WO2001073222A1 - Work machine report creating method, creating system, and creating apparatus - Google Patents
Work machine report creating method, creating system, and creating apparatus Download PDFInfo
- Publication number
- WO2001073222A1 WO2001073222A1 PCT/JP2001/002811 JP0102811W WO0173222A1 WO 2001073222 A1 WO2001073222 A1 WO 2001073222A1 JP 0102811 W JP0102811 W JP 0102811W WO 0173222 A1 WO0173222 A1 WO 0173222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work machine
- report
- time
- signal
- excavator
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0267—Fault communication, e.g. human machine interface [HMI]
- G05B23/027—Alarm generation, e.g. communication protocol; Forms of alarm
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2054—Fleet management
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24001—Maintenance, repair
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24055—Trace, store a working, operation history
Definitions
- the present invention creates a report indicating the status of each part of the working machine by grasping the state of the engine, hydraulic pump, hydraulic motor, and other movable mechanisms and parts of the working machine such as construction machines at a remote place. And a creating system and a creating apparatus. Background art
- construction equipment hydraulic excavators and crane
- each part requires maintenance and inspection at predetermined time intervals.
- operators have created documents called daily reports that describe the status of each part of work equipment in order to check the status of construction machinery on a daily basis. The maintenance time and other information are ascertained based on the daily report. Disclosure of the invention
- a status signal transmitted from the work machine and indicating the state of each section of the work machine is received, and a report indicating the status of each section of the work machine is created based on the received state signal.
- the state of each part of the work machine is detected, a state signal representing the detected state is transmitted, the state signal is received, and the state of each part of the work machine is indicated based on the received state signal. Create a report.
- various types of reports can be automatically generated based on the status signal, so that the operator does not need to create a report describing the status of the work machine. It also improves report creation efficiency and report reliability.
- the report should include at least information on the operating hours and fuel consumption of each part of the work equipment. Can be included.
- the operating time includes running operating time, turning operating time, and excavating operating time.
- the information on fuel consumption includes at least one of the actual fuel consumption during the operation and the fuel consumption at no load. If a report is created at a work equipment monitoring facility installed at a different location from the work equipment, the administrator of the work equipment, such as the management department of a construction company or civil engineering company, or a rental contractor, can manage the work equipment. The situation can be grasped accurately and quickly. BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 is a diagram showing an operating state of a hydraulic shovel to which a working machine report creation method according to the present invention is applied.
- Figure 2 shows an example of a hydraulic excavator
- Figure 3 shows an example of the hydraulic circuit of a hydraulic excavator
- Fig. 4 is a block diagram illustrating an example of the configuration of a controller of the excavator.
- Fig. 5 is a diagram illustrating details of a sensor group of the excavator.
- Figure 6 is a diagram explaining the storage device of the excavator
- FIG. 7 is a flowchart showing an example of a procedure for calculating a travel operation time and the like.
- FIG. 8 is a flowchart showing an example of a routine transmission processing procedure of the excavator.
- FIG. 9 is a flowchart showing an example of a processing procedure of the excavator for detecting an alarm or a failure.
- FIG. 10 is a diagram showing an example of data transmitted from the excavator.
- Figure 11 is a block diagram showing an example of a hardware configuration for information management in a base station.
- Figure 12 is a flowchart showing an example of the processing procedure in the base station.
- Fig. 13 is a diagram illustrating data summarized for each excavator unit.
- Fig. 14 is a diagram illustrating data collected by service factory.
- Figure 15 is a block diagram showing an example of a hardware configuration for coasting information management in a service factory.
- Fig. 16 is a flowchart showing an example of the processing procedure in a service factory.
- Figure 17 is a flowchart showing an example of the processing procedure in a service factory.
- Figure 18 shows an example of a daily report output at a service factory.
- Figures 19A to 19C show examples of scheduled maintenance output at a service factory.
- Fig. 20 A shows running load frequency distribution
- Figure 20B shows the frequency distribution of excavation load
- Figure 21 is a diagram illustrating the schedule for providing efficient patrol services.
- Figure 22 shows the serviceman's calendar
- Figures 23A and 23B show engine operating time distributions.
- Fig. 24 is a flow chart showing an example of the procedure for calculating the fuel consumption for the operating time along with the driving operation time.
- Figure 25 shows another example of connecting a radio base station, a hydraulic excavator manufacturing factory, and a service factory via a communication line.
- FIG. 26 is a diagram showing a system configuration in a hydraulic excavator manufacturing plant.
- FIG. 1 is a diagram for explaining the operation status of a hydraulic shovel to which the daily report creation method according to the present invention is applied.
- multiple hydraulic excavators are operating in multiple work areas A, B, and C, respectively.
- Excavator a in area A An
- excavators b1 ⁇ bn force 3 'in district B
- excavators c1 ⁇ cn in district C respectively.
- Districts A, B, and C are geographically separated rather than at the same work site.
- the state of each part of each excavator is detected, and the detected signal is received by the base station BC via the communication satellite CS.
- the base station BC transmits the received signal to the appropriate service factory SF1 to SFn using the general public switched telephone network PC.
- a daily report as described later is created, a failure is diagnosed, and a schedule for a traveling service is created.
- Each excavator is equipped with a GPS receiver and can receive signals from the GPS satellite GS to calculate the current location. This current location information is transmitted to the service factory SF via the base station BC together with signals from various parts of the excavator, and the service shop SF can recognize the operating area of each excavator.
- the hydraulic excavator is configured as shown in Fig. 2.
- the hydraulic excavator has a traveling body 81 and a revolving body 82 pivotally connected to an upper portion of the traveling body 81.
- the revolving unit 82 is provided with a cab 83, a working device 84, an engine 85, and a revolving motor 86.
- the working device 84 is boom BM rotatably attached to the main body of the revolving unit 82, an arm AM rotatably connected to the boom BM, and rotatably connected to the arm AM. It consists of an attachment, for example, a bucket BK.
- the boom BM is raised and lowered by the boom cylinder C1, the arm AM is subjected to a cloud and a dump operation by the arm cylinder C2, and the bucket BK is a cloud and a dump operation by the bucket cylinder C3. Is performed.
- the traveling body 81 is provided with left and right traveling hydraulic motors 87, 88.
- Fig. 3 shows the outline of the hydraulic circuit of the hydraulic excavator.
- the engine 85 drives the hydraulic pump 2.
- the pressure oil discharged from the hydraulic pump 2 is controlled by a plurality of control valves 3 s, 3 tr, 3 tl, 3 b, 3 a, and 3 bk to control the direction and amount of oil. 6.
- the plurality of control valves 3 s, 3 tr, 3 t 1, 3 b, 3 a and 3 bk are respectively connected to the corresponding plurality of pilot valves 4 s, 4 tr, 4 tl, 4 b, 4 a and 4 bk.
- the pilot valves 4 s, 4 tr, 4 t 1, 4 b, 4 a, and 4 bk are supplied with pilot pressure of a predetermined pressure from the pilot hydraulic pump 5, and the operating levers 4 Ls, 4 Ltr , 4Ltl, 4Lb, 4La, 4bk Output pilot pressure according to the manipulated variable.
- Multiple control valves 3s, 3tr, 3t1, 3b, 3a and 3bk are combined into one valve block.
- a plurality of pilot valves 4s, 4tr, 4t1, 4b, 4a, and 4bk are also integrated in one valve block.
- FIG. 4 is a block diagram of a control system for detecting and transmitting the state of each part of the excavator.
- the hydraulic excavator is equipped with a sensor group 10 having a plurality of sensors for detecting the states of the above-described components, and a state detection signal output from the sensor group 10 is sent to the controller 20 at a predetermined timing. Is read.
- the controller 20 is a timer for accumulating the running operation time, the turning operation time, and the front (digging) operation time. It has function 20a.
- the controller 20 calculates the traveling operation time, the turning operation time, and the front operation time based on the read state detection signal. These calculated operation times are stored in the storage device 21.
- the hydraulic shovel also has a key switch 22 for starting the engine 85 and an parameter 23 for measuring the operating time of the engine 85.
- the hydraulic excavator is equipped with a GPS receiver 24.
- the GPS receiver 24 receives the GPS signal from the GPS satellite GS, calculates the position of the excavator based on the GPS signal, and outputs the calculated position to the controller 20.
- the driver's seat of the excavator is provided with a monitor 25 for displaying various information.
- the controller 20 has a clock function 20b, and can recognize the ON time, the OFF time, the engine start time, and the engine stop time of the key switch 22. These times are also stored in the storage device 21.
- the measured value of the parameter 23 is also read by the controller 20 at a predetermined evening, and is stored in the storage device 21.
- the running time, the turning time, the front operation time, the key switch-on time, and the like stored in the storage device 21 are transmitted via the transmitter 30 at a predetermined timing.
- the radio wave transmitted from the transmitter 30 is received by the base station BC via the satellite CS.
- the receiver 20 is also connected to the controller 20.
- the receiver 35 receives a signal from the service factory SF via the communication satellite CS and the base station BC, such as a countermeasure for failure, and sends the signal to the controller 20.
- the controller 20, the transmitter 30, and the receiver 35 can always be driven by the power from the vehicle battery even when the main switch of the excavator is turned off.
- the sensor group 10 includes a pressure sensor 11 for detecting a pressure state of the main hydraulic circuit system. That is, a pressure sensor 11 p for measuring the discharge pressure of the hydraulic pump 2, a pressure sensor 11 tr, 11 t 1 for measuring the driving pressure of the traveling hydraulic motors 8 7, 8 8, and a swing hydraulic motor 8 6 Pressure sensor 11 1 s that measures the driving pressure of the boom hydraulic cylinder C 1, pressure sensor 11 b that measures the driving pressure of the boom hydraulic cylinder C 1, and pressure sensor 11 1 that measures the driving pressure of the arm hydraulic cylinder C 2 a, and a pressure sensor 11 bk for measuring the driving pressure of the bucket hydraulic cylinder C3.
- the sensor group 10 is a pressure sensor 13 that detects the pressure state of the pilot hydraulic circuit system. It also has. That is, pressure sensors 13 tr and 13 t 1 that measure the pilot pressures P tr and P t 1 output from the traveling hydraulic pilot valves 4 tr and 4 t 1, and output from the swing hydraulic pilot valve 4 s Pressure sensor 13 s to measure pilot pressure P.s, pressure sensor 13 b to measure pilot pressure Pb output from boom hydraulic pilot valve 4 b, and output from arm hydraulic pilot valve 4 a Pressure sensor 13a that measures the pilot pressure Pa that is applied, and a pressure sensor 13bk that measures the pilot pressure Pbk output from the packet hydraulic pilot valve 4bk. I have.
- the travel operation time is a time obtained by integrating the times during which the pressures Ptr or Pt1 detected by the travel pilot pressure sensors 13tr and 13t1 are equal to or greater than a predetermined value.
- the turning operation time is a time obtained by integrating the time during which the pressure Ps detected by the turning pilot pressure sensor 13 s is equal to or more than a predetermined value.
- the front operation time is determined when the pressures Pb, Pa, and Pbk detected by any of the boom, arm, and bucket pilot pressure sensors 13b, 13a, and 13bk are equal to or greater than the specified values. This is the time obtained by integrating a certain time.
- the sensor group 10 also includes a pressure sensor 14f that detects clogging of a filter provided in the main hydraulic line, and a temperature sensor that detects the temperature of hydraulic oil that drives a hydraulic motor or hydraulic cylinder. It also has 14 t. Further, the sensor group 10 has various sensors 15 for detecting the state of the engine system.
- a cooling water temperature sensor 15 w that detects the cooling water temperature of the engine 85
- an engine oil pressure sensor 150 p that detects the engine oil pressure
- an engine oil temperature that detects the temperature of the engine oil Sensor 150 t
- engine oil level sensor 15 ⁇ 1 for detecting engine oil level
- clogging sensor 15 af for detecting clogging of air filter
- fuel for measuring remaining fuel It has a remaining amount sensor 15 ⁇ , a battery voltage sensor 15 V for detecting the charge voltage of the battery, and a rotation speed sensor 15 r for detecting the engine rotation speed.
- the signal indicating the state of each part of the excavator is transmitted to the service factory SF via the communication satellite CS and the base station BC, but the signal indicating the normal state of each part is used as daily report data as one day.
- the minutes are sent together during late night hours when communication charges are low.
- signals indicating alarms and failures are transmitted each time they are issued. You. Note that, even when the remaining fuel amount becomes equal to or less than the predetermined value, information indicating this is transmitted immediately, not only for the time ⁇ .
- the above-described daily report data includes the following information and is stored in the storage device 21 in a predetermined format.
- the daily report data also includes running load frequency distribution (see Fig. 20A), excavation load frequency (see Fig. 20B), or fuel consumption (per unit time, operation, no-load, etc.).
- the alarm data includes the following information.
- FIG. 6 is a diagram showing an example of the storage device 21.
- the storage device 21 has a first area R 1 for storing the measured values of the parameters 23 of the engine 85, a second area R 2 for storing the traveling operation time (running operation time), and a turning operation time ( A third area R3 for storing the turning operation time), a fourth area R4 for storing the front operation time (front operation time), and other state signals, alarm signals or failure signals.
- a plurality of regions R5 are provided.
- FIG. 7 is a flowchart showing a processing procedure for integrating running, turning, and front operation times performed by the controller 20 of each excavator.
- the traveling pilot pressure Ptr or Pt1 the swing pilot pressure Ps, the boom pilot pressure Pb, the arm pilot pressure Pa, or the socket nozzle pressure Pbk
- the controller 20 starts the program shown in FIG.
- step S1 the corresponding operation time measurement timer of the traveling, turning, and front timer functions 20a is started. Also starts the load frequency distribution measurement timer.
- a timer for driving operation time is used.
- a timer for turning operation time is used. If any of the pressure Pb, arm pilot pressure Pa, and bucket pilot pressure Pbk is higher than a predetermined value, the front timer is activated. If it is determined in step S2 that the pilot pressure has become less than the predetermined value, the process proceeds to step S3, and the corresponding timer is stopped.
- the running operation time is T t
- the turning operation time is T s
- the front operation time is ⁇ ⁇
- the running timer measurement time is TM t
- the turning timer measurement time is TM s
- the front timer measurement time is Is defined as TM f
- T s T s + T M s
- T f T f + T M f
- the time measured by the timer is added to the current value of each operation time storage area, and the operation time area is updated with the addition result.
- the operation time was measured for traveling, turning, and front.However, if the hydraulic shovel is equipped with another attachment, for example, a breaker, The operation time of the attachment may be detected, and the operation time of the attachment may be measured similarly.
- another attachment for example, a breaker
- step S2 is denied and the process proceeds to step S2A.
- step S2B the load frequency distribution measuring timer measures ⁇ tf in step S2A
- step S2C the running pressure, swing pressure, and pump pressure at that time are read, and in step S2C, 1 is added to the histogram of the corresponding pressure value. For example, if the traveling pressure is 10 Mpa, 1 is added to the frequency of 10 Mpa.
- step S2D the timer for negative frequency is reset and restarted, and the process returns to step S2.
- the running load frequency distribution is shown in Figure 20A
- the excavation load frequency distribution is shown in Figure 20B.
- FIG. 8 is a flowchart showing a processing procedure for transmitting daily report data at a certain time.
- the controller 20 starts the program shown in FIG.
- step S11 the daily report data to be transmitted is read from the storage device 21.
- the read daily report data is processed into predetermined transmission data in step S12, and sent to the transmitter 30 in step S13.
- the transmitter 30 transmits daily data indicating the operating state of the hydraulic excavator in one day to the service factory SF via the communication satellite CS and the base station BC.
- FIG. 9 is a flowchart showing a processing procedure for transmitting an alarm signal and a failure signal.
- the controller 20 starts the program of FIG.
- step S21 the detected alarm signal or failure signal is stored in the storage device 21. If it is determined in step S22 that these alarm signals or fault signals need to be transmitted to the service factory, the process proceeds to step S23.
- step S23 the details of the failure are displayed on the monitor 25 of the driver's seat, and the fact that the transmission has been made to the service factory is displayed.
- an alarm signal or a failure signal is read from the storage device 21 and is processed into transmission data in step S25. The processed transmission data is sent to the transmitter 30 in step S26, and an alarm signal or a failure signal is transmitted from the transmitter 30 in step S27 (step S14).
- step S28 controller 20 issues a fault report from the service factory. If it is determined that a signal indicating a remedy has been received, in step S29, a remedy for the fault is displayed on the monitor 25 of the driver's seat. If the instruction from the service factory has not been received, in step S30, it is determined whether or not a predetermined time has elapsed after transmitting the alarm signal or the failure signal. If the predetermined time has elapsed, a message "Please contact the service factory" is displayed in step S31. If step S30 is negative, step S28 is repeated. In other words, if the service factory does not send a remedy instruction even after the predetermined time has elapsed, it is highly likely that communication has failed for some reason. Notify you what you will do.
- step S32 the content of the alarm corresponding to the alarm signal is displayed on the monitor 25 of the driver's seat.
- the countermeasure is calculated. For example, a method of coping with an alarm signal is stored in a database in the storage device 21 in advance, and a database is accessed by the alarm signal to calculate a coping method. Then, in step S34, a countermeasure is displayed on the monitor 25 of the driver's seat.
- FIG. 10 shows an example of a data sequence created for transmitting daily report data, alarm data, or failure data.
- the header of the data string is provided with an identifier HD for identifying the hydraulic shovel.
- a data section is provided following the header, and the current location information D1, the measurement time D2 of the parameter, the traveling time D3, the turning time D4, the front time D5, and so on are combined in this order.
- FIG. 11 is a block diagram showing a configuration for information management in base station BC.
- the base station BC transmits the received various signals to service factories in various places.
- the base station BC stores a receiver 31 for receiving a signal transmitted from the communication satellite CS, a storage device 32 for storing the signal received by the receiver 31, and data to be transmitted to the service factory. It comprises a modem 33 for transmitting via a general public network PC and a controller 34 for controlling these various devices.
- FIG. 12 is a flowchart showing a processing procedure for receiving a status signal and the like at the base station BC and transmitting it to the service factory.
- the control device 34 of the base station BC activates the program shown in FIG. Step S 3 0 1
- the received signal is temporarily stored in the storage device 32.
- the excavator is identified from the identifier HD recorded in the header of the received status signal, and the received signals are classified for each excavator as shown in FIG.
- the service factory in charge is identified based on the identified excavator (based on the identifier), and as shown in FIG. 14, the received signal of the excavator is determined for each service factory. Put together.
- the telephone numbers of the identified service factories are read from the database created in the storage device 32 in advance, and in step S305, the signals collected in step S303 are modeled. It is transmitted to each service factory via system 33.
- the reception signal may be transmitted to a service factory located closest to the current location of the excavator. Further, transmission of various information from the base station BC to each service factory SF may be performed by a dedicated line, a LAN line, or the like. For example, if the base station B C and the service factory SF are facilities of a hydraulic excavator maker, various types of coastal information may be sent and received via a so-called in-house LAN (intranet).
- in-house LAN intranet
- FIG. 15 is a block diagram showing a configuration for information management in the service factory SF.
- the service plant SF includes a modem 41 for receiving signals transmitted from the base station BC via the general public network PC, and a storage device 42 for storing the signals received by the modem 41. And a display device 44 and a printer 45 connected to the processing device 43, and a keyboard 46.
- the processing unit 43 creates a daily report based on the status signal (daily report data) stored in the storage unit 42, and displays a load frequency distribution calculated by the controller 20 of the excavator in a graph format. It calculates the maintenance time for each hydraulic excavator, determines whether there is a failure or abnormality, and creates a schedule for patrol service.
- a database 47 is also connected to the processor 43.
- This database 47 stores the maintenance history of each excavator, the history of past failures and abnormalities, and the history of services.
- the data stored in the data pace 47 includes data collected from the storage device 21 of the hydraulic shovel by the service technician who has visited the patrol service using the portable information terminal device 51.
- the information terminal device 51 may be provided with a communication function.
- the service person Various information may be input by key input of the information terminal device 51, and various information may be input to the database 47 by communication.
- FIG. 16 is a flowchart showing various processing procedures executed by the processing device 43 based on the status signal, the alarm signal, and the failure signal received at the service factory.
- the processor 43 of the service factory Upon receiving a status signal, an alarm signal or a failure signal, the processor 43 of the service factory starts the program shown in FIG.
- the received status signal, alarm signal or fault signal is stored in the storage device 42.
- the excavator is identified from the identifier HD of the received signal. When the received signal is applied to a plurality of excavators, each excavator is identified and the received signals are arranged in an appropriate order.
- step S43 it is determined whether the signal received from the first hydraulic excavator is a daily report, an alarm signal, or a failure signal.
- the database 47 is accessed using the identified excavator identifier and the past history of the excavator is read.
- step S45 the daily report data is read from the storage device 42, and in step S46, a daily report as shown in FIG. 18 is created. A specific example of the daily report will be described later.
- step S47 the next maintenance time is calculated based on the daily report data and the past maintenance information read from the database 47.
- step S48 when it is determined that the processing has not been completed for all the excavator reception signals, the process returns to step S43, and the same processing is performed for the next excavator reception signal. Do. If it is determined in step S48 that the processing for all the received signals has been completed, the flow advances to step S49 to create a schedule for the traveling service. The schedule creation method will be described later.
- step S43 If it is determined in step S43 that the received signal is an alarm signal or a failure signal, the flow advances to step S50 to read the alarm signal or the failure signal from the storage device 42.
- step S51 a countermeasure for the read alarm signal or failure signal is read from the database 47.
- step S52 the read countermeasure is transmitted to the corresponding excavator via the base station BC or the mobile communication system. Hydraulic excavator phone number is service factory storage 4 2 is stored in advance. The header of the data sent to the excavator is provided with the identifier of the excavator, followed by data for indicating the remedy.
- step S53 After transmitting the data, in step S53, a process for dispatching a serviceman to the work area is performed.
- step S54 when it is determined that the processing has not been completed for the received signals of all the excavators, the process returns to step S43, and the same processing is repeatedly executed.
- the processing for the received signals of all the excavators is completed, the processing is completed.
- FIG. 17 is a flowchart showing a processing procedure for dispatching a serviceman executed in step S53 of FIG.
- the GPS receiver is carried by all service personnel, and the current location signal transmitted to the service factory at predetermined time intervals is stored in the storage device 42 of the service factory.
- step S61 of FIG. 17 the current positions of all the service personnel are read from the storage device 42, and in step S62, the service manager which is closer to the work area of the corresponding excavator is read. Search.
- the process proceeds to step S63, in which the corresponding hydraulic excavator, work area, details of the alarm or failure, the method of handling the failure, and the parts to be brought to the base station are transmitted to the portable information terminal device 51 of the serviceman. Transmit via BC or via mobile communication system.
- the work schedule of the service technicians may be stored in a database (see Figure 22), and the service technicians who have free time may be searched. At that time, the order of the parts may be automatically notified to the parts management department.
- Figure 18 shows an example of daily report data created based on the status signal (daily report data) received by the service factory.
- the daily report is prepared daily for each excavator.
- Fig. 18 shows the daily report of Unit A's Unit 253, dated March 16, 2000, for example.
- the first page shows the accumulated time of the engine operation time, running operation time, turning operation time, front operation time, and the time related to the work performed on March 16th.
- the second page shows maintenance information, for example, the time for each part and part to be maintained, such as 100 hours before changing the engine oil filter and 60 hours before changing the engine oil. Is done.
- This daily report is printed out at the service factory and distributed to each service person. You. It may be distributed to the serviceman by e-mail.
- the daily report shown in Fig. 18 may be sent to the hydraulic excavator 25-3 and displayed on the monitor 25 of the driver's seat, or may be sent to the user A's management department.
- FIGS. 19A to 19C are diagrams illustrating an example of a maintenance schedule.
- Fig. 19A shows the maintenance schedule for the traveling rollers
- Fig. 19B shows the maintenance schedule for the bush
- Fig. 19C shows the maintenance schedule for the pins.
- the cumulative operating time of each hydraulic shovel's engine, running operation time, turning operation time, and front operation time is received as a status signal (daily report data) at the service factory. Based on this, it is determined whether each part has reached its replacement time.
- the replacement time of the traveling roller is 2000 hours
- the running operation time of the hydraulic shovel a1 to the present exceeds 180 hours
- the replacement time will be within 150 hours until the replacement time.
- Judgment is due for maintenance, and a hydraulic shovel a1 patrol service will be scheduled within 150 hours.
- Fig. 19A the excavator a1 is displayed in the maintenance schedule for this month. The same applies to other units.
- the hydraulic shovel a2 in the same area A exceeds the current operating time of 295 hours, It will be within 50 hours until the replacement time, and it is determined that it is maintenance time, and the patrol service of the hydraulic excavator a2 will be scheduled within 50 hours.
- the excavator a2 is displayed as the maintenance schedule for this month. The same applies to other units.
- the operating time of the front end of the excavator a6 in the same area A to date exceeds 392 hours. It is within 80 hours until the replacement time, and it is determined that it is the maintenance time, and the patrol service of the hydraulic excavator a3 will be scheduled within 80 hours.
- the excavator a6 is displayed in the maintenance schedule for this month. The same applies to other units.
- the parts required for maintenance can be known in advance. Therefore, parts may be arranged based on this schedule.
- the parts arrangement is completed, for example, by automatically sending a parts purchase order to a parts center attached to a service factory via the company intranet.
- the maintenance cost may be calculated according to the schedule and the parts arrangement, and may be sent to the user.
- the maintenance time was calculated by comparing the usage time of the target component up to the present with the standard maintenance time set in advance.
- the working load of hydraulic excavators varies greatly depending on the work site and work content. Therefore, it is preferable to make the maintenance time variable according to the load condition.
- the running load frequency distribution and the front (digging) load frequency distribution are shown in Fig. 20A and Fig. 20B based on the daily report data sent from the excavator on a daily basis. Is displayed as a bar graph.
- a standard running load frequency distribution and excavation load frequency distribution are set in advance. Then, it is determined whether the calculated load frequency distribution is operated on the light load side or the heavy load side compared to the standard load frequency distribution, and according to the determination result, Therefore, the maintenance time is calculated.
- ⁇ is a value less than 1 and /? Is a value exceeding 1, which is determined in advance by experiments.
- the maintenance time is calculated based on whether the traveling load frequency distribution is a heavy load or a hierarchical load. Alternatively, if the target part is a bush, the digging load frequency distribution is heavy or light Thus, the maintenance time is calculated. That is, the maintenance time is made variable in consideration of the load frequency distribution related to the target component.
- the heavy load maintenance time, the standard load maintenance time, and the light load maintenance time are set in advance as a table, and the load The use table may be selected according to the situation.
- the history of the previous maintenance status may be read from the database 47 of the service factory SF, and the maintenance time may be made variable according to the history. In other words, if the last maintenance time is shorter or longer than the standard maintenance time, the current maintenance time is changed to the previous maintenance time, and the maintenance time is changed. Is calculated. .
- Figure 21 shows the maintenance schedule of oil shovels a1 to a5 operating in work area A.
- This maintenance schedule is calculated by the processing device 43 of the service factory.
- the hydraulic shovel a1 is scheduled for maintenance between March 6 and March 17, and the hydraulic shovel a2 is scheduled for maintenance between March 9 and March 17
- the hydraulic excavator a3 is scheduled for maintenance between March 16 and March 24, and the hydraulic excavator a4 is scheduled between March 15 and March 23.
- the maintenance schedule is set for the hydraulic excavator a5 between March 17 and March 22.
- the maintenance schedule is determined by, for example, predicting the replacement time based on the remaining time until maintenance and the average daily operating time of the excavator.
- the processing device 43 calculates a scheme that circulates with high efficiency.
- the excavators a1 to a5 in the work area A have been described.
- the remedy is read from the service factory database 47 based on the alarm signal and the failure signal.
- an AI Artificial Intelligence
- the processing device 43 of the service factory may be connected to the processing device 43 of the service factory, and the content of the response may be inferred based on the alarm signal or the failure signal to determine a response method.
- the status signal (daily report data) is transmitted on a regular basis at night.
- a switch for transmitting the daily report data may be provided in the driver's seat, and the daily report data may be transmitted by the switch for transmitting the daily report.
- the daily report data may be transmitted when the engine is stopped or started.
- Fig. 18 was created based on the daily report data.
- a daily report including the engine operating time distribution may be created.
- Fig. 23A shows the total operation time, excavation time, turning time, travel time, breaker time, drive time of non-breaker attachments, and accumulated time of no load in a bar graph. These accumulated times are created at the service factory based on the daily operating hours sent from the excavator controller 20, and are displayed in a graph.
- Figure 23B shows a bar graph of engine operation time and idle time for each month.
- Monthly engine operating hours and idle hours are also created at service plants based on the daily operating hours sent from the excavator controller 20, and are displayed as bar graphs.
- the hydraulic excavator is equipped with the fuel remaining amount sensor 15f. Therefore, using the signal from the fuel remaining amount sensor 15f, the controller 20 can calculate the fuel consumption per unit time and the fuel consumption rate. By transmitting these fuel consumption and fuel consumption rate from the hydraulic excavator as daily report data, it is possible to visualize the fuel consumption and fuel consumption rate at the service factory.
- fuel consumption, operating consumption, standby consumption, and total consumption for 6 months per hour can be calculated and output as a daily report.
- the fuel consumption per hour is calculated by dividing the daily fuel consumption by the daily engine operating time.
- Operating consumption is the amount of fuel consumed while working on the implementation, and standby consumption is the amount of fuel consumed while the engine is running with no load. is there.
- the 6 month total consumption is literally the integrated value of the fuel consumption for 6 months. If the standby consumption is higher than the predetermined reference amount, a message such as "Please reduce the standby consumption and try to save energy" is output.
- the fuel consumption is calculated in the process of FIG. 7 for calculating the traveling operation time, the turning operation time, and the front operation time.
- the operating fuel consumption FI is read in step S5
- the remaining fuel is read in step S6.
- the pilot pressure becomes lower than the predetermined value, that is, when the above operations are completed, the process proceeds to step S7, where the measured value of the fuel remaining amount sensor 15f is read and substituted into the variable FF.
- FS—FF + FI is calculated to update the operating fuel consumption FI.
- information on fuel can be processed from various viewpoints and used as a daily report.
- the signals from the hydraulic excavators a1 to cn are transmitted to the base station BC using the communication satellite CS, and the signals are transmitted from the base station BC to the service factory SF via the general public network PC.
- the signal from the hydraulic shovel may be transmitted using a mobile communication system such as a PHS phone or a mobile phone without using a communication satellite.
- the signal from the excavator is processed and output in various forms at the service factory.
- the signal is transmitted to the facility of the excavator administrator (the service station of the manufacturer, the user's management department), and the same applies. Processing output of important information may be performed. In this case, installing an ID card reader on the excavator can also be used to manage the working hours of the operator.
- the operator causes his / her ID card to be read by the ID card reader.
- This information is transmitted to the excavator owner's facility, for example, the human resources department, together with the engine start time and stop time on the daily report day.
- the HR department can manage the working hours of operators based on the transmitted ID information and the engine start and stop times and use them for payroll calculations.
- the work amount of the excavator for example, the amount of excavated sediment can be calculated.
- the excavator manager may be the rental company.
- the service technician When sending the troubleshooting method to the service technician, the hydraulic excavator unit, the operation site, the details of the failure, the troubleshooting method, the parts to be brought, etc. were also transmitted, but at the service factory, the service technician A road map from the point where the vehicle is located to the operation site of the excavator may be searched, and the road map may be transmitted together.
- a navigation device is installed in the serviceman's vehicle, and in a service factory, the optimal route from the point where the serviceman is located to the operation site of the excavator is searched, and navigation is performed according to the search results.
- the route may be guided on the monitor of the device.
- the route search may be performed by a navigation device.
- the alarm signal and the failure signal detected by the hydraulic excavator sensor group 10 are received by the service factory, the failure content is determined by the service factory, and the remedy is calculated.
- the controller 20 of the excavator determines the content of the failure based on the alarm signal and the failure signal, and transmits a code representing the content of the failure, for example, an abnormality flag / abnormal code to the service factory, and sends the code to the service factory. Then, the database may be searched based on the abnormal flag or the abnormal code, and a remedy may be obtained.
- the state signal of the excavator is transmitted to the service factory SF via the communication satellite SC and the base station BC, but the signal from the communication satellite CS is directly received at the service factory. You may do so.
- the wireless base station BCA and the hydraulic excavator manufacturing plant OW are connected via a general public network PC, and the hydraulic excavator manufacturing plant OW and a plurality of service plants SF 1 to SF n are connected. May be connected (intranet) using a dedicated line.
- FIG. 26 a system similar to the system in the radio base station B CA shown in FIG. 11 is provided in the hydraulic excavator manufacturing plant OW.
- the manufacturing plant OW has a modem 31A that receives signals transmitted from the communication satellite CS via the radio base station BCA and the general public network PC, and a signal that is received by the modem 31A.
- Storage device for storing data a modem 33A for transmitting data to be transmitted to the service factory via a dedicated line, and a control device 34A for controlling these various devices. . Then, the same processing as in FIG. 12 is executed by the control device 34A.
- Hydraulic excavator manufacturing plant It may be provided in the head office of the manufacturer or in the rental company described above. Also, the hydraulic shovel has been described as an example, but the present invention can be widely applied to construction machines other than the hydraulic shovel and other work machines including rainy work vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Human Computer Interaction (AREA)
- Automation & Control Theory (AREA)
- Operation Control Of Excavators (AREA)
Abstract
The states of portions of a work machine are measured. State signals representing the measured states are sent and received. A report describing the states of the portions of the work machine is written on the basis of the received state signals. Therefore the operator does not need to write a report describing the states of the work machine. Reports in various formats can be automatically created on the basis of the state signals, and therefore the report creation efficiency and report reliability are improved.
Description
明細書 Specification
作業機レポ一ト作成方法、 作成システムおよび作成装置 技術分野 Work machine report creation method, creation system and creation device
本発明は、 建設機械などの作業機のエンジン、 油圧ポンプ、 油圧モータ、 その 他の可動機構や部品などの状態を遠隔地で把握して作業機の各部の状況を示すレ ポ一トを作成する方法、 作成システムおよび作成装置に関する。 背景技術 The present invention creates a report indicating the status of each part of the working machine by grasping the state of the engine, hydraulic pump, hydraulic motor, and other movable mechanisms and parts of the working machine such as construction machines at a remote place. And a creating system and a creating apparatus. Background art
たとえば油圧ショベルやク レーン (以後、 建設機械とする) は複数の部品から 構成されており、各々の部品は所定時間ごとに保守点検が必要である。従来から、 建設機械の状況を日々確認する目的で、 オペレータは、 作業機各部の状況を記し た日報と呼ばれる書類を作成している。 そして、 日報に基づいてメ ンテナンス時 期などを把握している。 発明の開示 For example, hydraulic excavators and crane (hereinafter referred to as construction equipment) are composed of multiple parts, and each part requires maintenance and inspection at predetermined time intervals. Conventionally, operators have created documents called daily reports that describe the status of each part of work equipment in order to check the status of construction machinery on a daily basis. The maintenance time and other information are ascertained based on the daily report. Disclosure of the invention
本発明の目的は、 建設機械などの作業機で検出される状態信号に基づいて作業 機各部の状況を示すレポ一トを作成するようにした作業機レポ一ト作成方法、 作 成システムおよび作成装置を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a work machine report creation method, a creation system and a creation system for creating a report indicating the status of each part of the work machine based on a state signal detected by the work machine such as a construction machine. It is to provide a device.
本発明では、 作業機から送信されてく る作業機各部の状態を示す状態信号を受 信し、 受信した状態信号に基づいて、 作業機の各部の状況を示すレポー トを作成 する。 In the present invention, a status signal transmitted from the work machine and indicating the state of each section of the work machine is received, and a report indicating the status of each section of the work machine is created based on the received state signal.
また本発明では、 作業機の各部の状態を検出し、 検出された状態を表す状態信 号を送信し、 その状態信号を受信し、 受信した状態信号に基づいて作業機の各部 の状況を示すレポ一トを作成する。 Further, in the present invention, the state of each part of the work machine is detected, a state signal representing the detected state is transmitted, the state signal is received, and the state of each part of the work machine is indicated based on the received state signal. Create a report.
このよ うな発明によれば、 状態信号に基づいて種々の形式のレポ一トを自動作 成できるので、 オペレータは作業機の状況を記したレポ一トを作成する必要がな い。 また、 レポート作成効率とレポー トの信頼性が向上する。 According to such an invention, various types of reports can be automatically generated based on the status signal, so that the operator does not need to create a report describing the status of the work machine. It also improves report creation efficiency and report reliability.
レポ一トには作業機各部の稼働時間および燃料消費量に関する情報の少なく と
もいずれか一方を含むことができる。稼働時間は、 走行稼働時間、 旋回稼働時間、 掘削稼働時間を含む。 燃料消費量に関する情報は、 実際に作業を行っている稼働 分燃料消費量および無負荷時の燃料消費量の少なく ともいずれか一方を含む。 作業機とは別の場所に設置された作業機監視施設でレポ一トを作成するように すれば、 建設会社や土木会社の管理部門、 あるいはレンタル業者など、 作業機の 管理者が作業機の状況を的確にかつ迅速に把握することができる。 図面の簡単な説明 The report should include at least information on the operating hours and fuel consumption of each part of the work equipment. Can be included. The operating time includes running operating time, turning operating time, and excavating operating time. The information on fuel consumption includes at least one of the actual fuel consumption during the operation and the fuel consumption at no load. If a report is created at a work equipment monitoring facility installed at a different location from the work equipment, the administrator of the work equipment, such as the management department of a construction company or civil engineering company, or a rental contractor, can manage the work equipment. The situation can be grasped accurately and quickly. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による作業機レポ一ト作成方法が適用される油圧ショベルの稼 働状態を示す図 FIG. 1 is a diagram showing an operating state of a hydraulic shovel to which a working machine report creation method according to the present invention is applied.
図 2は、 油圧ショベルの一例を示す図 Figure 2 shows an example of a hydraulic excavator
図 3は、 油圧ショベルの油圧回路例を示す図 Figure 3 shows an example of the hydraulic circuit of a hydraulic excavator
図 4は、 油圧ショベルのコントローラの構成の一例を示すプロック図 図 5は、 油圧ショベルのセンサ群の詳細を説明する図 Fig. 4 is a block diagram illustrating an example of the configuration of a controller of the excavator. Fig. 5 is a diagram illustrating details of a sensor group of the excavator.
図 6は、 油圧ショベルの記憶装置を説明する図 Figure 6 is a diagram explaining the storage device of the excavator
図 7は、 走行操作時間などを算出する手順例を示すフローチヤ一ト FIG. 7 is a flowchart showing an example of a procedure for calculating a travel operation time and the like.
図 8は、 油圧ショベルの定時送信処理手順例を示すフローチヤ—ト FIG. 8 is a flowchart showing an example of a routine transmission processing procedure of the excavator.
図 9は、 警報や故障を検出する油圧ショベの処理手順例を示すフローチヤ一ト 図 1 0は、 油圧ショベルから送信されるデータの一例を示す図 FIG. 9 is a flowchart showing an example of a processing procedure of the excavator for detecting an alarm or a failure. FIG. 10 is a diagram showing an example of data transmitted from the excavator.
図 1 1 は、 基地局における情報管理のためのハー ド構成の一例を示すブロック 図 Figure 11 is a block diagram showing an example of a hardware configuration for information management in a base station.
図 1 2は、 基地局における処理手順例を示すフローチャート Figure 12 is a flowchart showing an example of the processing procedure in the base station.
図 1 3は、 油圧ショベルの号機ごとにまとめたデータを説明する図 Fig. 13 is a diagram illustrating data summarized for each excavator unit.
図 1 4は、 サービス工場単位でまとめたデー夕を説明する図 Fig. 14 is a diagram illustrating data collected by service factory.
図 1 5は、 サービス工場における惰報管理のためのハー ド構成の一例を示すブ ロック図 Figure 15 is a block diagram showing an example of a hardware configuration for coasting information management in a service factory.
図 1 6は、 サービス工場における処理手順例を示すフローチヤ一ト Fig. 16 is a flowchart showing an example of the processing procedure in a service factory.
図 1 7は、 サービス工場における処理手順例を示すフローチヤ一ト Figure 17 is a flowchart showing an example of the processing procedure in a service factory.
図 1 8は、 サービス工場で出力される日報の一例を示す図
図 1 9 A〜 1 9 Cは、 サービス工場で出力されるメンテナンス予定の一例を示 す図 Figure 18 shows an example of a daily report output at a service factory. Figures 19A to 19C show examples of scheduled maintenance output at a service factory.
図 2 0 Aは走行負荷頻度分布を示す図 Fig. 20 A shows running load frequency distribution
図 2 0 Bは掘削負荷頻度分布を示す図 Figure 20B shows the frequency distribution of excavation load
図 2 1 は、 効率よ く巡回サービスを行う予定を説明する図 Figure 21 is a diagram illustrating the schedule for providing efficient patrol services.
図 2 2 は、 サ一ビスマンの予定表を示す図 Figure 22 shows the serviceman's calendar
図 2 3 A, 2 3 Bは、 エンジン稼働時間分布を示す図 Figures 23A and 23B show engine operating time distributions.
図 2 4は、 走行操作時間などとともに稼働分燃料消費量を算出する手順例を示 すフローチヤ一ト Fig. 24 is a flow chart showing an example of the procedure for calculating the fuel consumption for the operating time along with the driving operation time.
図 2 5は、 無線基地局と油圧ショベル製造工場とサービス工場を通信回線で接 続する他の例を示す図 Figure 25 shows another example of connecting a radio base station, a hydraulic excavator manufacturing factory, and a service factory via a communication line.
図 2 6は、 油圧ショベル製造工場内のシステム構成を示す図 発明を実施するための最良の形態 FIG. 26 is a diagram showing a system configuration in a hydraulic excavator manufacturing plant.
図 1〜図 2 4により本発明を油圧ショベルの日報を作成する方法に適用した場 合について説明する。 図 1は本発明による日報作成方法が適用される油圧ショベ ルの稼働状況を説明する図である。 すなわち、 複数の作業地区 A, B, Cではそ れぞれ複数の油圧ショベルが稼働している。 地区 Aでは油圧ショベル a ;! 〜 a n が、 地区 Bでは油圧ショベル b 1〜 b n力3'、 地区 Cでは油圧ショベル c 1〜 c n がそれぞれ稼働している。 地区 A, B, Cは同一の作業現場ではなく地理的に離 れている。 この実施の形態では、 各油圧ショベルの各部の状態を検出し、 検出し た信号は通信衛星 C Sを経由して基地局 B Cで受信される。 基地局 B Cは受信し た信号を適宜のサービス工場 S F 1〜 S F nへ一般公衆回線網 P Cを利用して送 信する。 サービス工場 S F 1〜 S F nでは、 受信した信号に基づいて、 後述する ような日報を作成したり、 故障を診断したり、 巡回サービスの予定を作成したり する。 各油圧ショベルは G P S受信機を搭載し、 G P S衛星 G Sからの信号を受 信して現在地を算出することができる。 この現在地情報は、 油圧ショベルの各部 の信号とともに基地局 B Cを経由してサービス工場 S Fへ送信され、 サービスェ 場 S Fは各油圧ショベルの稼働地区を認識することができる。
油圧ショベルは図 2に示すよ う に構成される。油圧ショベルは、走行体 8 1 と、 走行体 8 1の上部に旋回可能に連結された旋回体 8 2 とを有する。 旋回体 8 2に は、 運転室 8 3 と、 作業装置 8 4 と、 エンジン 8 5 と、 旋回モータ 8 6 とが設け られている。 作業装置 8 4は、 旋回体 8 2の本体に回動可能に取り付けられたブ ーム BMと、 ブーム BMに回動可能に連結されたアーム AMと、 アーム AMに回 動可能に連結されたアタ ッチメ ン ト、 たとえばバケッ ト B Kとからなる。 ブーム B Mはブームシリ ンダ C 1 によ り昇降され、 アーム A Mはアームシリ ンダ C 2に よ り クラウ ドとダンプ操作が行われ、 バケッ ト B Kはバケッ ト シリ ンダ C 3によ り クラウ ドとダンプ操作が行われる。 走行体 8 1には左右の走行用油圧モータ 8 7 , 8 8が設けられている。 A case where the present invention is applied to a method of creating a daily report of a hydraulic shovel will be described with reference to FIGS. FIG. 1 is a diagram for explaining the operation status of a hydraulic shovel to which the daily report creation method according to the present invention is applied. In other words, multiple hydraulic excavators are operating in multiple work areas A, B, and C, respectively. Excavator a in area A ~ An, excavators b1 ~ bn force 3 'in district B, and excavators c1 ~ cn in district C, respectively. Districts A, B, and C are geographically separated rather than at the same work site. In this embodiment, the state of each part of each excavator is detected, and the detected signal is received by the base station BC via the communication satellite CS. The base station BC transmits the received signal to the appropriate service factory SF1 to SFn using the general public switched telephone network PC. In the service factories SF1 to SFn, based on the received signals, a daily report as described later is created, a failure is diagnosed, and a schedule for a traveling service is created. Each excavator is equipped with a GPS receiver and can receive signals from the GPS satellite GS to calculate the current location. This current location information is transmitted to the service factory SF via the base station BC together with signals from various parts of the excavator, and the service shop SF can recognize the operating area of each excavator. The hydraulic excavator is configured as shown in Fig. 2. The hydraulic excavator has a traveling body 81 and a revolving body 82 pivotally connected to an upper portion of the traveling body 81. The revolving unit 82 is provided with a cab 83, a working device 84, an engine 85, and a revolving motor 86. The working device 84 is boom BM rotatably attached to the main body of the revolving unit 82, an arm AM rotatably connected to the boom BM, and rotatably connected to the arm AM. It consists of an attachment, for example, a bucket BK. The boom BM is raised and lowered by the boom cylinder C1, the arm AM is subjected to a cloud and a dump operation by the arm cylinder C2, and the bucket BK is a cloud and a dump operation by the bucket cylinder C3. Is performed. The traveling body 81 is provided with left and right traveling hydraulic motors 87, 88.
油圧ショベルの油圧回路の概略を図 3に示す。 エンジン 8 5は油圧ポンプ 2を 駆動する。 この油圧ポンプ 2から吐出される圧油は、 複数のコン トロールバルブ 3 s、 3 t r、 3 t l、 3 b、 3 aおよび 3 b kでその方向と油量が制御され、 上述した旋回油圧モータ 8 6、 左右の走行用油圧モータ 8 7, 8 8、 油圧シリ ン ダ C 1、 C 2、 C 3を駆動する。 複数のコン トロールバルブ 3 s、 3 t r、 3 t 1、 3 b、 3 aおよび 3 b kはそれぞれ対応する複数のパィロ ッ トバルブ 4 s、 4 t r, 4 t l、 4 b、 4 aおよび 4 b kからそれぞれ供給されるパイロ ッ ト圧 力によつて切換操作される。 ノ、。ィロ ッ トバルブ 4 s、 4 t r, 4 t 1、 4 b、 4 aおよび 4 b kは、 パイロッ ト油圧ポンプ 5から所定圧力のパィロッ ト油圧が供 給され、 操作レバー 4 L s、 4 L t r , 4 L t l、 4 L b、 4 L a、 4 b kの操 作量に応じたパイロ ッ ト圧力を出力する。 複数のコン トロールバルブ 3 s、 3 t r、 3 t 1、 3 b、 3 aおよび 3 b kは 1つのバルブブロ ックに集約される。 ま た、 複数のパィロッ トバルブ 4 s、 4 t r , 4 t 1 、 4 b、 4 aおよび 4 b kも 1つのバルブブロックに集約される。 Fig. 3 shows the outline of the hydraulic circuit of the hydraulic excavator. The engine 85 drives the hydraulic pump 2. The pressure oil discharged from the hydraulic pump 2 is controlled by a plurality of control valves 3 s, 3 tr, 3 tl, 3 b, 3 a, and 3 bk to control the direction and amount of oil. 6. Drive the left and right traveling hydraulic motors 87, 8 8, and the hydraulic cylinders C1, C2, C3. The plurality of control valves 3 s, 3 tr, 3 t 1, 3 b, 3 a and 3 bk are respectively connected to the corresponding plurality of pilot valves 4 s, 4 tr, 4 tl, 4 b, 4 a and 4 bk. Switching is performed by the supplied pilot pressure. No ,. The pilot valves 4 s, 4 tr, 4 t 1, 4 b, 4 a, and 4 bk are supplied with pilot pressure of a predetermined pressure from the pilot hydraulic pump 5, and the operating levers 4 Ls, 4 Ltr , 4Ltl, 4Lb, 4La, 4bk Output pilot pressure according to the manipulated variable. Multiple control valves 3s, 3tr, 3t1, 3b, 3a and 3bk are combined into one valve block. In addition, a plurality of pilot valves 4s, 4tr, 4t1, 4b, 4a, and 4bk are also integrated in one valve block.
図 4は油圧ショベルの各部の状態を検出して送信するための制御系のプロック 図である。 油圧ショベルには、 上述した各部の状態を検出する複数のセンサを有 するセンサ群 1 0が搭載され、 センサ群 1 0から出力される状態検出信号は所定 のタイ ミ ングでコン トローラ 2 0に読み込まれる。 コン トローラ 2 0は走行操作 時間、 旋回操作時間、 およびフロン ト (掘削) 操作時間を積算するためのタイマ
機能 2 0 aを有している。 コン ト ローラ 2 0は読み込んだ状態検出信号に基づい て、 走行操作時間、 旋回操作時間、 フロン ト操作時間を算出する。 これら算出さ れた操作時間は記憶装置 2 1 に格納される。 油圧ショベルは、 エンジン 8 5を起 動するキースィ ッチ 2 2 と、 エンジン 8 5の稼働時間を計測するァヮメータ 2 3 も有している。 FIG. 4 is a block diagram of a control system for detecting and transmitting the state of each part of the excavator. The hydraulic excavator is equipped with a sensor group 10 having a plurality of sensors for detecting the states of the above-described components, and a state detection signal output from the sensor group 10 is sent to the controller 20 at a predetermined timing. Is read. The controller 20 is a timer for accumulating the running operation time, the turning operation time, and the front (digging) operation time. It has function 20a. The controller 20 calculates the traveling operation time, the turning operation time, and the front operation time based on the read state detection signal. These calculated operation times are stored in the storage device 21. The hydraulic shovel also has a key switch 22 for starting the engine 85 and an parameter 23 for measuring the operating time of the engine 85.
油圧ショベルには G P S受信機 2 4が搭載されている。 G P S受信機 2 4は、 G P S衛星 G Sからの G P S信号を受信し、 G P S信号に基づいて油圧ショベル の位置を算出してコン トローラ 2 0へ出力する。 油圧ショベルの運転席には各種 情報を表示するためのモニタ 2 5が設けられている。 The hydraulic excavator is equipped with a GPS receiver 24. The GPS receiver 24 receives the GPS signal from the GPS satellite GS, calculates the position of the excavator based on the GPS signal, and outputs the calculated position to the controller 20. The driver's seat of the excavator is provided with a monitor 25 for displaying various information.
コン トローラ 2 0は時計機能 2 0 bを有しており、 キースィ ッチ 2 2のオン時 刻、 オフ時刻、 ェンジン始動時刻、 ェンジン停止時刻を認識することができる。 これらの時刻も記憶装置 2 1に格納される。 ァヮメータ 2 3の計測値も所定の夕 イミ ングでコン トローラ 2 0に読み込まれ、 記憶装置 2 1 に格納される。 記憶装 置 2 1 に記憶された走行、 旋回およびフロン トの操作時間とキースィッチオン時 刻などは所定のタイミ ングで送信機 3 0を介して送信される。 送信機 3 0から送 信された電波は衛星 C Sを経由して基地局 B Cで受信される。 コン トローラ 2 0 には受信機 3 5 も接続されている。 受信機 3 5は、 通信衛星 C Sおよび基地局 B Cを経由してサービス工場 S Fから送られてくる故障時の対処法などの信号を受 信してコン トローラ 2 0へ送出する。 コン トローラ 2 0、 送信機 3 0および受信 機 3 5は、 油圧ショベルのメインスィッチがオフされていても、 車載バッテリか らの電源で常時駆動可能状態となっている。 The controller 20 has a clock function 20b, and can recognize the ON time, the OFF time, the engine start time, and the engine stop time of the key switch 22. These times are also stored in the storage device 21. The measured value of the parameter 23 is also read by the controller 20 at a predetermined evening, and is stored in the storage device 21. The running time, the turning time, the front operation time, the key switch-on time, and the like stored in the storage device 21 are transmitted via the transmitter 30 at a predetermined timing. The radio wave transmitted from the transmitter 30 is received by the base station BC via the satellite CS. The receiver 20 is also connected to the controller 20. The receiver 35 receives a signal from the service factory SF via the communication satellite CS and the base station BC, such as a countermeasure for failure, and sends the signal to the controller 20. The controller 20, the transmitter 30, and the receiver 35 can always be driven by the power from the vehicle battery even when the main switch of the excavator is turned off.
図 5に示すように、 センサ群 1 0は、 メイ ン油圧回路系の圧力状態を検出する 圧力センサ 1 1 を備えている。 すなわち、 油圧ポンプ 2の吐出圧力を計測する圧 力センサ 1 1 p と、 走行油圧モータ 8 7 , 8 8の駆動圧力を計測する圧力センサ 1 1 t r , 1 1 t 1 と、 旋回油圧モータ 8 6の駆動圧力を計測する圧力センサ 1 1 s と、 ブーム油圧シリ ンダ C 1の駆動圧力を計測する圧力センサ 1 1 b と、 ァ ーム油圧シリ ンダ C 2の駆動圧力を計測する圧力センサ 1 1 a と、 バケツ ト油圧 シリンダ C 3の駆動圧力を計測する圧力センサ 1 1 b kとを備えている。 As shown in FIG. 5, the sensor group 10 includes a pressure sensor 11 for detecting a pressure state of the main hydraulic circuit system. That is, a pressure sensor 11 p for measuring the discharge pressure of the hydraulic pump 2, a pressure sensor 11 tr, 11 t 1 for measuring the driving pressure of the traveling hydraulic motors 8 7, 8 8, and a swing hydraulic motor 8 6 Pressure sensor 11 1 s that measures the driving pressure of the boom hydraulic cylinder C 1, pressure sensor 11 b that measures the driving pressure of the boom hydraulic cylinder C 1, and pressure sensor 11 1 that measures the driving pressure of the arm hydraulic cylinder C 2 a, and a pressure sensor 11 bk for measuring the driving pressure of the bucket hydraulic cylinder C3.
センサ群 1 0は、 パイロッ ト油圧回路系の圧力状態を検出する圧力センサ 1 3
も備えている。 すなわち、 走行油圧パイロッ トバルブ 4 t r , 4 t 1から出力さ れるパイロッ ト圧力 P t r, P t 1 を計測する圧力センサ 1 3 t r , 1 3 t 1 と、 旋回油圧パイロッ トバルブ 4 sから出力されるパイロッ ト圧力 P. sを計測する圧 力センサ 1 3 s と、 ブーム油圧パイロッ トバルブ 4 bから出力されるパイロツ ト 圧力 P bを計測する圧力センサ 1 3 b と、 アーム油圧パイロッ トバルブ 4 aから 出力されるパイロッ ト圧力 P aを計測する圧力センサ 1 3 aと、 パケッ ト油圧パ イロッ トバルブ 4 b kから出力されるパイ口ッ ト圧力 P b kを計測する圧力セン サ 1 3 b kとを有している。 The sensor group 10 is a pressure sensor 13 that detects the pressure state of the pilot hydraulic circuit system. It also has. That is, pressure sensors 13 tr and 13 t 1 that measure the pilot pressures P tr and P t 1 output from the traveling hydraulic pilot valves 4 tr and 4 t 1, and output from the swing hydraulic pilot valve 4 s Pressure sensor 13 s to measure pilot pressure P.s, pressure sensor 13 b to measure pilot pressure Pb output from boom hydraulic pilot valve 4 b, and output from arm hydraulic pilot valve 4 a Pressure sensor 13a that measures the pilot pressure Pa that is applied, and a pressure sensor 13bk that measures the pilot pressure Pbk output from the packet hydraulic pilot valve 4bk. I have.
走行操作時間は、 走行パイロッ ト圧力センサ 1 3 t r , 1 3 t 1で検出した圧 力 P t rまたは P t 1 が所定値以上である時間を積算した時間である。 旋回操作 時間は、 旋回パイロッ ト圧力センサ 1 3 sで検出した圧力 P sが所定値以上であ る時間を積算した時間である。 フロン ト操作時間は、 ブーム、 アームおよびバケ ッ ト用パイロッ ト圧力センサ 1 3 b、 1 3 aおよび 1 3 b kのいずれかで検出し た圧力 P b、 P a, P b kが所定値以上である時間を積算した時間である。 The travel operation time is a time obtained by integrating the times during which the pressures Ptr or Pt1 detected by the travel pilot pressure sensors 13tr and 13t1 are equal to or greater than a predetermined value. The turning operation time is a time obtained by integrating the time during which the pressure Ps detected by the turning pilot pressure sensor 13 s is equal to or more than a predetermined value. The front operation time is determined when the pressures Pb, Pa, and Pbk detected by any of the boom, arm, and bucket pilot pressure sensors 13b, 13a, and 13bk are equal to or greater than the specified values. This is the time obtained by integrating a certain time.
センサ群 1 0はまた、 メイ ン油圧ライ ンに配設されたフィ ルタの目詰ま りを検 出する圧力センサ 1 4 f 、 油圧モータや油圧シリンダを駆動する作動油の温度を 検出する温度センサ 1 4 t も備えている。 さらにセンサ群 1 0 は、 エンジン系統 の状態を検出する各種のセンサ 1 5を有している。 すなわち、 エンジン 8 5の冷 却水温を検出する冷却水温度センサ 1 5 wと、 エンジンオイルの圧力を検出する ェンジンオイル圧力センサ 1 5 0 p と、 エンジンオイルの温度を検出するェンジ ン才ィル温度センサ 1 5 0 t と、 エンジンオイルのレベルを検出するエンジンォ ィルレベルセンサ 1 5 ο 1 と、 エアフィ ルタの目詰まりを検出する目詰ま りセン サ 1 5 a f と、 燃料残量を計測する燃料残量センサ 1 5 ί と、 バッテリの充電電 圧を検出するバッテリ電圧センサ 1 5 Vと、 ェンジン回転数を検出する回転数セ ンサ 1 5 r とを有している。 The sensor group 10 also includes a pressure sensor 14f that detects clogging of a filter provided in the main hydraulic line, and a temperature sensor that detects the temperature of hydraulic oil that drives a hydraulic motor or hydraulic cylinder. It also has 14 t. Further, the sensor group 10 has various sensors 15 for detecting the state of the engine system. That is, a cooling water temperature sensor 15 w that detects the cooling water temperature of the engine 85, an engine oil pressure sensor 150 p that detects the engine oil pressure, and an engine oil temperature that detects the temperature of the engine oil Sensor 150 t, engine oil level sensor 15 ο1 for detecting engine oil level, clogging sensor 15 af for detecting clogging of air filter, and fuel for measuring remaining fuel It has a remaining amount sensor 15 ί, a battery voltage sensor 15 V for detecting the charge voltage of the battery, and a rotation speed sensor 15 r for detecting the engine rotation speed.
上述したように油圧ショベルの各部の状態を示す信号は通信衛星 C Sおよび基 地局 B Cを経由してサービス工場 S Fへ送信されるが、 各部の通常の状態を示す 信号は日報データとして、 一日分をまとめて通信料金の安い深夜の時間帯に送信 される。 また、 警報や故障などを示す信号はそれらが発せられるたびに送信され
る。 なお、 燃料残量が所定値以下になったときも、 時間带に限らず直ちにこれを 示す情報を送信する。 As described above, the signal indicating the state of each part of the excavator is transmitted to the service factory SF via the communication satellite CS and the base station BC, but the signal indicating the normal state of each part is used as daily report data as one day. The minutes are sent together during late night hours when communication charges are low. In addition, signals indicating alarms and failures are transmitted each time they are issued. You. Note that, even when the remaining fuel amount becomes equal to or less than the predetermined value, information indicating this is transmitted immediately, not only for the time 带.
上述した日報デ一タは次のような情報を含み、 記憶装置 2 1 に所定のフォーマ ッ トで格納される。 The above-described daily report data includes the following information and is stored in the storage device 21 in a predetermined format.
①キースィ ッチ 2 2のォン時刻 ① Time of key switch 2 2
②キースィ ッチ 2 2のォフ時刻 ②Off time of key switch 2 2
③エンジン始動時刻 ③ Engine start time
④エンジン停止時刻 ④ Engine stop time
⑤ァヮメータ 2 3の計測値 Measured value of parameter 2 3
⑥走行操作時間 (図 1 8参照) ⑥Driving operation time (See Fig. 18)
⑦旋回操作時間 (図 1 8参照) ⑦Swing operation time (See Fig. 18)
⑧フロント操作時間 (図 1 8参照) ⑧Front operation time (See Fig. 18)
⑨エンジン稼動時間 (図 1 8参照) ⑨Engine operating time (See Fig. 18)
また、 日報データとして、 走行負荷頻度分布 (図 2 0 A参照)、 掘削負荷頻度 (図 2 0 B参照)、 あるいは燃料消費量 (単位時間あたり、 稼働分、 無負荷分など) も 含まれる。 The daily report data also includes running load frequency distribution (see Fig. 20A), excavation load frequency (see Fig. 20B), or fuel consumption (per unit time, operation, no-load, etc.).
警報データとしては次のような情報がある。 The alarm data includes the following information.
①ェンジンオイルレベル ① Engine oil level
②エンジン冷却水温度 ② Engine cooling water temperature
③エンジンオイル温度 ③ Engine oil temperature
④エアフィ ルタ目詰ま り ④Air filter clogging
⑤作動油フ ィ ル夕 ⑤ Hydraulic oil filter
⑥バッテリ電圧 ⑥ Battery voltage
⑦ェンジンオイル圧力 Engine oil pressure
⑧燃料残量 ⑧ Fuel remaining
⑨作動油温度 ⑨ Hydraulic oil temperature
故障データと しては次のような情報がある。 The following information is available as failure data.
①エンジン回転数異常 ① Engine speed abnormality
②油圧ポンプ吐出圧異常
図 6は記憶装置 2 1の一例を示す図である。 記憶装置 2 1 には、 エンジン 8 5 のァヮメータ 2 3の計測値を格納する第 1領域 R 1 と、 走行操作時間 (走行稼働 時間) を格納する第 2の領域 R 2 と、 旋回操作時間 (旋回稼働時間) を格鈉する 第 3の領域 R 3 と、 フロン ト操作時間 (フロン ト稼働時間) を格納する第 4の領 域 R 4 と、 その他の状態信号や警報信号あるいは故障信号を格納する領域 R 5… 領域 R nが複数設けられている。 (2) Abnormal hydraulic pump discharge pressure FIG. 6 is a diagram showing an example of the storage device 21. The storage device 21 has a first area R 1 for storing the measured values of the parameters 23 of the engine 85, a second area R 2 for storing the traveling operation time (running operation time), and a turning operation time ( A third area R3 for storing the turning operation time), a fourth area R4 for storing the front operation time (front operation time), and other state signals, alarm signals or failure signals. A plurality of regions R5 are provided.
図 7は、 各油圧ショベルのコントローラ 2 0で実行される走行、 旋回、 フロン ト操作時間を積算する処理手順を示すフローチャー トである。 たとえば、 走行パ イロッ ト圧力 P t rまたは P t 1、 旋回パイロッ ト圧力 P s、 ブームパイロッ ト 圧力 P b、 アームパイ口ッ ト圧力 P a、 ノ ケッ トノ イ口ッ ト圧力 P b kのいずれ かが所定値以上になると、 コン ト ローラ 2 0は、 図 7に示すプログラムを起動す る。 そして、 ステップ S 1 において、 走行用、 旋回用、 フロン ト用タイマ機能 2 0 aのうち該当する操作時間計測用タイマを起動する。 また、 負荷頻度分布計測 用タイマを起動する。 走行パイロッ ト圧力 P t r, P t 1が所定値以上の場合に は走行操作時間用タイマを、 旋回パイロッ ト圧力 P sが所定値以上の場合には旋 回操作時間用タイマを、 ブームパイロッ ト圧力 P b、 アームパイロッ ト圧力 P a、 バケツ トパイロッ ト圧力 P b kのいずれか所定値以上の場合にはフロント用タイ マをそれぞれ起動する。 ステップ S 2において、 パイロッ ト圧力が所定値未満に なったことを判定すると、 ステップ S 3に進み、 該当するタイマを停止する。 走行操作時間を T t、 旋回操作時間を T s、 フロン ト操作時間を Τ ί、 走行用 タィマの計測時間を T M t、 旋回用タイマの計測時間を T M s、 フロン ト用タイ マの計測時間を T M f とすると、 ステップ S 4.において、 次式を算出する。 FIG. 7 is a flowchart showing a processing procedure for integrating running, turning, and front operation times performed by the controller 20 of each excavator. For example, the traveling pilot pressure Ptr or Pt1, the swing pilot pressure Ps, the boom pilot pressure Pb, the arm pilot pressure Pa, or the socket nozzle pressure Pbk When the value exceeds the predetermined value, the controller 20 starts the program shown in FIG. Then, in step S1, the corresponding operation time measurement timer of the traveling, turning, and front timer functions 20a is started. Also starts the load frequency distribution measurement timer. When the traveling pilot pressures Ptr and Pt1 are equal to or higher than a predetermined value, a timer for driving operation time is used. When the swing pilot pressure Ps is equal to or higher than a predetermined value, a timer for turning operation time is used. If any of the pressure Pb, arm pilot pressure Pa, and bucket pilot pressure Pbk is higher than a predetermined value, the front timer is activated. If it is determined in step S2 that the pilot pressure has become less than the predetermined value, the process proceeds to step S3, and the corresponding timer is stopped. The running operation time is T t, the turning operation time is T s, the front operation time is Τ ί, the running timer measurement time is TM t, the turning timer measurement time is TM s, and the front timer measurement time is Is defined as TM f, the following equation is calculated in step S4.
T t = T t + T M t T t = T t + T M t
T s = T s + T M s T s = T s + T M s
T f = T f + T M f T f = T f + T M f
すなわち、 タイマで計時した時間をそれぞれの操作時間格納領域の現在値に加算 し、 その加算結果で操作時間領域を更新する。 That is, the time measured by the timer is added to the current value of each operation time storage area, and the operation time area is updated with the addition result.
なおここでは、 走行、 旋回、 フロン トについて操作時間を計測したが、 油圧シ ョベルに他のァタツチメン ト、 たとえばブレーカなどが備わっている場合、 その
アタ ッチメ ン トの操作時間を検出し、 同様にァタ ツチメ ン ト操作時間を計測して も よい。 Here, the operation time was measured for traveling, turning, and front.However, if the hydraulic shovel is equipped with another attachment, for example, a breaker, The operation time of the attachment may be detected, and the operation time of the attachment may be measured similarly.
パイ口ッ 1、圧力が所定値以上の場合にはステツプ S 2が否定されてステツプ S 2 Aへ進む。 ステップ S 2 Aで負荷頻度分布計測用タイマが Δ t f を計測すると ステップ S 2 Bに進む。 ステップ S 2 Bにおいて、 そのと きの走行圧力、 旋回圧 力、 ポンプ圧力を読み込み、 ステップ S 2 Cにおいて、 該当する圧力値のヒス ト グラムに 1 を加算する。 たとえば、 走行圧力が 1 0 M p aであれば、 1 0 M p a の頻度に 1 を加算する。 ステップ S 2 Dでは負 頻度用タイマをリセッ ト、 再起 動してステップ S 2 に戻る。 走行負荷頻度分布は図 2 0 Aに、 掘削負荷頻度分布 は図 2 0 Bに示される。 If the pressure is higher than the predetermined value, step S2 is denied and the process proceeds to step S2A. When the load frequency distribution measuring timer measures Δtf in step S2A, the process proceeds to step S2B. In step S2B, the running pressure, swing pressure, and pump pressure at that time are read, and in step S2C, 1 is added to the histogram of the corresponding pressure value. For example, if the traveling pressure is 10 Mpa, 1 is added to the frequency of 10 Mpa. In step S2D, the timer for negative frequency is reset and restarted, and the process returns to step S2. The running load frequency distribution is shown in Figure 20A, and the excavation load frequency distribution is shown in Figure 20B.
図 8は一定時刻に日報データを送信するための処理手順を示すフローチヤ一 ト である。 あらかじめ設定されている送信時刻になると、 コン トローラ 2 0 は図 8 のプログラムを起動する。 ステップ S 1 1 で記憶装置 2 1 から送信すべき日報デ 一タを読み出す。 読み出 した日報データはステップ S 1 2で所定の送信デ一タに 加工され、 ステップ S 1 3で送信機 3 0へ送られる。 これによ り、 送信機 3 0は、 油圧ショベルの 1 日の稼働状態を示す日報デ一タを通信衛星 C Sおよび基地局 B Cを経由してサービス工場 S Fへ送信する。 FIG. 8 is a flowchart showing a processing procedure for transmitting daily report data at a certain time. When the preset transmission time comes, the controller 20 starts the program shown in FIG. In step S11, the daily report data to be transmitted is read from the storage device 21. The read daily report data is processed into predetermined transmission data in step S12, and sent to the transmitter 30 in step S13. As a result, the transmitter 30 transmits daily data indicating the operating state of the hydraulic excavator in one day to the service factory SF via the communication satellite CS and the base station BC.
図 9は警報信号や故障信号を送信するための処理手順を示すフローチヤ一トで ある。 コン トローラ 2 0は、 上述した警報信号や故障信号の出力を判定すると、 図 9のプログラムを起動する。 ステップ S 2 1 では、 検出した警報信号や故障信 号を記憶装置 2 1へ格納する。 ステップ S 2 2 において、 これらの警報信号や故 障信号がサービス工場へ送信する必要があるものと判定される とステップ S 2 3 に進む。 ステップ S 2 3 において、 運転席のモニタ 2 5 に故障内容を表示する と と も に、 サービス工場へ送信した旨を表示する。 ステップ S 2 4 において、 記憶 装置 2 1 から警報信号あるいは故障信号を読み出し、 ステップ S 2 5でそれらを 送信デ一タに加工する。 加工された送信データはステップ S 2 6で送信機 3 0へ 送出され、 ステップ S 2 7 において、 送信機 3 0から警報信号あるいは故障信号 が送信される (ステップ S 1 4 )。 FIG. 9 is a flowchart showing a processing procedure for transmitting an alarm signal and a failure signal. When determining the output of the alarm signal or the failure signal described above, the controller 20 starts the program of FIG. In step S21, the detected alarm signal or failure signal is stored in the storage device 21. If it is determined in step S22 that these alarm signals or fault signals need to be transmitted to the service factory, the process proceeds to step S23. In step S23, the details of the failure are displayed on the monitor 25 of the driver's seat, and the fact that the transmission has been made to the service factory is displayed. In step S24, an alarm signal or a failure signal is read from the storage device 21 and is processed into transmission data in step S25. The processed transmission data is sent to the transmitter 30 in step S26, and an alarm signal or a failure signal is transmitted from the transmitter 30 in step S27 (step S14).
ステップ S 2 8 において、 コン ト ローラ 2 0 は、 サービス工場から故障に対す
る対処法を表す信号を受信したと判定する と、 ステップ S 2 9 において、 運転席 のモニタ 2 5 に故障の対処法を表示する。 サービス工場からの指示が受信されな い場合には、 ステップ S 3 0 において、 警報信号や故障信号を送信してから所定 時間以上経過したかを判定する。 所定時間以上が経過するとステップ S 3 1 にお いて、 「サービス工場へ連絡して下さい」 とメ ッセージを表示する。ステップ S 3 0が否定される とステップ S 2 8 を繰り返す。 すなわち、 所定時間が経過しても サービス工場から対処法の指示が送信されてこない場合には、 何らかの原因によ り通信が失敗した可能性が高いので、 オペレータに対して電話でサービス工場へ 連絡することを報知する。 In step S28, controller 20 issues a fault report from the service factory. If it is determined that a signal indicating a remedy has been received, in step S29, a remedy for the fault is displayed on the monitor 25 of the driver's seat. If the instruction from the service factory has not been received, in step S30, it is determined whether or not a predetermined time has elapsed after transmitting the alarm signal or the failure signal. If the predetermined time has elapsed, a message "Please contact the service factory" is displayed in step S31. If step S30 is negative, step S28 is repeated. In other words, if the service factory does not send a remedy instruction even after the predetermined time has elapsed, it is highly likely that communication has failed for some reason. Notify you what you will do.
ステップ S 2 2 において、 検出された警報信号がサービス工場へ送信不要であ る と判定された場合には、 ステップ S 3 2 において、 警報信号に応じた警報内容 を運転席のモニタ 2 5へ表示し、 ステップ S 3 3 において、 その対処法を算出す る。 たとえば、 警報信号に対する対処法をあらかじめ記憶装置 2 1 にデータべ一 ス化しておき、 警報信号によ りデータベースをアクセスして対処法を算出する。 そして、 ステップ S 3 4 において、 運転席のモニタ 2 5へ対処法を表示する。 図 1 0は日報データや警報デ一タあるいは故障デ一タを送信するために作成さ れるデ一タ列の一例である。 データ列のへッダには油圧シ ョベルを識別する識別 子 H Dが設けられる。 ヘッ ダに続いてデータ部が設けられ、 現在地情報 D l、 ァ ヮメータの計測時間 D 2, 走行稼働時間 D 3、 旋回稼働時間 D 4、 フロン ト稼働 時間 D 5……が順番に組み合わされる。 If it is determined in step S22 that the detected alarm signal does not need to be transmitted to the service factory, in step S32, the content of the alarm corresponding to the alarm signal is displayed on the monitor 25 of the driver's seat. Then, in step S33, the countermeasure is calculated. For example, a method of coping with an alarm signal is stored in a database in the storage device 21 in advance, and a database is accessed by the alarm signal to calculate a coping method. Then, in step S34, a countermeasure is displayed on the monitor 25 of the driver's seat. FIG. 10 shows an example of a data sequence created for transmitting daily report data, alarm data, or failure data. The header of the data string is provided with an identifier HD for identifying the hydraulic shovel. A data section is provided following the header, and the current location information D1, the measurement time D2 of the parameter, the traveling time D3, the turning time D4, the front time D5, and so on are combined in this order.
図 1 1 は、基地局 B Cにおける情報管理のための構成を示すプロック図である。 基地局 B Cは、 受信した各種の信号を各地のサービス工場へ送信する。 基地局 B Cには、 通信衛星 C Sから送信されてく る信号を受信する受信機 3 1 と、 受信機 3 1 で受信した信号を格納する記憶装置 3 2 と、 サービス工場へ送信すべきデー 夕を一般公衆回線網 P Cを介して送信するためのモデム 3 3 と、 これらの各種機 器を制御する制御装置 3 4 とを備えている。 FIG. 11 is a block diagram showing a configuration for information management in base station BC. The base station BC transmits the received various signals to service factories in various places. The base station BC stores a receiver 31 for receiving a signal transmitted from the communication satellite CS, a storage device 32 for storing the signal received by the receiver 31, and data to be transmitted to the service factory. It comprises a modem 33 for transmitting via a general public network PC and a controller 34 for controlling these various devices.
図 1 2 は、 基地局 B Cで状態信号などを受信してサービス工場へ送信するため の処理手順を示すフローチヤ一 トである。通信衛星 C Sからの信号を受信すると、 基地局 B Cの制御装置 3 4は図 1 2のプログラムを起動する。 ステップ S 3 0 1
では、 受信した信号を記憶装置 3 2 にいったん格鈉する。 ステップ S 3 0 2では、 受信した状態信号のヘッダに記録されている識別子 H Dから油圧ショベルを識別 し、 図 1 3 に示すよ う に、 油圧ショベルごとに受信信号を分類する。 ステップ S 3 0 3では、 識別された油圧ショベルに基づいて (識別子に基づいて)、 担当する サービス工場を識別し、 図 1 4 に示すよう に、 サービス工場ごとに油圧ショベル の受信信号と してまとめる。 ステップ S 3 0 4では、 あらかじめ記憶装置 3 2 に 作成されているデータベースから、 識別したサービス工場の電話番号をそれぞれ 読み出し、 ステップ S 3 0 5 において、 ステップ S 3 0 3でま とめた信号をモデ ム 3 3 を介して各サービス工場へ送信する。 FIG. 12 is a flowchart showing a processing procedure for receiving a status signal and the like at the base station BC and transmitting it to the service factory. Upon receiving a signal from the communication satellite CS, the control device 34 of the base station BC activates the program shown in FIG. Step S 3 0 1 Then, the received signal is temporarily stored in the storage device 32. In step S302, the excavator is identified from the identifier HD recorded in the header of the received status signal, and the received signals are classified for each excavator as shown in FIG. In step S303, the service factory in charge is identified based on the identified excavator (based on the identifier), and as shown in FIG. 14, the received signal of the excavator is determined for each service factory. Put together. In step S304, the telephone numbers of the identified service factories are read from the database created in the storage device 32 in advance, and in step S305, the signals collected in step S303 are modeled. It is transmitted to each service factory via system 33.
油圧ショベルの現在地にもっ と も近いサービス工場へ受信信号を送信しても よ い。 また、 基地局 B Cから各サービス工場 S Fへの各種情報の送信は、 専用回線 や L A N回線などであっても よい。 たとえば、 基地局 B C とサービス工場 S Fが 油圧ショベルのメーカの施設であれば、 いわゆる社内 L A N (イン トラネッ ト) によ り各種惰報を授受しても よい。 The reception signal may be transmitted to a service factory located closest to the current location of the excavator. Further, transmission of various information from the base station BC to each service factory SF may be performed by a dedicated line, a LAN line, or the like. For example, if the base station B C and the service factory SF are facilities of a hydraulic excavator maker, various types of coastal information may be sent and received via a so-called in-house LAN (intranet).
図 1 5 は、 サービス工場 S Fにおける情報管理のための構成を示すプロ ック図 である。 サービス工場 S Fには、 基地局 B Cから一般公衆回線網 P Cを経由して 送られてく る信号を受信するモデム 4 1 と、 モデム 4 1 で受信した信号を格納す る記憶装置 4 2 と、 種々の演算処理を実行する処理装置 4 3 と、 処理装置 4 3 に 接続された表示装置 4 4やプリ ンタ 4 5 と、 キーボー ド 4 6 とを備えている。 処 理装置 4 3 は、 記憶装置 4 2 に格納された状態信号 (日報データ) に基づいて、 日報を作成し、 油圧ショベルのコン トローラ 2 0で演算されている負荷頻度分布 をグラフ形式で表示するための演算処理を行い、 油圧ショベルごとにメ ンテナン ス時期を演算し、 故障や異常の有無を判定し、 巡回サービスの予定を作成する。 処理装置 4 3 にはデータベース 4 7 も接続されている。 このデータベース 4 7 には、 油圧ショベルごとのメ ンテナンスの履歴、 過去の故障や異常の履歴、 サー ビスの履歴などが格納されている。 データペース 4 7 に蓄積されるデータは、 巡 回サービスに出向いたサービスマンが携帯情報端末装置 5 1 を用いて油圧ショベ ルの記憶装置 2 1から収集したデータが含まれる。 FIG. 15 is a block diagram showing a configuration for information management in the service factory SF. The service plant SF includes a modem 41 for receiving signals transmitted from the base station BC via the general public network PC, and a storage device 42 for storing the signals received by the modem 41. And a display device 44 and a printer 45 connected to the processing device 43, and a keyboard 46. The processing unit 43 creates a daily report based on the status signal (daily report data) stored in the storage unit 42, and displays a load frequency distribution calculated by the controller 20 of the excavator in a graph format. It calculates the maintenance time for each hydraulic excavator, determines whether there is a failure or abnormality, and creates a schedule for patrol service. A database 47 is also connected to the processor 43. This database 47 stores the maintenance history of each excavator, the history of past failures and abnormalities, and the history of services. The data stored in the data pace 47 includes data collected from the storage device 21 of the hydraulic shovel by the service technician who has visited the patrol service using the portable information terminal device 51.
情報端末装置 5 1 に通信機能を設けても よい。 この場合、 サービスマンが携情
報端末装置 5 1 のキー入力によ り各種情報を入力し、 通信によ り各種情報をデー タベース 4 7へ入力しても よい。 The information terminal device 51 may be provided with a communication function. In this case, the service person Various information may be input by key input of the information terminal device 51, and various information may be input to the database 47 by communication.
図 1 6 は、 サービス工場で受信した状態信号、 警報信号、 故障信号に基づいて、 処理装置 4 3が実行する各種の処理手順を示すフローチヤ— トである。状態信号、 警報信号あるいは故障信号を受信すると、 サービス工場の処理装置 4 3 は図 1 6 のプログラムを起動する。 ステップ S 4 1 では、 受信した状態信号、 警報信号あ るいは故障信号を記憶装置 4 2 に格納する。 ステップ S 4 2では、 受信した信号 の識別子 H Dから油圧ショベルを識別する。 受信信号が複数の油圧ショベルに対 する場合には、 それぞれの油圧ショベルを識別して受信信号を適宜の順番に並べ る。 FIG. 16 is a flowchart showing various processing procedures executed by the processing device 43 based on the status signal, the alarm signal, and the failure signal received at the service factory. Upon receiving a status signal, an alarm signal or a failure signal, the processor 43 of the service factory starts the program shown in FIG. In step S41, the received status signal, alarm signal or fault signal is stored in the storage device 42. In step S42, the excavator is identified from the identifier HD of the received signal. When the received signal is applied to a plurality of excavators, each excavator is identified and the received signals are arranged in an appropriate order.
ステップ S 4 3では、 第 1番目の油圧ショベルについて受信した信号が日報デ 一タカ、、 警報信号あるいは故障信号かを判定する。 日報データの場合には、 ステ ップ S 4 4 において、 識別された油圧ショベルの識別子によ りデータベース 4 7 をアクセスして、 該当油圧ショベルの過去の履歴を読み出す。 ステップ S 4 5で は、 記憶装置 4 2から日報データを読み出し、 ステップ S 4 6 において、 図 1 8 に示すよう な日報を作成する。 日報の具体例については後述する。 ステッ プ S 4 7では、 日報データ とデータベース 4 7から読み出された過去のメ ンテナンス情 報とに基づいて、 次回のメ ンテンス時期を算出する。 その後、 ステップ S 4 8 に おいて、 すべての油圧ショベルの受信信号について処理が終了していないと判定 されると、 ステップ S 4 3 に戻って、 次の油圧ショベルの受信信号について同様 の処理を行う。 ステップ S 4 8ですベての受信信号に対する処理が終了したと判 定されると、 ステップ S 4 9 に進み、 巡回サービスの予定を作成する。 この予定 作成方法については後述する。 In step S43, it is determined whether the signal received from the first hydraulic excavator is a daily report, an alarm signal, or a failure signal. In the case of daily report data, in step S44, the database 47 is accessed using the identified excavator identifier and the past history of the excavator is read. In step S45, the daily report data is read from the storage device 42, and in step S46, a daily report as shown in FIG. 18 is created. A specific example of the daily report will be described later. In step S47, the next maintenance time is calculated based on the daily report data and the past maintenance information read from the database 47. Thereafter, in step S48, when it is determined that the processing has not been completed for all the excavator reception signals, the process returns to step S43, and the same processing is performed for the next excavator reception signal. Do. If it is determined in step S48 that the processing for all the received signals has been completed, the flow advances to step S49 to create a schedule for the traveling service. The schedule creation method will be described later.
ステップ S 4 3 において、 受信した信号が警報信号あるいは故障信号と判定さ れると、 ステップ S 5 0 に進み、 記憶装置 4 2から警報信号あるいは故障信号を 読み出す。 ステッ プ S 5 1では、 読み出された警報信号あるいは故障信号に対す る対処法をデータベース 4 7から読み出す。 ステップ S 5 2では、 読み出された 対処法を基地局 B Cを経由、 も しく は移動体通信システムを経由して、 該当する 油圧ショベルへ送信する。 油圧ショベルの電話番号はサービス工場の記憶装置 4
2 にあらかじめ格納されている。 油圧ショベルへ送信するデー夕のへッダには油 圧ショベルの識別子が設けられ、 それに引き続いて対処法を表示するためのデー タが設けられる。 データ送信後、 ステップ S 5 3 において、 サービスマンを作業 地区へ派遣するための処理を実行する。 そして、 ステップ S 5 4 において、 すべ ての油圧ショベルの受信信号に対して処理が終了していないと判定される と、 ス テツプ S 4 3 に戻って同様な処理を繰り返し実行する。 すべての油圧ショベルの 受信信号に対する処理が終了すると、 この処理を終了する。 If it is determined in step S43 that the received signal is an alarm signal or a failure signal, the flow advances to step S50 to read the alarm signal or the failure signal from the storage device 42. In step S51, a countermeasure for the read alarm signal or failure signal is read from the database 47. In step S52, the read countermeasure is transmitted to the corresponding excavator via the base station BC or the mobile communication system. Hydraulic excavator phone number is service factory storage 4 2 is stored in advance. The header of the data sent to the excavator is provided with the identifier of the excavator, followed by data for indicating the remedy. After transmitting the data, in step S53, a process for dispatching a serviceman to the work area is performed. Then, in step S54, when it is determined that the processing has not been completed for the received signals of all the excavators, the process returns to step S43, and the same processing is repeatedly executed. When the processing for the received signals of all the excavators is completed, the processing is completed.
図 1 7 は、 図 1 6のステップ S 5 3で実行するサービスマン派遣のための処理 手順を示すフローチャー トである。 たとえば、 すべてのサービスマンに G P S受 信機を携帯させ、 所定時間間隔でサ一ビス工場に送信されてく る現在地信号をサ 一ビス工場の記憶装置 4 2 に格納しておく。 そして、 図 1 7のステップ S 6 1 に おいて、 記憶装置 4 2からすべてのサービスマンの現在位置を読み込み、 ステツ プ S 6 2 において、 該当する油圧ショベルの作業地区にもっと も近いサ一ビスマ ンを検索する。 そして、 ステップ S 6 3 に進み、 そのサービスマンの携帯情報端 末装置 5 1 に対して、 該当する油圧ショベル、 作業地区、 警報や故障の内容、 故 障の対処法、 持参する部品を基地局 B Cを経由、 も しく は移動体通信システムを 経由して送信する。 FIG. 17 is a flowchart showing a processing procedure for dispatching a serviceman executed in step S53 of FIG. For example, the GPS receiver is carried by all service personnel, and the current location signal transmitted to the service factory at predetermined time intervals is stored in the storage device 42 of the service factory. Then, in step S61 of FIG. 17, the current positions of all the service personnel are read from the storage device 42, and in step S62, the service manager which is closer to the work area of the corresponding excavator is read. Search. Then, the process proceeds to step S63, in which the corresponding hydraulic excavator, work area, details of the alarm or failure, the method of handling the failure, and the parts to be brought to the base station are transmitted to the portable information terminal device 51 of the serviceman. Transmit via BC or via mobile communication system.
なお、 サービスマンの作業予定をデータベース化しておき (図 2 2参照)、 空き 時間のあるサービスマンを検索しても よい。 また、 そのと きに部品発注を自動的 に部品管理部門へ連絡するよ う にしても よい。 The work schedule of the service technicians may be stored in a database (see Figure 22), and the service technicians who have free time may be searched. At that time, the order of the parts may be automatically notified to the parts management department.
図 1 8は、 サービス工場が受信する状態信号 (日報データ) に基づいて作成さ れる日報データの一例を示す。 日報は、 各油圧ショベルについて毎日作成され、 図 1 8は、 たとえば A社の所有する 2 5 3号機の 2 0 0 0年 3月 1 6 日付けの日 報である。 第 1頁には、 エンジン稼働時間、 走行操作時間、 旋回操作時間、 フロ ン ト操作時間の累積時間と、 3月 1 6 日に行われた作業に関する時間が表示され る。 第 2頁にはメ ンテナンス情報が表示され、 たとえば、 ェンジンオイルフィ ル タ交換まで 1 0 0時間、 エンジンオイル交換まで 6 0時間のよう に、 メ ンテナン ス対象部品、 対象部位ごとの時間が表示される。 Figure 18 shows an example of daily report data created based on the status signal (daily report data) received by the service factory. The daily report is prepared daily for each excavator. Fig. 18 shows the daily report of Unit A's Unit 253, dated March 16, 2000, for example. The first page shows the accumulated time of the engine operation time, running operation time, turning operation time, front operation time, and the time related to the work performed on March 16th. The second page shows maintenance information, for example, the time for each part and part to be maintained, such as 100 hours before changing the engine oil filter and 60 hours before changing the engine oil. Is done.
この日報は、 サービス工場でプリ ン トアウ ト されて各サービスマンに配布され
る。 電子メ一ルでサ一ビスマンに配布してもよい。 図 1 8で示す日報を油圧ショ ベル 2 5 3号機へ送信して運転席のモニタ 2 5に表示したり、 ユーザである A社 の管理部門へ送信するようにしてもよい。 This daily report is printed out at the service factory and distributed to each service person. You. It may be distributed to the serviceman by e-mail. The daily report shown in Fig. 18 may be sent to the hydraulic excavator 25-3 and displayed on the monitor 25 of the driver's seat, or may be sent to the user A's management department.
ここで、 図 1 6に示したステップ S 4 9の巡回サービスの予定作成について説 明する。 図 1 9 A〜1 9 Cは、 メンテナンス予定表の一例を示す図である。 図 1 9 Aは走行ローラに関するメ ンテナンス予定を、 図 1 9 Bはブッシュに関するメ ンテナンス予定を、 図 1 9 Cはピンに関するメ ンテナンス予定を表している。 各 油圧シ ョベルのエンジン稼働時間、 走行操作時間、 旋回操作時間、 フロ ン ト操作 時間の累積時間は状態信号(日報データ) としてサービス工場で受信されるので、 ェンジン稼働時間と各操作時間とに基づいて、 各部品が交換時期に達しているか を判定する。 Here, the schedule creation of the traveling service in step S49 shown in FIG. 16 will be described. FIGS. 19A to 19C are diagrams illustrating an example of a maintenance schedule. Fig. 19A shows the maintenance schedule for the traveling rollers, Fig. 19B shows the maintenance schedule for the bush, and Fig. 19C shows the maintenance schedule for the pins. The cumulative operating time of each hydraulic shovel's engine, running operation time, turning operation time, and front operation time is received as a status signal (daily report data) at the service factory. Based on this, it is determined whether each part has reached its replacement time.
たとえば、 走行ローラの推奨交換時間が 2 0 0 0時間の場合、 油圧シ ョベル a 1の現在までの走行操作時間が 1 8 5 0時間を越えると、 交換時期まで 1 5 0時 間以内となり、 メ ンテナンス時期であると判定し、 油圧シ ョベル a 1の巡回サー ビスを 1 5 0時間以内に予定する。 図 1 9 Aでは今月のメ ンテナンス予定に油圧 ショベル a 1が表示されている。 その他の号機も同様である。 For example, if the recommended replacement time of the traveling roller is 2000 hours, if the running operation time of the hydraulic shovel a1 to the present exceeds 180 hours, the replacement time will be within 150 hours until the replacement time. Judgment is due for maintenance, and a hydraulic shovel a1 patrol service will be scheduled within 150 hours. In Fig. 19A, the excavator a1 is displayed in the maintenance schedule for this month. The same applies to other units.
ブームの回動軸に設けられるブッ シュの推奨交換時間が 3 0 0 0時間の場合、 同じ A地区の油圧シ ョベル a 2の現在までのフロン ト稼働時間が 2 9 5 0時間を 越えると、交換時期まで 5 0時間以内となり、 メ ンテナンス時期であると判定し、 油圧ショベル a 2 の巡回サービスを 5 0時間以内に予定する。 図 1 9 Bでは今月 のメンテナンス予定に油圧ショベル a 2が表示されている。 その他の号機も同様 である。 If the recommended replacement time of the bush provided on the boom rotation axis is 300 hours, if the hydraulic shovel a2 in the same area A exceeds the current operating time of 295 hours, It will be within 50 hours until the replacement time, and it is determined that it is maintenance time, and the patrol service of the hydraulic excavator a2 will be scheduled within 50 hours. In Fig. 19B, the excavator a2 is displayed as the maintenance schedule for this month. The same applies to other units.
さらに、 バケッ トの回動軸に設けられるピンの推奨交換時間が 4 0 0 0時間の 場合、 同じ A地区の油圧ショベル a 6の現在までのフ口ント稼働時間が 3 9 2 0 時間を越えると、 交換時期まで 8 0時間以内となり、 メ ンテナンス時期であると 判定し、 油圧ショベル a 3 の巡回サービスを 8 0時間内に予定する。 図 1 9 Cで は今月のメ ンテナンス予定に油圧ショベル a 6が表示されている。 その他の号機 も同様である。 Furthermore, if the recommended replacement time of the pin provided on the pivot axis of the bucket is 400 hours, the operating time of the front end of the excavator a6 in the same area A to date exceeds 392 hours. It is within 80 hours until the replacement time, and it is determined that it is the maintenance time, and the patrol service of the hydraulic excavator a3 will be scheduled within 80 hours. In Fig. 19C, the excavator a6 is displayed in the maintenance schedule for this month. The same applies to other units.
このようなメンテナンス時期を、 地区 Aで稼働している油圧ショベル a 1〜 a
n、 地区 Bで稼働している油圧ショベル b 1 〜 b n、 地区 Cで稼働している油圧 ショベル c 1 〜 c nに対して算出すると、 図 1 9 A〜 Cに示すようなメンテナン ス予定のチャー トが作成される。 なお、 地区 A〜 Cは同一サービス工場の管轄と する。 The maintenance period for such excavators a 1 to a n, hydraulic excavators b1 to bn operating in district B, and hydraulic excavators c1 to cn operating in district C.Charts scheduled for maintenance as shown in Fig. 19A to C Is created. Areas A to C are under the jurisdiction of the same service factory.
図 1 9 A〜 1 9 Cに示したメ ンテナンス予定表に基づいて、 メ ンテナンスに必 要な部品が事前にわかる。 したがって、 この予定表に基づいて部品の手配を行う ようにしてもよい。 ここで、 部品の手配は、 たとえば、 サービス工場に付設する 部品センターに対して、 部品の発注書を社内のイン トラネッ トを経由して自動送 付することによ り完了する。 また、 予定表および部品手配にしたがって、 メンテ ナンス費用を算出し、 それをユーザに送付してもよい。 Based on the maintenance schedule shown in Figs. 19A to 19C, the parts required for maintenance can be known in advance. Therefore, parts may be arranged based on this schedule. Here, the parts arrangement is completed, for example, by automatically sending a parts purchase order to a parts center attached to a service factory via the company intranet. In addition, the maintenance cost may be calculated according to the schedule and the parts arrangement, and may be sent to the user.
図 1 9 A〜 Cに示したメンテナンス予定を作成する場合、 対象部品の現在まで の使用時間と、 あらかじめ設定した標準的なメ ンテナンス時間とを比較してメ ン テナンス時期を算出した。 しかしながら、 油圧ショベルでは、 作業現場、 作業内 容によ り使用負荷の状態が大き く異なる。 そのため、 負荷状態に応じてメ ンテナ ンス時期を可変とするのが好ましい。 When creating the maintenance schedule shown in Figs. 19A to 19C, the maintenance time was calculated by comparing the usage time of the target component up to the present with the standard maintenance time set in advance. However, the working load of hydraulic excavators varies greatly depending on the work site and work content. Therefore, it is preferable to make the maintenance time variable according to the load condition.
負荷状態を算出するため、 油圧ショベルから毎日定期的に送信されてくる日報 データに基づいて、 図 2 0 A、 図 2 0 Bに示すように走行負荷頻度分布、 フロン ト (掘削) 負荷頻度分布を棒グラフ表示する。 また、 標準的な走行負荷頻度分布 と掘削負荷頻度分布をあらかじめ設定しておく。 そして、 演算された負荷頻度分 布が標準的な負荷頻度分布に比べて軽負荷側で運転されているか、 重負荷側で運 転されているかを判定し、 この判定結果に応じて次式にしたがってメンテナンス 時間を算出する。 In order to calculate the load state, the running load frequency distribution and the front (digging) load frequency distribution are shown in Fig. 20A and Fig. 20B based on the daily report data sent from the excavator on a daily basis. Is displayed as a bar graph. In addition, a standard running load frequency distribution and excavation load frequency distribution are set in advance. Then, it is determined whether the calculated load frequency distribution is operated on the light load side or the heavy load side compared to the standard load frequency distribution, and according to the determination result, Therefore, the maintenance time is calculated.
重負荷運転のメンテナンス時間 =標準メ ンテナンス時間 X " Maintenance time for heavy load operation = Standard maintenance time X "
軽負荷運転のメ ンテナンス時間 =標準メ ンテナンス時間 X /? Maintenance time for light load operation = Standard maintenance time X /?
ただし、 《は 1未満の値、 /?は 1 を越えた値であり、 あらかじめ実験などによ り決定しておく。 However, 《is a value less than 1 and /? Is a value exceeding 1, which is determined in advance by experiments.
以上のメンテナンス時間の算出に当たっては、 たとえば対象部品が走行ローラ であれば走行負荷頻度分布が重負荷か輊負荷かによ りメ ンテナンス時間を算出す る。 あるいは、 対象部品がブッシュであれば掘削負荷頻度分布が重負荷か軽負荷
かによ り メ ンテナンス時間を算出する。 すなわち、 対象部品と関連する負荷頻度 分布を考慮してメ ンテナンス時間を可変とする。 In calculating the above maintenance time, for example, if the target component is a traveling roller, the maintenance time is calculated based on whether the traveling load frequency distribution is a heavy load or a hierarchical load. Alternatively, if the target part is a bush, the digging load frequency distribution is heavy or light Thus, the maintenance time is calculated. That is, the maintenance time is made variable in consideration of the load frequency distribution related to the target component.
なお、以上の計算式によ り負荷に応じてメ ンテナンス時間を算出する代わり に、 あらかじめ重負荷メ ンテナンス時間、 標準負荷メ ンテナンス時間、 および軽負荷 メ ンテナンス時間をテーブルと して設け、 負荷に応じて使用テ一ブルを選択する よう にしても よい。 In addition, instead of calculating the maintenance time according to the load using the above formula, the heavy load maintenance time, the standard load maintenance time, and the light load maintenance time are set in advance as a table, and the load The use table may be selected according to the situation.
あるいは、 サービス工場 S Fのデータベース 4 7から前回のメ ンテナンス状況 の履歴を読み出し、 その履歴に応じてメ ンテナンス時間を可変と しても よい。 す なわち、 前回のメ ンテナンス時間が標準的なメ ンテナンス時間よ り も短いと き、 あるいは長いと きは、 今回のメ ンテナンス時間を前回までのメ ンテナンス時間に 変更して、 メ ンテナンスの時期を算出する。 . Alternatively, the history of the previous maintenance status may be read from the database 47 of the service factory SF, and the maintenance time may be made variable according to the history. In other words, if the last maintenance time is shorter or longer than the standard maintenance time, the current maintenance time is changed to the previous maintenance time, and the maintenance time is changed. Is calculated. .
次に、 1人のサービスマンがもっ とも効率よ く複数の作業地区へ巡回する方式 について説明する。 図 2 1 は、 作業地区 Aで稼働している油 ショベル a 1 〜 a 5 のメ ンテナンス予定表を示す。 このメ ンテナンス予定表はサービス工場の処理 装置 4 3で演算される。 油圧シ ョベル a 1 は 3月 6 日〜 3月 1 7 日の間にメ ンテ ナンス予定が設定され、 油圧シ ョベル a 2は 3月 9 日〜 3月 1 7 日の間にメ ンテ ナンス予定が設定され、 油圧シ ョベル a 3は 3月 1 6 日〜 3月 2 4 日の間にメ ン テナンス予定が設定され、 油圧ショベル a 4は 3月 1 5 日〜 3月 2 3 日の間にメ ンテナンス予定が設定され、 油圧ショベル a 5は 3月 1 7 日〜 3月 2 2 日の間に メ ンテナンス予定が設定されている。 メ ンテナンス予定の設定は、 たとえば、 メ ンテナンスまでの残り時間と当該油圧ショベルの 1 日の平均稼動時間などから交 換時期を予想して求める。 Next, a method in which one service person travels to multiple work areas with the highest efficiency will be described. Figure 21 shows the maintenance schedule of oil shovels a1 to a5 operating in work area A. This maintenance schedule is calculated by the processing device 43 of the service factory. The hydraulic shovel a1 is scheduled for maintenance between March 6 and March 17, and the hydraulic shovel a2 is scheduled for maintenance between March 9 and March 17 The hydraulic excavator a3 is scheduled for maintenance between March 16 and March 24, and the hydraulic excavator a4 is scheduled between March 15 and March 23. The maintenance schedule is set for the hydraulic excavator a5 between March 17 and March 22. The maintenance schedule is determined by, for example, predicting the replacement time based on the remaining time until maintenance and the average daily operating time of the excavator.
図 2 1 からわかるよ う に、 3月 1 0 日に作業地区 Aを巡回すると油圧ショベル a 1 と a 2の 2台のメ ンテナンスが同時に行える。 3月 1 7 日に巡回すれば油圧 ショベル a l 〜 a 5の 5台のメ ンテナンスが同時に行える。 3月 2 1 日に巡回す れば油圧ショベル a 3 〜 a 5の 3台のメ ンテナンスが同時に行える。したがつて、 3月 1 7 日に巡回するのがもっと も少ない巡回回数でメ ンテナンス作業が完了し, 効率がよい。 As can be seen from Fig. 21, two patrols of excavators a1 and a2 can be performed simultaneously on worksite A on March 10th. If it patrols on March 17, five excavators a l to a 5 can be maintained at the same time. On March 21, the three excavators a3 to a5 can be maintained at the same time. Therefore, maintenance work is completed with less number of patrols on March 17 and the efficiency is high.
なお、 図 2 1 の各号機のメ ンテナンス予定表に加えて、 図 2 2 に示すサービス
マンの日程表も考慮して最終的なメ ンテナンス予定を作成すれば、 サービスマン の巡回の可不可を反映した、 精度の高いメ ンテナンス予定を作成することができ る。 In addition to the maintenance schedule of each unit shown in Figure 21, the service shown in Figure 22 If a final maintenance schedule is created in consideration of the schedule of the service personnel, it is possible to create a highly accurate maintenance schedule that reflects the possibility of patrols by service personnel.
このよう に、処理装置 4 3 によ り もつ と も効率よ く巡回する方式が演算される。 図 2 1では、 作業地区 Aの油圧ショベル a 1〜 a 5 について説明した。 しかしな がら、 異なる 2以上の作業地区の油圧ショベルをもっ と も効率よ く巡回するよ う に演算すること も簡単にできる。 たとえば、 同じ作業地区へ巡回する回数をもつ と も少な くする、 複数の作業地区へ最短経路で巡回するなどである。 In this way, the processing device 43 calculates a scheme that circulates with high efficiency. In FIG. 21, the excavators a1 to a5 in the work area A have been described. However, it is also easy to calculate so that hydraulic shovels from two or more different work districts can travel more efficiently. For example, less or fewer trips to the same work area, or shortest route to multiple work areas.
図 1 6のフローチヤ一トでは、 サービス工場が受信した信号に警報信号や故障 信号が含まれていると き、 そのステップ S 5 0〜S 5 4 において、 データベース 4 7から対処法を読み出して油圧ショベルへ送信する ものと した。しかしながら、 警報内容や故障内容によってはオペレータに知らせる必要のないものもある。 た とえば、 油圧ショベルのコン トローラ 2 0内の E E P R O Mや R A Mの異常など は、 オペレータに報知しても意味がなく、 かえって混乱するも ととなる。 したが つて、 警報や故障の内容に応じて油圧ショベルへ対処法を送信する必要性を決定 するのが好ま しい。 油圧ショベルへ送信する必要がない警報内容や故障内容はサ 一ビスマンにだけ通知する。 In the flowchart of Fig. 16, when the signal received by the service factory includes an alarm signal or a failure signal, in steps S50 to S54, the countermeasure is read from the database 47 and the hydraulic pressure is read. It was sent to the shovel. However, there is no need to notify the operator depending on the type of alarm or failure. For example, it is meaningless to notify the operator of an EPPROM or RAM abnormality in the controller 20 of a hydraulic excavator, which may be rather confusing. Therefore, it is preferable to determine the necessity of sending a remedy to the excavator depending on the type of alarm or failure. Alerts and faults that do not need to be sent to the excavator are notified only to the serviceman.
図 1 6のフローチャー トでは、 サービス工場が受信した信号に警報信号や故障 信号が含まれている と き、 そのステップ S 5 0〜S 5 4 において、 データベース 4 7から対処法を読み出して油圧ショベルへ送信する ものと した。しかしながら、 直ちに機械を停止する必要がある故障内容の場合には、 対処法を送信する代わり に、 エンジンを停止する信号を油圧ショベルに送信するのが好ま しい。 この場合、 「ェンジンを自動停止します。 サービスマンが到着するまでェンジンを再起動し ないで下さい」 などのメ ッセージを、 運転席のモニタ 2 5 に表示する。 したがつ て、 エンジン停止信号と と もにメ ッセ一ジを示す信号も同時に送信する。 あるい は、 ブームシリ ンダ C 1 を降ろす方向に操作する信号を送信し、 安全性の高い姿 勢に自動的に駆動しても よい。 In the flowchart of Fig. 16, when the signal received by the service factory includes an alarm signal or a failure signal, in steps S50 to S54, the countermeasure is read from the database 47 and the hydraulic pressure is read. It was sent to the shovel. However, in the case of a fault that requires immediate stopping of the machine, instead of sending a remedy, it is preferable to send a signal to the excavator to stop the engine. In this case, a message such as "Stop the engine automatically. Do not restart the engine until a service person arrives" is displayed on the driver's monitor 25. Therefore, a signal indicating a message is transmitted at the same time as the engine stop signal. Alternatively, a signal for operating the boom cylinder C 1 in the lowering direction may be transmitted, and the vehicle may be automatically driven to a highly safe posture.
以上の説明では、 警報信号や故障信号に基づいてサービス工場のデータベース 4 7から対処法を読み出すよう にした。 しかしながら、 複数種類の故障信号が同
時に送信されてく る場合、 故障信号の組み合わせによつて対処法を演算できない こと も予想される。 そこで、 サービス工場の処理装置 4 3 に A I (人工知能) 装 置を接続し、 警報信号や故障信号に基づいて、 対処内容などを推論して対処法を 求めても よい。 In the above description, the remedy is read from the service factory database 47 based on the alarm signal and the failure signal. However, several types of fault signals If it is transmitted occasionally, it is expected that the remedy method cannot be calculated depending on the combination of the failure signals. Therefore, an AI (Artificial Intelligence) device may be connected to the processing device 43 of the service factory, and the content of the response may be inferred based on the alarm signal or the failure signal to determine a response method.
また以上では、 状態信号 (日報データ) は夜間に定時送信するものと した。 し かしながら、 日報データ送信用スィ ッチを運転席に設け、 この送信用スィ ッチォ ンで日報データを送信するよ う にしても よい。 あるいは、 エンジン停止時も しく は起動時に日報データを送信するよ う にしても よい。 In the above, the status signal (daily report data) is transmitted on a regular basis at night. However, a switch for transmitting the daily report data may be provided in the driver's seat, and the daily report data may be transmitted by the switch for transmitting the daily report. Alternatively, the daily report data may be transmitted when the engine is stopped or started.
以上では日報データに基づいて図 1 8 に示す日報を作成する ものと した。 しか しながら、 図 2 3 A、 図 2 3 Bに示すよ う に、 エンジン稼働時間分布を含んだ日 報を作成しても よい。 図 2 3 Aは、 総稼働時間、 掘削時間、 旋回時間、 走行時間、 ブレーカ時間、 ブレーカ以外のアタ ッチメ ン トの駆動時間、 無負荷の累積時間を それぞれバ一グラフ表示したものである。 これらの累積時間は油圧ショベルのコ ン トローラ 2 0から送られてく る 1 日ごとの稼働時間に基づいて、 サービス工場 で作成され、 バ一グラフ表示される。 また、 図 2 3 Bは月別のエンジン稼働時間 とアイ ドル時間を棒グラフ表示したものである。 月別のエンジン稼働時間とアイ ドル時間も油圧ショベルのコン トローラ 2 0から送られてく る 1 日ごとの稼働時 間に基づいて、 サービス工場で作成され、 棒グラフ表示される。 In the above, the daily report shown in Fig. 18 was created based on the daily report data. However, as shown in Figs. 23A and 23B, a daily report including the engine operating time distribution may be created. Fig. 23A shows the total operation time, excavation time, turning time, travel time, breaker time, drive time of non-breaker attachments, and accumulated time of no load in a bar graph. These accumulated times are created at the service factory based on the daily operating hours sent from the excavator controller 20, and are displayed in a graph. Figure 23B shows a bar graph of engine operation time and idle time for each month. Monthly engine operating hours and idle hours are also created at service plants based on the daily operating hours sent from the excavator controller 20, and are displayed as bar graphs.
上述したよう に、 油圧ショベルには燃料残量センサ 1 5 f が搭載されている。 したがって、 燃料残量センサ 1 5 f からの信号を使用して、 コン トローラ 2 0 に よ り、 単位時間あたりの燃料消費量や燃料消費率を演算すること もできる。 これ らの燃料消費量や燃料消費率を日報データ と して油圧ショベルから送信すれば、 サ一ビス工場において燃料消費量や燃料消費率をビジュァル表示することができ る。 As described above, the hydraulic excavator is equipped with the fuel remaining amount sensor 15f. Therefore, using the signal from the fuel remaining amount sensor 15f, the controller 20 can calculate the fuel consumption per unit time and the fuel consumption rate. By transmitting these fuel consumption and fuel consumption rate from the hydraulic excavator as daily report data, it is possible to visualize the fuel consumption and fuel consumption rate at the service factory.
たとえば、 1時間あたりの燃科消費量、 稼働分消費量、 待機分消費量、 および 6 ヶ月合計消費量を算出して、 日報と して出力することができる。 1時間あたり の燃料消費量は、 1 日の燃料消費量を 1 日のエンジン稼働時間で割って算出され る。 稼働分消費量は実施に作業を行っている間に消費された燃料消費量であり、 待機分消費量は無負荷でェンジンが駆動されている間に消費された燃料消費量で
ある。 6 ヶ月合計消費量は文字通り 6 ヶ月間の燃料消費量の積算値である。 また、 待機分消費量があらかじめ定めた基準量よ り も多いと きは、 「待機分消費量を減 らして省エネルギ運転を心がけて下さい」 のよ うなメ ッセージを出力する。 For example, fuel consumption, operating consumption, standby consumption, and total consumption for 6 months per hour can be calculated and output as a daily report. The fuel consumption per hour is calculated by dividing the daily fuel consumption by the daily engine operating time. Operating consumption is the amount of fuel consumed while working on the implementation, and standby consumption is the amount of fuel consumed while the engine is running with no load. is there. The 6 month total consumption is literally the integrated value of the fuel consumption for 6 months. If the standby consumption is higher than the predetermined reference amount, a message such as "Please reduce the standby consumption and try to save energy" is output.
稼働分消費量を算出するためには、 稼働状況と燃料消費量とを対応づける必要 がある。 たとえば、 図 2 4 に示すよ う に、 走行操作時間、 旋回操作時.間およぴフ 口ン ト操作時間を演算する図 7の処理の中で燃料消費量を算出する。走行、 旋回、 あるいは掘削のパイロ ッ ト圧力が所定値以上となると、 すなわち、 それらの操作 が開始される と、 ステップ S 5 において稼働分燃料消費量 F I を読み込み、 ステ ップ S 6 において燃料残量センサ 1 5 f の計測値を読み込んで変数 F Sに代入す る。 パイロッ ト圧力が所定値未満になる と、 すなわち、 上記の各操作が終了する とステップ S 7へ進み、 燃料残量センサ 1 5 f の計測値を読み込んで変数 F Fに 代入する。 ステツプ S 8 において、 F S— F F + F I を演算して稼働分燃料消費 量 F I を更新する。 これ以外にも燃料に関する情報を様々な観点から加工して日 報とすること もできる。 In order to calculate the operating consumption, it is necessary to associate the operating status with the fuel consumption. For example, as shown in FIG. 24, the fuel consumption is calculated in the process of FIG. 7 for calculating the traveling operation time, the turning operation time, and the front operation time. When the pilot pressure for traveling, turning, or excavation becomes equal to or higher than a predetermined value, that is, when those operations are started, the operating fuel consumption FI is read in step S5, and the remaining fuel is read in step S6. Read the measured value of the quantity sensor 15 f and substitute it for the variable FS. When the pilot pressure becomes lower than the predetermined value, that is, when the above operations are completed, the process proceeds to step S7, where the measured value of the fuel remaining amount sensor 15f is read and substituted into the variable FF. In step S8, FS—FF + FI is calculated to update the operating fuel consumption FI. In addition to this, information on fuel can be processed from various viewpoints and used as a daily report.
なお、 以上では、 油圧ショベル a 1 〜 c nからの信号を通信衛星 C Sを利用し て基地局 B Cへ送信し、 基地局 B Cからサービス工場 S Fへ一般公衆回線網 P C を介して信号を送信する ものと した。 しかしながら、 通信衛星を使用せず、 P H S電話、 携帯電話などの移動体通信システムを利用して油圧ショベルからの信号 を送信しても よい。 また、 油圧ショベルからの信号をサービス工場で種々の形態 に加工出力するよ う にしたが、 油圧ショベル管理者の施設 (メーカのサービスェ 場、 ユーザの管理部門) に信号を送信して、 同様な情報の加工出力を行っても よ い。 この場合、 油圧ショベルに I Dカー ド読取装置を搭載しておく とオペレータ の勤務時間の管理にも使用できる。 すなわち、 作業開始時に、 オペレータが自分 の I Dカー ドを I Dカー ド読取装置で読みと らせる。 この情報を日報デー夕のェ ンジン始動時刻と停止時刻と と もに油圧ショベル所有者の施設、 たとえば人事部 門に送信する。 人事部門では、 送信されてきた I D情報とエンジン始動時刻およ び停止時刻に基づいて、 オペレータの勤務時間を管理し、 給与計算に使用するこ と もできる。 あるいは、 日報データに基づいて、 油圧ショベルの作業量、 たとえ ば掘削土砂量などを演算すること もできる。
油圧ショベル管理者をレンタル業者と しても よい。 In the above, the signals from the hydraulic excavators a1 to cn are transmitted to the base station BC using the communication satellite CS, and the signals are transmitted from the base station BC to the service factory SF via the general public network PC. And However, the signal from the hydraulic shovel may be transmitted using a mobile communication system such as a PHS phone or a mobile phone without using a communication satellite. In addition, the signal from the excavator is processed and output in various forms at the service factory. However, the signal is transmitted to the facility of the excavator administrator (the service station of the manufacturer, the user's management department), and the same applies. Processing output of important information may be performed. In this case, installing an ID card reader on the excavator can also be used to manage the working hours of the operator. That is, at the start of work, the operator causes his / her ID card to be read by the ID card reader. This information is transmitted to the excavator owner's facility, for example, the human resources department, together with the engine start time and stop time on the daily report day. The HR department can manage the working hours of operators based on the transmitted ID information and the engine start and stop times and use them for payroll calculations. Alternatively, based on the daily report data, the work amount of the excavator, for example, the amount of excavated sediment can be calculated. The excavator manager may be the rental company.
なお、 故障対処法をサービスマンへ送信する際、 油圧ショベルの号機、 稼働現 場、 故障内容、 対処法、 持参する部品なども併せて送信する ものとしたが、 サ一 ビス工場において、 サービスマンがいる地点から油圧ショベルの稼働現場までの 道路地図を検索し、 道路地図を併せて送信しても よい。 さ らに、 サービスマンの 車両にナビゲーシヨ ン装置を搭載しておき、 サービス工場において、 サービスマ ンがいる地点から油圧ショベルの稼働現場までの最適経路を探索し、 その探索結 果にしたがってナビゲーショ ン装置のモニタ上で経路誘導しても よい。 経路探索 はナビゲーショ ン装置で行っても よい。 When sending the troubleshooting method to the service technician, the hydraulic excavator unit, the operation site, the details of the failure, the troubleshooting method, the parts to be brought, etc. were also transmitted, but at the service factory, the service technician A road map from the point where the vehicle is located to the operation site of the excavator may be searched, and the road map may be transmitted together. In addition, a navigation device is installed in the serviceman's vehicle, and in a service factory, the optimal route from the point where the serviceman is located to the operation site of the excavator is searched, and navigation is performed according to the search results. The route may be guided on the monitor of the device. The route search may be performed by a navigation device.
以上では、 油圧ショベルのセンサ群 1 0で検出した警報信号と故障信号をサー ビス工場で受信し、 サービス工場で故障内容を判定し、 その対処法を演算するよ う にした。 しかしながら、 油圧ショベルのコン トローラ 2 0 において、 警報信号 と故障信号に基づいて故障内容を判定し、 故障内容を表すコー ド、 たとえば、 異 常フラグゃ異常コー ドをサービス工場へ送信し、 サービス工場でその異常フラグ や異常コー ドによ りデータベースを検索して対処法を求めても よい。 In the above description, the alarm signal and the failure signal detected by the hydraulic excavator sensor group 10 are received by the service factory, the failure content is determined by the service factory, and the remedy is calculated. However, the controller 20 of the excavator determines the content of the failure based on the alarm signal and the failure signal, and transmits a code representing the content of the failure, for example, an abnormality flag / abnormal code to the service factory, and sends the code to the service factory. Then, the database may be searched based on the abnormal flag or the abnormal code, and a remedy may be obtained.
さ らに以上では、 油圧ショベルの状態信号を通信衛星 S Cおよぴ基地局 B Cを 経由してサービス工場 S Fへ送信するよ う にしたが、 通信衛星 C Sからの信号を サービス工場で直接受信するよ う にしても よい。 In the above description, the state signal of the excavator is transmitted to the service factory SF via the communication satellite SC and the base station BC, but the signal from the communication satellite CS is directly received at the service factory. You may do so.
あるいは、 図 2 5に示すよ う に、 一般公衆回線網 P Cを経由して無線基地局 B C Aと油圧ショベル製造工場 O Wとを結び、 油圧ショベル製造工場 O Wと複数の サービス工場 S F 1 〜 S F n と を専用回線を使用して接続 (イ ン ト ラネッ ト) し ても よい。 この場合、 図 2 6 に示すよ う に、 図 1 1 に示した無線基地局 B C A内 のシステムと同様なシステムを油圧ショベル製造工場 O Wに設ける。 Alternatively, as shown in Fig. 25, the wireless base station BCA and the hydraulic excavator manufacturing plant OW are connected via a general public network PC, and the hydraulic excavator manufacturing plant OW and a plurality of service plants SF 1 to SF n are connected. May be connected (intranet) using a dedicated line. In this case, as shown in FIG. 26, a system similar to the system in the radio base station B CA shown in FIG. 11 is provided in the hydraulic excavator manufacturing plant OW.
図 2 6 において、 製造工場 O Wには、 通信衛星 C Sから送信されてく る信号を 無線基地局 B C Aおよび一般公衆回線網 P Cを介して受信するモデム 3 1 Aと、 モデム 3 1 Aで受信した信号を格納する記憶装置 3 2 Aと、 サービス工場へ送信 すべきデータを専用回線を介して送信するためのモデム 3 3 Aと、 これらの各種 機器を制御する制御装置 3 4 Aとを備えている。 そして、 制御装置 3 4 Aによ り 図 1 2 と同様な処理を実行する。 油圧ショベル製造工場 O Wの機能を油圧ショべ
ル製造メ一力一の本社機構あるいは上述したレンタル業者内に設けてもよい。 また、 油圧シ ョベルを例にして説明したが、 本発明は油圧シ ョベル以外の建設 機械やその他の作業車雨を含む作業機に広く適用できる。
In Figure 26, the manufacturing plant OW has a modem 31A that receives signals transmitted from the communication satellite CS via the radio base station BCA and the general public network PC, and a signal that is received by the modem 31A. Storage device for storing data, a modem 33A for transmitting data to be transmitted to the service factory via a dedicated line, and a control device 34A for controlling these various devices. . Then, the same processing as in FIG. 12 is executed by the control device 34A. Hydraulic excavator manufacturing plant It may be provided in the head office of the manufacturer or in the rental company described above. Also, the hydraulic shovel has been described as an example, but the present invention can be widely applied to construction machines other than the hydraulic shovel and other work machines including rainy work vehicles.
Claims
請求の範囲 作業機の各部の状態を検出し、 Claims Detect the state of each part of the work machine,
検出された状態を表す状態信号を送信し、 Sending a status signal representing the detected status,
前記状態信号を受信し、 Receiving the status signal;
受信した前記状態信号に基づいて、 前記作業機の各部の状況を示すレポ一トを 作成する作業機レポ一ト作成方法。 A work implement report creation method for creating a report indicating the status of each part of the work implement based on the received status signal.
2 . 2.
請求項 1 に記載の作業機レポ一ト作成方法において、 The work machine report creation method according to claim 1,
前記レポ一トには作業機各部の稼働時間およぴ燃料消費量に関する情報の少な く ともいずれか一方を含む。 The report includes at least one of information on the operation time and fuel consumption of each part of the work machine.
3 . 3.
請求項 2に記載の作業機レポ一ト作成方法において、 In the method for producing a working machine report according to claim 2,
前記稼働時間は、 走行稼働時間、 旋回稼働時間、 掘削稼働時間を含む。 The operating time includes running operating time, turning operating time, and excavating operating time.
4 . Four .
請求項 2に記載の作業機レポ一ト作成方法において、 In the method for producing a working machine report according to claim 2,
前記燃料消費量に関する情報は、 実際に作業を行っている稼働分燃料消費量お よぴ無負荷時の燃料消費量の少なく ともいずれか一方を含む。 The information on the fuel consumption includes at least one of the fuel consumption for the actual operation and / or the fuel consumption under no load.
5 . Five .
作業機の各部の状態を検出する状態検出装置と、 A state detection device that detects a state of each part of the work machine;
前記状態検出装置で検出された状態を表す状態信号を送信する送信機と、 前記送信機から送信された前記状態信号を受信する受信機と、 A transmitter that transmits a state signal indicating a state detected by the state detection device; and a receiver that receives the state signal transmitted from the transmitter.
前記受信機で受信した状態信号に基づいて、 前記作業機の各部の状況を示すレ ポートを作成する レポ一ト作成装置とを備える作業機レポート作成システム。
A work implement report creation system, comprising: a report creation device that creates a report indicating the status of each unit of the work implement based on the status signal received by the receiver.
6 . 6.
請求項 5の作業機レポー ト作成システムにおいて、 In the work implement report creation system of claim 5,
前記レポ一トには作業機の稼働時間および燃料消費量に関する情報の少なく と もいずれか一方を含む。 The report includes at least one of information on the operating time of the working machine and the fuel consumption.
7 . 7.
請求項 6の作業機レポ一ト作成システムにおいて、 In the work machine report creation system according to claim 6,
前記稼働時間は、 走行稼働時間、 旋回稼働時間、 掘削稼働時間を含む。 The operating time includes running operating time, turning operating time, and excavating operating time.
8 . 8.
請求項 6に記載の作業機レポ一ト作成システムにおいて、 In the work equipment report creation system according to claim 6,
前記燃料消費量に関する情報は、 実際に作業を行っている稼働分燃料消費量お よび無負荷時の燃料消費量の少なく ともいずれか一方を含む。 The information on the fuel consumption includes at least one of the fuel consumption for the actual operation and the fuel consumption at no load.
9 . 9.
請求項 5〜 8のいずれかに記載の作業機レポ一ト作成システムにおいて、 前記レポ一ト作成装置は、 作業機とは別の場所に設置された作業機監視施設に 設けられている。 The work machine report creation system according to any one of claims 5 to 8, wherein the report creation device is provided in a work machine monitoring facility installed in a location different from the work machine.
1 0 . Ten .
作業機から送信されてくる作業機各部の状態を示す状態信号を受信し、 受信した前記状態信号に基づいて、 前記作業機の各部の状況を示すレポ一トを 作成する作業機レポ一ト作成装置。 Receiving a state signal indicating the state of each part of the work machine transmitted from the work machine, and creating a report showing the state of each part of the work machine based on the received state signal apparatus.
1 1 . 1 1.
作業機から送信されてく る作業機各部の状態を示す状態信号を受信する受信機 と、 A receiver for receiving a status signal transmitted from the implement and indicating a status of each part of the implement,
受信した前記状態信号に基づいて、 前記作業機の各部の状況を示すレポ一トを 作成するレポ一ト作成装置とを備える作業機レポ一 ト作成装置。
A work machine report creation device comprising: a report creation device that creates a report indicating the status of each part of the work machine based on the received status signal.
1 2 . 1 2.
作業機から送信されてくる作業機各部の状態を示す状態信号を受信し、 受信した前記状態信号に基づいて、 前記作業機の各部の状況を示すレポ一トを 作成する作業機レポ— ト作成方法。
Work machine report creation that receives a status signal indicating the state of each unit of the work machine transmitted from the work machine and creates a report indicating the status of each unit of the work machine based on the received status signal. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001570924A JP3836726B2 (en) | 2000-03-31 | 2001-03-30 | Work machine report creation method, creation system, and creation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000099137 | 2000-03-31 | ||
JP2000-99137 | 2000-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001073222A1 true WO2001073222A1 (en) | 2001-10-04 |
Family
ID=18613527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/002811 WO2001073222A1 (en) | 2000-03-31 | 2001-03-30 | Work machine report creating method, creating system, and creating apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3836726B2 (en) |
WO (1) | WO2001073222A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037550A (en) * | 2001-07-24 | 2003-02-07 | Komatsu Ltd | Management device for mobile objects |
JP2007140730A (en) * | 2005-11-16 | 2007-06-07 | Mitsubishi Fuso Truck & Bus Corp | Travel information transmission system and reception system |
JP2018170029A (en) * | 2018-06-19 | 2018-11-01 | 株式会社デンソー | On-vehicle equipment controller |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6163126B2 (en) * | 2014-03-24 | 2017-07-12 | 日立建機株式会社 | Construction machine operating state recording apparatus and operating state recording method |
CN111021461B (en) * | 2019-12-31 | 2022-05-03 | 三一重机有限公司 | Excavator debugging method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07166582A (en) * | 1993-12-15 | 1995-06-27 | Hitachi Constr Mach Co Ltd | Work machine maintenance system |
JP2584371Y2 (en) * | 1992-10-12 | 1998-10-30 | 株式会社小松製作所 | Excavator operation status grasping device |
JPH11213195A (en) * | 1998-01-21 | 1999-08-06 | Yutani Heavy Ind Ltd | Starting key and operation information control system |
-
2001
- 2001-03-30 JP JP2001570924A patent/JP3836726B2/en not_active Expired - Lifetime
- 2001-03-30 WO PCT/JP2001/002811 patent/WO2001073222A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2584371Y2 (en) * | 1992-10-12 | 1998-10-30 | 株式会社小松製作所 | Excavator operation status grasping device |
JPH07166582A (en) * | 1993-12-15 | 1995-06-27 | Hitachi Constr Mach Co Ltd | Work machine maintenance system |
JPH11213195A (en) * | 1998-01-21 | 1999-08-06 | Yutani Heavy Ind Ltd | Starting key and operation information control system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037550A (en) * | 2001-07-24 | 2003-02-07 | Komatsu Ltd | Management device for mobile objects |
JP2007140730A (en) * | 2005-11-16 | 2007-06-07 | Mitsubishi Fuso Truck & Bus Corp | Travel information transmission system and reception system |
JP2018170029A (en) * | 2018-06-19 | 2018-11-01 | 株式会社デンソー | On-vehicle equipment controller |
Also Published As
Publication number | Publication date |
---|---|
JP3836726B2 (en) | 2006-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100487598B1 (en) | Failure measure outputting method | |
US7079982B2 (en) | Working machine, trouble diagnosis system of working machine, and maintenance system of working machine | |
US9637891B2 (en) | Management server for working machine and management method for working machine | |
JP4689134B2 (en) | Construction machine management method and system, and arithmetic processing apparatus | |
JP3834511B2 (en) | Work machine operating data transmission method and apparatus | |
KR100656578B1 (en) | Construction method management system and system and processing unit | |
JP4593055B2 (en) | Construction machine management method and system, and arithmetic processing apparatus | |
KR100599984B1 (en) | Function change system and base station of working machine | |
JP4689136B2 (en) | Method for detecting actual operation time of work machine deployed at work site, data collection / management system, and base station | |
WO2010073771A1 (en) | Diagnostic information providing system for construction machine | |
US7050893B2 (en) | Method of detection of actual operating time of machinery deployed at construction sites, data collection and management system, and base station | |
JP3735068B2 (en) | Travel service schedule creation method, creation system, and creation device | |
JP2002180502A (en) | Controller for working machine and communication device for working machine | |
JP2003213730A (en) | Electronic control system for construction machine | |
CN1746438B (en) | Working machine, failure diagnosis system for work machine and maintenance system for machines | |
WO2001073222A1 (en) | Work machine report creating method, creating system, and creating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 570924 Kind code of ref document: A Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |