+

WO2001070364A1 - Procede de purification par sublimation et appareil associe - Google Patents

Procede de purification par sublimation et appareil associe Download PDF

Info

Publication number
WO2001070364A1
WO2001070364A1 PCT/JP2001/002173 JP0102173W WO0170364A1 WO 2001070364 A1 WO2001070364 A1 WO 2001070364A1 JP 0102173 W JP0102173 W JP 0102173W WO 0170364 A1 WO0170364 A1 WO 0170364A1
Authority
WO
WIPO (PCT)
Prior art keywords
sublimation
section
electromagnetic induction
temperature
substance
Prior art date
Application number
PCT/JP2001/002173
Other languages
English (en)
French (fr)
Inventor
Mahito Soeda
Shuhei Hotta
Kazuo Ishii
Original Assignee
Nippon Steel Chemical Co., Ltd.
Osaka Yuka Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd., Osaka Yuka Industries Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to US10/239,064 priority Critical patent/US6878183B2/en
Priority to JP2001568551A priority patent/JP4866527B2/ja
Priority to AU2001241197A priority patent/AU2001241197A1/en
Priority to EP01912491A priority patent/EP1273330B1/en
Priority to DE60132763T priority patent/DE60132763T2/de
Publication of WO2001070364A1 publication Critical patent/WO2001070364A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • C07D215/30Metal salts; Chelates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • B01D1/0023Induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/84Separation, e.g. from tar; Purification

Definitions

  • the present invention relates to a sublimation purification method and a sublimation purification apparatus used for the method.
  • Background Art It is known that all solids that can be sublimed without decomposition under normal pressure or reduced pressure can be purified by sublimation under appropriate temperature and pressure, but the sublimation rate is low. However, it is used only for purification of very limited solids due to low purification efficiency.
  • sublimation purification is useful for purification of solids that are difficult to purify by distillation or recrystallization, and is particularly useful for purification of compounds that decompose at high temperatures.
  • Some sublimation purification apparatuses for this purpose are disclosed in Japanese Patent Application Laid-Open Nos. Hei 6-26438, Hei 7-22405, and the like.
  • Sublimation purification devices are classified into vertical type, horizontal type, etc. according to their shapes. Sublimation methods are roughly classified into gas-assisted sublimation devices, vacuum sublimation devices, etc. By combining these as appropriate, various sublimation purification devices are made, and the thermal stability of the sublimable substance to be purified, its vapor pressure and ease of evaporation, the amount of purification, the yield, and the purity of the target substance Depending on the type, the type of the sublimation purification device is selected.
  • a conventional sublimation purification apparatus when a relatively large amount of solid is to be purified, it is difficult to heat the solid in a short time to sublimate the solid. The possibility of decomposition or denaturation increases.
  • an object of the present invention is to heat a small to large amount of feedstock uniformly and in a short time, and to control the heating temperature with high precision, thereby producing a solid material having poor thermal stability.
  • An object of the present invention is to provide a method and an apparatus for sublimating and purifying with high efficiency and high purity.
  • the present invention relates to a sublimation purification apparatus having a sublimation section and a collection section, wherein a heating section is made of a material that generates heat by electromagnetic induction, and the temperature can be controlled independently by electromagnetic induction heating. And the material of the inner surface or inner cylinder that comes into contact with the sublimable substance of the sublimation section and Z or the collection section is made of a metal that is inert to the sublimable substance,
  • This is a sublimation purification device characterized by using inert materials such as ceramics, glass, and resin.
  • the present invention provides a sublimation unit and a collection unit in which a sublimation substance is formed of a material that generates heat by electromagnetic induction, and the temperature of the sublimation unit can be controlled independently by electromagnetic induction heating.
  • the material of the inner surface or the inner cylinder that comes into contact with the sublimable substance of the sublimation section and / or the collecting section is made of an inert material such as a metal, glass or ceramic that is inert to the sublimation substance.
  • the sublimation purification apparatus of the present invention has a sublimation section and a collection section, and the sublimation section and the collection section have a heating section capable of controlling the temperature independently, and the heating section generates heat by electromagnetic induction heating.
  • the shape and the like are not limited as long as the material on the inner surface in contact with the sublimable substance is a material inert to the sublimable substance.
  • a cylindrical or flask-shaped sublimation unit or a cylindrical or coil-shaped collection unit can be used.
  • the heating part is made of a material that generates heat by electromagnetic induction. If this material is inert to the sublimable substance and has predetermined strength and formability, only this material is used. If it is not the case, if not, a force of two or more layers to make the inner surface layer an inert material, an inner cylinder made of an inert material, etc. are attached. Normally, iron-based metals are excellent as materials for the heat generating part because they have excellent heat generation by electromagnetic induction, and are excellent in strength and formability, but they have the disadvantage that they easily contaminate sublimable substances. metal And inert materials are preferred.
  • a material that is inert to a sublimable substance means that it does not react with the sublimable substance under sublimation purification conditions, and that it does not react with a compound generated by decomposition of the sublimable substance during sublimation purification. It does not have a catalytic effect on the decomposition reaction of sublimable substances and the reaction between these and other components, does not contaminate the purified sublimable substances, and atmospheres such as oxygen gas that are touched during use or at rest Including not reacting with gas.
  • the metal is oxidized to form mackerel, which is physically peeled off and contaminates the purified sublimable substance, it is not an inert material for the sublimable substance.
  • the degree to which the sublimated substance is slightly contaminated without causing practical problems is acceptable.
  • Such materials differ depending on the type of sublimable substance, but usually include noble metals such as gold and platinum, glass, ceramics, and fluororesin.
  • the collection unit is provided downstream of the sublimation unit and is heated to a predetermined temperature equal to or lower than the solidification temperature.
  • a zone for collecting the target sublimable substance and to control the temperature therein to a predetermined range. It is also advantageous to provide a plurality of zones with different temperatures, and to provide a temperature gradient between the sublimation section and the trapping section where the temperature decreases substantially stepwise toward the downstream side.
  • An induction coil is provided on the outer periphery of the sublimation section and the collection section to heat the heat generating material by electromagnetic induction.
  • the sublimable substance to be sublimated and purified by the purification method of the present invention is not particularly limited, but is particularly effective for a solid material that may be decomposed or deteriorated (including a change in crystal form) near the sublimation temperature.
  • a solid material that may be decomposed or deteriorated (including a change in crystal form) near the sublimation temperature.
  • optical materials such as light emitting materials. Examples of such a material include an electron-emitting luminescent element material and a semiconductor element material.
  • the present invention is not limited to these, and is applicable to sublimable solid materials that are often used in ordinary applications, such as pyromellitic anhydride, pyrrazole, pyrene, and anthraquinone. What you can do is obvious.
  • the electromagnetic induction-type heating device may be any device that generates heat by passing a high-frequency alternating current through a coil disposed around a heat-generating material.
  • the frequency of the current supplied to the high-frequency AC current generator is generally 50 to 50 OHz, and a commercial frequency may be used.
  • FIG. 1 is a cross-sectional view showing an example of a purifying apparatus for carrying out the method for purifying a sublimable substance of the present invention, wherein a cylindrical sublimation section A, a collection section B, and a collection section are connected in series. Consists of C. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described with reference to the drawings.
  • materials that are inactive with respect to sublimable substances are called “inactive materials” and materials that generate heat by electromagnetic induction are called “heating materials”.
  • This sublimation purification device is a cylindrical shape whose diameter and cross-sectional shape may be different in the middle, and has a sublimation section on the upstream side and a collection section on the downstream side in the flow direction of the sublimable substance to be purified.
  • At least a part of the sublimation part and the trapping part has a tubular body made of a heat generating material so that electromagnetic induction heating can be performed, and a coil is arranged around the cylindrical body.
  • the sublimation section A has a sublimation chamber formed therein, and further includes a tubular body 2 made of a heating material, an induction coil 3 surrounding the outer periphery of the tubular body 2, a thermocouple 4, and a temperature controller 5.
  • the temperature controllers 5 and 9 are connected to an AC power supply, convert this to high-frequency power, output it to the induction coils 3 and 7, and control the power supply by signals from the thermocouples 4 and 8. Have been.
  • the material of the tubular body 2 is formed of a heat generating material, but may be formed together with a material other than the heat generating material.
  • the heat generating material may be a metal material or a non-metallic material, but is preferably a conductive magnetic material.
  • the tubular body 2 may be composed of two or more layers of metal material, or may be combined with an inner layer or inner cylinder composed of one layer of metal material and an inert material. However, at least one layer needs to be a heat generating material.
  • the solid material to be purified may be continuously charged into the sublimation chamber in the form of a powder or the like, but it is convenient to load the material on a boat or the like intermittently and intermittently. If the solid material is easily degraded by heat, charge it continuously or in small quantities intermittently. Heating is performed by supplying power, but the amount of power supply is controlled to reach the sublimation temperature in as short a time as possible. Note that reducing the heat capacity is also effective for increasing the rate of temperature rise, so it is advantageous not to increase the diameter of the tubular body 2 or increase the wall thickness more than necessary. It is also advantageous that the entirety of the cylindrical body 2 is used as a heat generating portion.
  • the trap On the downstream side of the sublimation unit A, a collection unit that keeps the temperature lower is provided.
  • the trap preferably has a plurality of zones, at least
  • One zone is capable of induction heating.
  • the collecting part B is formed of a conductive cylindrical magnetic material. It may be made of a metal material, or may be combined with an inner layer or an inner cylinder made of one layer of a metal material and an inert material. However, at least one layer needs to be a heat generating material, and it is preferable that it is a conductive magnetic material.
  • the same structure as the sublimation section A can be applied to the heating structure of the collection section B.
  • a collecting section C is connected downstream of the collecting section B.
  • the collecting portion C of the tube is formed of a cylindrical body 10, but the outer periphery thereof may be kept warm, cooled, or come into contact with air. Also, unlike the drawing, it may be placed on the upstream side of the collecting section B.
  • the collecting section B which can be induction-heated, may have one stage or two or more stages, but if only one type of substance is to be collected as the target substance, it may be used. It is also possible that only the part that collects air can be induction heated.
  • the collecting section B for induction heating is controlled in temperature so that the substance to be collected is collected with a certain degree of purity, and has a zone of a predetermined length maintained at a certain temperature. Advantageously, this is done.
  • the temperature is made substantially constant by induction heating between the sublimation section and the trapping section, and the temperature is gradually decreased toward the downstream side.
  • the outlet of the most downstream collecting section is connected to a vacuum pump 12 via a gas extraction pipe and a trap 11.
  • a method for purifying a sublimable substance containing impurities using the above-described sublimation purification apparatus will be described.
  • the solid raw material contains a sublimable substance of interest as a sublimable component and a sublimable impurity having a lower sublimation temperature.
  • a solid material which is a raw material, is charged into the sublimation section A, and an alternating current is passed from an AC power supply to the induction coil 3, so that the cylindrical body 2 made of the heating material of the sublimation section A is electromagnetically induced. Heat is generated by heating, and the charged material reaches the sublimation temperature.
  • the sublimation temperature is lower than the boiling point, the temperature may be higher than the melting point or lower than the melting point, as long as a predetermined vapor pressure can be obtained. Normally, this vapor pressure is 1 X 10- 6 ⁇ 7 0 0 Torr ( about 0. 13mPa ⁇ 93kPa) extent.
  • the temperature control of the cylindrical body 2 is performed by measuring the internal temperature of the sublimation section A with a thermocouple 4, turning on / off an AC power supply with a temperature controller 5, controlling the inverter, and the like. The set temperature can be maintained.
  • the sublimable substance of the raw materials charged in the sublimation section A sublimates and moves to the collection section B as sublimation gas by the suction force of the vacuum pump 12 located behind the collection section C.
  • the non-sublimable impurities contained in the charged raw material remain at the bottom of the sublimation section A.
  • the sublimated gas that has moved to the collecting section B is cooled by the cylindrical body 6 maintained at a temperature lower than the melting point of the target sublimable substance and higher than the solidification temperature of the main impurities contained in the sublimated gas. Only the target substance is condensed, solidified, and collected on the inner wall of the building.
  • the heat generation in the trapping section B and its temperature control can be performed in the same manner as in the sublimation section A. This temperature should be higher than the dew point of the impurities, and should be as low as possible. However, if the impurities contain many impurities and a small amount of impurities can be tolerated, the temperature should be further lowered.
  • the entirety of the cylindrical material forming the section or the portion to be heated is made of metal or metal. It is made of a non-metallic material or formed of two or more layers, at least one of which is a heat generating material.
  • Iron-based metals such as iron and iron alloys are generally used as a preferable heat-generating material.However, from the viewpoints of heat resistance and corrosion resistance, stainless steel and magnetic ceramics such as graphite / titanium nitride are used. It can also be used.
  • the heat-generating material is a metal such as iron
  • the material is often not inert to sublimable substances or oxygen gas, but in such a case, the inner layer is made of an inert material layer or an inert material.
  • An inner cylinder made of a material is installed.
  • the inert material examples include metals such as precious metals and alloys, heat-resistant resins such as fluorine resin, polyimide resin and silicon resin, and glass such as quartz glass, pyrex, hard glass, and enamel. , Alumina, silicon nitride, ceramics such as porcelain, and the like. Suitable inert materials include metals, glass such as enamel, fluororesins, and ceramics. Of these, strength Materials having no or difficult to form or expensive materials can be formed as an inner layer by means such as thin film deposition and plating.
  • a magnetic ceramic such as titanium nitride, which is also a heat generating material and an inert material.
  • a sublimation section and a trapping section can be constituted by a single layer of a heat-generating material such as sic, graphite, and titanium nitride, which is also an inactive material.
  • another inert material instead of a commonly used metal material as the material of the inner surface or the inner cylinder that comes into contact with the sublimable substance in the following cases.
  • carboxylic anhydrides have sublimability, moisture-absorbed and ring-opened carboxylic acids often show strong metal corrosion. If it has a complexing ability such as 8-oxyquinoline, phthalic acid, pyromellitic acid, etc., it forms a complex at the contact surface with the metal, contaminating the purified product with damage to the equipment There is a possibility of doing. If the target compound contains acids, sulfur compounds, halides, etc., as in the case of coal tar-derived components, these impurities will become There are concerns about corrosion, decomposition by catalytic action of metals, and contamination by decomposed products.
  • the induction coil 37 and the temperature controllers 5 and 9 used to heat the cylindrical bodies 2 and 6 by electromagnetic induction may be those used in a conventionally known electromagnetic induction heating device.
  • the tubular bodies 2 and 6 by heating the tubular bodies 2 and 6 by electromagnetic induction heating, it is possible to uniformly generate heat in the entire fixed zone of the sublimation section A and the collection section B.
  • the heating rate In order to raise the temperature from room temperature to 400 ° C., the heating rate is large, about several minutes to about 60 minutes, and the accuracy of temperature control can be increased.
  • the collecting section B only the target sublimable substance is condensed and collected, and the impurities in the raw material are allowed to pass in a gaseous state, and the impurities are condensed in the collecting section C directly connected to the collecting section B. , To collect. Therefore, the collecting section C may be cooled to a predetermined temperature, for example, about room temperature by air cooling or liquid cooling which is usually performed.
  • stepped means that there are a plurality of zones having a substantially constant temperature in the gas flow direction in the sublimation purification apparatus, and does not exclude a zone having a continuously decreasing temperature. The length of the zone where the temperature is almost constant is determined from the viewpoint of securing a trapping capacity of a constant composition.
  • the sublimation temperature can be lowered, It is effective for suppressing the decomposition and alteration of the material.
  • a vacuum pump 13 or the like at the end side of the collecting section C.
  • an accompanying gas such as nitrogen gas is supplied from the inlet direction of the sublimation section A, and the movement speed of the sublimated substance is increased by the accompanying gas, whereby the sublimation speed can be increased.
  • the target sublimable substance and a sublimable impurity having a lower sublimation temperature or lower boiling point were contained as the sublimable component. If it is higher than the target sublimable substance, the sublimable impurities are first collected in the collecting section B, and then the target sublimable substance is collected in the collecting section C.
  • the collecting section for collecting the target sublimable substance may be a collecting section capable of dielectric heating, and the collecting section for collecting impurities may not be capable of dielectric heating. .
  • the sublimation section A and the collection section have two different temperature zones, that is, one collection section B that generates heat by electromagnetic induction to adjust the temperature,
  • one collection section B that generates heat by electromagnetic induction to adjust the temperature
  • An example of the sublimation purification device including one collection unit C by the cooling method has been described, but the present invention is not limited to this.
  • such a collector B has two different temperature zones, such as B1 and B2, and the temperature is controlled by generating heat using an electromagnetic induction system adjusted to different temperature zones.
  • a temperature gradient in which the temperature decreases substantially stepwise toward the downstream side is provided between the sublimation section A, the collection sections Bl, B2, and the collection section C. This makes it possible to separate each component in the sublimation gas according to its melting point in the collection unit having three different temperature zones.
  • collecting section C It is also possible to omit and eliminate the target substance and other components such as impurities only by the trapping part that controls the temperature by generating heat by two or more electromagnetic induction types.
  • the diameter and length of the cylindrical body and the like used in the sublimation purification apparatus may be determined appropriately according to the type of the sublimable substance and the processing amount.
  • sublimation purification can be performed from a substance having a sublimation temperature as low as about 100 ° C. to a substance having a sublimation temperature as high as about 600 ° C. Further, by reducing the pressure of the purification device, sublimation at low temperature is facilitated, and it is suitable for purification of unstable sublimable substances.
  • the sublimation purification equipment of the present invention is used for high-temperature distillation purification of compounds that are difficult to apply to ordinary distillation purification, and is evaporated in the sublimation section and captured as a solid in the collection section kept at a temperature below the freezing point If collected, rapid evaporation and solidification are possible, and unnecessary overheating can be prevented, resulting in a highly purified product. Examples Hereinafter, specific examples of the present invention will be described based on examples.
  • A1q3 Hydroquinolinin aluminum
  • A1q3 Hydroquinolinin aluminum
  • Fig. 1 Purified.
  • a cylindrical body 2 with a diameter of 50 mm ⁇ i) and a length of 100 mm and a molten aluminum plating is used on the inner surface of a carbon steel pipe.
  • a cylindrical body 6 having a 50 mm ⁇ , 100 mm long carbon steel pipe with an inner surface coated with molten aluminum was used.
  • the AC power supply for electromagnetic induction is 200 V, 60 Hz, and the temperature controller 5, Inverter 9 was used.
  • Purified A1q3 recovered from collection part B had a purity of 99.9% or more, and the yield was about 70%. In addition, 5% of what appeared to be decomposition products was collected from the collecting part C.
  • a carbon steel pipe with a diameter of 50 ⁇ and a length of 100 mm was used for the cylindrical body of the sublimation part A and the trapping part B as the electromagnetic induction heating material.
  • a quartz glass tube having a diameter of 48 ⁇ and a length of 100 mtn was inserted into the inside of the collecting section B, and a quartz glass tube having an outer diameter of 48 mm and a length of 100 mm was inserted as an inner tube.
  • 5 g of the Alq3 raw material in the same lot as in Example 1 was purified by sublimation.
  • the temperature of the cylindrical body 2 is set to 330 ° C.
  • the temperature of the cylindrical body 6 is set to 200 ° C.
  • the sublimation pressure is sublimated at 0.05 Torr (6.66 Pa). More than 99% of the purified A1q3 was obtained with a yield of 65%.
  • Sublimation section A and collection section B are made of a carbon steel tube with a diameter of 50 mm ⁇ i) and a length of 100 mm for the cylindrical body of sublimation section A and collection section B as the electromagnetic induction heating material. And the inside of the trapping section C is coated with an enamel to prevent the metal part from coming into contact with pyromellitic anhydride, pyromellitic acid, trimellitic acid, hemi-mellitic acid, etc. did.
  • the recovery rate of pyromellitic anhydride is 82% as needle-like crystals and the purity is 99.9% or more, and trimerite is contained in a small amount of solid attached to the collecting part C.
  • a carbon steel pipe with a diameter of 50 ⁇ and a length of 100 ⁇ was used for the cylindrical body of the sublimation section A and the collection section B as the electromagnetic induction heating material.
  • the inside of the collecting part ⁇ and the collecting part C was coated with TiN to prevent contact between the metal part and the sublimable substance.
  • TPD ⁇ diphenyl-bis- (3-methynolepheninole)-( ⁇ , —biphenyl) -4,4'-diamin
  • the apparatus when a sublimable substance containing impurities is sublimated by electromagnetic induction heating, the apparatus is coated with a material that is inert to the sublimable substance. By doing so, it becomes possible to obtain high-purity products with high purification yields while preventing corrosion of equipment, product contamination, and deterioration of products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

明細書 昇華精製方法及び装置 技術分野 本発明は、 昇華精製方法及びこれに用いる昇華精製装置に関するもの である。 背景技術 常圧又は減圧下で分解することなく 昇華できる固体は、 適当な温度と 圧力のも とでは、 原理的には全て昇華精製することができることが知ら れているが、 昇華速度が遅いこと、 精製効率が低いこ とからごく 限られ た固体の精製に使用されているに過ぎない。 しかしながら、 昇華精製は 蒸留や再結晶精製が困難な固体の精製には有用であり 、 特に高温域では 分解が生じるよ うな化合物の精製には有用である。 このための昇華精製 装置と しては、 特開平 6 — 2 6 3 4 3 8号公報、 特開平 7— 2 4 2 0 5 号公報等にいく つか示されている。
昇華精製装置には、 その形状から垂直型、 水平型等があり、 昇華方法 からガス随伴型昇華装置、 真空昇華装置等などに大別される。 これらを 適宜組み合わせるこ とによ り、 様々な昇華精製装置が作られ、 精製すベ き昇華性物質の熱安定性、 その蒸気圧と蒸発の容易性、 精製量、 収率、 目的物質の純度などによ り 、 昇華精製装置の種類が選択される。 しかしながら、 このよ う な従来の昇華精製装置では、 精製すべき固体 が比較的多量である場合、 これを短時間で加熱して昇華させることが困 難であ り 、 この間に精製すべき固体が分解したり'、 変性する可能性が增 大する。 また、 昇華部及び捕集部の温度をある一定範囲にわたって正確 に制御するこ と も困難であ り、 このため分解又は変性が生じるだけでな く 、 十分純度が向上しない。 更に、 昇華精製装置に鉄系材料等の金属材料を使用すると、 昇華物質 又は含有不純物が当該金属と反応したり 、 金属の触媒作用によって変質 するこ とが懸念される。 この結果、 反応生成物や変質物に起因する精製 物の汚染が起こる。 特に、 金属錯体等の精製については、 微量金属がそ の性質に大きな影響を及ぼすため、 精製物の汚染を防止することは重要 である。 発明の開示 したがって、 本発明の目的は、 微量から多量の供給原料を均一に、 し かも短時間に加熱する と共に、 その加熱温度を精度よ く制御でき、 それ によって熱安定性に乏しい固体材料を効率よ く 、 高純度で昇華精製する 方法及び装置を提供するこ とにある。
本発明は、 電磁誘導によ り発熱する材料で発熱部が構成され、 電磁誘 導加熱によ り独立して温度制御することが可能と された昇華部及び捕集 部を有する昇華精製装置であって、 昇華部及び Z又は捕集部の昇華性物 質と接触する内面又は内筒の材質を昇華性物質に対して不活性な金属、 セラ ミ ックス、 ガラス、 樹脂等の不活性材料と したこ とを特徴とする昇 華精製装置である。
また、 本発明は、 昇華性物質を、 電磁誘導によ り発熱する材料で発熱 部が構成され、 電磁誘導加熱によ り独立して温度制御することが可能と された昇華部及び捕集部を有し、 且つ、 昇華部及び 又は捕集部の昇華 性物質と接触する内面又は内筒の材質を昇華性物質に対して不活性な金 属、 ガラス又はセラ ミ ックス等の不活性材料と した昇華精製装置の昇華 部に装入し、 電磁誘導加熱によ り昇華部を発熱させて昇華させ、 これを 電磁誘導加熱によ り温度調整されたゾーンを有する捕集部に導入して目 的の昇華性物質を捕集するこ とを特徴とする昇華精製方法である。 本発明の昇華精製装置は、 昇華部と捕集部とを有し、 昇華部と捕集部 は独立して温度制御可能な発熱部を有し、 その発熱部は電磁誘電加熱に よ り発熱するものであ り 、 昇華性物質と接する内面の材料が昇華性物質 に対して不活性な材料であれば、 形状等には制限はない。 例えば、 筒状 やフラスコ状の昇華部と したり 、 筒状やコイル状の捕集部とすることが 可能である。
発熱部は、 電磁誘導によ り発熱する材料で構成されるが、 この材料が 昇華性物質に対して不活性な材料であり、 所定の強度や成形性を有する のであれば、 この材料のみからなるものであってもよいが、 そうでない 場合は、 2層以上にして内面層を不活性な材料とする力 、 不活性な材料 で作られた内筒を装着などする。 通常、 鉄系の金属は電磁誘導による発 熱性が優れ、 強度、 成形性も優れるので、 発熱部を構成する材料と して 有利であるが、 昇華性物質を汚染しやすいという欠点があるので、 金属 と不活性材料との組合せが好ま しいものと して挙げられる。
昇華性物質に対して不活性な材料とは、 昇華精製条件で昇華性物質と 反応しないこ とを意味する他、 昇華性物質が昇華精製の際分解して生じ る化合物と反応しないこ と、 昇華性物質等の分解反応やこれらと他の成 分との反応の触媒作用を有しないこ と、 精製された昇華性物質を汚染し ないこと、 使用中又は休止中に触れる酸素ガス等の雰囲気ガスと反応し ないことなどを含む。 例えば、 金属が酸化されて鯖ができ、 これが物理 的に剥がれて精製された昇華性物質を汚染するよ う な場合も、 昇華性物 質に対して不活性な材料とはいえないが、 精製された昇華性物質を実用 上問題にならない程度かすかに汚染される程度は許容される。 かかる材 料と しては、 昇華性物質の種類によって異なるが、 通常、 金や白金等の 貴金属、 ガラス、 セラ ミ ッ ク ス及びフ ッ素樹脂等がある。
捕集部は、 昇華部.の下流側に設けられ、 凝固温度以下の所定の温度に 加熱される。 目的とする昇華性物質以外の成分が一緒に凝,固することを 防止するため、 目的とする昇華性物質を捕集するゾーンを設け、 そこの 温度を所定の範囲に制御することがよい。 温度の異なる複数のゾーンを 設け、 昇華部と捕集部との間には下流側に向かって温度がほぼ階段状に 低下する温度勾配を設けるこ と も有利である。
昇華部と捕集部の外周には、 発熱材料を電磁誘導式で発熱させるため の誘導コイルが設けられる。
本発明の精製方法で昇華精製する昇華性物質には格別の制限はないが 昇華温度付近では分解又は変質 (結晶形の変質等を含む) する恐れのあ る固体材料に対して特に有効であり 、 例えば微量の不純物や結晶形の相 違又は変質が大きな影響を与えたりするこ と の多い電気、 電子材料用、 発光材料等の光学材料用の固体材料に対して有効である。 このよ うな物 質と しては、 エ レク ト 口ルミ ネ ッセンス素子材料、 半導体素子材料など が挙げられる。 特に、 アルミニウム—キノ リ ン錯体等の金属錯体系のェ レク ト ロルミ ネ ッセンス素子材料、 半導体素子材料などに有効である。 しかし、 これらに限られるものではなく 、 無水ピロメ リ ッ ト酸、 力ルバ ゾール、 ピレン、 アン ト ラキノ ン等の通常の用途に用いられることの多 い昇華性の固体材料に対しても、 適用できるこ とは当然である。
これらの昇華性物質の中には、 昇華精製装置を構成する金属材料と反 応した り 、 金属の触媒作用によって変性した り、 金属由来の不純物によ る コンタ ミが起こる場合がある。 このため、 不活性材料を用いた内面の コーティ ングや、 内筒を装着するこ とでコンタ ミ を防止したり、 あるい は磁性セラ ミ ックス等の不活性材料を発熱体とするこ とが好適である。 電磁誘導式の加熱装置は、 発熱材料の周 り に配置されたコイルに高周 波交流電流を流すこ とによ り発熱を生じさせるものであればよい。 なお 高周波交流電流発生装置へ供給する電流の周波数は 5 0〜 5 0 O H z が 一般的であり 、 商用周波数で差し支えない。 図面の簡単な説明
図 1 は、 本発明の昇華性物質の精製方法を実施するための精製装置の 一例を示す断面図であり 、 それぞれ直列に連結された筒状の昇華部 A、 捕集部 B及び捕集部 Cからなる。 発明を実施するための最良の形態 以下、 本発明を図面を参照して説明する。 また、 説明を簡略にするた め、 昇華性物質に対して不活性な材料を 「不活性材料」 と、 電磁誘導に よ り発熱する材料を 「発熱材料」 という。
この昇華精製装置は、 途中で径ゃ断面形状が異なってもよい筒状であ り、 精製されるべき昇華性物質の流れの方向で、 上流側に昇華部、 下流 側に捕集部を有する。 そして、 昇華部及び捕集部の少なく と も一部は、 電磁誘導加熱できるよ う に、 その部分の筒状体が発熱材料から構成され ており 、 その周囲にはコイルが配置されている。
昇華部 Aは、 内部に昇華室を形成し、 しかも発熱材料製の筒状体 2 、 筒状体 2の外周を囲む誘導コイル 3、 熱電対 4、 温度調節器 5 を備えて いる。 温度調節器 5 、 9は、 交流電源に接続され、 これを高周波電力に 変換し、 誘導コイル 3 、 7 へ出力する と共に、 熱電対 4 、 8からの信号 によ り供給電力の制御が可能と されている。
筒状体 2の材質は発熱材料から形成されるが、 発熱材料以外の材料と 共に形成されていてもよい。 発熱材料は金属材料、 非金属材料いずれで もよいが、 導電性の磁性体であるこ とが好ま しい。 筒状体 2が 2層以上 の金属材料から構成されていても、 1層の金属材料と不活性材料で構成 された内層又は内筒と組み合わせても差し支えない。 しかしながら、 少 なく と も 1層は発熱材料である必要がある。
精製する固体材料は粉末等の形で連続的に昇華室に装入してもよいが ボー ト等に載せて間欠的に装入するこ とが簡便である。 固体材料が熱に よ り変質しやすい場合は、 連続的に装入した り 、 少量づっ間欠的に装入 する。 加熱は電力を供給するこ とによ り行うが、 可及的短時間で昇華温度に 達するよ う に電力供給量を制御する。 なお、 熱容量を小さ くすること.も 昇温速度を早めるため有効であるので、 必要以上に筒状体 2の径を大き く したり 、 肉厚を厚く しないこ とが有利である。 また、 筒状体 2の全体 を発熱部とするこ と も有利である。
昇華部 Aの下流側には、 それよ り温度が低く保たれる捕集部が設けら れる。 この捕集部は複数のゾーンを有することが好ま しく 、 少なく と も
1 つのゾーンは誘導加熱可能と されている。 図面では誘導加熱可能と さ れた捕集部 Bのゾーンと、 そうではない捕集部 Cのゾーンが設けられて おり 、 捕集部 Bはフラ ンジを介して昇華部 Aと連結している。 捕集部 B は導電性の筒状の磁性材料から形成されるが、 筒状体 6が 2層以上の金 属材料から構成されていても、 少なく と も 1層の金属材料と他の非金属 材料から構成されていても、 1層の金属材料と不活性材料で構成された 内層又は内筒と組み合わせても、 差し支えない。 しかしながら、 少なく と も 1層は発熱材料である必要があり、 それは導電性の磁性体であるこ とが好ま しい。 この捕集部 Bの加熱構造については、 昇華部 Aと同様な 構造が適用できる。 そ して、 捕集部 Bの下流側には、 捕集部 Cが連結さ れている。
図面では、 の捕集部 Cは筒状体 1 0からなるが、 その外周は保温さ れていても、 冷却されていても、 あるいは空気と接触していても差し支 えない。 また、 図面とは異な り 、 捕集部 Bの上流側に置かれてもよい。 また、 誘導加熱可能と された捕集部 Bは、 1段であっても 2段以上であ つてもよいが、 目的物と して捕集すべき物質が 1種類である場合は、 そ れを捕集する部分だけが誘導加熱可能とするこ とでもよい。 誘導加熱する捕集部 Bは、 捕集すべき物質が一定以上の純度で捕集さ れるよ う に温度を制御され、 しかも一定の温度に保たれた所定長さのゾ ーンを有するよ う にされることが有利である。 すなわち、 昇華部と捕集 部にかけて、 誘導加熱によ り温度がほぼ一定と されたゾーンが 2つ以上 あり 、 下流側に向かって順次温度が低下するよ う にされる。 そして、 最 も下流側の捕集部の出口は、 ガス抜出管、 トラップ 1 1 を介して真空ポ ンプ 1 2 につながっている。 以下、 上記の昇華精製装置を用いて、 不純物を含有する昇華性物質を 精製する方法について説明する。 なお、 説明の便宜上、 固体原料には、 昇華性成分と して目的の昇華性物質とそれよ り昇華温度の低い昇華性不 純物が含まれる場合について説明する。
図 1 の昇華精製装置において、 原料である固体材料を昇華部 Aに装入 し、 交流電源から誘導コイル 3 に交流電流を通じる と、 昇華部 Aの発熱 材料からなる筒状体 2が電磁誘導加熱によ り発熱し、 装入原料が昇華温 度に達する。 昇華温度は沸点以下であるが、 融点以上であっても、 融点 以下であっても差し支えなく 、 所定の蒸気圧が得られる温度であればよ レ、。 通常、 この蒸気圧は 1 X 10— 6〜 7 0 0 Torr (約 0. 13mPa〜93kPa) 程 度である。 筒状体 2の温度制御は、 熱電対 4によ り昇華部 Aの内部温度 を測定し、 温度調節器 5で交流電源をオン · オフ した り 、 ィンバータ制 御するこ となどによ り 、 設定温度を保持するこ とができる。 昇華部 Aの 装入原料の う ち昇華性物質は昇華し、 捕集部 Cの後方にある真空ポンプ 1 2の吸引力によ り 、 昇華ガスとなって捕集部 Bへ移動する。 装入原料 に含まれる非昇華性不純物は、 昇華部 Aの底部に残さ と して残る。 捕集部 B へ移動した昇華ガスは、 目的の昇華性物質の融点以下で昇華 ガスに含まれる主な不純物の凝固温度以上の温度に保持された筒状体 6 で冷却され、 筒状体 6の内壁に目的物質のみが凝縮、 凝固され、 捕集さ れる。 捕集部 Bにおける発熱とその温度制御は、 昇華部 Aと同様に行う こ とができる。 この温度は、 不純物の露点以上の温度であって、 可及的 に低い温度とするこ とが望ま しいが、 不純物が多数あり 、 微量の混入が 許容される不純物であれば、 更に温度を低く設定すること も可能である, 昇華精製作業の終了後は、 捕集部 Bを取り外すなどして、 目的の昇華性 物質を回収する。
本発明の昇華精製装置において、 昇華部及び捕集部を構成する筒状体 は、 電磁誘導加熱によ り発熱させるため、 それを構成する筒状材料の全 体又は発熱させるべき部分が金属又は非金属材料製であるか、 あるいは 2層以上の層で形成され、 その内少なく と も 1層が発熱材料である。 好ま しい発熱材料と しては、 一般に鉄や鉄合金等の鉄系の金属が用い られるが、 耐熱性と防食性の観点からステンレス鋼や、 黒鉛ゃ窒化チタ ン等の磁性セラ ミ ッ クスを用いるこ と も可能である。
発熱材料が、 鉄等の金属の場合、 昇華性物質や酸素ガス等に対して不 活性ではないことが多いが、 このよ う な場合は、 内層を不活性材料の層 とするか、 不活性材料から形成された内筒を装着する。
不活性材料と しては、 貴金属、 合金等の金属類、 フ ッ素樹脂、 ポリイ ミ ド樹脂、 シリ コ ン樹脂等耐熱性樹脂類、 石英ガラス、 パイ レックス、 硬質ガラス、 琺瑯等のガラス類、 アルミナ、 窒化珪素、 磁器等のセラ ミ ックス類等がある。 好適な不活性材料と しては、 金属類、 琺瑯等のガラ ス類、 フ ッ素樹脂及びセラ ミ ッ ク ス類が挙げられる。 これらの内、 強度 を有さなかったり 、 成形困難な材料や高価な材料は、 薄膜蒸着ゃメ ツキ 等の手段で内層とするこ とが可能である。
また、 内層と して、 発熱材料でもあり、 不活性材料でもある窒化チタ ン等の磁性セラ ミ ック スを使用すること も有利である。 更に、 多層構造 とする代り に、 S i c、 黒鉛、 窒化チタン等の発熱材料で、 且つ、 不活 性材料でもある材料を単層で、 昇華部や捕集部を構成するこ と もできる, 昇華性物質と接触する内面又は内筒の材質と しては、 通常使用される 金属材料ではなく他の不活性材料とするこ とが次のよ うな場合、 有利で ある。
( 1 ) 金属錯体を昇華精製する場合 :
高温下で錯体金属が異種金属と接触する と、 ある割合で金属交換が起 こる。 従って錯体純度は低下し、 ときには原料純度を下回ること も起こ り得る。 また、 装置材質と合わせて、 気密保持のためのパッキング材質 選定も重要である。 例えば、 最近は高真空技術の進歩によ り、 種々の金 属又はそれらで被覆したパッキングが実用化されている。 金属錯体は高 温下で昇華精製する際に、 殆どの場合分解を伴う。 分解で生成した配位 子は、 異種金属材料と接触すれば当然その錯体を形成する。
( 2 ) 有機化合物を昇華精製する場合 :
無水カルボン酸は昇華性を有するが、 吸湿、 開環したカルボン酸が強 い金属腐食性を示すこ とは多い。 8-ォキシキノ リ ン、 フタル酸、 ピロメ リ ッ ト酸等のよ う に錯体形成能を持つ場合は、 金属との接触面で錯体を 形成し、 装置の損傷と と もに、 精製品を汚染する可能性が有る。 コール タール由来成分のよ う に、 目的化合物が酸類、 硫黄化合物、 ハロゲン化 合物等を含んでいる場合、 金属装置を使用する と、 これら不純物が金属 腐食、 金属の触媒作用による分解、 分解物によるコンタ ミ等を起こす懸 念がある。
筒状体 2及び 6 を電磁誘導加熱させるために用いられる誘導コイル 3 7及び温度調節器 5、 9 には、 従来から公知の電磁誘導加熱装置に用い られるものでよレ、。 誘導コイル 3及び 7は、 筒状体 2、 6 を均一に加熱 するため、 その外周を所定の長さで囲むよ う に設置することが肝要であ る。
このよ う に、 電磁誘導加熱によ り筒状体 2及び 6 を発熱させるこ とに よ り 、 昇華部 A及び捕集部 Bの一定のゾーン全体を均一に発熱させるこ とができ、 例えば室温から 4 0 0 °Cに上げるのに数分〜 6 0分程度と昇 温速度が大き く 、 また温度制御の精度も高く することができる。
捕集部 Bにおいては、 目的の昇華性物質のみを凝縮、 捕集し、 原料中 の不純物をガス状のまま通過させ、 捕集部 B と直結している捕集部 Cで この不純物を凝縮、 捕集する。 したがって、 捕集部 Cは、 通常行われる 空冷又は液冷等によ り所定の温度、 例えば室温程度に冷却できるよ うに するこ とでよい。
これらの昇華部 A、 捕集部 B と捕集部 C との間には、 下流側に向かつ て温度がほぼ階段状に低下する温度勾配を設けるこ とが、 目的物の純度 を上げる と共に回収歩留を高くするために望ま しい。 なお、 階段状とは 昇華精製装置でのガスの流れ方向に、 温度がほぼ一定のゾーンが複数あ るこ とをいい、 連続的に温度が低下するゾーンを有することを除外しな い。 そして、 温度がほぼ一定のゾーンの長さは、 一定組成の捕集容量を 確保する観点から定められる。
精製装置内を減圧にする と、 昇華温度を下げることができ、 昇華物質 の分解や変質を抑制するのに効果的である。 その為には、 図 1 に示すよ う に、 捕集部 Cの末端側に真空ポンプ 1 3等を設けるこ とがよい。 また 場合によっては、 昇華部 Aの入口方向から窒素ガス等の随伴ガスを供給 し、 この随伴ガスによ り昇華物質の移動速度を高め、 昇華速度を高める こ と もできる。
なお、 上記の昇華精製方法の説明では、 昇華性成分と して目的の昇華 性物質とそれよ り昇華温度又は沸点の低い昇華性不純物が含まれる場合 について説明したが、 昇華性不純物の沸点が目的の昇華性物質よ り高い ものである場合は、 先ず捕集部 Bで昇華性不純物が捕集され、 次いで捕 集部 Cで目的の昇華性物質が捕集されるこ とになる。 しかし、 目的とす る昇華性物質が捕集される捕集部は、 誘電加熱可能な捕集部とすること がよ く 、 不純物を捕集する捕集部は誘電加熱可能でなく てもよい。
また、 上記の実施の態様においては、 昇華部 Aと、 捕集部が 2つの異 なる温度ゾーンを有する、 すなわち電磁誘導式で発熱させて温度調整す る 1 つの捕集部 B と、 通常の冷却法による 1つの捕集部 Cを備えた昇華 精製装置の例を説明したが、 本発明はこれに限定されるものではない。
例えば、 この捕集部 Bが B 1 、 B 2 のよ う に異なった温度ゾーンが 2 つある ものなどのよ う に、 異なつた温度ゾーンに調整した電磁誘導式で 発熱させて温度調整する捕集部が 2つ以上あり 、 合計 3つ以上の異なる 温度ゾーンを有する捕集部を備えたものであってもよい。 上記例示の場 合も、 昇華部 Aと、 捕集部 B l 、 B 2 と、 捕集部 C との間には、 下流側 に向かって温度がほぼ階段状に低下する温度勾配を設けることによ り、 3つの異なる温度ゾーンを有する捕集部で、 昇華ガス中の各成分をその 融点に応じて分縮させるこ とが可能となる。 場合によっては、 捕集部 C を省略して、 2以上の電磁誘導式で発熱させて温度調整する捕集部のみ で目的物質と不純物等の他成分を分縮させるこ と も可能である。
昇華精製装置に用いる筒状体等の径ゃ長さは、 昇華性物質の種類ゃ処 理量によ り適宜決めればよいが、 本発明の昇華精製装置は微量から多量 の昇華性物質を処理することができ、 また昇華温度が 1 0 0 °C程度の比 較的低い物質から 6 0 0 °C程度の高温の物質までも昇華精製が可能であ る。 さ らに、 精製装置を減圧にするこ とによ り低温での昇華も容易とな り 、 不安定な昇華性物質の精製にも適している。
また、 通常の蒸留精製適用が困難な化合物の高温での蒸留精製に本発 明の昇華精製装置を利用 し、 昇華部で蒸発させ、 凝固点以下に保たれた 捕集部で固体と して捕集するよ うにすれば、 迅速な蒸発と凝固が可能で 不必要な過熱が防止できるので、 高純度な精製物が得られる。 実施例 以下、 実施例に基づき、 本発明の具体例を説明する。
実施例 1
8 —ヒ ドロキシキノ リ ンとアンモニゥム明礬との反応によって得られ た純度 9 9 %程度の 8 —ヒ ドロキシキノ リ ンアルミ ニウム (以下、 A 1 q 3 という) を、 図 1 に示す昇華精製装置によ り精製した。
昇華部 Aには、 直径 5 0 mm <i)、 長さ 1 0 0 mmの炭素鋼管の内面に、 溶 融アルミ メ ツキを施した筒状体 2 を用い、 捕集部 Bには、 内径 5 0 mm φ 、 長さ 1 0 0 mmの炭素鋼管の内面に溶融アルミ メ ツキを施した筒状体 6 を 用いた。 電磁誘導の交流電源は 2 0 0 V 、 6 0 Hzと し、 温度調節器 5 、 9 にイ ンバータを用いた。
昇華部 Aに A l q 3 を 5 g 装入し、 筒状体 2の温度を 3 7 0 °C、 筒状 体 6 の温度を 2 0 0 °Cと し、 捕集部 Cの外周は室温の空気に接触させて ほぼ室温に維持する と共に、 真空ポンプ 1 3 によ り精製装置内を 1 Torr ( 133Pa) に減圧した。
捕集部 Bから回収された精製 A 1 q 3は純度 9 9. 9 9 %以上、 その 歩留は約 70 %であった。 また、 捕集部 Cから分解生成物と見られるも のを 5 %回収した。
実施例 2
図 1 と同様の装置で、 電磁誘導発熱材料と して昇華部 A及び捕集部 Bの 筒状体に直径 5 0 ηπιφ、 長さ 1 0 0 mmの炭素鋼管を用い、 昇華部 Aに外 径 4 8 πΐίηφ、 長さ 1 0 0 mtnの石英ガラス管を、 捕集部 Bの内側に、 外径 48mm φ , 長さ 1 0 0 mmの石英ガラス管を夫々内筒と して挿入した。 この 装置を使い、 実施例 1 と同一ロ ッ トの Alq3原料 5 gを昇華精製した。 筒 状体 2の温度を 3 3 0 °C:、 筒状体 6 の温度を 2 0 0 °Cと し、 昇華圧力を 0. 0 5 Torr (6.66Pa)で昇華させて、 純度 9 9. 9 9 %以上の精製 A 1 q 3 を歩留 6 5 %で得た。
実施例 3
図 1 と同様な装置で、 テ トラメチルベンゼンから製造した純度 9 8 % の無水ピロメ リ ッ ト酸を昇華精製した。 電磁誘導発熱材料と して昇華部 A及び捕集部 Bの筒状体にそれぞれ直径 5 0 mm<i)、 長さ 1 0 0 mmの炭素鋼 管を用い、 昇華部 A、 捕集部 B及び捕集部 Cの内側を琺瑯被覆し、 金属部 分と無水ピロメ リ ッ ト酸、 ピロメ リ ッ ト酸、 ト リ メ リ ッ ト酸、 へミ メ リ ッ ト酸等との接触を防止した。 原料無水ピロメ リ ッ ト酸 10gを昇華精製 し、 その際の操作温度は、 昇華部 = 1 8 0 °C、 捕集部 B = 1 0 0 °C、 操作 圧力 = l 〜 2 Torr ( 133〜 266Pa)であり、 昇華部 Aの末端から微量の窒素 ガスを導入して、 昇華速度の向上を図った。 無水ピロメ リ ッ ト酸の回収 率は針状結晶と して 8 2 %、 純度 9 9. 9 %以上であ り 、 捕集部 Cに付 着した少量固体中に、 ト リ メ リ ッ ト酸等の ト リ カルボン酸が検出された c 実施例 4
図 1 と同様な装置で、 電磁誘導発熱材料と して昇華部 A及び捕集部 Bの 筒状体に直径 5 0 ΐΉΐτι φ , 長さ 1 0 0瞧の炭素鋼管を用い、 昇華部 Α、 捕 集部 Β及び捕集部 Cの内側を T i Nでコーティ ングし、 金属部分と昇華性 物質との接触を防止した。 この装置の昇華部 Aに、 ^ ジフェニル- - ビス - ( 3—メ チノレフエ二ノレ) ― (Ι, —ビフエニル) —4, 4' -ジァ ミ ン (以下、 TPD) 5 g を装入し、 昇華精製した。 操作温度 : 昇華部 = 2 4 0 °C、 捕集部 B = 1 4 0 °C、 操作圧力 : 1 X 1 0—4 Torr (0.013Pa)で昇 華精製を行った結果、 3 gの精製 TPDを得た。 高速液体ク ロマ トグラフ による純度は原料 = 9 9. 0 %、 精製品 = 9 9. 7 %以上 (area%) であ つ 7こ。
実施例 5
コールタールから蒸留、 晶析等の工程を経て分離した純度 8 5 %の力 ルバゾールを、 図 1 に示す昇華精製装置と同様の装置を用いて精製した c 昇華部 A及び捕集部 Bの筒状体には、 いずれも直径 3 0 mm<i)、 長さ 1 0 0瞧の炭化ケィ素 ( S. i C ) 管を電磁誘導発熱体と して用いた。 また- 捕集部 Cには直径 3 0 ιτιηιφ、 長さ 1 5 0 mmの炭化ケィ素管を用い、 外面 は空気冷却した。 原料力ルバゾール 3 g を昇華部 Aに揷入し、 温度 : 昇 華部 A= 2 5 0 °C、 捕集部 B= 7 0 °C、 圧力 : 3 0 Torr (4kPa)で昇華さ せ、 HPLC純度 = 9 9 %の精製力ルバゾールを回収率 5 0 %で得た。 昇華 部には未昇華力ルバゾールを含むピッチが残留し、 捕集部 Cの捕集物中 にはアン ト ラセン、 フエナンス レン等が検出された。 産業上の利用可能性 本発明の昇華精製方法によれば、 不純物を含有する昇華性物質を電磁 誘導加熱によ り昇華させる際に、 昇華性物質に対して不活性な材料で装 置を被覆することによ り 、 装置の腐食、 製品の汚染や製品の変質等を防 止しながら、 高純度の製品を高い精製歩留で得るこ とが可能になる。

Claims

請求の範囲
( 1 ) 電磁誘導によ り発熱する材料で発熱部が構成され、 電磁誘導加 熱によ り独立して温度制御するこ とが可能と された昇華部及び捕集部を 有する昇華精製装置であって、 昇華部及び 又は捕集部の昇華性物質と 接触する内面又は内筒の材質を昇華性物質に対して不活性な材料と した こ とを特徴とする昇華精製装置。
( 2 ) 電磁誘導によ り発熱する材料が金属材料である請求項 1記載の 昇華精製装置。
( 3 ) 電磁誘導によ り発熱する材料が非金属材料である請求項 1記載 の昇華精製装置。
( 4 ) 昇華部及び 又は捕集部が、 電磁誘導によ り発熱する材料層を 含む少なく と も 2層以上の材料で構成され、 昇華性物質と接触する内面 層の材料が、 昇華性物質に対して不活性な材料である請求項 1記載の昇
( 5 ) 昇華性物質に対して不活性な材料が、 金属、 ガラス、 セラ ミ ツ ク ス及びふつ素樹脂から選択される材料である請求項 1 に記載の昇華精
( 6 ) 昇華性物質を、 電磁誘導によ り発熱する材料で発熱部が構成さ れ、 電磁誘導加熱によ り独立して温度制御するこ とが可能と された昇華 部及び捕集部を有し、 且つ、 昇華部及び Z又は捕集部の昇華性物質と接 触する内面又は内筒の材質を昇華性物質に対して不活性な金属、 ガラス 又はセラ ミ ックス等の不活性材料と した昇華精製装置の昇華部に装入し 電磁誘導加熱によ り昇華部を発熱させて昇華させ、 これを電磁誘導加熱 によ り温度調整されたゾーンを有する捕集部に導入して目的の昇華性物 質を捕集することを特徴とする昇華精製方法。
( 7 ) 昇華性物質が、 金属錯体又は有機 E L素子材料と して使用され る有機化合物である請求項 6記載の昇華精製方法。
PCT/JP2001/002173 2000-03-23 2001-03-19 Procede de purification par sublimation et appareil associe WO2001070364A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/239,064 US6878183B2 (en) 2000-03-23 2001-03-19 Sublimation purifying method and apparatus
JP2001568551A JP4866527B2 (ja) 2000-03-23 2001-03-19 昇華精製方法
AU2001241197A AU2001241197A1 (en) 2000-03-23 2001-03-19 Sublimation purifying method and apparatus
EP01912491A EP1273330B1 (en) 2000-03-23 2001-03-19 Sublimation purifying method and apparatus
DE60132763T DE60132763T2 (de) 2000-03-23 2001-03-19 Verfahren und vorrichtung zur reinigung durch sublimation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-82195 2000-03-23
JP2000082195 2000-03-23

Publications (1)

Publication Number Publication Date
WO2001070364A1 true WO2001070364A1 (fr) 2001-09-27

Family

ID=18599027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002173 WO2001070364A1 (fr) 2000-03-23 2001-03-19 Procede de purification par sublimation et appareil associe

Country Status (9)

Country Link
US (1) US6878183B2 (ja)
EP (1) EP1273330B1 (ja)
JP (1) JP4866527B2 (ja)
KR (1) KR100599428B1 (ja)
CN (1) CN1256998C (ja)
AU (1) AU2001241197A1 (ja)
DE (1) DE60132763T2 (ja)
TW (1) TWI233836B (ja)
WO (1) WO2001070364A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434273B1 (ko) * 2001-06-29 2004-06-05 엘지전자 주식회사 유기물질의 정제방법
CN1306978C (zh) * 2002-08-02 2007-03-28 株式会社日本触媒 回收升华物质的方法
JP2007246424A (ja) * 2006-03-15 2007-09-27 National Institute Of Advanced Industrial & Technology 有機材料の精製方法
WO2013065626A1 (ja) * 2011-10-31 2013-05-10 出光興産株式会社 有機材料の精製装置及び有機材料の精製方法
JP2014535043A (ja) * 2011-09-29 2014-12-25 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニーUChicago Argonne, LLC 医学的用途のためのセラミックカプセルを使用したCu−67放射性同位体の製造方法
JP2016216799A (ja) * 2015-05-26 2016-12-22 高周波熱錬株式会社 マグネシウムの精製方法及びマグネシウム精製装置
JP2019111507A (ja) * 2017-12-26 2019-07-11 株式会社 エイエルエステクノロジー 精製装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108372A1 (en) * 2004-04-05 2005-11-17 Albemarle Corporation Process to make metal complexes with volatile liquid metal compounds
KR100582663B1 (ko) * 2004-07-21 2006-05-23 제일모직주식회사 유기물질의 승화정제방법
US20060263279A1 (en) * 2005-04-28 2006-11-23 Laurencin Cato T Adjustable path sublimator system and related method of use
KR100674680B1 (ko) * 2005-05-18 2007-01-25 (주)루디스 고체 재료 연속 고순도 정제장치
US20060289289A1 (en) * 2005-06-23 2006-12-28 Christian Kloc Purification of organic compositions by sublimation
KR100754902B1 (ko) * 2005-12-09 2007-09-04 (주) 디오브이 유기전계 발광재료의 정제방법
KR101296430B1 (ko) * 2006-06-15 2013-08-13 엘지디스플레이 주식회사 수직형 승화 정제 장치 및 방법
US20090246077A1 (en) * 2008-03-31 2009-10-01 Ufc Corporation Container assembly for sublimation
CN102380224B (zh) * 2011-11-25 2013-12-18 苏州华微特粉体技术有限公司 一种升华器
KR20130096370A (ko) * 2012-02-22 2013-08-30 삼성디스플레이 주식회사 유기물 정제장치
KR101337336B1 (ko) * 2012-03-13 2013-12-12 주식회사 피브이디 독립적인 가열부를 구비한 유기물 승화 정제장치
KR101309010B1 (ko) * 2013-02-26 2013-09-17 희성소재 (주) 승화 정제 장치
CN105431214B (zh) 2013-08-13 2018-06-05 默克专利有限公司 真空纯化方法
JP6111171B2 (ja) * 2013-09-02 2017-04-05 東京エレクトロン株式会社 成膜方法及び成膜装置
KR101580838B1 (ko) * 2014-02-10 2015-12-30 희성소재(주) 저온 승화 정제 장치
US10069070B2 (en) * 2014-02-14 2018-09-04 Ilsoled Co., Ltd. Method and apparatus for purifying organic material by using ionic liquid
CN104926571A (zh) * 2015-06-19 2015-09-23 中国工程物理研究院化工材料研究所 制备高纯度炸药的升华装置及方法
CN105481616B (zh) * 2015-11-27 2018-04-27 中国工程物理研究院化工材料研究所 炸药颗粒表面包覆的装置及方法
CN109414629B (zh) * 2016-04-08 2021-06-29 株式会社半导体能源研究所 纯化方法及纯化装置
US11168394B2 (en) 2018-03-14 2021-11-09 CeeVeeTech, LLC Method and apparatus for making a vapor of precise concentration by sublimation
US12104252B2 (en) 2018-03-14 2024-10-01 Ceevee Tech, Llc Method and apparatus for making a vapor of precise concentration by sublimation
CN108299516A (zh) * 2018-04-03 2018-07-20 江西佳因光电材料有限公司 一种超高纯茂金属源的升华提纯装置及其提纯超高纯茂金属源的方法
JP6432874B1 (ja) * 2018-06-26 2018-12-05 株式会社奥本研究所 精製装置
CN109011679B (zh) * 2018-09-30 2024-05-31 深圳普瑞材料技术有限公司 一种有机化合物升华提纯的收集装置
CN109821268B (zh) * 2019-03-06 2021-06-22 江苏惠利生物科技有限公司 一种5-甲基吡嗪-2-羧酸粗品的纯化方法
RU201951U1 (ru) * 2020-09-16 2021-01-22 Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» (РХТУ им. Д.И. Менделеева) Реактор для очистки веществ методом вакуумной сублимации

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131634A (en) * 1991-10-07 1992-07-21 Westinghouse Electric Corp. Sublimer-reactor system with weighing means
JPH0543203A (ja) * 1991-08-13 1993-02-23 Mitsui Toatsu Chem Inc 塩酸蒸留装置
US5338518A (en) * 1991-07-09 1994-08-16 Institute Francais Du Petrole Distillation-reaction apparatus and its use for carrying out balanced reaction
JPH0724205A (ja) * 1993-07-05 1995-01-27 Mitsubishi Cable Ind Ltd 昇華方法
JPH09103602A (ja) * 1996-08-13 1997-04-22 Seda Giken:Kk 電磁誘導加熱による分離装置及び分離方法
JP2000093701A (ja) * 1998-09-25 2000-04-04 Nippon Steel Chem Co Ltd 昇華精製方法及び装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB510196A (en) 1937-03-27 1939-07-28 Magnesium Elektron Ltd Improved apparatus for the thermal production of magnesium
GB536821A (en) 1939-11-24 1941-05-28 John Hugo Rutherford Improvements in or relating to the recovery of magnesium from alloys
GB552234A (en) 1942-02-03 1943-03-29 Int Alloys Ltd Apparatus for use in distilling metals by electric induction heating
NL244298A (ja) 1959-10-13
GB1279208A (en) * 1970-03-24 1972-06-28 Standard Telephones Cables Ltd Method of and apparatus for producing fine powder
JP2583306B2 (ja) * 1989-02-10 1997-02-19 日本電信電話株式会社 試薬の精製装置とその精製方法
JPH03143506A (ja) * 1989-10-27 1991-06-19 Nippon Telegr & Teleph Corp <Ntt> 精製装置及び精製方法
JPH05331564A (ja) * 1991-08-29 1993-12-14 Ogihara:Kk 誘導加熱式真空蒸発回収方法およびその装置
JPH06263438A (ja) 1993-03-09 1994-09-20 Mitsubishi Petrochem Co Ltd 高純度無水塩化アルミニウムの製造方法
JP3246060B2 (ja) * 1993-04-14 2002-01-15 日本電信電話株式会社 フッ化物原料の精製方法
TW585895B (en) * 1999-09-02 2004-05-01 Nippon Steel Chemical Co Organic EL material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338518A (en) * 1991-07-09 1994-08-16 Institute Francais Du Petrole Distillation-reaction apparatus and its use for carrying out balanced reaction
JPH0543203A (ja) * 1991-08-13 1993-02-23 Mitsui Toatsu Chem Inc 塩酸蒸留装置
US5131634A (en) * 1991-10-07 1992-07-21 Westinghouse Electric Corp. Sublimer-reactor system with weighing means
JPH0724205A (ja) * 1993-07-05 1995-01-27 Mitsubishi Cable Ind Ltd 昇華方法
JPH09103602A (ja) * 1996-08-13 1997-04-22 Seda Giken:Kk 電磁誘導加熱による分離装置及び分離方法
JP2000093701A (ja) * 1998-09-25 2000-04-04 Nippon Steel Chem Co Ltd 昇華精製方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1273330A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434273B1 (ko) * 2001-06-29 2004-06-05 엘지전자 주식회사 유기물질의 정제방법
CN1306978C (zh) * 2002-08-02 2007-03-28 株式会社日本触媒 回收升华物质的方法
JP2007246424A (ja) * 2006-03-15 2007-09-27 National Institute Of Advanced Industrial & Technology 有機材料の精製方法
JP2014535043A (ja) * 2011-09-29 2014-12-25 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニーUChicago Argonne, LLC 医学的用途のためのセラミックカプセルを使用したCu−67放射性同位体の製造方法
WO2013065626A1 (ja) * 2011-10-31 2013-05-10 出光興産株式会社 有機材料の精製装置及び有機材料の精製方法
JP2016216799A (ja) * 2015-05-26 2016-12-22 高周波熱錬株式会社 マグネシウムの精製方法及びマグネシウム精製装置
JP2019111507A (ja) * 2017-12-26 2019-07-11 株式会社 エイエルエステクノロジー 精製装置

Also Published As

Publication number Publication date
EP1273330A1 (en) 2003-01-08
KR100599428B1 (ko) 2006-07-12
CN1256998C (zh) 2006-05-24
EP1273330B1 (en) 2008-02-13
CN1419466A (zh) 2003-05-21
TWI233836B (en) 2005-06-11
US20030030193A1 (en) 2003-02-13
KR20020082490A (ko) 2002-10-31
DE60132763D1 (de) 2008-03-27
EP1273330A4 (en) 2003-06-04
JP4866527B2 (ja) 2012-02-01
AU2001241197A1 (en) 2001-10-03
DE60132763T2 (de) 2009-02-12
US6878183B2 (en) 2005-04-12

Similar Documents

Publication Publication Date Title
JP4866527B2 (ja) 昇華精製方法
JP4795502B2 (ja) 昇華精製方法及び装置
SE458205B (sv) Foerfarande och anordning foer belaeggning av ett substrat med material, som paa elektrisk vaeg har oeverfoerts till aangfas
JP3929397B2 (ja) 有機el素子の製造方法及び装置
JP2016531740A (ja) 真空精製方法
CN108085518B (zh) 一种真空蒸馏设备及超高纯铟的制备方法
EP1173300A1 (en) Casting of high purity oxygen free copper
JP4522709B2 (ja) 基板を被覆する方法および装置
GB2127709A (en) Manufacture of aluminium nitride
CA1240482A (en) Silicon melting and evaporation method and apparatus for high purity applications
WO2002053250A1 (fr) Procede et dispositif de purification et distillation pour materiaux organiques a point de fusion eleve
JP4722403B2 (ja) シリコン精製装置及びシリコン精製方法
JP2004059992A (ja) 有機薄膜形成装置
JP2001226721A (ja) アルミニウムの精製方法とその用途
WO2003004139A1 (fr) Dispositif et procede d&#39;affinage de materiaux solides
JPH07204402A (ja) 真空精製装置及びその方法
US3287108A (en) Methods and apparatus for producing alloys
JP6851603B2 (ja) 有機化合物析出方法
JPS62235466A (ja) 蒸着物質発生装置
KR100897335B1 (ko) 아로마틱 디알데히드의 정제 방법, 및 이에 사용되는 정제장치
US20160184733A1 (en) Method for separation of a molecular species by sublimation
JPS60251184A (ja) 基体をコ−テイングする方法
JPH0747817B2 (ja) 真空蒸着装置
JPH03223197A (ja) ダイヤモンドの気相合成装置及びその基板温度調整方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 568551

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10239064

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027012548

Country of ref document: KR

Ref document number: 018070043

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001912491

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027012548

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001912491

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027012548

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001912491

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载