+

WO2001066730A1 - Nouveau polypeptide, proteine humaine rs3 12, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, proteine humaine rs3 12, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001066730A1
WO2001066730A1 PCT/CN2001/000286 CN0100286W WO0166730A1 WO 2001066730 A1 WO2001066730 A1 WO 2001066730A1 CN 0100286 W CN0100286 W CN 0100286W WO 0166730 A1 WO0166730 A1 WO 0166730A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
protein
human
polynucleotide
sequence
Prior art date
Application number
PCT/CN2001/000286
Other languages
English (en)
Chinese (zh)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Biowindow Gene Development Inc. Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biowindow Gene Development Inc. Shanghai filed Critical Biowindow Gene Development Inc. Shanghai
Priority to AU46322/01A priority Critical patent/AU4632201A/en
Publication of WO2001066730A1 publication Critical patent/WO2001066730A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a new polypeptide—human RS3 protein 12, and a polynucleotide sequence encoding the polypeptide. The invention also relates to the preparation method and application of the polynucleotide and polypeptide. Background technique
  • Ribosome protein S3 Ribosome protein S3
  • RS3 Ribosome protein s3
  • RS3 Ribosome protein s3
  • 8-oxoguanylic acid (abbreviated as 8-oxo-G). It is a highly mutated form of base modification caused by oxygen pressure. The incorporation of this base-modified form causes G-T conversion. Base excision repair is the main form of repair for this type of DNA damage.
  • the mutated base is released from the nucleotide chain through N-glycosyltransferase activity, and a purine / apyrimidine (AP: apurine / apyrimidine) site is formed locally.
  • AP purine / apyrimidine
  • Most N-glycosyltransferases also have AP lyase activity, which cuts phosphodiester bonds through ⁇ and ⁇ elimination reactions, thereby forming a nucleotide gap locally and repaired by DNA polymerase.
  • Drosophila RS3 protein has N-glycosyltransferase and AP lyase activity in vitro and in vivo, and can repair damaged DNA. The same was found in human RS3 protein.
  • Xeroderma pigmentosa is a serious genetic disease. Patients cannot detect damage caused by ultraviolet light due to deletion or mutation of the gene encoding AP endonuclease I. In this type of patients, they have not been detected. To RS3 activity, although there was no significant change in RS3 expression. The role of RS3 protein in this genetic disease needs further study.
  • Fancini-s anemia is a genetic disease with the development of leukemia and solid tumors. Elevated 8-oxo-G levels and reduced RS3 in these patients suggest that changes in RS3 may be the cause of Fanconi's anemia.
  • RS3 expression was also found to be increased in adenomatous polyps and colorectal cancer.
  • ribosomal proteins S6, S8, S12, L5, L25, and L26 are also added.
  • adenoma-like polyps are generally considered to be precancerous lesions of colorectal cancer, suggesting that changes in ribosomes are an early event of malignancy.
  • the RS3 protein In terms of the overall function of the RS3 protein, it can both repair DNA damage and participate in protein translation.
  • the RS3 protein has a nuclear localization signal, and it enters the cytoplasm after assembling pre-ribosomal particles in the nucleus. It can also be recruited into the nucleus during DNA damage repair. So the dual function of RS3 protein is possible.
  • the intron transcript of the RS3 protein encoding gene is snRNA, suggesting that there is a certain relationship between RNA splicing and the regulation of translation.
  • the human RS3 protein 12 protein plays an important role in regulating important functions of the body such as embryonic development as described above, and it is believed that a large number of proteins are involved in these regulatory processes, there has been a need in the art to identify more human RS3 protein 12 involved in these processes. Protein, especially the amino acid sequence of this protein. Isolation of the new human RS3 protein 12 protein encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding DNA. Disclosure of invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a human RS3 protein 12.
  • Another object of the present invention is to provide genetic engineering comprising a polynucleotide encoding human RS3 protein 12. Host cells.
  • Another object of the present invention is to provide a method for producing human RS3 protein 12.
  • Another object of the present invention is to provide antibodies against the polypeptide of the present invention-human RS3 protein 12.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors against the polypeptide of the present invention-human RS3 protein 12.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities of human RS3 protein 12.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 196-528 in SEQ ID NO: 1; and (b) having a sequence of 1-1704 in SEQ ID NO: 1 Sequence of bits.
  • the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of human RS3 protein 12 protein, which comprises utilizing the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the present invention also relates to a method for in vitro detection of a disease or susceptibility to disease associated with abnormal expression of human RS3 protein 12 protein, comprising detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting a mutation in a biological sample.
  • the amount or biological activity of a polypeptide of the invention comprising detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting a mutation in a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the polypeptides and / or polynucleotides of the present invention prepared for the treatment of malignant tumors, xeroderma pigmentosum, Fancini's anemia, adenomatous polyps and colorectal cancer or other caused by abnormal expression of human RS3 protein 12.
  • Use of medicine for disease Other aspects of the invention will be apparent to those skilled in the art due to the disclosure of the techniques herein.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
  • the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence.
  • Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
  • Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
  • An "agonist” refers to a molecule that, when combined with the human RS 3 protein 1 2, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that binds human RS 3 protein 1 2.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human RS 3 protein 12 when combined with human RS 3 protein 12.
  • Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecule that can bind human RS 3 protein 1 2.
  • “Regulation” refers to a change in the function of the human RS 3 protein 12, including an increase or decrease in protein activity, a change in binding properties, and any other biological, functional, or immune properties of the human RS 3 protein 12.
  • “Substantially pure” means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated. Those skilled in the art can purify human RS3 protein 12 using standard protein purification techniques. Substantially pure human S3 protein 12 produces a single main band on a non-reducing polyacrylamide gel. The purity of human RS3 protein 12 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern imprinting or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that conditions with reduced stringency allow non-specific binding, because conditions with reduced stringency require that the two sequences bind to each other as either specific or selective interactions.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences.
  • the percentage identity can be determined electronically, such as by the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madison Wis.).
  • the MEGALIGN program can compare two or more sequences according to different methods, such as the Cluster method (Higgins, DG and PM Sharp (1988) Gene 73: 237-244). 0
  • the Clus ter method groups groups of sequences by checking the distance between all pairs. Arranged in clusters. The clusters are then assigned in pairs or groups.
  • sequence A and sequence B The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence A and sequence X 100 The number of residues in sequence A-the number of spacer residues in sequence A Number of interval residues in a sequence B
  • the percent identity between nucleic acid sequences can also be determined by the Cluster method or by methods known in the art such as Jotun He in (Hein J., (1990) Methods in emzumology 183: 625-645).
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine And alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to a “sense strand.”
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to an intact antibody molecules and fragments thereof, such as Fa, F (a b ') 2 and F V, which specifically binds to human antigen RS 12 3 protein determinants.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
  • isolated human RS 3 protein 1 2 means that human RS 3 protein 12 is substantially free of other proteins, lipids, carbohydrates, or other substances with which it is naturally associated. Those skilled in the art can purify human RS 3 protein 1 2 using standard protein purification techniques. Substantially pure polypeptides produce a single main band on non-reducing polyacrylamide gels. The purity of the human RS 3 protein 1 2 polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, human RS 3 protein 12, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of human RS 3 protein 1 2.
  • fragment refers to a polypeptide that substantially retains the same biological function or activity of the human RS 3 protein 1 2 of the present invention.
  • a fragment, derivative, or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution is The amino acid may or may not be encoded by a genetic codon; or (II) a type in which a group on one or more amino acid residues is substituted by another group to include a substituent; or ( ⁇ ⁇ ) Such a polypeptide sequence in which the mature polypeptide is fused with another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); or (IV) a polypeptide sequence in which an additional amino acid sequence is fused into the mature polypeptide (Such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protein sequence) As set forth herein, such fragments, 00 derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence with a total length of 1 704 bases, and its open reading frame 1 96-528 encodes 110 amino acids. Comparison of the expression profiles of the root-based St radiographs revealed that this polypeptide has a similar expression profile to the human RS 3 protein 1 3, and it can be deduced that the human RS 3 protein 12 has similar functions to the human RS 3 protein 1 3.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA, or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 in the present invention, but which differs from the coding region sequence shown in SEQ ID NO: 1.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • Variants of this polynucleotide may be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is a replacement form of a polynucleotide, which may be a substitution, deletion or insertion of one or more nucleotides, but will not Change the function of the polypeptide it encodes.
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity, between the two sequences).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 60 ° C; or (2) added during hybridization Use a denaturant, such as 50% (v / v) formamide, 0.1% calf serum / 0.1 ° / »Ficoll, 42 ° C, etc .; or (3) only the identity between the two sequences is at least Crosses occur at 95% or more, and more preferably 97% or more.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 cores. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques such as PCR to identify and / or isolate polynucleotides encoding human RS3 protein 12.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the human RS3 protein 12 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect multinucleated clones with common scab characteristics Nucleotide fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and has a length of at least 10 nucleotides, preferably at least 30 nucleotides, more preferably at least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used herein is generally a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein product of human RS3 protein 12 gene expression.
  • ELISA enzyme-linked immunosorbent assay
  • a method using PCR technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-Rapid Amplification of cDNA Ends
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, the sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell genetically engineered using the vector of the present invention or directly using the human RS3 protein 12 coding sequence, and a method for producing the polypeptide of the present invention by recombinant technology.
  • a polynucleotide sequence encoding the human RS3 protein 12 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding human RS3 protein 12 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell.
  • Escherichia coli, Streptomyces bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells insect cells
  • fly S2 or Sf9 animal cells
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DNA can be harvested after exponential growth and treated with CaCl. The steps used are well known in the art. Alternatively, MgCl 2 is used. If necessary, transformation can also be performed by electroporation.
  • the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human RS3 protein 12 (Science, 1984; 224: 1431). Generally there are the following steps:
  • polynucleotide or variant
  • the recombinant expression vector of the polynucleotide transforms or transduces a suitable host cell
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
  • recombinant proteins can be separated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography
  • FIG. 1 is a comparison diagram of gene chip expression profiles of the human RS3 protein 12 and human RS3 protein 13 of the present invention.
  • the upper graph is a graph of the expression profile of human RS3 protein 12, and the lower sequence is the graph of expression profile of human RS3 protein 13.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of human RS3 protein 12 isolated. 12kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. The best way to implement the invention
  • DH5a was transformed into the multiple cloning site of the vector (product of Clontech), and the bacteria formed a cDNA library.
  • the sequences of the 5 'and 3' ends of all clones were determined using Dye terminate cycle reaction ion sequencing k (Perkin-Elmer) and an ABI 377 automatic sequencer (Perkin-Elmer). Comparing the determined c DNA sequence with the existing public DNA sequence database (Genebank), it was found that the cDNA sequence of one of the clones 0402F09 was new DNA. A series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification using Qiagene's kit, the following primers were used for PCR amplification:
  • Primerl 5,-GAGAACAACTAGAGCAAAAGGTGA -3 '(SEQ ID NO: 3)
  • Primer2 5'- GTTCTGACACCTTTTTAATAGAAA-3, (SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 ⁇ l of KC1, 10 mmol / L Tris-CI, (pH8.5), 1.5 mmol / L MgCl 2 , 200 ⁇ mol / L dNTP, lOpmol in a reaction volume of 50 ⁇ 1 Primer, 1U Taq polymerase (product of C 1 on tech).
  • the reaction was performed on a PE 9600 DNA thermal cycler (Pe rki n-E 1 me r) under the following conditions for 25 cycles: 94 ° C 30sec; 55 ° C 30sec; 72 ° C 2min. 0 Simultaneously set during RT-PCR ⁇ -act in is the positive control and template blank is the negative control.
  • the amplified product was purified using a QIAGEN kit, and ligated to a pCR vector (Invitrogen product) using a TA cloning kit.
  • the DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as that of 1 to 1704bp shown in SEQ ID NO: 1.
  • Example 3 Northern blot analysis of human RS3 protein 12 gene expression:
  • This method involves acid guanidinium thiocyanate phenol-chloroform extraction. That is, the tissue is homogenized with 4M guanidinium isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ), Mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • RNA With 20 g of RNA, 1.2 »/ containing 20 mM 3- (N-morpholino) propanesulfonic acid (H7.0)-5 mM sodium acetate-1 mM EDTA-2.2M formaldehyde. Agarose gel upwards Line electrophoresis. It was then transferred to a nitrocellulose membrane. Preparation cx- 32 P dATP with 32 P- DNA probe labeled by the random primer method. The DNA probe used is shown in Figure 1 PCR amplified human RS3 12 protein coding sequence (196bp to 5 2 8bp).
  • Primer3 5'_CCCCATATGATGGCCCGGACTGCACCCCCCCTG- 3, (Seq ID No: 5)
  • Primer 4 5,-CATGGATCCCTATTTCATGTAACATGGTCCAAT-3 '(Seq ID No: 6)
  • the 5' ends of these two primers contain Ndel and BamHI restriction sites, respectively, which The coding sequences of the 5 'and 3' ends of the gene of interest are respectively followed by Ndel and BamHI restriction sites corresponding to the selective endonucleases on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Enzyme site.
  • PCR was performed using the pBS-0402F09 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions are as follows: a total volume of 50 ⁇ 1 contains 10 pg of pBS-0402F09 plasmid and primers! : ⁇ ! ⁇ And? ! ⁇ ! : ⁇ -Douban separately ⁇ ! ⁇ , Advantage polymerase Mix (Clontech) 1 ⁇ 1. Cycle parameters: 94. C 20s, 60. C 30s, 68. C 2 min, a total of 25 cycles.
  • Nde I and BamH I were used to double digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligated product was transformed into E. coli DH5 ⁇ by the calcium chloride method. After being cultured overnight on LB plates containing kanamycin (final concentration 30yg / ml), positive clones were selected by colony PCR method and sequenced. A positive clone (pET-0402F09) with the correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • the host strain BL21 (pET-0402F09) was 37 in LB liquid medium containing kanamycin (final concentration 30 ⁇ ⁇ / ⁇ 1). C. Cultivate to logarithmic growth phase, add IPTG to a final concentration of 1 mmol / L, and continue incubating for 5 hours. The bacteria were collected by centrifugation, and the supernatant was collected by centrifugation. The supernatant was collected by centrifugation. The affinity chromatography column His. Bind Quick Cartridge (product of Novagen) was used to obtain 6 histidine (6His-Tag). The purified target protein human RS3 protein 12 was obtained. After SDS-PAGE electrophoresis, a single band was obtained at 12 kDa ( Figure 2).
  • the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
  • hemocyanin and bovine serum albumin For the method, see Avrameas, et a 1. Immunochemistry, 1969; 6:43. Immunize the patient with 4 mg of the above-mentioned jk cyanin polymorph compound and complete Freund's adjuvant. After 15 days, use the hemocyanin polypeptide complex and incomplete Freund's adjuvant to boost the immunity once.
  • a titer plate coated with 15 ⁇ g / ml bovine serum albumin peptide complex was used as an ELISA to determine the antibody titer in rabbit serum.
  • Total IgG was isolated from antibody-positive rabbit sera using protein A-Sepharose.
  • the peptide was bound to a cyanogen bromide-activated Sepharos B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography.
  • the immunoprecipitation method demonstrated that the purified antibody specifically binds to human RS3 protein 12.
  • Example 6 Application of the polynucleotide fragment of the present invention as a hybridization probe
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern imprinting, Northern blotting, and copying methods. They all use the same steps to immobilize the polynucleotide sample to be tested on the filter.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragment selected from the polynucleotide SEQ ID NO: 1 of the present invention for use as a hybridization probe shall be Following the following principles and several aspects to consider:
  • the preferred range of probe size is 18-50 nucleotides
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence of the gene fragment of SEQ ID NO: 1 or its complementary fragment (41NU:
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • Two NC membranes are required for each probe for subsequent experiments.
  • the film is washed with high-strength conditions and strength conditions, respectively.
  • the sample membrane was placed in a plastic bag, and 3-lOmg prehybridization solution (10xDenhardt's; 6xSSC, 0.1 mg / ml was added).
  • CT DNA (calf thymus DNA).
  • X-ray autoradiography -70 ° C
  • X-ray autoradiography press time depends on the radioactivity of the hybrid spot
  • Gene microarrays or DNA microarrays are new technologies currently being developed by many national laboratories and large pharmaceutical companies. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • the specific method steps have been reported in the literature. For example, see the documents DeRisi, LL., Lyer, V. & Brown, P.0. (1997) Science 278, 680-686. Chai, A., Shalom, D., (1997) PNAS 94: 2150-2155.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were amplified by PCR respectively. After purification, the amplified product was adjusted to a concentration of about 500 ng / ul, and spotted on a glass medium using a Cartesian 7500 spotter (purchased from Cartesian, USA). The distance is 280 ⁇ . The spotted slides were hydrated, dried, and cross-linked in a purple diplomatic coupling instrument. After elution, the DNA was fixed on a glass slide to prepare a chip. The specific method steps have been reported in the literature in various ways. The post-spot processing steps of this embodiment are:
  • Total mRNA was extracted from human mixed tissues and specific tissues (or stimulated cell lines) in one step, and mRNA was purified with Oligotex mRNA Midi Kit (purchased from QiaGen).
  • mRNA of human mixed tissue was labeled with Cy5dUTP
  • Cy5dUTP 5- Amino-propargy 2 2-deoxyuridine 5 ' -triphate coupled to Cy5 fluorescent dye, purchased from Amersham Phamacia Biotech, labeled the body's specific tissue (or stimulated cell line) mRNA, and purified the probe to prepare a probe.
  • Probes from the two types of tissues and the chip were hybridized in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, washed with a washing solution (1 x SSC, 0.2% SDS) at room temperature, and then scanned with ScanArray 3000.
  • the scanner purchased from General Scanning Company, USA
  • the scanned image was analyzed and processed with Imagene software (Biodiscovery Company, USA) to calculate the Cy3 / Cy5 ratio of each point.
  • the above specific tissues are thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, Arsenic stimulated the L02 cell line and prostate tissue for 1 hour. Plot a graph based on these 13 Cy 3 / Cy 5 ratios. (figure 1 ) . It can be seen from the figure that the expression profiles of human RS3 protein 12 and human RS3 protein 13 according to the present invention are very similar. Industrial applicability
  • polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, xeroderma pigmentosa, Fancini's anemia, adenomatous polyps, colorectal cancer, and the like.
  • Ribosome protein S3 (RS3: ribosome protein s 3) is a component located on the small ribosomal subunit and is involved in the initiation of translation. In eukaryotic cells, it can cross-link with initiation factors eIF-2 and elF-3, and may be directly involved in the interaction of ribosomal mRNA-aminoacyl tRNA during translation. In addition, human small nuclear RNA, U15A, is transcribed from the intron of the gene encoding RS3. Studies have found that Drosophila RS3 protein has N-glycosyltransferase and AP lyase activity in vitro and in vivo, and can repair damaged DNA. The same was found in human RS3 protein.
  • RS3 is overexpressed in rectal colon cancer cells.
  • Abnormal RS3 expression is closely related to xeroderma pigmentosa, Fancini's anemia, adenomatous polyps, and colorectal cancer.
  • the human RS3 protein 12 of the present invention is dysfunctional, resulting in abnormal DNA repair functions, errors in protein translation, and related diseases such as tumors, embryonic development disorders, and growth and development disorders.
  • the abnormal expression of the human RS3 protein 12 of the present invention will produce various diseases, especially xeroderma pigmentosa, Fancini's anemia, adenoma-like polyps, colorectal cancer, other tumors, embryonic developmental disorders, growth and development disorders Sexually transmitted diseases, including but not limited to:
  • Embryonic disorders congenital abortion, cleft palate, limb loss, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney, double ureter, cryptorchidism, congenital inguinal hernia, double uterus, vaginal atresia, suburethral Fissure, hermaphroditism, atrial septal defect, ventricular septal defect, pulmonary stenosis, arterial duct occlusion, neural tube defect, congenital hydrocephalus, iris defect, congenital cataract, congenital glaucoma or cataract, congenital deafness
  • Growth and development disorders mental retardation, cerebral palsy, brain development disorders, mental retardation, familial cerebral nucleus dysplasia syndrome, strabismus, skin, fat and muscular dysplasia such as congenital skin laxity, premature aging Disease, congenital keratosis, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation
  • Tumors of various tissues gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma, Colon cancer, melanoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, colon cancer, thymic tumor, nasal cavity and sinus tumor, nose Pharyngeal cancer, laryngeal cancer, tracheal tumor, fibroma, fibrosarcoma, lipoma, liposarcoma, leiomyoma
  • the abnormal expression of human RS3 protein 12 of the present invention will also produce certain hereditary, hematological and immune system diseases, etc. .
  • the invention also provides methods of screening compounds to identify agents that increase (agonist) or suppress (antagonist) human RS3 protein 12.
  • Agonists enhance biological functions such as human RS3 protein 12 to stimulate cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or a membrane preparation expressing human RS3 protein 12 can be cultured with labeled human RS3 protein 12 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human RS3 protein 12 include screened antibodies, compounds, receptor deletions and analogs Wait. Antagonists of human RS3 protein 12 can bind to human RS3 protein 12 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform biological functions.
  • human RS3 protein 12 When screening compounds as antagonists, human RS3 protein 12 can be added to a bioanalytical assay to determine whether a compound is an antagonist by measuring the effect of the compound on the interaction between human RS3 protein 12 and its receptor. Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds. Polypeptide molecules capable of binding to human RS3 protein 12 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, 12 molecules of human RS3 protein should generally be labeled.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies directed against the human RS3 protein 12 epitope. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human RS3 protein 12 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
  • Techniques for preparing monoclonal antibodies to human RS3 protein 12 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV-hybridoma Technology, etc.
  • Chimeric antibodies that bind human constant regions and non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single chain antibodies (U.S. Pat No. 4946778) can also be used to produce single chain antibodies against human RS3 protein 12.
  • Anti-human RS3 protein 12 antibody can be used in immunohistochemistry to detect humans in biopsy specimens
  • Monoclonal antibodies that bind to human RS3 protein 12 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human RS3 protein 12 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of the antibody with a thiol crosslinker such as SPDP, and toxins are bound to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill 12 positive cells of human RS3 protein.
  • the antibodies of the present invention can be used to treat or prevent diseases related to human RS3 protein 12. Administration of an appropriate amount of antibody can stimulate or block the production or activity of human RS3 protein 12.
  • the invention also relates to a diagnostic test method for quantitatively and locally detecting the level of human RS3 protein 12.
  • tests are well known in the art and include FISH assays and radioimmunoassays.
  • the level of human RS3 protein ⁇ detected in the test can be used to explain the importance of human RS3 protein 12 in various diseases and to diagnose diseases in which human RS3 protein 12 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding human RS3 protein 12 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of human RS3 protein 12.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human RS3 protein 12, to inhibit endogenous human RS3 protein 12 activity.
  • a mutated human RS3 protein 12 may be a shortened human RS3 protein 12 lacking a signaling domain. Although it can bind to downstream substrates, it lacks signaling activity. Therefore, the recombinant gene therapy vector can be used to treat diseases caused by abnormal expression or activity of human RS3 protein 12.
  • Virus-derived expression vectors such as retroviruses, adenoviruses, adenovirus-associated viruses, herpes simplex virus, parvoviruses, and the like can be used to transfer polynucleotides encoding human RS3 protein 12 into cells.
  • Methods for constructing recombinant viral vectors carrying a polynucleotide encoding the human RS3 protein 12 can be found in the literature (Sambrook, et al.).
  • a recombinant polynucleotide encoding human RS3 protein 12 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit human RS3 protein 12 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis techniques, such as solid-phase phosphate amide chemical synthesis to synthesize oligonucleotides.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA.
  • This DNA sequence has been integrated downstream of the vector's RNA polymerase promoter.
  • it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the phosphorothioate or peptide bond instead of the phosphodiester bond is used for the ribonucleoside linkage.
  • the polynucleotide encoding human RS3 protein 12 can be used for the diagnosis of diseases related to human RS3 protein 12.
  • the polynucleotide encoding human RS3 protein 12 can be used to detect the expression of human RS3 protein 12 or the abnormal expression of human RS3 protein 12 in a disease state.
  • the DNA sequence encoding human RS3 protein 12 can be used to hybridize biopsy specimens to determine the expression of human RS3 protein 12.
  • Hybridization techniques include Southern Blotting, Northern blotting, in situ hybridization, etc. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • polynucleotides of the present invention can be used as probes to be fixed on a microarray or a DNA chip (also referred to as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissue.
  • Human RS3 protein 12 specific primers can be used for RNA-polymerase chain reaction (RT-PCR) in vitro amplification to detect human RS3 protein 12 transcription products.
  • Human RS3 protein 12 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type human RS3 protein 12 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, the mutation may affect the expression of the protein, so Northern blotting and Western blotting can be used to indirectly determine whether the gene is mutated.
  • the sequences of the invention are also valuable for chromosome identification.
  • the sequence specifically targets a specific position on a human chromosome and can hybridize to it.
  • specific sites for each gene on the chromosome need to be identified.
  • only a few chromosome markers based on actual sequence data are available for marking chromosome positions.
  • an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) are prepared based on cDNA, and the sequences can be located on chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mendel ian Inheritance in Man (available online with Johns Hopkins University Welch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
  • the differences in cDNA or genomic sequences between the affected and unaffected individuals need to be determined. If at A mutation is observed in some or all of the affected individuals, and the mutation is not observed in any normal individuals, then the mutation may be the cause of the disease. Comparing diseased and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable with PCR based on c DNA sequences. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase Figure resolution and each 20 kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human RS 3 protein 1 2 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of human RS 3 protein 1 2 to be administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une protéine humaine RS3 12, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des tumeurs malignes, du xeroderma pigmentosum, de l'anémie Fanconi, de la polypose adénomateuse familiale et du cancer rectocolique. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la protéine humaine RS3 12.
PCT/CN2001/000286 2000-03-07 2001-02-26 Nouveau polypeptide, proteine humaine rs3 12, et polynucleotide codant pour ce polypeptide WO2001066730A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU46322/01A AU4632201A (en) 2000-03-07 2001-02-26 A novel polypeptide, a human rs3 protein 12 and the polynucleotide encoding the polypeptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 00111912 CN1312269A (zh) 2000-03-07 2000-03-07 一种新的多肽——人rs3蛋白12和编码这种多肽的多核苷酸
CN00111912.5 2000-03-07

Publications (1)

Publication Number Publication Date
WO2001066730A1 true WO2001066730A1 (fr) 2001-09-13

Family

ID=4581808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000286 WO2001066730A1 (fr) 2000-03-07 2001-02-26 Nouveau polypeptide, proteine humaine rs3 12, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1312269A (fr)
AU (1) AU4632201A (fr)
WO (1) WO2001066730A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154869B (zh) * 2018-11-08 2021-09-28 北京大学 肝癌诊断的生物标志物及其试剂盒
CN111150726B (zh) * 2018-11-08 2022-08-19 北京大学 4-羟基-2-亚甲基丁酸(5-甲酰基呋喃-2-甲)酯在制备肝癌治疗药物中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 12 December 1999 (1999-12-12), accession no. EMBL Database accession no. AL049850.1 *
DATABASE GENBANK [online] 14 August 1998 (1998-08-14), Database accession no. U49742.1 *
DATABASE GENBANK [online] 24 September 1999 (1999-09-24), Database accession no. U16271.2 *
DATABASE GENBANK [online] 8 March 1998 (1998-03-08), Database accession no. AC004385 *

Also Published As

Publication number Publication date
CN1312269A (zh) 2001-09-12
AU4632201A (en) 2001-09-17

Similar Documents

Publication Publication Date Title
WO2001074879A1 (fr) Nouveau polypeptide, proteine ribosomale humaine s3-12, et polynucleotide codant pour ce polypeptide
WO2001066730A1 (fr) Nouveau polypeptide, proteine humaine rs3 12, et polynucleotide codant pour ce polypeptide
WO2001088084A2 (fr) Nouveau polypeptide, superoxyde dismutase 11, et polynucleotide codant pour ce polypeptide
WO2001083538A1 (fr) Nouveau polypeptide, proteine humaine 36 du gene k-ras, et polynucleotide codant pour ce polypeptide
WO2001090177A1 (fr) Nouveau polypeptide, activateur humain de la mort naturelle des cellules b13.64, et polynucleotide codant ce polypeptide
WO2001092329A1 (fr) Nouveau polypeptide, sous-unite $g(a) d'atp-synthetase 9.9, et polynucleotide codant ce polypeptide
WO2001070965A1 (fr) Nouveau polypeptide, facteur humain de regulation de la transcription 15, et polynucleotide codant pour ce polypeptide
WO2001072793A1 (fr) Nouveau polypeptide, proteine humaine de regulation 12 de la proteine hydrolase, et polynucleotide codant pour ce polypeptide
WO2001081420A1 (fr) Nouveau polypeptide, laminine 19, et polynucleotide codant pour ce polypeptide
WO2001074876A1 (fr) Nouveau polypeptide, phosphatidylinositol-3 kinase humaine 14, et polynucleotide codant pour ce polypeptide
WO2001075048A2 (fr) Nouveau polypeptide, proteine ribosomale humaine s11 23, et polynucleotide codant pour ce polypeptide
WO2001079432A2 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 58, et polynucleotide codant pour ce polypeptide
WO2001072801A1 (fr) Nouveau polypeptide, proteine ribosomale humaine s11 12, et polynucleotide codant pour ce polypeptide
WO2001075101A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 8, et polynucleotide codant pour ce polypeptide
WO2001087949A1 (fr) Nouveau polypeptide, proteine pax humaine 9, et polynucleotide codant pour ce polypeptide
WO2001094401A1 (fr) Nouveau polypeptide, proteine npat humaine 15, et polynucleotide codant pour ce polypeptide
WO2002012308A1 (fr) Nouveau polypeptide, proteine rs3 humaine 18, et polynucleotide codant ce polypeptide
WO2001090171A1 (fr) Nouveau polypeptide, proteine humaine ribosomale sii 12, et polynucleotide codant ce polypeptide
WO2001075018A2 (fr) Nouveau polypeptide, facteur humain de regulation de la transcription 31, et polynucleotide codant pour ce polypeptide
WO2001074867A1 (fr) Nouveau polypeptide, proteine humaine 11 regulant la protease, et polynucleotide codant pour ce polypeptide
WO2001081384A1 (fr) Nouveau polypeptide, laminine 16, et polynucleotide codant pour ce polypeptide
WO2001048199A1 (fr) Nouveau polypeptide, proteine ribosomale s10 14, et polynucleotide codant pour ce polypeptide
WO2001087966A1 (fr) Nouveau polypeptide, proteine pax humaine 22, et polynucleotide codant pour ce polypeptide
WO2001075024A2 (fr) Nouveau polypeptide, facteur humain 13 associe a nf-e2, et polynucleotide codant pour ce polypeptide
WO2001066728A1 (fr) Nouveau polypeptide, proteine humaine 11 du gene de reparation de mesappariement de l'adn, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载