玻片进行水合、 干燥、 置于紫外 交联仪中交联, 洗脱后干燥使 DNA 固定在玻璃片上制备成芯片。 其具体方法步骤 在文献中巳有多种报道, 本实施例的点样后处理步骤是: A total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were respectively amplified by PCR, and the concentration of the amplified product was adjusted to about 500 ng / ul after purification. The spots were spotted on a glass medium using a Cartesian 7500 spotter (purchased from Cartesian Company, USA) The distance between them is 280 μm. The spotted slides were hydrated, dried, and cross-linked in a UV cross-linking instrument. After elution, the DNA was fixed on the glass slide to prepare a chip. The specific method steps are variously reported in the literature. The sample post-processing steps in this embodiment are:
1. 潮湿环境中水合 4小时; 1. Hydration in a humid environment for 4 hours;
2. 0. 2»/。SDS洗涤 1分钟; 2. 0. 2 »/. Wash with SDS for 1 minute;
3. ddH20洗涤两次, 每次 1分钟; 3. Wash twice with ddH 2 0 for 1 minute each time;
4. NaBH4封闭 5分钟; 4. NaBH 4 is blocked for 5 minutes;
5. 95°C水中 2分钟;
6. 0. 2%SDS洗涤 1分钟; 5. 95 ° C water for 2 minutes; 6. 0.2% SDS was washed for 1 minute;
7. dd 0冲洗两次; 7. dd 0 flush twice;
8. 凉干, 25°C储存于暗处备用。 8. Dry and store at 25 ° C in the dark for future use.
(二)探针标记 (Two) probe marking
用一步法分别从人体混合组织与机体特定组织 (或经过刺激的细胞株) 中抽 提总 mRNA, 并用 Ol igotex mRNA Midi Ki t (购自 QiaGen公司)纯化 mRM,通过反转 录分另1 J将荧光试剂 Cy 3dUTP (5-Amino-propargy 1-2' -deoxyur idine 5' - tr iphate coupled to Cy3 f luorescent dye, 购自 Amersham Pharaacia Biotech 公司)标记 人体混合组织的 mRNA, 用荧光试剂 Cy5dUTP (5- Amino- propargyl- 2'- deoxyur idine 5' - triphate coupled to Cy5 f luorescent dye, 购自 Amersham Phamacia Biotech 公司)标记机体特定组织 (或经过刺激的细胞株) mRNA, 经纯化后制备出探针。 具 体步骤参照及方法见: Total mRNA was extracted from human mixed tissues and specific tissues (or stimulated cell lines) in one step, and mRM was purified by Ol igotex mRNA Midi Kit (purchased from QiaGen), and another 1 J was separated by reverse transcription. The fluorescent reagent Cy 3dUTP (5-Amino-propargy 1-2 '-deoxyur idine 5'-tr iphate coupled to Cy3 f luorescent dye, purchased from Amersham Pharaacia Biotech) was used to label the mRNA of human mixed tissue, and the fluorescent reagent Cy5dUTP (5 -Amino- propargyl- 2'- deoxyur idine 5 '-triphate coupled to Cy5 f luorescent dye, purchased from Amersham Phamacia Biotech Company, labeled mRNA of specific tissue (or stimulated cell line) of the body, and purified the probe to prepare a probe. For specific steps and methods, see:
Schena, M. , Shalon, D. , Hel ler, R. (1996) Proc. Nat l. Acad. Sci. USA. Vol. 93: 10614- 10619. Schena, M. , Shalon, Dari. , Davi s, R. W. (1995) Science. 270. (20) : 467-480. (三) 杂交 Schena, M., Shalon, D., Heller, R. (1996) Proc. Nat l. Acad. Sci. USA. Vol. 93: 10614- 10619. Schena, M., Shalon, Dari., Davi s, RW (1995) Science. 270. (20): 467-480. (3) Hybridization
分别将来自 以上两种组织的探针与芯片一起在 UniHyb™ Hybr idizat ion Solut ion (购自 TeleChem 公司)杂交液中进行杂交 16 小时, 室温用洗涤液 ( 1 x SSC, 0. 2%SDS ) 洗涤后用 ScanArray 3000扫描仪 (购自美国 General Scanning公 司) 进行扫描, 扫描的图象用 Imagene软件 (美国 Biodi scovery公司) 进行数据 分析处理, 算出每个点的 Cy3/Cy5比值。 The probes from the above two tissues and the chips were respectively hybridized in a UniHyb ™ Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, and the washing solution (1 x SSC, 0.2% SDS) was used at room temperature. After washing, scanning was performed with a ScanArray 3000 scanner (purchased from General Scanning, USA), and the scanned images were analyzed by Imagene software (Biodiscovery, USA) to calculate the Cy3 / Cy5 ratio of each point.
以上机体特定组织 (或经过刺激的细胞株) 分 为胸腺、 睾丸、 肌肉、 脾脏、 肺、 皮肤、 甲状腺、 肝、 PMA+的 Ecv304细胞株、 PMA -的 Ecv304细胞株、 未饥饿的 L02 细胞株、 砷刺激 1小时的 L02细胞株、 砷刺激 6小时的 L02细胞株前列腺、 心、 肺癌、 胎膀胱、 胎小肠、 胎大肠、 胎胸腺、 胎肌、 胎肝、 胎肾、 胎脾、 胎脑、 胎肺以及 胎心。 根据这 26个 Cy3/Cy5比值绘出折方图。 (图 1 )。 由图可见本发明所述的人 DM 错配修复蛋白 9和人 DNA错配修复蛋白 11表达谱很相似。 工业实用性 The above specific tissues (or stimulated cell lines) are divided into thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, L02 cell line stimulated by arsenic for 1 hour, L02 cell line stimulated by arsenic for 6 hours prostate, heart, lung cancer, fetal bladder, fetal small intestine, fetal large intestine, fetal thymus, fetal muscle, fetal liver, fetal kidney, fetal spleen, fetal brain, Fetal lung and fetal heart. Draw a graph based on these 26 Cy3 / Cy5 ratios. (figure 1 ). It can be seen from the figure that the expression profiles of human DM mismatch repair protein 9 and human DNA mismatch repair protein 11 according to the present invention are very similar. Industrial applicability
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 HIV 感染和免疫 性疾病等。 The polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, adrenal deficiency, skin diseases, various inflammations, HIV infections and immune diseases.
为了 DNA的正确转录, DM聚合酶偶尔能催化不能与模板形成氢键的错误碱
基的掺入。 错配修复系统可给予第二次纠正错误的机会。 DNA 错配修复蛋白是 错配修复系统中重要的组成蛋白, DM错配修复蛋白在很多生物体内都有存在, 例如, 人的 MLH1 ( Mu tL homo l ogue-1 ) 蛋白就是 DNA错配修复蛋白。 所有的 DNA 错配修复蛋白均含有一保守的序列片段, 此序列片段的突变可使蛋白功能丧 失。 因此, 含 DNA错配修复蛋白特异序列的多肽的表达异常将影响 DM的正确 转录, 并进一步导致某些疾病如肿瘤、 生长发育障碍性疾病、 炎症等。 For proper DNA transcription, DM polymerase occasionally catalyzes wrong bases that cannot form hydrogen bonds with the template Base incorporation. The mismatch repair system gives a second chance to correct the error. DNA mismatch repair protein is an important component protein in the mismatch repair system. DM mismatch repair protein exists in many organisms. For example, human MLH1 (Mutl homo l ogue-1) protein is a DNA mismatch repair protein. . All DNA mismatch repair proteins contain a conserved sequence fragment. Mutations in this sequence fragment can cause loss of protein function. Therefore, abnormal expression of a polypeptide containing a DNA mismatch repair protein-specific sequence will affect the correct transcription of DM, and further cause certain diseases such as tumors, growth and development disorders, and inflammation.
由此可见, 本发明的人 DNA错配修复蛋白 9的表达异常将产生各种疾病尤其 是肿瘤、 胚胎发育紊乱症、 生长发育障碍性疾病、 炎症, 这些疾病包括但不限 于: It can be seen that the abnormal expression of the human DNA mismatch repair protein 9 of the present invention will produce various diseases, especially tumors, embryonic developmental disorders, growth disorders, and inflammation. These diseases include, but are not limited to:
各种组织的肿瘤: 胃癌、 肝癌、 肺癌、 食管癌、 乳腺癌、 白血病、 淋巴瘤、 甲 状腺肿瘤、 子宫肌瘤、 成神经细胞瘤、 星形细胞瘤、 室管膜瘤、 胶质细胞瘤、 结 癌、 恶性组织细胞病、 黑色素瘤、 畸胎瘤、 肉瘤、 肾上腺癌、 膀胱癌、 骨癌、 骨肉 瘤、 骨髓瘤、 骨髓癌、 脑癌、 子宫癌、 子官内膜癌、 胆囊癌、 结肠癌、 胸腺肿瘤、 鼻腔及鼻窦胂瘤、 鼻咽癌、 喉癌、 气管肿瘤、 胸膜间皮瘤、 纤维瘤、 纤维肉瘤、 月 肪瘤、 脂肪肉瘤、 平滑肌瘤 Tumors of various tissues: gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma, Knot cancer, malignant histiocytosis, melanoma, teratoma, sarcoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, Colon cancer, thymic tumor, nasal cavity and sinus tumor, nasopharyngeal cancer, laryngeal cancer, tracheal tumor, pleural mesothelioma, fibroid, fibrosarcoma, lupus, liposarcoma, leiomyoma
胚胎发育紊乱症: 先天性流产、 腭裂、 肢体缺如、 肢体分化障碍、 透明膜 病、 肺膨胀不全、 多囊肾、 双输尿管、 隐 、 先天性腹股沟疝、 双子宫、 阴道 闭锁、 尿道下裂、 两性畸形、 房间隔缺损、 室间隔缺损、 肺动脉狭窄、 动脉导 管未闭、 神经管缺陷、 先天性脑积水、 虹膜缺损、 先天性白内障、 先天性青光 眼或白内障、 先天性耳聋 Embryonic disorders: congenital abortion, cleft palate, limb absentness, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney disease, double ureter, crypto, congenital inguinal hernia, double uterus, vaginal atresia, hypospadias , Bisexual deformity, Atrial septal defect, Ventricular septal defect, Pulmonary stenosis, Arterial duct occlusion, Neural tube defect, Congenital hydrocephalus, Iris defect, Congenital cataract, Congenital glaucoma or cataract, Congenital deafness
生长发育障碍性疾病: 精神发育迟缓, 脑性瘫痪, 脑发育障碍, 智力障碍, 家族性脑神经核发育不全综合症, 斜视, 皮肤、 脂肪和肌肉发育不良性疾病如 先天性皮肤松弛症、 早老症、 先天性角化不良, 各种代谢缺陷病如各种氨基酸 代谢缺陷症, 呆小症, 侏儒症, 性发育迟缓症 Growth and development disorders: mental retardation, cerebral palsy, brain development disorders, mental retardation, familial cerebral nucleus dysplasia syndrome, strabismus, skin, fat and muscular dysplasia such as congenital skin laxity, premature aging Disease, congenital keratosis, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation
各种炎症: 变应性反应、 成人呼吸窘迫综合症、 肺嗜酸粒细胞增多症、 风 湿样关节炎、 类风湿样关节炎、 骨关节炎、 胆囊炎、 肾小球性肾炎、 皮肤肌炎、 多肌炎、 阿狄森氏病、 毛细血管扩张性共济失调症、 B l oam 综合征、 着色性干 皮症 Various inflammations: allergic reactions, adult respiratory distress syndrome, pulmonary eosinophilia, rheumatoid arthritis, rheumatoid arthritis, osteoarthritis, cholecystitis, glomerulonephritis, dermatomyositis , Polymyositis, Addison's disease, telangiectasia, Blome syndrome, xeroderma pigmentosum
本发明的人 DNA错配修复蛋白 9的表达异常还将产生某些遗传性, 血液性疾病 及免疫系统疾病等。 The abnormal expression of the human DNA mismatch repair protein 9 of the present invention will also produce certain hereditary, hematological and immune system diseases.
本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂)人 DNA 错 配修复蛋白 9 的药剂的方法。 激动剂提髙人 DM错配修复蛋白 9刺激细胞增殖
等生物功能, 而拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌症。 例 如, 能在药物的存在下, 将哺乳动物细胞或表达人 DNA错配修复蛋白 9 的膜制 剂与标记的人 DNA错配修复蛋白 9 一起培养。 然后测定药物提高或阻遏此相互 作用的能力。 The invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human DNA mismatch repair protein 9. Agonist enhances human DM mismatch repair protein 9 to stimulate cell proliferation And other biological functions, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers. For example, mammalian cells or a membrane preparation expressing human DNA mismatch repair protein 9 can be cultured with labeled human DNA mismatch repair protein 9 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
人 DNA错配修复蛋白 9 的拮抗剂包括筛选出的抗体、 化合物、 受体缺失物 和类似物等。 人 DNA错配修复蛋白 9 的拮抗剂可以与人 DNA错配修复蛋白 9 结 合并消除其功能, 或是抑制该多肽的产生, 或是与该多肽的活性位点结合使该 多肽不能发挥生物学功能。 Antagonists of human DNA mismatch repair protein 9 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human DNA mismatch repair protein 9 can bind to human DNA mismatch repair protein 9 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot exert its biology Features.
在筛选作为拮抗剂的化合物时, 可以将人 DNA错配修复蛋白 9加入生物分 析测定中, 通过测定化合物对人 DNA错配修复蛋白 9. 和其受体之间相互作用的 影响来确定化合物是否是拮抗剂。 用上述筛选化合物的同样方法, 可以筛选出 起拮抗剂作用的受体缺失物和类似物。 能与人 DNA错配修复蛋白 9 结合的多肽 分子可通过筛选由各种可能组合的氨基酸结合于固相物组成的随机多肽库而获 得。 筛选时, 一般应对人 DNA错配修复蛋白 9分子进行标记。 In screening compounds that act as antagonists, human DNA mismatch repair protein 9 can be added to a bioanalytical assay to determine whether the compound can affect the interaction between human DNA mismatch repair protein 9. and its receptor. Is an antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same way as for screening compounds described above. Peptide molecules capable of binding to human DNA mismatch repair protein 9 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, generally 9 molecules of human DNA mismatch repair protein should be labeled.
本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗原 以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明还提供 了针对人 DM错配修复蛋白 9 抗原决定簇的抗体。 这些抗体包括 (但不限于): 多克隆抗体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab 片段和 Fab 表达文库产 生的片段。 The present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies. The present invention also provides antibodies against human DM mismatch repair protein 9 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments generated from Fab expression libraries.
多克隆抗体的生产可用人 DNA错配修复蛋白 9直接注射免疫动物 (如家兔, 小鼠, 大鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但不限于弗 氏佐剂等。 制备人 DNA错配修复蛋白 9 的单克隆抗体的技术包括但不限于杂交 瘤技术(Koh l er and Mi l s t e in. Na ture, 1975, 256: 495-497) , 三瘤技术, 人 Β- 细胞杂交瘤技术, EBV-杂交瘤技术等。 将人恒定区和非人源的可变区结合的嵌 合抗体可用已有的技术生产(Morr i son e t a l , PNAS, 1985 , 81 : 6851)„ 而已有的 生产单链抗体的技术(U. S. Pa t No. 4946778)也可用于生产抗人 DNA错配修复蛋 白 9的单链抗体。 Polyclonal antibodies can be produced by injecting human DNA mismatch repair protein 9 directly into immunized animals (such as rabbits, mice, rats, etc.). A variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's Agent. Techniques for preparing monoclonal antibodies to human DNA mismatch repair protein 9 include, but are not limited to, hybridoma technology (Kohler and Miste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta cells Hybridoma technology, EBV-hybridoma technology, etc. Chimeric antibodies that bind human constant regions and non-human variable regions can be produced using existing techniques (Morrson et al, PNAS, 1985, 81: 6851) and existing techniques for producing single-chain antibodies (US Pa t No. 4946778) can also be used to produce single chain antibodies against human DNA mismatch repair protein 9.
抗人 DM错配修复蛋白 9 的抗体可用于免疫组织化学技术中, 检测活检标 本中的人 DNA错配修复蛋白 9。 Antibodies against human DM mismatch repair protein 9 can be used in immunohistochemical techniques to detect human DNA mismatch repair protein 9 in biopsy specimens.
与人 DNA错配修复蛋白 9 结合的单克隆抗体也可用放射性同位素标记, 注 入体内可跟踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性诊断 方法用于肿瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如人 DM 错配修复 蛋白 9高亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红 豆碱等)共价结合。 一种通常的方法是用巯基交联剂如 SPDP , 攻击抗体的氨基, 通过二硫键的交换, 将毒素结合于抗体上, 这种杂交抗体可用于杀灭人 DNA 错 配修复蛋白 9阳性的细胞。 Monoclonal antibodies that bind to human DNA mismatch repair protein 9 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis. Antibodies can also be used to design immunotoxins that target a particular part of the body. For example, human DM mismatch repair protein 9 high affinity monoclonal antibodies can covalently bind to bacterial or phytotoxins (such as diphtheria toxin, ricin, ormosine, etc.). A common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds. This hybrid antibody can be used to kill human DNA mismatch repair protein 9 positive cell.
本发明中的抗体可用于治疗或预防与人 DM错配修复蛋白 9相关的疾病。 给予适当剂量的抗体可以刺激或阻断人 DNA错配修复蛋白 9的产生或活性。 The antibodies of the present invention can be used to treat or prevent diseases related to human DM mismatch repair protein 9. Administration of an appropriate dose of antibody can stimulate or block the production or activity of human DNA mismatch repair protein 9.
本发明还涉及定量和定位检测人 DNA错配修复蛋白 9水平的诊断试验方法。 这些试验是本领域所熟知的, 且包括 FISH测定和放射免疫测定。 试验中所检测 的人 DNA错配修复蛋白 9水平, 可以用作解释人 DNA错配修复蛋白 9在各种疾 病中的重要性和用于诊断人 DNA错配修复蛋白 9起作用的疾病。 The invention also relates to a diagnostic test method for quantitative and localized detection of human DNA mismatch repair protein 9 levels. These tests are well known in the art and include FISH assays and radioimmunoassays. The level of human DNA mismatch repair protein 9 detected in the test can be used to explain the importance of human DNA mismatch repair protein 9 in various diseases and to diagnose diseases in which human DNA mismatch repair protein 9 plays a role.
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶进行 特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分 析。 The polypeptide of the present invention can also be used for peptide mapping analysis. For example, the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
编码人 DNA错配修复蛋白 9 的多核苷酸也可用于多种治疗目的。 基因治疗 技术可用于治疗由于人 DNA错配修复蛋白 9的无表达或异常 /无活性表达所致的 细胞增殖、 发育或代谢异常。 重组的基因治疗载体(如病毒载体)可设计用于表 达变异的人 DNA错配修复蛋白 9, 以抑制内源性的人 DNA错配修复蛋白 9活性。 例如, 一种变异的人 DNA错配修复蛋白 9 可以是缩短的、 缺失了信号传导功能 域的人 DNA 错配修复蛋白 9 , 虽可与下游的底物结合, 但缺乏信号传导活性。 因此重组的基因治疗载体可用于治疗人 DM错配修复蛋白 9 表达或活性异常所 致的疾病。 来源于病毒的表达载体如逆转录病毒、 腺病毒、 腺病毒相关病毒、 单纯疱疹病毒、 细小病毒等可用于将编码人 DNA错配修复蛋白 9 的多核苷酸转 移至细胞内。 构建携带编码人 DNA错配修复蛋白 9 的多核苷酸的重组病毒载体 的方法可见于已有文献(Sambrook, et a l . )。 另外重组编码人 DNA错配修复蛋白 的多核苷酸可包装到脂质体中转移至细胞内。 Polynucleotides encoding human DNA mismatch repair protein 9 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of human DNA mismatch repair protein 9. Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human DNA mismatch repair protein 9 to inhibit endogenous human DNA mismatch repair protein 9 activity. For example, a mutated human DNA mismatch repair protein 9 may be shortened and lack human signaling mismatch repair protein 9. Although it can bind to downstream substrates, it lacks signaling activity. Therefore, recombinant gene therapy vectors can be used to treat diseases caused by abnormal expression or activity of human DM mismatch repair protein 9. Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, and parvovirus can be used to transfer a polynucleotide encoding human DNA mismatch repair protein 9 into a cell. Methods for constructing recombinant viral vectors carrying a polynucleotide encoding human DNA mismatch repair protein 9 can be found in the existing literature (Sambrook, et al.). In addition, a polynucleotide encoding a human DNA mismatch repair protein can be packaged into liposomes and transferred into cells.
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织 中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。 Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
抑制人 DNA错配修复蛋白 9 raRNA的寡核苷酸(包括反义 RNA和 DNA)以及核 酶也在本发明的范围之内。 核酶是一种能特异性分解特定 MA的酶样 RNA分子, 其作用机制是核酶分子与互补的靶 RNA 特异性杂交后进行核酸内切作用。 反义
的 RNA和 DNA及核酶可用已有的任何 RNA或 DNA合成技术获得, 如固相磷酸酰 胺化学合成法合成寡核苷酸的技术巳广泛应用。 反义 RNA分子可通过编码该 MA 的 DNA序列在体外或体内转录获得。 这种 DNA序列已整合到载体的 RNA聚合酶 启动子的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修饰, 如 增加两侧的序列长度, 核糖核苷之间的连接应用磷酸硫酯键或肽键而非磷酸二 酯键。 Oligonucleotides (including antisense RNA and DNA) and ribozymes that inhibit human DNA mismatch repair protein 9 raRNA are also within the scope of the present invention. A ribozyme is an enzyme-like RNA molecule that can specifically decompose a specific MA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation. antonym The RNA and DNA and ribozymes can be obtained by any existing RNA or DNA synthesis technology, such as the technology for the synthesis of oligonucleotides by solid-phase phosphoramidite chemical synthesis, which is widely used. Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the MA. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of a nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the ribonucleoside linkages should use phosphate thioester or peptide bonds instead of phosphodiester bonds.
编码人 DM错配修复蛋白 9 的多核苷酸可用于与人 DNA错配修复蛋白 9 的 相关疾病的诊断。 编码人 DM错配修复蛋白 9 的多核苷酸可用于检测人 DNA错 配修复蛋白 9 的表达与否或在疾病状态下人 DNA错配修复蛋白 9 的异常表达。 如编码人 DNA错配修复蛋白 9 的 DNA序列可用于对活检标本进行杂交以判断人 DNA错配修复蛋白 9 的表达状况。 杂交技术包括 Southern印迹法, Nor thern印 迹法、 原位杂交等。 这些技术方法都是公开的成熟技术, 相关的试剂盒都可从 商业途径得到。 本发明的多核苷酸的一部分或全部可作为探针固定在微阵列 (Mi croarray)或 DNA 芯片(又称为 "基因芯片" )上, 用于分析组织中基因的差 异表达分析和基因诊断。 用人 DNA错配修复蛋白 9特异的引物进行 RNA-聚合酶 链反应(RT- PCR)体外扩增也可检测人 DNA错配修复蛋白 9的转录产物。 The polynucleotide encoding human DM mismatch repair protein 9 can be used for the diagnosis of diseases related to human DNA mismatch repair protein 9. The polynucleotide encoding human DM mismatch repair protein 9 can be used to detect the expression of human DNA mismatch repair protein 9 or the abnormal expression of human DNA mismatch repair protein 9 in a disease state. For example, the DNA sequence encoding human DNA mismatch repair protein 9 can be used to hybridize biopsy specimens to determine the expression of human DNA mismatch repair protein 9. Hybridization techniques include Southern blotting, Nor thern imprinting, and in situ hybridization. These techniques and methods are all mature and open technologies, and related kits are commercially available. A part or all of the polynucleotides of the present invention can be used as probes to be fixed on a micro array or a DNA chip (also called a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissues. Human DNA mismatch repair protein 9 specific primers for RNA-polymerase chain reaction (RT-PCR) in vitro amplification can also detect human DNA mismatch repair protein 9 transcription products.
检测人 DNA错配修复蛋白 9基因的突变也可用于诊断人 DNA错配修复蛋白 9相关的疾病。 人 DNA错配修复蛋白 9 突变的形式包括与正常野生型人 DM错 配修复蛋白 9 DNA 序列相比的点突变、 易位、 缺失、 重组和其它任何异常等。 可用巳有的技术如 Southern印迹法、 MA序列分析、 PCR和原位杂交检测突变。 另外, 突变有可能影响蛋白的表达, 因此用 Nor thern 印迹法、 Wes t ern 印迹法 可间接判断基因有无突变。 Detection of mutations in the human DNA mismatch repair protein 9 gene can also be used to diagnose human DNA mismatch repair protein 9-related diseases. Human DNA mismatch repair protein 9 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type human DM mismatch repair protein 9 DNA sequence. Mutations can be detected using well-known techniques such as Southern blotting, MA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression. Therefore, Nor thern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某条人 染色体具体位置且并可以与其杂交。 目前, 需要鉴定染色体上的各基因的具体 位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色体标记物可用 于标记染色体位置。 根据本发明, 为了将这些序列与疾病相关基因相关联, 其 重要的第一步就是将这些 DM序列定位于染色体上。 The sequences of the invention are also valuable for chromosome identification. The sequence specifically targets a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DM sequences on a chromosome.
简而言之, 根据 cDNA制备 PCR引物(优选 15- 35bp) , 可以将序列定位于染色 体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合细胞。 只 有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。 In short, PCR primers (preferably 15-35bp) are prepared based on cDNA, and the sequences can be located on chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
体细胞杂合细胞的 PCR定位法, 是将 DNA定位到具体染色体的快捷方法。 使 用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染色体的片段
或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类似策略包括原位 杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从而构建染色体特异的 cDM库。 PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes. Using the oligonucleotide primers of the present invention, by a similar method, a set of fragments from a specific chromosome can be utilized Or a large number of genomic clones to achieve sublocalization. Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and hybrid pre-selection to construct a chromosome-specific CDM library.
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH) , 可以在一个步骤中精 确地进行染色体定位。 此技术的综述, 参见 Vema等, Human Chromosomes: a Manua l of Bas ic Techniques , Pergamon Pres s , New York (1988)。 Fluorescent in situ hybridization (FISH) of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step. For a review of this technique, see Vema et al., Human Chromosomes: a Manu l of Basic Techniques, Pergamon Pres s, New York (1988).
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置就可 以与基因图数据相关联。 这些数据可见于例如, V. Mckus ick, Mende l ian Inher i tance in Man (可通过与 Johns Hopkins Univer s i ty Welch Medi ca l Library联机获得)。 然后可通过连锁分析, 确定基因与业已定位到染色体区域 上的疾病之间的关系。 Once the sequence is located at the exact chromosomal location, the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mende lian Inher i tance in Man (available online with Johns Hopkins Univer s Wetch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果在一 些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及首先寻找染色 体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列的 PCR可检测的缺 失或易位。 根据目前的物理作图和基因定位技术的分辨能力, 被精确定位至与 疾病有关的染色体区域的 cDNA, 可以是 50至 500个潜在致病基因间之一种(假定 Next, the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. Based on the resolution capabilities of current physical mapping and gene mapping technologies, cDNAs that are accurately mapped to disease-related chromosomal regions can be one of 50 to 500 potentially pathogenic genes (assuming
1兆碱基作图分辨能力和每 20kb对应于一个基因)。 1 megabase mapping capability and every 20kb corresponds to a gene).
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制剂与 合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐类、 缓冲 液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗剂以及不影响 药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾病治疗。 The polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier. These carriers can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof. The composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种或多 种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用或销售药 品或生物制品的政府管理机构所给出的指示性提示, 该提示反映出生产、 使用 或销售的政府管理机构许可其在人体上施用。 此外, 本发明的多肽可以与其它 的治疗化合物结合使用。 The invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention. Along with these containers, there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell. In addition, the polypeptides of the invention can be used in combination with other therapeutic compounds.
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内、 肌内、 皮下、 鼻内或皮内的给药途径。 人 DNA错配修复蛋白 9 以有效地治疗和 /或预防 具体的适应症的量来给药。 施用于患者的人 DNA错配修复蛋白 9 的量和剂量范 围将取决于许多因素, 如给药方式、 待治疗者的健康条件和诊断医生的判断。
The pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration. Human DNA mismatch repair protein 9 is administered in an amount effective to treat and / or prevent a specific indication. The amount and dose range of human DNA mismatch repair protein 9 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.
Claims
1、 一种分离的多肽-人 DM错配修复蛋白 9 , 其特征在于它包含有: SEQ ID N0: 2 所示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。 1. An isolated polypeptide-human DM mismatch repair protein 9, characterized in that it comprises: a polypeptide having the amino acid sequence shown in SEQ ID NO: 2 or an active fragment, analog or derivative thereof.
2、 如权利要求 1 所述的多肽, 其特征在于所述多肽、 类似物或衍生物的氨基 酸序列具有与 SEQ ID NO: 2所示的氨基酸序列至少 95¾的相同性。 2. The polypeptide according to claim 1, characterized in that the amino acid sequence of the polypeptide, analog or derivative has the same identity as the amino acid sequence shown in SEQ ID NO: 2 at least 95¾.
3、 如杈利要求 2所述的多肽, 其特征在于它包含具有 SEQ ID NO: 2所示的氨基 酸序列的多肽。 3. The polypeptide according to claim 2, characterized in that it comprises a polypeptide having the amino acid sequence shown in SEQ ID NO: 2.
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一种: (a) 编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽或其片段、 类似物、 衍生 物的多核苷酸; 4. An isolated polynucleotide, characterized in that said polynucleotide comprises one selected from the group consisting of: (a) encoding a polypeptide having the amino acid sequence shown in SEQ ID NO: 2 or a fragment thereof, or an analog thereof; Polynucleotides of derivatives;
(b) 与多核苷酸 ) 互补的多核苷酸; 或 (b) a polynucleotide complementary to the polynucleotide; or
(c) 与 (a ) 或 (b ) 有至少 70%相同性的多核苷酸。 (c) A polynucleotide that is at least 70% identical to (a) or (b).
5、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸包含编码具有 SEQ ID NO: 2所示氨基酸序列的多核苷酸。 5. The polynucleotide according to claim 4, wherein the polynucleotide comprises a polynucleotide encoding an amino acid sequence represented by SEQ ID NO: 2.
6、如权利要求 4所述的多核苷酸,其特征在于所述多核苷酸的序列包含有 SEQ ID NO: 1中 631-873位的序列或 SEQ ID NO: 1 中 1-1486位的序列。 6. The polynucleotide according to claim 4, characterized in that the sequence of the polynucleotide comprises the sequence of positions 631 to 873 in SEQ ID NO: 1 or the sequence of positions 1-1486 in SEQ ID NO: 1 .
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由权利要求 4-6 中的 任一权利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重组载 体。 7. A recombination vector containing an exogenous polynucleotide, characterized in that it is a recombination constructed by the polynucleotide according to any one of claims 4-6 and a plasmid, virus or a carrier expression vector Carrier.
8 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自于下 列一种宿主细胞: 8 A genetically engineered host cell containing an exogenous polynucleotide, characterized in that it is selected from the following host cells:
(a) 用权利要求 7所述的重组载体转化或转导的宿主细胞; 或 (a) a host cell transformed or transduced with the recombinant vector of claim 7; or
(b) 用杈利要求 4-6 中的任一杈利要求所述多核苷酸转化或转导的宿主细 胞。 (b) A host cell transformed or transduced with any of the polynucleotides of claim 4-6.
9、 一种具有人 DM 错配修复蛋白 9 活性的多肽的制备方法, 其特征在于所述 方法包括: 9. A method for preparing a polypeptide having human DM mismatch repair protein 9 activity, characterized in that the method comprises:
(a) 在表达人 DNA错配修复蛋白 9条件下, 培养权利要求 8所述的工程化宿 主细胞; (a) culturing the engineered host cell according to claim 8 under the condition of expressing human DNA mismatch repair protein 9;
(b) 从培养物中分离出具有人 DNA错配修复蛋白 9活性的多肽。 (b) Isolating a polypeptide having human DNA mismatch repair protein 9 activity from the culture.
1 0、 一种能与多肽结合的抗体,其特征在于所述抗体是能与人 DNA 错配修复蛋 白 9特异性结合的抗体。 .
10. An antibody capable of binding to a polypeptide, characterized in that said antibody is an antibody capable of specifically binding to human DNA mismatch repair protein 9. .
11、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促进、 拮抗或抑制人 DNA错配修复蛋白 9的活性的化合物。 11. A class of compounds that mimic or regulate the activity or expression of a polypeptide, characterized in that they are compounds that mimic, promote, antagonize or inhibit the activity of human DNA mismatch repair protein 9.
12、 如权利要求 11所述的化合物, 其特征在于它是 SEQ ID NO: 1所示的多核苷 酸序列或其片段的反义序列。 12. The compound according to claim 11, characterized in that it is an antisense sequence of a polynucleotide sequence or a fragment thereof as shown in SEQ ID NO: 1.
1 3、一种权利要求 11所述化合物的应用,其特征在于所述化合物用于调节人 DNA 错配修复蛋白 9在体内、 体外活性的方法。 13. Use of a compound according to claim 11, characterized in that the compound is used for a method for regulating the activity of human DNA mismatch repair protein 9 in vivo and in vitro.
14、 一种检测与权利要求 1-3 中的任一杈利要求所述多肽相关的疾病或疾病易 感性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多肽的 活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。 14. A method for detecting a disease or disease susceptibility related to the polypeptide according to any one of claims 1-3, characterized in that it comprises detecting the expression amount of the polypeptide, or detecting the polypeptide Activity, or detecting a nucleotide variation in a polynucleotide that causes abnormal expression or activity of the polypeptide.
15、 如权利要求 1-3 中的任一权利要求所述多肽的应用, 其特征在于它应用于 筛选人 DNA错配修复蛋白 9 的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于肽 指紋图谱鉴定。 15. The use of a polypeptide according to any one of claims 1-3, characterized in that it is used for screening mimetics, agonists, antagonists or inhibitors of human DNA mismatch repair protein 9; or Identification of peptide fingerprints.
16、 如杈利要求 4-6 中的任一权利要求所述的核酸分子的应用, 其特征在于它 作为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造基因 芯片或微阵列。 16. The use of a nucleic acid molecule according to any one of claims 4-6, characterized in that it is used as a primer for a nucleic acid amplification reaction, or as a probe for a hybridization reaction, or used to make a gene Chip or microarray.
17、 如杈利要求 1-6 及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物 的应用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂或抑 制剂以安全有效剂量与药学上可接受的载体组成作为诊断或治疗与人 DNA 错配 修复蛋白 9异常相关的疾病的药物组合物。 17. Use of a polypeptide, polynucleotide or compound according to any one of claims 1 to 6 and 11, characterized in that said polypeptide, polynucleotide or mimetic, agonist, antagonist The agent or inhibitor is composed of a safe and effective dose with a pharmaceutically acceptable carrier as a pharmaceutical composition for diagnosing or treating a disease associated with a human DNA mismatch repair protein 9 abnormality.
18、 权利要求 1-6 及 11 中的任一杈利要求所述的多肽、 多核苷酸或化合物的 应用, 其特征在于用所述多肽、 多核苷酸或化合物制备用于治疗如恶性肿瘤, 血液病, HIV感染和免疫性疾病和各类炎症的药物。
18. Use of a polypeptide, polynucleotide or compound as claimed in any one of claims 1-6 and 11, characterized in that said polypeptide, polynucleotide or compound is used for preparing a treatment such as a malignant tumor, Hematological diseases, HIV infection and immune diseases and drugs of various inflammations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU48234/01A AU4823401A (en) | 2000-03-22 | 2001-03-19 | A novel polypeptide - homo dna mismatch repair protein 9 and polynucleotide encoding said polypeptide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00115058 CN1314408A (en) | 2000-03-22 | 2000-03-22 | New polypeptide-human DNA mispairing repair gene protein 9 and polynucleotide for coding such polypeptide |
CN00115058.8 | 2000-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001074873A1 true WO2001074873A1 (en) | 2001-10-11 |
Family
ID=4584529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2001/000343 WO2001074873A1 (en) | 2000-03-22 | 2001-03-19 | A novel polypeptide - homo dna mismatch repair protein 9 and polynucleotide encoding said polypeptide |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN1314408A (en) |
AU (1) | AU4823401A (en) |
WO (1) | WO2001074873A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999019492A2 (en) * | 1997-10-10 | 1999-04-22 | Aventis Cropscience S.A. | Methods for obtaining plant varieties |
DE19747748A1 (en) * | 1997-10-29 | 1999-05-06 | Manfred Dr Dr Gross | Test procedure for the identification of people with a defective mismatch repair system |
-
2000
- 2000-03-22 CN CN 00115058 patent/CN1314408A/en active Pending
-
2001
- 2001-03-19 AU AU48234/01A patent/AU4823401A/en not_active Abandoned
- 2001-03-19 WO PCT/CN2001/000343 patent/WO2001074873A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999019492A2 (en) * | 1997-10-10 | 1999-04-22 | Aventis Cropscience S.A. | Methods for obtaining plant varieties |
DE19747748A1 (en) * | 1997-10-29 | 1999-05-06 | Manfred Dr Dr Gross | Test procedure for the identification of people with a defective mismatch repair system |
Non-Patent Citations (1)
Title |
---|
BAIJIE ET AL.: "The preliminary research of significance of DNA mismatch repair gene product expressions in tumor cells", JOURNAL OF DANLIAN MEDICAL UNIVERSITY, vol. 20, no. 4, 1998, pages 24 - 25 * |
Also Published As
Publication number | Publication date |
---|---|
CN1314408A (en) | 2001-09-26 |
AU4823401A (en) | 2001-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001074873A1 (en) | A novel polypeptide - homo dna mismatch repair protein 9 and polynucleotide encoding said polypeptide | |
WO2001070956A1 (en) | A novel polypeptide, a human dna mismatch repair protein 8 and the polynucleotide encoding the polypeptide | |
WO2001079429A2 (en) | A novel polypeptide - human guanine nucleotide exchange factor 10and the polynucleotide encoding said polypeptide | |
WO2001083687A2 (en) | A novel polypeptide, a human pax protein 23 and the polynucleotide encoding the polypeptide | |
WO2001075048A2 (en) | A novel polypeptide, human ribosomal protein s11 23 and the polynucleotide encoding the polypeptide | |
WO2001072793A1 (en) | A novel polypeptide-human proteolytic enzyme regulatory protein 12 and the polynucleotide encoding said polypeptide | |
WO2001047975A1 (en) | A novel polypeptide-protein 10 containing chromo domain and the polynucleotide encoding said polypeptide | |
WO2001046409A1 (en) | A novel polypeptide- ribosome s7 protein 9 and the polynucleotide encoding said polypeptide | |
WO2001075100A1 (en) | A novel polypeptide - human dna mismatch repair protein 10 and the polynucleotide encoding said polypeptide | |
WO2001070965A1 (en) | A novel polypeptide, a human regulatory transcription factor 15 and the polynucleotide encoding the polypeptide | |
WO2001070958A1 (en) | A novel polypeptide, a human dna mismatch repair protein 15 and the polynucleotide encoding the polypeptide | |
WO2001075018A2 (en) | A novel polypeptide, a human regulation factor of transcription 31 and the polynucleotide encoding the polypeptide | |
WO2001079428A2 (en) | A novel polypeptide, a human dna mismatch repair gene protein 8.9 and the polynucleotide encoding the polypeptide | |
WO2001070957A1 (en) | A novel polypeptide, a human dna mismatch repair protein 9.4 and the polynucleotide encoding the polypeptide | |
WO2001087971A1 (en) | A novel polypeptide, human ribosomal protein s18-14 and the polynucleotide encoding thereof | |
WO2001079437A2 (en) | Novel polypeptide a human cell differential transcriptional factor 14 and polynucleotide encoding it | |
WO2001074874A1 (en) | A novel polypeptide - homo regulatory transcription factor 54 and polynucleotide encoding said polypeptide | |
WO2001074895A1 (en) | A novel polypeptide-human cell differentiational transcription factor 12.1 and a polynucleotide sequence encoding the same | |
WO2001047973A1 (en) | A novel polypeptide-gas vesicle protein 14 and the polynucleotide encoding said polypeptide | |
WO2001083778A1 (en) | A novel polypeptide, a human pax protein 10.3 and polynucleotide encoding it | |
WO2002014365A1 (en) | A new polypeptide-ras gtp activator protein 12 and the polynucleotide encoding it | |
WO2001074881A1 (en) | A novel polypeptide - homo ribosome protein s18-10 and polynucleotide encoding said polypeptide | |
WO2002020577A1 (en) | A novel polypeptide-homo ribonucleotide reductase 10.49 and polynucleotide encoding said polypeptide | |
WO2001046241A1 (en) | A NOVEL POLYPEPTIDE-GVPa PROTEIN 12 AND THE POLYNUCLEOTIDE ENCODING SAID POLYPEPTIDE | |
WO2001070790A1 (en) | A novel polypeptide-human dihydroorotase 23 and the polynucleotide encoding said polypeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |