+

WO2001065623A1 - Procede de preparation d'assemblages electrode - membrane, assemblages ainsi obtenus et piles a combustible comprenant ces assemblages - Google Patents

Procede de preparation d'assemblages electrode - membrane, assemblages ainsi obtenus et piles a combustible comprenant ces assemblages Download PDF

Info

Publication number
WO2001065623A1
WO2001065623A1 PCT/FR2001/000624 FR0100624W WO0165623A1 WO 2001065623 A1 WO2001065623 A1 WO 2001065623A1 FR 0100624 W FR0100624 W FR 0100624W WO 0165623 A1 WO0165623 A1 WO 0165623A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
membrane
assembly
film
solution
Prior art date
Application number
PCT/FR2001/000624
Other languages
English (en)
Inventor
Didier Marsacq
Franck Jousse
Michel Pineri
Régis Mercier
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2001564409A priority Critical patent/JP2003526184A/ja
Priority to EP01911830A priority patent/EP1259995A1/fr
Priority to CA002400146A priority patent/CA2400146A1/fr
Priority to US10/220,068 priority patent/US20030022054A1/en
Publication of WO2001065623A1 publication Critical patent/WO2001065623A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a process for preparing electrode-membrane and electrode-membrane-electrode assemblies and to the assemblies thus obtained.
  • Electrodes-membrane-electrode assemblies in which the membranes are ion-exchange polymer membranes, such assemblies find their application more particularly in fuel cells, in particular low-level fuel cells.
  • Temperatures generally operating from room temperature, up to about 100 ° C, such as proton exchange membrane fuel cells operating with either the gas couple
  • DMFC Direct Methanol Fuel Cell
  • the invention also relates to a fuel cell device, in
  • the technical field of the invention can thus be defined as that of fuel cells, in particular fuel cells of the solid electrolyte type.
  • Fuel cells of the solid polymer electrolyte type find, in particular, their application in electric vehicles which are currently the subject of numerous development programs, in order to provide a solution to the pollution caused by vehicles with thermal engine.
  • Fuel cells with solid polymer electrolyte could make it possible, by playing the role of an electrochemical energy converter, associated with an on-board energy reservoir, for example of hydrogen or an alcohol, to overcome the problems, in particular of time of charging and autonomy, linked to the use of batteries in electric vehicles.
  • an electrochemical energy converter associated with an on-board energy reservoir, for example of hydrogen or an alcohol
  • the schematic assembly of a fuel cell allowing the production of electrical energy, is shown in part in Figure 1 attached.
  • the essential element of such a cell is an ion exchange type membrane, more specifically a proton exchange membrane, formed of a solid polymer electrolyte, more precisely of a proton conducting polymer (1); this membrane is used to separate the anode compartment (2), where produces the oxidation of fuel, such as hydrogen H 2 (4), according to the diagram:
  • the volume electrodes (13), conductive, electronic, placed on either side of the membrane, generally comprise an active area (14) and a diffusion area (15).
  • the active area generally provided on one of the surfaces of the electrode, consists of a porous teflon-coated felt, loaded with carbon black or porous graphite, covered with a finely divided noble metal (16) (for example , in the form of grains), such as platinum, and a thin deposit of ionic conductive polymer, of structure generally similar to that of the membrane.
  • the diffusion zone (15) is made up of a porous material, for example of the same porous teflon-coated felt, loaded with carbon black, or of the same porous graphite, made hydrophobic by the integration of a hydrophobic polymer, such as PTFE.
  • a hydrophobic polymer such as PTFE.
  • the hydrophobic nature allows the evacuation of liquid water.
  • the noble metal such as platinum, located in the active zone, makes it possible either to oxidize hydrogen or methanol at the anode, or to reduce oxygen at the cathode.
  • the protons produced at the anode, by oxidation, for example hydrogen, on the surface of the noble metal grains, such as platinum, are transported (9) through the membrane to the cathode where they recombine with the ions produced by the reduction, for example oxygen from the air to give water (6).
  • the electrons thus produced (IV) make it possible to supply, for example, an electric motor (18) placed in the external circuit (10), with water as the only by-product of the reaction.
  • the membrane and electrodes assembly is a very thin assembly with a thickness of the order of a millimeter, called “electrode-membrane-electrode assembly (EME)” and each electrode is fed from the rear, for example using of a grooved plate, by the gases.
  • EME electrode-membrane-electrode assembly
  • each assembly formed by two electrodes and a membrane, defining an elementary cell of the fuel cell is thus disposed between two sealed plates (7, 8) which, on the one hand, ensure the distribution of the hydrogen on the anode side and, on the other hand, oxygen on the cathode side.
  • These plates are called bipolar plates.
  • the ion-conducting membrane is generally an organic membrane containing ionic groups which, in the presence of water, allow the conduction of the protons (9) produced at the anode by oxidation of hydrogen.
  • This membrane is from a few tens to a few hundred microns and results from a compromise between the mechanical strength and the ohmic drop.
  • This membrane also allows the separation of gases.
  • the chemical and electrochemical resistance of these membranes generally allows battery operation over periods of more than 1,000 hours.
  • the polymer constituting the membrane must therefore fulfill a certain number of conditions relating to its mechanical, physico-chemical and electrical properties.
  • the polymer must first of all be able to give thin films, from 50 to 100 micrometers, dense, without defects.
  • the mechanical properties, tensile stress modulus, ductility, must make it compatible with assembly operations including, for example, clamping between metal frames.
  • the properties must be preserved by passing from the dry state to the wet state.
  • the polymer must have good chemical stability with respect to hydrolysis and have good resistance to reduction and to oxidation up to 100 ° C. This stability is assessed in terms of variation in ionic resistance, and in terms of variation in mechanical properties.
  • the polymer must have a high ionic conductivity, this conductivity is provided by strong acid groups, such as phosphonic acid groups, but especially sulfonic groups linked to the polymer chain. Therefore, these polymers will generally be defined by their equivalent mass, that is to say by the weight of polymer in grams per acid equivalent.
  • the best systems currently developed are capable of providing a specific power of 1 W.cm “2 , or a current density of 2 A. cm “ 2 for 0.5 Volts.
  • the most commonly used polymers are sulfonated fluorinated thermoplastic copolymers whose linear main chain is perfluorinated and whose side chain carries a sulfonic acid group.
  • thermoplastic copolymers are commercially available under the trade name Nafion ® of Du Pont, or ACIPLEX-S ® from Asahi Chemical Company, others are experimental, produced by Dow Company to manufacture the so-called membrane "XUS”.
  • EME electrode - membrane - electrode
  • the EME manufacturing process most often cited, consists in producing the EME assemblies by hot passage of the electrodes facing each other over the proton exchange membrane, said membrane having been previously, separately prepared, generally by casting, and completely dried.
  • the electrodes are previously impregnated, for example, a solution of Nafion ®, are then hot-pressed between 120 ° and 150 ° C, on both sides of the membrane.
  • poly 1, - (2,6-diphenyl-6) -phenyl ether sulfonated on the main chain, polyethersulfones and polyetherketones have been synthesized and tested without really competing with fluorinated membranes as regards instant performance and durability.
  • NAFION membranes which are composed of a sulfonated polymer with a thermostable skeleton, a polymer among which, mention may be made of polyimides, polyethersulfones, polyetheretherketones, polybenzoxazoles, polybenzimidazoles, polyphenylenes and their derivatives, etc.
  • the method involves the use of several compounds, i.e. a sulfonated polymer thermostable for proton-exchange membrane and one Nafion ® solution for impregnating
  • the process is then a complex discontinuous process comprising multiple steps, among others: development of the proton exchange membrane, impregnation of the electrodes, pressing, heating.
  • thermostable polymer membrane and an electrode impregnated with NAFION type polymer are extremely limited from the industrial point of view.
  • thermostable sulfonated polymer membranes in terms of, in particular, cost price, and to overcome the drawbacks mentioned above by improving in particular the quality of the electrode-membrane interface
  • a polymer solution which comprises the membrane in the case of sulfonated polymers to thermostable skeleton, such as polyimides, polyethersulfones, polyetheretherketones , polybenzoxazoles, polybenzimidazoles, polyphenylenes and their derivatives, etc.
  • thermostable polymer also called elementary assemblies
  • electrode - membrane - electrode assemblies which is simple, reliable, reproducible , and on ; which has only a limited number of steps, which is of limited cost, and which can be implemented continuously, this process having, moreover, all the advantages inherent in the use of membranes made of thermostable polymers .
  • This process must also make it possible to obtain electrode-membrane interfaces of excellent quality, without defects, with very high cohesion of the electrode-membrane bond and intimate contact of the catalyst with the membrane, these properties being stable to over time and not very sensitive to aging.
  • the electrode-membrane-electrode assemblies obtained must finally have excellent and perfectly reproducible electrochemical properties.
  • the aim of the present invention is to provide a method for preparing an assembly comprising an electrode and at least one membrane made of a thermostable polymer, more precisely a method for preparing an electrode - membrane - electrode assembly, which responds, between others, to all of the needs indicated above.
  • the object of the present invention is also to provide a process for preparing an assembly comprising an electrode and a membrane made of a thermostable polymer, more specifically an electrode - membrane - electrode (EME) assembly consisting of a membrane in one thermostable polymer and two electrodes, which does not have the disadvantages, defects, limitations and disadvantages of the methods of the prior art and which solves the problems posed by the methods of the prior art.
  • EME electrode - membrane - electrode
  • thermostable polymer a solution of a thermostable polymer is poured onto a support so as to obtain a film of solution of thermostable polymer; then b) partially drying said film of thermostable polymer solution by evaporation of the solvent from said solution; c) an electrode is deposited on the surface of said film of thermostable polymer solution, during drying, before it is completely dry, the active face of the electrode facing said surface, so as to obtain an assembly comprising a thermostable polymer membrane (formed by said partially dried polymer solution film) and said electrode; d) said assembly obtained in step c) is completely dried; then e) the assembly comprising said membrane and said electrode is detached from the substrate.
  • the method according to the invention makes it possible to meet the needs and remedy the drawbacks mentioned above.
  • the process according to the invention is particularly suitable for membranes made of thermostable polymer, the advantages of which are inherent in this type of polymer, which also have repercussions on the process which implements them.
  • the method according to the invention comprises a limited number of simple steps which are easy to carry out by proven means, it is reliable and reproducible, achievable at low temperature, without significant energy consumption, requires only a relatively limited duration, and involves only a few raw materials, these being limited to the polymer, solvent and to the electrode.
  • the electrode-membrane assembly is carried out during the development of the membrane by casting.
  • the electrode is deposited simply, directly and without other operations (such as pressing or others, as in the prior art), on the surface of the membrane during drying thereof, that is to say that the membrane then consists of a film of thermostable polymer solution still wet and not completely dry.
  • the membrane is prepared by pouring a solution of the polymer onto a substrate or support, so as to obtain a film of polymer solution, in particular of thermostable polymer, then this polymer film in solution. is then dried by total evaporation of the solvent, the dry extract obtained constituting the membrane such as the proton exchange membrane.
  • a well-determined fraction of the polymer solution then permeates the electrode, and more precisely, the active layer situated on the active face thereof which faces the surface of the polymer film in solution. This impregnation is done simply under the action of the weight of the electrode in the still viscous polymer and without any pressure being applied.
  • step c) specific that it comprises the electrode-membrane interface is of excellent quality. It is totally surprising that an interface of such quality is obtained with thermostable polymer membranes; such a result, which was up to now obtained only for thermosplastiques polymer type NAFION ®, is reached for the first time by implementing the method of the invention. It has been shown that the electrode-membrane interface prepared by the method of the invention is perfectly regular and free from defects.
  • the cohesion between the electrode and the membrane and the electrode is such that it is no longer possible to separate them, unlike the assemblies produced by the methods of the prior art.
  • This excellent adhesion is, among others, one of the fundamental effects and advantages provided by the method of the invention, compared to the methods of the prior art, such as methods based on hot pressing of the electrode or electrodes on the membrane.
  • the deposition operation according to step c) being carried out when the membrane is not yet completely formed or dry, this more precisely means that the substance which permeates the electrode is composed of thermostable polymer, more particularly of proton conducting polymer, and of a slight fraction of solvent. This allows the proton conductor to be drawn homogeneously within the active layer of the electrode.
  • the assembly thus obtained is then dried under precise conditions at moderate temperature, generally from 70 ° C. to 150 ° C., preferably at a temperature of 100 ° C to 120 ° C. An example of an adequate temperature is in particular close to 70 ° C. This promotes the presence of proton conducting polymer in the vicinity of the electronic conductor and the catalyst contained in the electrode.
  • step a) it is possible at the end of step a) to have a reinforcement within the film of thermostable polymer solution, for example, by rolling.
  • a reinforcement may be placed on the support or substrate, prior to step a) of the method according to the invention.
  • the invention relates more specifically to a method of preparing an electrode-membrane-electrode assembly consisting of a thermostable polymer membrane and two electrodes.
  • This method comprises, first of all, the production of a first membrane electrode assembly by the method described above, then at the end of step e), we proceed to the following step f): we pour on the face of the assembly constituted by the membrane a solution of a thermostable polymer, so as to obtain a film of solution of thermostable polymer; then steps b) to e) are substantially repeated.
  • the electrode-membrane assembly obtained at the end of step c) is then used as a substrate during a second casting operation, partial drying, deposition of a second electrode, and total drying. .
  • steps of this process will therefore be, in addition to steps a), b), c), d), e) and f), the following steps: g) said film of thermostable polymer solution is partially dried by evaporation of the solvent from said solution; h) a second electrode is deposited on the surface of said film of thermostable polymer solution, during drying, before it is completely dry, the active face of the second electrode facing the surface of said film, so as to obtain an electrode - thermostable polymer membrane - electrode assembly; then i) said electrode - membrane - electrode assembly obtained during step h) is completely dried.
  • the assemblies have mechanical, electrochemical properties (evolution of the voltage as a function of the current density), etc., superior to the assemblies obtained by the method of prior art.
  • an electrode - membrane - electrode assembly is prepared by the following steps: a) one impregnates a reinforcement with a solution of a thermostable polymer, so as to obtain a film of reinforced and self-supporting thermostable polymer solution; then b) partially drying said film of reinforced and self-supported thermostable polymer solution, by evaporation of the solvent from said solution; c) an electrode is deposited on each of the faces of said film of thermostable polymer solution, during drying, before it is completely dry, the active face of each of the electrodes facing each of the surfaces of said film; d) said assembly obtained in step c) is completely dried.
  • the invention also relates to the assemblies comprising at least one membrane and at least one electrode, as well as the electrode - membrane - electrode assemblies capable of being obtained by the above process.
  • these assemblies as such and because of the excellent and surprising quality of their interface and of the mechanical (adhesion, etc.) and electrochemical properties (evolution of the voltage as a function of the current density) which ensued, inherently possessed properties which differentiated them from the assemblies of the prior art and made them superior to the latter.
  • the invention further relates to a fuel cell device comprising at least one electrode - membrane - electrode assembly obtained by the method according to the invention.
  • the batteries have, as such, excellent and surprising properties, due both to the properties of the thermostable membranes and to the properties of the EME assemblies, the properties resulting directly from the implementation of the process of l 'invention.
  • FIG. 1 schematically shows a fuel cell comprising several elementary cells with an electrode - membrane - electrode assembly, as well as bipolar plates;
  • FIG. 2 is an image obtained by scanning electron microscopy of an electrode-membrane interface obtained by the method of the invention with a membrane of sulfonated polyimide. The scale is 10 ⁇ m;
  • FIG. 3 is an image obtained by scanning electron microscopy of an electrode-membrane interface obtained by a method of the prior art with a sulfonated polyimide membrane.
  • the scale is 10 ⁇ m.
  • thermostable polymer in its variant, called “coating” firstly comprises the preparation of a solution, in a solvent, of a thermostable polymer.
  • the thermostable polymer can be any known polymer.
  • the method according to the invention is suitable for all polymers capable of giving membranes by casting.
  • thermostable is generally meant a polymer whose glass transition temperature (case of amorphous polymers) or of melting point (case of semi-crystalline polymers) is higher than the degradation temperature of the polymer.
  • the polymer is an ion-exchange polymer, more preferably a proton-conducting polymer, such as a sulfonated polymer, but a polymer carrying phosphate or other functions may also be suitable.
  • suitable polymers include sulfonated polyimides, sulfonated polyethersulfones, sulfonated polystyrenes and their sulfonated derivatives, sulfonated poletheretherketones and their derivatives.
  • Particularly preferred polymers are the sulfonated polyimides described in document FR-A-2 748 485 incorporated herein by reference, in particular for the parts of this document describing these polymers.
  • polymers of sulfonated polyimide type are the sulfonated polyimides blocks formed by the blocks or blocks represented by the following formulas (I x ) and (I y ):
  • - x is a real number, preferably greater than or equal to 4, more preferably from 4 to 15;
  • - y is a real number, preferably greater than or equal to 5, more preferably from 5 to 10;
  • Ci and C 2 may be identical or different and each represent a tetravalent group comprising at least one aromatic carbon ring, optionally substituted, having from 6 to 10 carbon atoms and / or a heterocycle of aromatic character, optionally substituted, having from 5 to 10 atoms and comprising one or more heteroatoms chosen from S, N and 0; Ci and C 2 each forming, with neighboring imide groups, rings with 5 or 6 atoms, - the groups Ar x and Ar 2 may be identical or different and each represent a divalent group comprising at least one aromatic carbon ring,
  • Optionally substituted having from 6 to 10 carbon atoms and / or a heterocycle of aromatic nature, optionally substituted, having from 5 to 10 atoms and comprising one or more heteroatoms chosen from S, N and 0; at least one of said aromatic rings
  • Such sulfonated polyimides can correspond to the following general formula (I):
  • Ci, C 2 , Ar x and Ar 2 , x and y have the meaning already given above
  • z is a number, preferably from 1 to 10, more preferably from 2 to 6, and where each of the groups Ri and R 2 represents NH 2 , or a group of formula:
  • C 3 is a divalent group comprising at least one aromatic carbon ring, optionally substituted, having 6 to 10 carbon atoms and / or a heterocycle of aromatic nature, optionally substituted, having 5 to 10 atoms and comprising one or more heteroatoms chosen from S, N and 0, C 3 forming with the neighboring imide group a ring with 5 or 6 atoms.
  • thermostable polymer must also be soluble in the solvent of the solution, this solvent can be easily chosen by a person skilled in the art depending on the polymer used.
  • the solvent is generally an organic solvent which is chosen, for example, from polar aprotic solvents, such as dimethylformamide (DMF), dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), alone or in admixture, with, for example, aromatic solvents, such as xylene or solvents of the glycol ether type.
  • polar aprotic solvents such as dimethylformamide (DMF), dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), alone or in admixture, with, for example, aromatic solvents, such as xylene or solvents of the glycol ether type.
  • the solvent can also be a phenolic type solvent, that is to say it is chosen, for example, from phenol, phenols substituted by one or more halogens (Cl, I, Br, F), cresols (o-, m- and p-cresol), cresols substituted by a halogen
  • this casting system is preferably chosen from so-called “Hand Coater” systems or manual applicators.
  • concentration, viscosity, and temperature of the applied polymer solution depend on the nature of the latter, but suitable ranges will be, for example, from 30 to 100 g / l, for the concentration, from 1 to 10 Pa. s, for viscosity, and from 80 to 130 ° C for the temperature of the solution applied by casting (in the case of a polymer of sulfonated polyimide type).
  • This polymer solution poured onto a support or substrate which can be both flexible and rigid.
  • the substrate or support As suitable material for the substrate or support, mention may be made of: glass, aluminum, polyester, etc.
  • the shape of this substrate or support generally corresponds to that of the membrane and the final assembly that we want to prepare. This substrate is generally flat.
  • the substrate or support is perfectly clean during casting.
  • a film, generally planar, of a solution of thermostable polymer on the surface of the substrate or support is obtained. It is a "wet" film, that is to say a rich film. as a solvent and comprising substantially all of the solvent present in the solution used for casting.
  • the thickness of the wet film is variable, it is generally calibrated at a thickness of 500 to 5,000 ⁇ m, for example 3,000 ⁇ m.
  • the polymer solution film is then partially dried by evaporation of the solvent from said solution.
  • the substrate or support is generally maintained at a temperature of 40 to 150 ° C, for example 120 ° C, in order to cause rapid evaporation of the solvent. Such a temperature can be obtained by placing the substrate or support provided with the film of polymer solution in an oven.
  • Drying is partial drying, that is to say that the polymer solution film still contains solvent, generally the fraction of solvent still present is 5 to 20% of the amount of solvent initially present.
  • the drying is stopped after a variable duration, generally from 60 to 120 minutes, when the viscosity of the polymer film has reached a level high enough to withstand the electrode.
  • This viscosity can be easily determined by a person skilled in the art, but it is generally 20 to 30 Pa.s.
  • the electrode is therefore deposited on the surface of said film of thermostable polymer solution during drying, before it is completely dry, the active face of the electrode facing said surface.
  • the electrode is a conventional readily available commercially available electrode of the type commonly used in fuel cells and has already been described above.
  • Such an electrode generally planar, and with a thickness of 100 to 500 ⁇ m, generally comprises a face called the active face containing the catalyst, for example platinum carbon, it is this active face which is delicately deposited on the surface of the film. wet with thermostable polymer solution.
  • the drying of the electrode-membrane assembly obtained is continued for a variable period of 30 to 60 minutes at a temperature of 70 to 150 ° C, for example 120 ° C, in order to eliminate all residual solvent still present and form the final assembly. In fact, it is during this stage that the "membrane" is actually formed. Finally, in a last step, the electrode-membrane assembly is detached from the support or substrate.
  • the thickness of such an assembly is from 100 to 500 ⁇ m.
  • thermostable polymer in the coating process, it is thus possible to apply, spread, the solution of thermostable polymer on a substrate or support, as described above, a reinforcement having been previously disposed on said support.
  • Such a reinforcement can consist of a fabric, for example glass, PEEK, PTFE; a mat, for example glass; a porous material, for example PEEK, PTFE.
  • the polymer for example the sulfonated polyimide used, is in solution in a solvent which can be of variable nature, such as phenol, chlorophenol, cresol, NMP, DMF, DMAc, etc.
  • concentration, the viscosity and temperature of the solution are adjusted to allow the production of a homogeneous film by a coating system such as a "Hand-Coater".
  • the solution of polymer, for example of sulfonated polyimide is then spread on a substrate flexible or rigid, for example made of perfectly clean glass on which the reinforcement is placed.
  • the thickness of the wet film is calibrated to a thickness of 500 to 5,000 ⁇ m, for example in the vicinity of 3,000 ⁇ m.
  • the temperature of the substrate is maintained, for example, in the vicinity of 120 ° C., in order to cause the rapid evaporation of the solvent.
  • the viscosity of the wet film has reached a level high enough to support the electrode.
  • the active face of the electrode containing, for example, the platinum carbon is then placed delicately on the surface of the wet film. This slowly impregnates the active layer, for example, of platinum carbon on the surface of the electrode. The drying of the electrode-membrane assembly is continued for several more minutes in order to remove all of the residual solvent.
  • the electrode-reinforced membrane assembly is then detached from the initial substrate and is then, in turn, used as a substrate to perform a second step.
  • a new wet film is poured onto the membrane of the previous assembly. During the drying of this wet film, a second electrode is carefully deposited in accordance with the description already given above.
  • the preparation of the solution and all the other stages of the process, as well as the conditions thereof, are similar to those described above for the coating process, the only difference being that the reinforcement is placed within the same wet film, at the end of step a).
  • the polymer for example sulfonated polyimide used, is in solution in a solvent which may be of variable nature, such as phenol, chlorophenol, cresol, NMP, DMF, DMAc, etc.
  • concentration, the viscosity and the temperature of the solution are adjusted in order to allow a homogeneous film to be produced by a coating system, such as a “Hand-Coater”.
  • the solution of polymer for example of sulfonated polyimide, is then spread on a substrate, for example of glass, perfectly clean.
  • the thickness of the wet film is calibrated to a thickness of 500 to 5,000 ⁇ m, for example in the vicinity of 3,000 ⁇ m.
  • the reinforcement is then placed by any suitable technique, for example by rolling within the wet film, on the substrate.
  • the temperature of the substrate is maintained, for example in the vicinity of 120 ° C., in order to cause the rapid evaporation of the solvent.
  • the viscosity of the wet film has reached a level high enough to support the electrode.
  • the active face of the electrode containing, for example, the platinum carbon is then placed delicately on the surface of the wet film. This perfectly impregnates the active layer, for example carbon platinized on the surface of the electrode.
  • the drying of the electrode-membrane assembly is continued for several more minutes in order to remove all of the residual solvent.
  • the electrode-membrane assembly is then detached from the substrate and used to make a reinforced electrode-membrane-electrode assembly, in accordance with what has already been described above.
  • the method according to the invention for preparing a complete assembly of electrode - membrane - reinforced electrode, can, according to a variant, be carried out by "impregnation".
  • a polymer solution is prepared in the same manner as above, the polymers and solvents used for the preparation of this solution are the same as those already mentioned above for the coating process.
  • concentration, viscosity, and temperature of the polymer solution are adjusted in this case, in order to allow the impregnation of a reinforcement, this reinforcement being of the type already described above, namely, for example, fabric, matt or porous material, for example glass, PEEK or PTFE.
  • this concentrations, viscosities and temperatures may differ from those indicated in the case of the coating process.
  • the concentration, viscosity and temperature of the polymer solution used for the impregnation depend on the nature of the polymer and possibly that of the reinforcement, but suitable ranges will be, for example from 80 to 120 g / l, for the concentration , from 5 to 15 Pa.s, for the viscosity and from 70 to 120 ° C for the temperature of the solution impregnating the reinforcement (in the case of a polymer of sulfonated polyimide type).
  • the impregnation is generally carried out by simply immersing the reinforcement in the polymer solution.
  • a film of self-supported reinforced thermostable polymer solution is obtained, this film is a “wet” film, that is to say rich in solvent and comprising substantially all of the solvent present in the solution used for impregnating the reinforcement.
  • the thickness of the wet film of polymer solution is variable, it is generally calibrated to a thickness of 1,000 to 2,000 ⁇ m, for example 1,500 ⁇ m.
  • the film of the reinforced and self-supporting polymer solution is then partially dried, by evaporation of the solvent from the said solution.
  • the reinforced and self-supporting wet film is generally maintained at a temperature of 70 to 150 ° C, for example 120 ° C, in order to cause rapid evaporation of the solvent.
  • Such a temperature can be obtained by placing the reinforced self-supporting wet film of polymer solution in an oven. Drying is partial drying, that is to say that the self-supported reinforced film of polymer solution still contains solvent, generally the fraction of solvent still present is 5 to 15% of the amount of solvent initially present.
  • the drying is stopped after a variable duration, generally from 60 to 120 minutes, when the viscosity of the self-supporting reinforced polymer film has reached a sufficiently high level to support the electrodes on either side. .
  • This viscosity which may be different from that, during the analogous step of the coating process, can be easily determined by a person skilled in the art, but it is generally 15 to 20 Pa.s.
  • the electrodes are therefore deposited on each of the surfaces of said reinforced wet film, self-supported with thermostable polymer solution during drying, before it is completely dry, the active face of each of the electrodes containing, for example platinum carbon, forming facing each of said surfaces.
  • the electrodes are conventional electrodes, of the type commonly used in fuel cells and they have already been described above. These electrodes generally comprise a face called the active face containing the catalyst, for example platinum carbon, it is the active face of each of the electrodes which is delicately deposited on each of the self-supporting reinforced wet film surfaces of thermostable polymer solution.
  • the drying of the electrode-membrane assembly obtained is continued for a variable period of 30 to 60 minutes at a temperature of 70 to 150 ° C, for example 120 ° C, in order to eliminate all residual solvent still present and form the complete final EME assembly. In fact, it is during this stage that the "membrane" is actually formed.
  • This process allows in just two simple steps to obtain a complete assembly.
  • the EME assemblies, prepared according to the invention, can be used, in particular, in a fuel cell that can operate, for example, with the following systems:
  • alcohols such as methanol
  • the present invention also relates to a fuel cell device comprising at least one EME assembly prepared by the method according to the invention.
  • thermostable membranes for example due to the excellent mechanical properties, the membrane can undergo without deterioration the stresses (tightening, etc.) associated with mounting in such a device.
  • thermostable membranes of sulfonated polyimide type are, for example, described in document FR-A-2,748,485, already cited.
  • the fuel cell can, for example, correspond to the diagram already given in FIG. 1.
  • Such a fuel cell in which the EME assembly or assemblies are prepared by the process according to the invention has, therefore, all the advantages due to these assemblies and to the excellent quality of their interface: in particular, excellent solidity assemblies, reliability, excellent mechanical and electrochemical properties (change in voltage as a function of current density at least similar to “all NAFION®” assemblies), impermeability to gases, etc., all of these properties being perfectly reproducible and not subject to no degradation over time.
  • the temperature of the cell is generally maintained between 50 and 80 ° C. and, under these conditions, it produces for example a current density of 0.5 A / cm 2 with a voltage of 0.6 V and this over a very long period of time up to 3000 hours, which demonstrates the excellent thermal and mechanical and other stability properties of the assemblies and its excellent properties electric.
  • the sulfonated polyimide used is in solution in metacresol.
  • concentration, viscosity and temperature of the solution are adjusted in order to allow the production of a homogeneous film by a “Hand-Coater” system and are as follows:
  • the solution of the sulfonated polyimide is then spread over a glass substrate of rectangular shape 3 mm thick and perfectly clean.
  • the thickness of the wet film is calibrated in the vicinity of 3000 ⁇ m.
  • the temperature of the substrate is maintained in the vicinity of 120 ° C. in order to cause the rapid evaporation of the solvent.
  • the viscosity of the wet film has reached a level high enough to support the electrode.
  • This electrode is an electrode provided by the SORAPEC ® Company.
  • the face of the electrode containing the platinum carbon is then gently placed on the surface of the wet film. This slowly impregnates the layer of platinum carbon on the surface of the electrode. The drying of the electrode-membrane assembly is continued for a further ... minutes in order to remove all of the residual solvent.
  • the electrode - membrane assembly is then detached from the substrate.
  • Step 1 It involves the realization of an electrode - membrane - electrode assembly in sulfonated polyimide in two distinct steps: Step 1
  • a first electrode-membrane assembly is carried out in accordance with the description of the example
  • the electrode-membrane assembly thus obtained is used as a substrate to carry out the second step.
  • a new wet film is poured onto the membrane of the previous assembly. During the drying of this wet film, a second electrode is carefully deposited, as described in Example 1.
  • the sulfonated polyimide used is the same as above.
  • the concentration, viscosity and temperature of the solution are adjusted in order to allow the production of a homogeneous film by a “Hand-Coater” system and are the same as in Example 1.
  • the solution of sulfonated polyimide is then spread on a glass substrate perfectly clean on which is arranged a reinforcement, which is a fabric PEEK from the SEFAR ® Corporation.
  • the thickness of the wet film is calibrated in the vicinity of 3000 ⁇ m.
  • the temperature of the substrate is maintained in the vicinity of 120 ° C. in order to cause the rapid evaporation of the solvent.
  • the viscosity of the wet film has reached a level high enough to support the electrode, namely 15 Pa.s.
  • the face of the electrode containing the platinum carbon is then gently placed on the surface of the wet film. This slowly impregnates the layer of platinum carbon on the surface of the electrode.
  • the drying of the electrode-membrane assembly is continued for 60 minutes in order to remove all of the residual solvent therefrom.
  • the electrode-reinforced membrane assembly is then detached from the substrate and used as a substrate to perform a second step.
  • a new wet film is poured onto the membrane of the previous assembly. During the drying of this wet film, a second electrode is carefully deposited, as described in Example 1.
  • the sulfonated polyimide used is the same as above and it is in solution in a solvent which is metacresol.
  • the concentration, the viscosity and the temperature of the solution are adjusted in order to allow the production of a homogeneous film by a “Hand-Coater” system, they are identical to those of Example 1.
  • the solution of sulfonated polyimide is then spread on a perfectly clean glass substrate.
  • the thickness of the wet film is calibrated in the vicinity of 3000 ⁇ m.
  • the reinforcement is then deposited within the wet film, on the substrate. Under the action of his own weight, the reinforcement penetrates the thickness of the wet film until it is in contact with the substrate.
  • the temperature of the substrate is maintained in the vicinity of 120 ° C. in order to cause the rapid evaporation of the solvent.
  • the viscosity of the wet film has reached a level high enough to support the electrode.
  • the face of the electrode containing the platinum carbon is then gently placed on the surface of the wet film. This perfectly impregnates the layer of platinum carbon on the surface of the electrode.
  • the drying of the electrode-membrane assembly is continued for another 60 minutes in order to remove all of the residual solvent.
  • the electrode-membrane assembly is then detached from the substrate and used to make a reinforced electrode-membrane-electrode assembly, as described in Example 2.
  • the sulfonated polyimide used is in solution in a solvent which is metacresol.
  • concentration, viscosity and temperature of the solution are adjusted to allow the reinforcement to be impregnated and are as follows: - concentration: 80 g / 1;
  • the thickness of the self-supporting reinforced wet film is calibrated in the vicinity of 3000 ⁇ m.
  • the temperature of the self-supporting reinforced wet film is maintained in the vicinity of 120 ° C., in order to cause the rapid evaporation of the solvent.
  • the viscosity of the self-supporting reinforced wet film has reached a sufficiently high level, namely 15 Pa.s, to support the electrodes on both sides.
  • the face of the electrodes containing the platinum carbon is then placed delicately on the surface of the self-supporting reinforced wet film. This perfectly impregnates the layer of platinum carbon on the surface of the electrodes.
  • the drying of the electrode - membrane - electrode assembly is continued for several more minutes, in order to remove all of the residual solvent.
  • Example 1 The assemblies obtained in Example 1, with the sulfonated polyimide membrane, the structure of which is described in Example 1, are characterized by the fact that the electrode-membrane interface is of very good quality as shown in the figure. 2. Indeed, in this photograph, obtained by scanning electron microscopy, the electrode-membrane interface is perfectly regular and free from defects and no homogeneity is visible.
  • the cohesion between the electrode and the membrane is such that it is no longer possible to separate them, unlike the assemblies produced by existing methods.
  • This type of analysis by scanning electron microscopy aimed at characterizing the membrane-electrode interface makes it possible to distinguish the assemblies obtained by the process of the invention, from the assemblies obtained by any other process based on the pressing of a formed membrane and an electrode.
  • any other process based on the pressing of a formed ("dry") membrane and an electrode leads to the formation of defects at the membrane - electrode interface, as shown in FIG. 3 in which the reference numbers have the same meaning as in Figure 2.
  • FIG. 3 which represents the membrane - electrode interface of an assembly obtained by pressing, according to the prior art, there are clearly different vacuoles and various defects. These defects are the cause of the poor electrochemical performance of these assemblies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Procédé de préparation d'un assemblage comprenant au moins une électrode présentant une face active, et une membrane en un polymère thermostable, dans lequel on effectue les étapes suivantes: a) on coule sur un support une solution d'un polymère thermostable de façon à obtenir un film de solution de polymère thermostable; puis b) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution; c) on dépose une électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface, de façon à obtenir un assemblage comprenant une membrane en polymère thermostable et ladite électrode; d) on sèche complètement ledit assemblage obtenu lors de l'étape c); puis e) on décolle l'assemblage comprenant ladite membrane et ladite électrode du substrat. Assemblages électrode - membrane et électrode - membrane - électrode (EME) obtenus par le procédé et pile à combustible comprenant ces assemblages.

Description

PROCEDE DE PREPARATION D'ASSEMBLAGES ELECTRODE - MEMBRANE, ASSEMBLAGES AINSI OBTENUS ET PILES A COMBUSTIBLE COMPRENANT CES ASSEMBLAGES
DESCRIPTION
10 La présente invention a trait à un procédé de préparation d'assemblages électrode - membrane et électrode - membrane - électrode et aux assemblages ainsi obtenus.
Ces assemblages sont plus précisément des
15 assemblages électrode - membrane - électrode, dans lesquels les membranes sont des membranes polymères, éc angeuses d'ions, de tels assemblages trouvent plus particulièrement leur application dans les piles à combustible, notamment les piles à combustible à basses
20 températures fonctionnant généralement depuis la température ambiante, jusqu'à environ 100°C, telles que les piles à combustible à membrane échangeuse de protons fonctionnant soit avec le couple gazeux
(H2/oxygène de l'air), connu sous le nom de PEMFC, soit
25 avec le couple méthanol/oxygène de l'air, connu sous le nom de DMFC (« Direct Methanol Fuel Cell », en anglais ) .
En conséquence, l'invention a également trait à un dispositif de pile à combustible, en
30 particulier du type à électrolyte solide, comprenant au moins un desdits assemblages électrode - membrane - électrode .
Le domaine technique de l'invention peut ainsi être défini comme celui des piles à combustible, en particulier des piles à combustible du type à électrolyte solide.
Les piles à combustible du type à électrolyte polymère solide trouvent, en particulier, leur application dans les véhicules électriques qui font actuellement l'objet de nombreux programmes de développement, afin d'apporter une solution à la pollution causée par les véhicules à moteur thermique.
Les piles à combustible à électrolyte polymère solide pourraient permettre, en jouant le rôle de convertisseur d'énergie électrochimique, associé à un réservoir d'énergie embarquée, par exemple de l'hydrogène ou un alcool, de surmonter les problèmes, notamment de temps de recharge et d'autonomie, liés à l'utilisation de batteries dans les véhicules électriques.
L'assemblage schématique d'une pile à combustible, permettant la production d'énergie électrique, est représenté en partie sur la figure 1 jointe. L'élément essentiel d'une telle pile est une membrane de type echangeuse d'ions, plus précisément une membrane echangeuse de protons, formée d'un électrolyte solide polymère, plus précisément d'un polymère conducteur protonique (1) ; cette membrane sert à séparer le compartiment anodique (2), où se produit l'oxydation du combustible, tel que l'hydrogène H2 (4), selon le schéma :
2H2 → 4H+ + 4e",
du compartiment cathodique (3), où l'oxydant, tel que l'oxygène de l'air 0 (5) est réduit, selon le schéma :
02 + 4H+ + 4e" → 2H20,
avec production d'eau (6), tandis que l'anode et la cathode sont reliées par un circuit extérieur (10). L'eau ainsi produite circule entre les deux compartiments par électro-osmose et par diffusion (flèches 11, 12) .
Les électrodes volumiques (13), conductrices, électroniques, placées de part et d'autre de la membrane, comprennent généralement une zone active (14) et une zone diffusionnelle (15) . La zone active, prévue généralement sur l'une des surfaces de l'électrode, est constituée d'un feutre poreux téfloné, chargé de noir de carbone ou de graphite poreux, recouvert d'un métal noble finement divisé (16) (par exemple, sous forme de grains) , tel que le platine, et d'un mince dépôt de polymère conducteur ionique, de structure généralement similaire à celle de la membrane. La zone diffusionnelle (15) est quant à elle, constituée d'un matériau poreux, par exemple du même feutre poreux téfloné, chargé de noir de carbone, ou du même graphite poreux, rendu hydrophobe par l'intégration d'un polymère hydrophobe, tel que le PTFE. Le caractère hydrophobe permet l'évacuation de l'eau liquide. Le métal noble, tel que le platine, situé dans la zone active, permet soit d'oxyder l'hydrogène ou le méthanol à l'anode, soit de réduire l'oxygène à la cathode.
Les protons produits à l'anode, par oxydation, par exemple de l'hydrogène, en surface des grains de métal noble, tel que le platine, sont transportés (9) au travers de la membrane jusqu'à la cathode où ils se recombinent avec les ions produits par la réduction, par exemple de l'oxygène de l'air pour donner de l'eau (6).
Les électrons, ainsi produits (IV), permettent d'alimenter, par exemple, un moteur électrique (18) placé dans le circuit extérieur (10), avec comme seul sous-produit de la réaction, de l'eau.
L' ensemble membrane et électrodes est un assemblage très mince d'une épaisseur de l'ordre du millimètre, appelé « assemblage électrode - membrane - électrode (EME) » et chaque électrode est alimentée par l'arrière, par exemple à l'aide d'une plaque cannelée, par les gaz.
Les densités de puissance obtenues par cette recombinaison et qui sont généralement de l'ordre de 0,5 à 2 W/cm2, dans le cas où l'on met en oeuvre de l'hydrogène et de l'oxygène, nécessitent l'association de plusieurs de ces structures électrode volumique-membrane-électrode volumique pour obtenir, par exemple les 50 kW nécessaires à un véhicule électrique standard. Autrement dit, il est nécessaire d'assembler un nombre important de ces structures, dont les surfaces élémentaires peuvent être de l'ordre de 20 x 20 cm2, pour obtenir la puissance voulue, notamment dans le cas où la pile à combustible est mise en œuvre dans un véhicule électrique.
Dans ce but, chaque ensemble formé de deux électrodes et d'une membrane, définissant une cellule élémentaire de la pile à combustible, est ainsi disposé entre deux plaques étanches (7, 8) qui, d'une part, assurent la distribution de l'hydrogène, côté anode et, d'autre part, de l'oxygène côté cathode. Ces plaques sont appelées des plaques bipolaires.
La membrane conductrice ionique est généralement une membrane organique contenant des groupes ioniques qui, en présence d'eau, permettent la conduction des protons (9) produits à l'anode par oxydation de l'hydrogène.
L' épaisseur de cette membrane est de quelques dizaines à quelques centaines de microns et résulte d'un compromis entre la tenue mécanique et la chute ohmique. Cette membrane permet également la séparation des gaz. La résistance chimique et électrochimique de ces membranes permet, en général, un fonctionnement en pile sur des durées supérieures à 1 000 heures.
Le polymère constituant la membrane doit donc remplir un certain nombre de conditions relatives à ses propriétés mécaniques, physico-chimiques et électriques. Le polymère doit tout d' abord pouvoir donner des films minces, de 50 à 100 micromètres, denses, sans défauts. Les propriétés mécaniques, module de contrainte à la rupture, ductilité, doivent le rendre compatible avec les opérations d'assemblage comprenant, par exemple, un serrage entre des cadres métalliques .
Les propriétés doivent être préservées en passant de l'état sec à l'état humide. Le polymère doit avoir une bonne stabilité chimique vis-à-vis de l'hydrolyse et présenter une bonne résistance à la réduction et à l'oxydation jusqu'à 100°C. Cette stabilité s'apprécie en terme de variation de résistance ionique, et en terme de variation des propriétés mécaniques.
Le polymère doit enfin posséder une forte conductivité ionique, cette conductivite est apportée par des groupements acides forts, tels que des groupements acides phosphoπques, mais surtout sulfoniques reliés à la chaîne du polymère. De ce fait, ces polymères seront généralement définis par leur masse équivalente, c'est-à-dire par le poids de polymère en gramme par équivalent acide.
A titre d'exemple, les meilleurs systèmes développés actuellement sont capables de fournir une puissance spécifique de 1 W.cm"2, soit une densité de courant de 2 A. cm"2 pour 0,5 Volts.
Les polymères les plus utilises actuellement sont des copolymères thermoplastiques fluorés sulfonés dont la chaîne principale linéaire est perfluoree et dont la chaîne latérale porte un groupement acide sulfonique.
Ces copolymères thermoplastiques sont disponibles dans le commerce sous la marque déposée de NAFION® de la Société Du Pont, ou ACIPLEX-S® de la Société Asahi Chemical, d'autres sont expérimentaux, produits par la Société DOW pour la fabrication de la membrane dénommée "XUS".
On a vu que les réactions électrochimiques, décrites par les opérations mentionnées ci-dessus, mettent en jeu des protons provenant de la membrane, des électrons, le catalyseur situé sur l'une des surfaces de l'électrode et enfin soit le réducteur, tel que l'hydrogène, soit l'oxydant, tel que l'oxygène de l'air, ces réactions se produisant essentiellement à la limite ou interface entre la membrane et l'électrode.
Il est donc clair que les performances d'un assemblage électrode-membrane et donc de la pile à combustible sont étroitement liées à la qualité de l'interface électrode - membrane, dont dépend fondamentalement la probabilité de présence simultanée dans cette zone des différentes espèces, citées ci-dessus. Le procédé de fabrication des ensembles ou assemblages électrode - membrane - électrode a une influence décisive sur la qualité de l'interface électrode - membrane.
La fabrication des ensembles électrode - membrane - électrode (EME) n'est pas ou très peu décrite dans la littérature. En effet, il s'agit le plus souvent d'un savoir-faire propre à chaque laboratoire ou industriel, impliqué dans la fabrication de piles à combustible.
Le procédé de fabrication des EME, le plus souvent cité, consiste à réaliser les ensembles EME par passage à chaud des électrodes en vis-à-vis sur la membrane echangeuse de protons, ladite membrane ayant été préalablement, séparément préparée, généralement par coulée, et complètement séchée.
Cette technique est communément employée dans le cas des membranes échangeuses de protons, les plus couramment utilisées à l'heure actuelle et déjà mentionnées ci-dessus ; à savoir, les membranes en polymère de type NAFION®.
Pour fabriquer les ensembles EME, les électrodes sont préalablement imprégnées, par exemple, d'une solution de NAFION®, puis sont pressées à chaud, entre 120° et 150°C, sur les deux faces de la membrane. Le caractère thermoplastique du NAFION et l'imprégnation des électrodes, à l'aide d'un polymère identique à celui qui compose la membrane permettent d'obtenir une excellente qualité de l'interface électrode - membrane, aussi bien du point de vue des propriétés mécaniques, représentées par une excellente adhésion, que de celui de la surface d'échange protons - électrodes.
Les performances électrochimiques de piles à combustible incorporant de tels assemblages sont donc satisfaisantes .
Toutefois, ce procédé de fabrication des ensembles EME présente plusieurs inconvénients majeurs : en premier lieu, ce procédé est difficilement industrialisable et les polymères de type NAFION® sont extrêmement coûteux. Or, dans l'optique du développement de piles à combustible utilisables pour la traction automobile, un autre problème essentiel, désormais bien identifié par les experts, est le coût de la membrane, ce dernier est avec celui des plaques bipolaires le facteur prépondérant influençant le prix de revient de la pile à combustible. En 1995, le coût des membranes produites ou en développement est de l'ordre de 3 000 à 3 500 F/m2 et l'on estime qu'il faut diviser ce coût par 10, voire par 20, pour assister à un développement industriel des piles à combustible pour l'industrie automobile. Dans une perspective d'abaissement des coûts, des poly 1, - (diphényl-2, 6) -phényléther sulfonés sur la chaîne principale, des polyéthersulfones et polyéthercétones ont été synthétisés et testés sans réellement rivaliser avec les membranes fluorées en ce qui concerne les performances instantanées et la durabilité.
Afin de fournir des membranes répondant aux conditions relatives, notamment à leurs propriétés mécaniques, physico-chimiques et électriques, tout en présentant un coût de fabrication nettement plus faible que celui, prohibitif des membranes perfluorées, décrits plus haut, ont été développés de nouveaux polymères en polyimides sulfonés qui sont décrits dans le document FR-A-2 748 485. Or, le procédé, décrit plus haut, n'est pas adapté aux autres types de membranes, c'est-à-dire aux membranes qui ne sont pas en un polymère thermoplastique, tel que le NAFION®.
En particulier, le procédé employé dans le cas des membranes NAFION ne convient absolument pas aux membranes qui sont composées d' un polymère sulfoné à squelette thermostable, polymère parmi lesquels, on peut citer les polyimides, les polyéthersulfones, les polyétheréthercétones, les polybenzoxazoles, les polybenzimidazoles, les polyphénylènes et leurs dérivés, etc..
En effet, de telles membranes ne possèdent ni le caractère thermoplastique, ni la structure chimique du NAFION® et elles ne présentent donc aucune affinité pour l'électrode imprégnée d'une solution de NAFION et la qualité de l'interface électrode - membrane est médiocre.
En outre, dans le cas où la membrane est un polymère thermostable, le procédé implique l'emploi de plusieurs composés, à savoir un polymère sulfoné thermostable pour la membrane echangeuse de protons et une solution de NAFION® pour l'imprégnation de
1' électrode .
De plus, le procédé est alors un procédé discontinu complexe comprenant de multiples étapes, entre autres : élaboration de la membrane echangeuse de protons, imprégnation des électrodes, pressage, chauffage .
Il en résulte que les performances et même l'intérêt de tels assemblages, mettant en jeu une membrane en polymère thermostable et une électrode imprégnée de polymère de type NAFION , sont extrêmement limités du point de vue industriel.
Si l'on souhaite conserver tous les avantages des membranes en polymère sulfoné thermostable en matière, notamment, de coût de revient, et surmonter les inconvénients mentionnés ci-dessus en améliorant notamment la qualité de l'interface électrode - membrane, il a été envisagé, de la même manière que pour les membranes en polymère de type NAFION®, d'imprégner les électrodes avec une solution du polymère qui compose la membrane dans le cas des polymères sulfonés à squelette thermostable, tels que les polyimides, les polyéthersulfones, les polyétheréthercétones, les polybenzoxazoles, les polybenzimidazoles, les polyphénylènes et leurs dérivés, etc.
Toutefois, la rigidité mécanique de cette famille de polymères provoque l'apparition de fortes contraintes mécaniques aux interfaces durant la phase de séchage par évaporation du solvant.
En outre, l'absence de caractère thermoplastique de ces polymères ne permet pas d'établir un contact suffisant entre la membrane et les électrodes imprégnées. Dans ce cas, les performances électrochimiques ne sont pas aussi élevées et ne sont pas reproductibles d'une opération à une autre. La qualité des interfaces n'est pas suffisante pour permettre au conducteur protonique d'être intimement en contact avec le conducteur électronique et le catalyseur à la surface de l'électrode. Ce type d'assemblage est susceptible d'être sensible au vieillissement et d'évoluer rapidement en fonction du temps. Malgré un pressage à haute température, l'adhésion électrode - membrane reste faible. Enfin, les multiples étapes, dé à indiquées plus haut, qui jalonnent la réalisation de ces assemblages constituent un obstacle à la fabrication en continu .
On connaît, par ailleurs, d'après le document US-A-5 242 764, un procédé d'assemblage permettant d'éviter l'emploi d'une membrane echangeuse de protons. Cette technique est basée sur l'imprégnation des électrodes, à l'aide d'une quantité élevée d'une solution de NAFION , suivie du collage à chaud des deux électrodes ainsi imprégnées. Cette technique est, de nouveau, seulement adaptée aux polymères thermoplastiques du type NAFION ® et permet difficilement d'obtenir une couche de polymère conducteur protonique homogène et imperméable au gaz. II existe donc un besoin pour un procède de fabrication, de préparation, d'assemblages comprenant une électrode et une membrane en un polymère thermostable, aussi appelés assemblages élémentaires, et d'assemblages électrode - membrane - électrode, qui soit simple, fiable, reproductible, et sûr ; qui ne présente qu'un nombre limité d'étapes, qui soit d'un coût limité, et qui puisse être mis en œuvre en continu, ce procédé présentant, par ailleurs, tous les avantages inhérents à l'utilisation de membranes en polymères thermostables. Ce procédé doit permettre, en outre, d' obtenir des interfaces électrode - membrane d'excellente qualité, sans défauts, avec une cohésion très élevée de la liaison électrode - membrane et un contact intime du catalyseur avec la membrane, ces propriétés étant stables au cours du temps et peu sensibles au vieillissement.
Les assemblages électrode - membrane - électrode obtenus doivent enfin présenter des propriétés électrochimiques excellentes et parfaitement reproductibles .
Le but de la présente invention est de fournir un procédé de préparation d'un assemblage comprenant une électrode et au moins une membrane en un polymère thermostable, plus précisément un procédé de préparation d'un assemblage électrode - membrane - électrode, qui réponde, entre autres, à l'ensemble des besoins indiqués ci-dessus.
Le but de la présente invention est encore de fournir un procédé de préparation d'un assemblage comprenant une électrode et une membrane en un polymère thermostable, plus précisément d'un assemblage électrode - membrane - électrode (EME) constitué d'une membrane en un polymère thermostable et de deux électrodes, qui ne présente pas les inconvénients, défauts, limitations et désavantages des procédés de l'art antérieur et qui résolve les problèmes posés par les procédés de l'art antérieur.
Ce but et d'autres encore sont atteints, conformément à l'invention par un procédé de préparation d'un assemblage comprenant au moins une électrode (de préférence une) présentant une face active, et une membrane en un polymère thermostable, dans lequel on effectue les étapes suivantes : a) on coule sur un support une solution d'un polymère thermostable de façon à obtenir un film de solution de polymère thermostable ; puis b) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution ; c) on dépose une électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface, de façon à obtenir un assemblage comprenant une membrane en polymère thermostable (formée par ledit film de solution de polymère partiellement séché) et ladite électrode ; d) on sèche complètement ledit assemblage obtenu lors de l'étape c) ; puis e) on décolle l'assemblage comprenant ladite membrane et ladite électrode du substrat.
Le procédé selon l'invention permet de répondre aux besoins et de remédier aux inconvénients mentionnés ci-dessus. Le procédé selon l'invention convient tout particulièrement aux membranes en polymère thermostable dont les avantages, inhérents à ce type de polymère, se répercutent également sur le procédé qui les met en œuvre . Le procédé selon l'invention comporte un nombre limité d'étapes, simples, faciles à réaliser par des moyens éprouvés, il est fiable et reproductible, réalisable à faible température, sans consommation d'énergie importante, ne demande qu'une durée relativement limitée, et n'implique que peu de matières premières, celles-ci se limitant au polymère, au solvant et à l'électrode.
Au contraire, des procédés de l'art antérieur, il permet une fabrication en continu et à faible coût. De manière fondamentale, selon l'invention, l'assemblage électrode - membrane est réalisé durant l'élaboration de la membrane par coulée.
Selon l'invention, conformément à l'étape c) du procédé, on dépose l'électrode simplement, directement et sans autres opérations (telles que pressage ou autres, comme dans l'art antérieur), sur la surface de la membrane au cours du séchage de celle-ci, c'est-à-dire que la membrane est alors constituée d'un film de solution de polymère thermostable encore humide et non complètement sec.
On sait que, de manière classique, la membrane est préparée par coulée d'une solution du polymère sur un substrat ou support, de manière à obtenir un film de solution de polymère, notamment de polymère thermostable, puis que ce film de polymère en solution est ensuite séché par évaporation totale du solvant, l'extrait sec obtenu constituant la membrane telle que la membrane echangeuse de protons.
Dans les procédés de fabrication d'assemblages électrode - membrane et d'assemblages EME de l'art antérieur, tels que les procédés de pressage à chaud, l'opération d'assemblage visant à réaliser l'assemblage et à établir une liaison entre la ou les électrodes et la membrane est dans tous les cas effectuée avec une membrane dont le processus d'élaboration a été conduit à son terme et qui est complètement sèche. C'est donc une membrane entièrement, totalement formée et sèche qui est utilisée dans les procédés de l'art antérieur.
Selon l'invention, on va à l' encontre de cette démarche, unanimement suivie dans l'art antérieur, en se servant, lors de la préparation de l'assemblage d'une membrane en cours de formation, non encore totalement formée, encore humide et pas totalement sèche. Dans l'étape c) essentielle, du procédé de l'invention, au cours du séchage, et lorsque la viscosité du film de polymère en solution a atteint un niveau optimal, une électrode est soigneusement déposée à la surface du film.
Une fraction bien déterminée de la solution de polymère imprègne alors l'électrode, et plus précisément, la couche active située sur la face active de celle-ci qui fait face à la surface du film de polymère en solution. Cette imprégnation se fait simplement sous l'action du poids de l'électrode dans le polymère encore visqueux et sans qu'aucune pression ne soit appliquée.
Grâce au procédé de l'invention et notamment du fait de l'étape c) spécifique qu'il comporte l'interface électrode - membrane est d'excellente qualité. Il est totalement surprenant qu'une interface d'une telle qualité soit obtenue avec des membranes en polymère thermostable ; un tel résultat, qui n'était jusqu'à présent obtenu que pour des polymères thermosplastiques de type NAFION®, est atteint pour la première fois en mettant en œuvre le procédé de l'invention. Il a été montré que l'interface électrode - membrane préparée par le procédé de l'invention était parfaitement régulière et sans défaut .
La cohésion entre l'électrode et la membrane et l'électrode est telle qu'il n'est plus possible de les séparer, contrairement aux assemblages réalisés par les procédés de l'art antérieur. Cette adhérence excellente est, parmi d'autres, un des effets et avantages fondamentaux apportés par le procédé de l'invention, par rapport aux procédés de l'art antérieur, tels que les procédés basés sur le pressage à chaud de l'électrode ou des électrodes sur la membrane .
On peut expliquer que, dans le procédé de l'invention l'opération de dépôt selon l'étape c) étant réalisée lorsque la membrane n'est pas encore totalement formée ou sèche, cela signifie plus précisément que la substance qui imprègne l'électrode est composée de polymère thermostable, plus particulièrement de polymère conducteur protonique, et d'une légère fraction de solvant. Cela permet d'entraîner du conducteur protonique, de façon homogène au sein même de la couche active de l'électrode. L' assemblage ainsi obtenu est ensuite séché dans des conditions précises à température modérée, généralement de 70°C à 150°C, de préférence à une température de 100°C à 120°C. Un exemple de température adéquate est notamment proche de 70°C. Cela qui favorise la présence de polymère conducteur protonique au voisinage du conducteur électronique et du catalyseur contenus dans l'électrode.
En d'autres termes, grâce à la qualité des interfaces obtenus par le procédé de l'invention, il existe un contact étroit entre la membrane et la ou les électrode (s) , c'est-à-dire que le conducteur protonique est intimement en contact avec le conducteur électronique et le catalyseur à la surface de l'électrode. Il en découle que les assemblages préparés par le procédé de l'invention présentent des propriétés et performances électrochimiques très élevées et parfaitement reproductibles, c'est-à-dire, en particulier, une évolution de la tension en fonction de la densité de courant au moins similaire aux assemblages « tout NAFION® ».
Afin d'améliorer encore les propriétés mécaniques des assemblages selon l'invention, on peut à l'issue de l'étape a) disposer un renfort au sein du film de solution de polymère thermostable, par exemple, par laminage.
Ou bien, dans le même but, on peut disposer un renfort sur le support ou substrat, préalablement à l'étape a) du procédé selon l'invention.
L' invention concerne plus précisément un procédé de préparation d'un assemblage électrode - membrane - électrode constitué d'une membrane en polymère thermostable et de deux électrodes. Ce procédé comprend, tout d'abord, la réalisation d'un premier assemblage électrode membrane par le procédé précédemment décrit, puis à l'issue de l'étape e) , on procède à l'étape f) suivante : on coule sur la face de l'assemblage constituée par la membrane une solution d'un polymère thermostable, de façon à obtenir un film de solution de polymère thermostable ; puis on répète sensiblement les étapes b) à e) . En d'autres termes, l'assemblage électrode - membrane obtenu à l'issue de l'étape c) est ensuite utilisé comme substrat lors d' une seconde opération de coulée, séchage partiel, dépôt d'une seconde électrode, et séchage total. Les étapes de ce procédé seront donc, outre les étapes a) , b) , c) , d) , e) et f) , les étapes suivantes : g) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution ; h) on dépose une seconde électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de la seconde électrode faisant face à la surface dudit film, de façon à obtenir un assemblage électrode - membrane en polymère thermostable - électrode ; puis i) on sèche complètement ledit assemblage électrode - membrane - électrode obtenu lors de l'étape h) . Les avantages et effets apportés par ce procédé sont ceux déjà décrits plus haut, en particulier les assemblages possèdent des propriétés mécaniques, électrochimiques (évolution de la tension en fonction de la densité de courant), etc., supérieures aux assemblages obtenus par le procédé de l'art antérieur.
Selon une variante du procédé de l'invention, appelé procédé par « imprégnation » par opposition au procédé par « enduction », décrit dans ce qui précède, on prépare un assemblage électrode - membrane - électrode par les étapes suivantes : a) on imprègne un renfort par une solution d'un polymère thermostable, de façon à obtenir un film de solution de polymère thermostable renforcé et autosupporté ; puis b) on sèche partiellement ledit film de solution de polymère thermostable renforcé et autosupporté, par évaporation du solvant de ladite solution ; c) on dépose une électrode sur chacune des faces dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de chacune des électrodes faisant face à chacune des surfaces dudit film ; d) on sèche complètement ledit assemblage obtenu lors de l'étape c) .
Selon une caractéristique particulièrement avantageuse du procédé de l'invention, qu'il s'agisse du procédé par enduction ou du procédé par imprégnation, celui-ci peut être réalisé en continu, ce qui n'est pas le cas des procédés de l'art antérieur.
L'invention concerne également les assemblages comprenant au moins une membrane et au moins une électrode, ainsi que les assemblages électrode - membrane - électrode susceptibles d'être obtenus par le procédé ci-dessus. On a vu que ces assemblages, en tant que tels et du fait de l'excellente et surprenante qualité de leur interface et des propriétés mécaniques (adhérence, etc.) et électrochimiques (évolution de la tension en fonction de la densité de courant) qui en découlent, possédaient, de manière inhérente, des propriétés les différenciant des assemblages de l'art antérieur et les rendant supérieurs à ceux-ci.
L'invention concerne, en outre, un dispositif de pile à combustible comprenant au moins un assemblage électrode - membrane - électrode obtenu par le procédé selon l'invention. De la même manière, les piles possèdent, en tant que telles, d'excellentes et surprenantes propriétés, dues aussi bien aux propriétés des membranes thermostables qu'aux propriétés des assemblages EME, les propriétés découlant directement de la mise en œuvre du procédé de l'invention. L'invention va maintenant être décrite plus en détail, en faisant référence aux dessins joints, dans lesquels :
- la figure 1 représente schématiquement une pile à combustible comprenant plusieurs cellules élémentaires avec un assemblage électrode - membrane - électrode, ainsi que des plaques bipolaires ; la figure 2 est une image obtenue en microscopie électronique à balayage d'une interface électrode - membrane obtenue par le procédé de l'invention avec une membrane en polyimide sulfoné. L'échelle est de 10 μm ;
- la figure 3 est une image obtenue en microscopie électronique à balayage d' une interface électrode - membrane obtenue par un procédé de l'art antérieur avec une membrane en polyimide sulfoné. L'échelle est de 10 μm.
De manière plus précise, le procédé selon l'invention, dans sa variante, dite par « enduction », comprend tout d'abord la préparation d'une solution, dans un solvant, d'un polymère thermostable. Le polymère thermostable peut être tout polymère connu. Le procédé selon l'invention s'adapte à l'ensemble des polymères susceptibles de donner des membranes par coulée. Par thermostable, on entend généralement un polymère dont la température de transition vitreuse (cas des polymères amorphes) ou de fusion (cas des polymères semi-cristallins) est supérieure à la température de dégradation du polymère.
De préférence, le polymère est un polymère échangeur d'ions, de préférence encore un polymère conducteur protonique, tel qu'un polymère sulfoné, mais un polymère porteur de fonctions phosphates ou autre pourra aussi convenir. Parmi les polymères adéquats, on peut citer, à titre d'exemple, les polyimides sulfonés, les polyéthersulfones sulfonés, les polystyrènes sulfonés et leurs dérivés sulfonés, les polétheréthercétones sulfonés et leurs dérivés sulfonés, les polybenzoxazoles sulfonés, les polybenzimidazoles sulfonés, les polyparaphénylènes sulfonés et leurs dérivés sulfonés.
Des polymères particulièrement préférés sont les polyimides sulfonés décrits dans le document FR-A-2 748 485 incorporé ici à titre de référence, notamment pour les parties de ce document décrivant ces polymères .
D' autres polymères de type polyimide sulfoné sont les polyimides sulfonés séquences formés par les blocs ou séquences représentés par les formules (Ix) et (Iy) suivantes :
Figure imgf000024_0001
dans lesquelles : - x est un nombre réel, de préférence supérieur ou égal à 4, de préférence encore de 4 à 15 ; et
- y est un nombre réel, de préférence supérieur ou égal à 5, de préférence encore de 5 à 10 ;
- et les groupes Ci et C2 peuvent être identiques ou différents et représentent chacun un groupe tétravalent comprenant au moins un cycle aromatique carboné, éventuellement substitué, ayant de 6 à 10 atomes de carbone et/ou un hétérocycle à caractère aromatique, éventuellement substitué, ayant de 5 à 10 atomes et comprenant un ou plusieurs hétéroatomes choisis parmi S, N et 0 ; Ci et C2 formant chacun, avec les groupes imides voisins, des cycles à 5 ou 6 atomes, - les groupes Arx et Ar2 peuvent être identiques ou différents et représentent chacun un groupe divalent comprenant au moins un cycle aromatique carboné,
10 éventuellement substitué, ayant de 6 à 10 atomes de carbone et/ou un hétérocycle à caractère aromatique, éventuellement substitué, ayant de 5 à 10 atomes et comprenant un ou plusieurs hétéroatomes choisi parmi S, N et 0 ; au moins un desdits cycles aromatiques
15 carbonés et/ou hétérocycle de Ar2 étant, en outre, substitué par au moins un groupe acide sulfonique.
De tels polyimides sulfonés peuvent répondre à la formule générale suivante (I) :
Figure imgf000025_0001
dans laquelle Ci, C2, Arx et Ar2, x et y ont la signification déjà donnée ci-dessus, z est un nombre, de préférence de 1 à 10, de préférence encore de 2 à 6, et où chacun des groupes Ri et R2 représente NH2, ou un groupe de formule :
Figure imgf000026_0001
où C3 est un groupe divalent comprenant au moins un cycle aromatique carboné, éventuellement substitué, ayant de 6 à 10 atomes de carbone et/ou un hétérocycle à caractère aromatique, éventuellement substitué, ayant de 5 à 10 atomes et comprenant un ou plusieurs hétéroatomes choisis parmi S, N et 0, C3 formant avec le groupe imide voisin un cycle à 5 ou 6 atomes.
De tels polymères sont pour la plupart facilement disponibles dans le commerce et d'un faible coût . Le polymère thermostable doit également être soluble dans le solvant de la solution, ce solvant peut être facilement choisi par l'homme du métier en fonction du polymère mis en œuvre.
Le solvant est généralement un solvant organique qui est choisi par exemple parmi les solvants aprotiques polaires, tels que le diméthylformamide (DMF), le diméthylacétamide (DMAC), la N-méthylpyrrolidone (NMP) , seuls ou en mélange, avec, par exemple, des solvants aromatiques, tels que le xylène ou des solvants du type éther de glycol.
Le solvant peut aussi être un solvant de type phénolique, c'est-à-dire qu'il est choisi, par exemple, parmi le phénol, les phénols substitués par un ou plusieurs halogènes (Cl, I, Br, F) , les crésols (o-, m- et p-crésol), les crésols substitués par un halogène
(Cl, I, Br, F) et les mélanges de ceux-ci. La concentration, la viscosité et la température de la solution de polymère sont ajustées, afin de permettre la réalisation d'un film homogène par le système de revêtement. A titre d'exemple, ce système de coulée, est choisi de préférence parmi les systèmes dits « Hand Coater » ou applicateurs manuels.
La concentration, la viscosité, et la température de la solution de polymère appliquée dépendent de la nature de ce dernier, mais des gammes adéquates seront, par exemple, de 30 à 100 g/1, pour la concentration, de 1 à 10 Pa.s, pour la viscosité, et de 80 à 130 °C pour la température de la solution appliquée par coulée (dans le cas d'un polymère de type polyimide sulfoné) .
Cette solution de polymère coulée sur un support ou substrat qui peut être aussi bien souple que rigide .
A titre de matériau adéquat pour le substrat ou support, on peut citer : le verre, l'aluminium, le polyester, etc. La forme de ce substrat ou support correspond généralement à celle de la membrane et l'assemblage final que l'on souhaite préparer. Ce substrat est généralement plan.
Il est, en outre, préférable que le substrat ou support soit parfaitement propre lors de la coulée.
On obtient, à l'issue de la coulée, un film, généralement plan, de solution de polymère thermostable sur la surface du substrat ou support, il s'agit d'un film « humide », c'est-à-dire riche en solvant et comprenant sensiblement l'intégralité du solvant présent dans la solution utilisée pour la coulée. L'épaisseur du film humide est variable, elle est généralement calibrée à une épaisseur de 500 à 5 000 μm, par exemple à 3 000 μm. On procède ensuite au séchage partiel du film de solution de polymère par évaporation du solvant de ladite solution. Dans ce but, le substrat ou support est maintenu généralement à une température de 40 à 150°C, par exemple de 120°C, afin d'entraîner une évaporation rapide du solvant. Une telle température peut être obtenue en plaçant le substrat ou support pourvu du film de solution de polymère dans un four.
Le séchage est un séchage partiel, c'est-à-dire que le film de solution de polymère contient encore du solvant, généralement la fraction de solvant encore présente est de 5 à 20 % de la quantité de solvant initialement présente.
En d'autres termes, on arrête le séchage au bout d'une durée variable, généralement de 60 à 120 minutes, lorsque la viscosité du film de polymère a atteint un niveau suffisant élevé pour supporter l'électrode. Cette viscosité peut être facilement déterminée par l'homme du métier, mais elle est généralement de 20 à 30 Pa.s.
L'électrode est donc déposée sur la surface dudit film de solution de polymère thermostable en cours de séchage, avant qu' il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface .
L'électrode est une électrode classique facilement disponible dans le commerce, du type couramment utilisé dans les piles à combustible et a été déjà décrite ci-dessus. Une telle électrode, généralement plane, et d'une épaisseur de 100 à 500 μm, comprend généralement une face dite face active contenant le catalyseur, par exemple le carbone platiné, c'est cette face active qui est déposée délicatement sur la surface du film humide de solution de polymère thermostable.
Celui-ci imprègne lentement la couche active, par exemple la couche de carbone platinée à la surface de l'électrode et on forme ainsi un assemblage membrane (encore humide) - électrode.
Dans l'étape suivante, le séchage de l'assemblage électrode - membrane obtenu est poursuivi pendant une durée variable de 30 à 60 minutes à une température de 70 à 150°C, par exemple de 120°C, afin d'éliminer la totalité du solvant résiduel encore présent et former l'assemblage définitif. En fait, c'est lors de cette étape qu'est effectivement formée la « membrane ». Enfin, dans une dernière étape, l'assemblage électrode - membrane est décollé du support ou substrat.
L'épaisseur d'un tel assemblage est de 100 à 500 μm.
Lorsque l'on souhaite réaliser un assemblage complet électrode - membrane - électrode par le procédé par enduction selon l'invention, on commence, tout d'abord, par préparer un premier assemblage, conformément à la description donnée ci-dessus. L'assemblage électrode - membrane, ainsi obtenu, est employé ensuite comme substrat pour réaliser un deuxième assemblage élémentaire électrode - membrane, c'est-à-dire qu'un nouveau film humide de solution de polymère thermostable est coulé sur la membrane du premier assemblage élémentaire. Il s'agit généralement de la même solution du même polymère que celle coulée pour fabriquer le premier assemblage. Puis, au cours du séchage de ce film humide, une deuxième électrode, généralement analogue à la première, est soigneusement déposée dans les conditions déjà mentionnées plus haut. De nouveau, c'est la face active de l'électrode qui est déposée sur la surface du film humide. On procède ensuite au séchage complet dans les mêmes conditions que celles décrites pour la préparation du premier assemblage élémentaire.
A l'issue de ce procédé, un assemblage complet électrode - membrane - électrode est obtenu. Il est à noter que ce procédé permet, en outre, d'améliorer l'imperméabilité aux gaz de la membrane echangeuse de protons .
Avantageusement, selon l'invention, on peut réaliser des assemblages dans lesquels la membrane est renforcée par un renfort afin notamment d' en améliorer les propriétés mécaniques.
Dans le procédé d' enduction, on peut ainsi appliquer, répandre, la solution de polymère thermostable sur un substrat ou support, tel que décrit plus haut, un renfort ayant été disposé au préalable sur ledit support.
Un tel renfort peut être constitué par un tissu, par exemple de verre, de PEEK, de PTFE ; un mat, par exemple de verre ; un matériau poreux, par exemple du PEEK, du PTFE.
La préparation de la solution et toutes les autres étapes du procédé et les conditions de celles-ci sont analogues à celles décrites ci-dessus pour le procédé par enduction, la seule différence étant que l'on dispose le renfort préalablement à l'étape a) sur le substrat ou support.
En d'autres termes, le polymère, par exemple le polyimide sulfoné employé, est en solution dans un solvant qui peut être de nature variable, tel que phénol, chlorophénol, crésol, NMP, DMF, DMAc, etc.. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de revêtement tel qu'un « Hand-Coater ». La solution de polymère, par exemple de polyimide sulfoné est alors répandue sur un substrat souple ou rigide, par exemple en verre, parfaitement propre sur lequel est disposé le renfort. L'épaisseur du film humide est calibrée à une épaisseur de 500 à 5 000 μm, par exemple au voisinage de 3 000 μm. La température du substrat est maintenue, par exemple, au voisinage de 120°C, afin d'entraîner l' évaporation rapide du solvant.
Après quelques minutes (60 à 120), la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter l'électrode. La face active de l'électrode contenant, par exemple, le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne lentement la couche active, par exemple, de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore pendant plusieurs minutes afin d'éliminer la totalité du solvant résiduel.
L'assemblage électrode - membrane renforcée est ensuite décollé du substrat initial et est ensuite, à son tour, employé comme substrat pour effectuer une seconde étape.
Un nouveau film humide est coulé sur la membrane de l'assemblage précédent. Au cours du séchage de ce film humide, une deuxième électrode est soigneusement déposée conformément à la description déjà donnée plus haut.
Au terme de ces deux étapes, un assemblage complet électrode - membrane renforcée - électrode est obtenu. Ou bien, dans le procédé par enduction et dans le même optique de renforcer la membrane, le renfort peut être disposé au sein même du film humide de solution de polymère préparé par coulée lors de l'étape a) . Un tel renfort est analogue à celui déjà décrit plus haut.
La préparation de la solution et toutes les autres étapes du procédé, ainsi que les conditions de celles-ci sont analogues à celles décrites ci-dessus pour le procédé par enduction, la seule différence étant que l'on dispose le renfort au sein même du film humide, à l'issue de l'étape a). En d'autres termes : le polymère, par exemple polyimide sulfoné employé est en solution dans un solvant qui peut être de nature variable, tel que phénol, chlorophénol, crésol, NMP, DMF, DMAc, etc.. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de revêtement, tel qu'un « Hand-Coater ». La solution de polymère, par exemple de polyimide sulfoné, est alors répandue sur un substrat, par exemple en verre, parfaitement propre. L'épaisseur du film humide est calibrée à une épaisseur de 500 à 5 000 μm, par exemple au voisinage de 3 000 μm. Le renfort est alors disposé par toute technique appropriée, par exemple par laminage au sein du film humide, sur le substrat. La température du substrat est maintenue, par exemple au voisinage de 120°C, afin d'entraîner l' évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter l'électrode. La face active de l'électrode contenant, par exemple, le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne parfaitement la couche active, par exemple de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore pendant plusieurs minutes afin d'éliminer la totalité du solvant résiduel.
L'assemblage électrode - membrane est ensuite décollé du substrat et employé pour réaliser un assemblage électrode - membrane - électrode renforcé, conformément à ce qui a déjà été décrit plus haut.
Le procédé selon l'invention, pour préparer un assemblage complet électrode - membrane - électrode renforcée, peut être, selon une variante, réalisé par « imprégnation ».
On prépare une solution de polymère de la même manière que ci-dessus, les polymères et les solvants employés pour la préparation de cette solution sont les mêmes que ceux déjà mentionnés plus haut pour le procédé par enduction.
La concentration, la viscosité, et la température de la solution de polymère sont ajustées dans ce cas, afin de permettre l'imprégnation d'un renfort, ce renfort étant du type déjà décrit plus haut, à savoir, par exemple, tissu, mat ou matériau poreux, par exemple en verre, PEEK ou PTFE. De ce fait, ces concentrations, viscosités et températures peuvent différer de celles indiqués dans le cas du procédé par enduction. La concentration, la viscosité et la température de la solution de polymère servant à l'imprégnation dépendent de la nature du polymère et éventuellement de celle du renfort, mais des gammes adéquates seront, par exemple de 80 à 120 g/1, pour la concentration, de 5 à 15 Pa.s, pour la viscosité et de 70 à 120°C pour la température de la solution imprégnant le renfort (dans le cas d'un polymère de type polyimide sulfoné) . L'imprégnation et généralement réalisée en plongeant simplement le renfort dans la solution de polymère.
On obtient à l'issue de cette imprégnation un film de solution de polymère thermostable renforcé et autosupporté, ce film est un film « humide », c'est-à-dire riche en solvant et comprenant sensiblement l'intégralité du solvant présent dans la solution utilisée pour l'imprégnation du renfort. L'épaisseur du film humide de solution de polymère est variable, elle est généralement calibrée à une épaisseur de 1 000 à 2 000 μm, par exemple de 1 500 μm. On procède ensuite au séchage partiel du film de solution de polymère renforcé et autosupporté, par évaporation du solvant de ladite solution. Dans ce but, le film humide renforcé et autosupporté est maintenu généralement à une température de 70 à 150°C, par exemple de 120°C, afin d'entraîner une évaporation rapide du solvant. Une telle température peut être obtenue en plaçant le film humide renforcé autosupporté de solution de polymère dans un four. Le séchage est un séchage partiel, c'est-à-dire que le film renforcé autosupporté de solution de polymère contient encore du solvant, généralement la fraction de solvant encore présente est de 5 à 15 % de la quantité de solvant initialement présente .
En d'autres termes, on arrête le séchage au bout d'une durée variable, généralement de 60 à 120 minutes, lorsque la viscosité du film renforcé autosupporté de polymère a atteint un niveau suffisant élevé pour supporter les électrodes de part et d'autre. Cette viscosité qui peut être différente de celle, lors de l'étape analogue du procédé par enduction, peut être facilement déterminée par l'homme du métier, mais elle est généralement de 15 à 20 Pa.s.
Les électrodes sont donc déposées sur chacune des surfaces dudit film humide renforcé, autosupporté de solution de polymère thermostable en cours de séchage, avant qu'il ne soit totalement sec, la face active de chacune des électrodes contenant, par exemple du carbone platiné, faisant face à chacune desdites surfaces.
Cette opération est réalisée par un dispositif dit de « colaminage ». Les électrodes sont des électrodes classiques, du type couramment utilisé dans les piles à combustible et elles ont été déjà décrites ci-dessus. Ces électrodes comprennent généralement une face dite face active contenant le catalyseur, par exemple le carbone platiné, c'est la face active de chacune des électrodes qui est déposée délicatement sur chacune des surfaces du film humide renforcé autosupporté de solution de polymère thermostable.
Celui-ci imprègne lentement chacune des couches actives par exemple les couches de carbone platinée à la surface des électrodes et on forme ainsi directement un assemblage complet électrode - membrane
(encore humide) - électrode.
Dans l'étape suivante, le séchage de l'assemblage électrode - membrane obtenu est poursuivi pendant une durée variable de 30 à 60 minutes à une température de 70 à 150°C, par exemple de 120°C, afin d'éliminer la totalité du solvant résiduel encore présent et former l'assemblage complet EME définitif. En fait, c'est lors de cette étape qu'est effectivement formée la « membrane ».
Ce procédé permet en seulement deux étapes simples d'obtenir un assemblage complet.
Les assemblages EME, préparés selon l'invention, peuvent être utilisés, en particulier, dans une pile à combustible pouvant fonctionner, par exemple, avec les systèmes suivants :
- hydrogène, alcools, tels que méthanol, à l'anode ;
- oxygène, air, à la cathode. La présente invention a également pour objet un dispositif de pile à combustible comprenant au moins un assemblage EME préparé par le procédé selon 1' invention.
Une telle pile possède toutes les propriétés liées aux membranes thermostables : par exemple du fait des excellentes propriétés mécaniques, la membrane peut subir sans détériorations les contraintes (serrage, etc.) liées au montage dans un tel dispositif.
Les propriétés des membranes thermostables de type polyimide sulfonés sont, par exemple, décrites dans le document FR-A-2 748 485, déjà cité.
La pile à combustible peut, par exemple, correspondre au schéma déjà donné sur la figure 1.
Une telle pile à combustible, dans laquelle le ou les assemblages EME sont préparés par le procédé selon l'invention présente, de ce fait, tous les avantages dus à ces assemblages et à l'excellente qualité de leur interface : en particulier, excellente solidité des assemblages, fiabilité, excellentes propriétés mécaniques et électrochimiques (évolution de la tension en fonction de la densité de courant au moins similaire aux assemblages « tout NAFION® ») , imperméabilité aux gaz, etc., toutes ces propriétés étant parfaitement reproductibles et ne subissant pas de dégradation au cours du temps.
Ces propriétés sont nettement supérieures à celles des piles comprenant des assemblages de l'art antérieur, par exemple : la température de la pile est généralement maintenue entre 50 et 80°C et, dans ces conditions, elle produit par exemple une densité de courant de 0,5 A/cm2 avec une tension de 0,6 V et ce sur une très longue durée pouvant atteindre jusqu'à 3 000 heures, ce qui démontre les excellentes propriétés de stabilité thermique et mécanique et autres des assemblages et ses excellentes propriétés électriques . L' invention va maintenant être décrite en référence aux exemples suivants, donnés à titre illustratif et non limitatif.
Exemples
Exemple 1
Réalisation d'un assemblage élémentaire électrode - membrane par le procédé selon l'invention
Il s'agit de la réalisation d'un assemblage électrode - membrane en un polyimide sulfoné dont la structure moléculaire est décrite ci-dessous.
Figure imgf000039_0001
les valeurs de x sont généralement de 0 < x, y < 20 ; et par exemple dans le cas présent x = 8 et y = 10.
Le polyimide sulfoné employé est en solution dans du métacrésol. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de « Hand-Coater » et sont les suivantes :
- concentration : 70 g/1 ; - viscosité : 4 Pa.s ;
- température : 120°C.
La solution du polyimide sulfoné est alors répandue sur un substrat en verre de forme rectangulaire de 3 mm d' épaisseur et parfaitement propre. L'épaisseur du film humide est calibrée au voisinage de 3 000 μm. La température du substrat est maintenue au voisinage de 120°C afin d'entraîner l' évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter l'électrode. Cette électrode est une électrode fournie par la Société SORAPEC®.
La face de l'électrode contenant le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne lentement la couche de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore pendant... minutes afin d'éliminer la totalité du solvant résiduel.
L' assemblage électrode - membrane est ensuite décollé du substrat.
Exemple 2
Réalisation d' un assemblage complet électrode - membrane - électrode par enduction
Il s'agit de la réalisation d'un assemblage électrode - membrane - électrode en polyimide sulfonée en deux étapes distinctes : Etape 1
Réalisation d'un assemblage élémentaire électrode - membrane
Un premier assemblage électrode - membrane est réalisé conformément à la description de l'exemple
1. L'assemblage électrode - membrane ainsi obtenu est employé comme substrat pour effectuer la deuxième étape.
Etape 2
Réalisation d'un deuxième assemblage élémentaire électrode - membrane
Un nouveau film humide est coulée sur la membrane de l'assemblage précédent. Au cours du séchage de ce film humide, une deuxième électrode est soigneusement déposée, conformément à la description de l'exemple 1.
Au terme de ces deux étapes, un assemblage complet électrode - membrane - électrode est obtenu. Cette méthodologie permet également d'améliorer l'imperméabilité aux gaz de la membrane echangeuse de protons . Exemple 3
Réalisation d'un assemblage complet électrode - membrane renforcée - électrode par enduction
Le polyimide sulfoné employé est .le même que ci-dessus. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de « Hand-Coater » et sont les mêmes que dans l'exemple 1. La solution de polyimide sulfoné est alors répandue sur un substrat en verre parfaitement propre sur lequel est disposé un renfort, qui est un tissu en PEEK provenant de la Société SEFAR®. L'épaisseur du film humide est calibrée au voisinage de 3 000 μm. La température du substrat est maintenue au voisinage de 120°C afin d'entraîner l' évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter l'électrode, à savoir 15 Pa.s. La face de l'électrode contenant le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne lentement la couche de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi 60 minutes afin d'en éliminer la totalité du solvant résiduel.
L'assemblage électrode - membrane renforcée est ensuite décollé du substrat et employé comme substrat pour effectuer une seconde étape. Un nouveau film humide est coulée sur la membrane de l'assemblage précédent. Au cours du séchage de ce film humide, une deuxième électrode est soigneusement déposée, conformément à la description de l'exemple 1.
Au terme de ces deux étapes, un assemblage complet électrode - membrane renforcée - électrode est obtenu.
Exemple 4
Réalisation d'un assemblage complet électrode - membrane renforcée - électrode par enduction
Il s'agit de la réalisation d'un assemblage électrode - membrane - électrode renforcé par un tissu en PEEK de la Société SEFAR®.
Le polyimide sulfoné employé est le même que ci-dessus et il est en solution dans un solvant qui est du métacrésol.
La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de « Hand-Coater », elles sont identiques à celles de l'exemple 1. La solution de polyimide sulfoné est alors répandue sur un substrat en verre parfaitement propre. L'épaisseur du film humide est calibrée au voisinage de 3 000 μm. Le renfort est alors déposé au sein du film humide, sur le substrat. Sous l'action de son propre poids, le renfort pénètre dans l'épaisseur du film humide jusqu'à être au contact du substrat. La température du substrat est maintenue au voisinage de 120°C afin d'entraîner l' évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter l'électrode. La face de l'électrode contenant le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne parfaitement la couche de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore pendant 60 minutes afin d'éliminer la totalité du solvant résiduel.
L'assemblage électrode - membrane est ensuite décollé du substrat et employé pour réaliser un assemblage électrode - membrane - électrode renforcé, conformément à la description de l'exemple 2.
Exemple 5
Réalisation d' un assemblage complet électrode - membrane - électrode renforcé par imprégnation
II s'agit de la réalisation d'un assemblage électrode - membrane - électrode renforcé. Le polyimide sulfoné employé est en solution dans un solvant qui est du métacrésol. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre l'imprégnation du renfort et sont les suivantes : - concentration : 80 g/1 ;
- viscosité : 2 Pa.s ;
- température : 120 °C.
L'épaisseur du film humide renforcé autosupporté est calibrée au voisinage de 3 000 μm.
La température du film humide renforcé autosupporté est maintenue au voisinage de 120°C, afin d'entraîner l' évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide renforcé autosupporté a atteint un niveau suffisamment élevé, à savoir 15 Pa.s, pour supporter les électrodes de part et d'autre. La face des électrodes contenant le carbone platiné est alors disposée délicatement sur la surface du film humide renforcé autosupporté. Celui-ci imprègne parfaitement la couche de carbone platiné à la surface des électrodes. Le séchage de l'assemblage électrode - membrane - électrode est poursuivi encore pendant plusieurs minutes, afin d'éliminer la totalité du solvant résiduel. Les assemblages obtenus dans l'exemple 1, avec la membrane en polyimide sulfoné dont la structure est décrite dans l'exemple 1, sont caractérisés par le fait que l'interface électrode - membrane est de très bonne qualité comme cela est montré sur la figure 2. En effet, sur cette photographie, obtenue par microscopie électronique à balayage, l'interface électrode - membrane est parfaitement régulière et sans défaut et aucune homogénéité n'est visible.
En parcourant la photographie de bas en haut, on distingue plusieurs niveaux qui correspondent respectivement au cœur de l'électrode (feutre téflon chargé de noir de carbone, partie 1) , à la couche de carbone platiné (niveau brillant clair, partie 2) d'une épaisseur voisine de 20 μm et enfin à la membrane echangeuse de protons (partie 3) d'une épaisseur voisine de 15 μm.
La cohésion entre l'électrode et la membrane est telle qu'il n'est plus possible de les séparer contrairement aux assemblages réalisés par les procédés existants. Ce type d'analyses par microscopie électronique à balayage visant à caractériser l'interface membrane - électrode permet de distinguer les assemblages obtenus par le procédé de l'invention, des assemblages obtenus par tout autre procédé basé sur le pressage d'une membrane formée et d'une électrode.
En effet, tout autre procédé basé sur le pressage d'une membrane formée (« sèche ») et d'une électrode entraîne la formation de défauts à l'interface membrane - électrode, comme le montre la figure 3 dans laquelle les numéros de référence ont la même signification que sur la figure 2.
Sur cette figure 3, qui représente l'interface membrane - électrode d'un assemblage obtenu par pressage, selon l'art antérieur, on distingue nettement des vacuoles et défauts divers. Ces défauts sont à l'origine des mauvaises performances électrochimiques de ces assemblages.
En effet, outre les problèmes d'adhésion, des hétérogénéités diverses, tels que vacuoles d'air, zones de pliement, etc., sont visibles à l'interface électrode - membrane des assemblages obtenus par les procédés classiques. En outre, une cartographie de l'élément soufre a été réalisée à l'aide d'une sonde de castaing sur un assemblage obtenu par le procédé de l'invention selon la description de l'exemple 1. Dans cette cartographie l'élément soufre permet d'identifier la présence du conducteur protonique. Il apparaît clairement que le procédé de l'invention permet d'entraîner une fraction du conducteur protonique dans la zone riche en platine.

Claims

REVENDICATIONS
1. Procédé de préparation d'un assemblage comprenant au moins une électrode présentant une face active, et une membrane en un polymère thermostable, dans lequel on effectue les étapes suivantes : a) on coule sur un support une solution d'un polymère thermostable de façon à obtenir un film de solution de polymère thermostable ; puis b) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution ; c) on dépose une électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface, de façon à obtenir un assemblage comprenant une membrane en polymère thermostable et ladite électrode ; d) on sèche complètement ledit assemblage obtenu lors de l'étape c) ; puis e) on décolle l'assemblage comprenant ladite membrane et ladite électrode du substrat.
2. Procédé selon la revendication 1, dans lequel, préalablement à l'étape a), un renfort est disposé sur ledit support.
3. Procédé de préparation selon la revendication 1, dans lequel, à l'issue de l'étape a), on dispose un renfort au sein du film de solution de polymère thermostable.
4. Procédé selon la revendication 3, dans lequel ledit renfort est disposé par laminage au sein du film de solution de polymère thermostable.
5. Procédé selon l'une quelconque des revendications l'a 4, de préparation d'un assemblage électrode - membrane - électrode (EME) constitué d'une membrane en polymère thermostable et de deux électrodes comprenant, en outre, à l'issue de l'étape e) , les étapes suivantes : f) on coule sur la face de l'assemblage, par la membrane, une solution d'un polymère thermostable, de façon à obtenir un film de solution de polymère thermostable ; puis g) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution ; h) on dépose une seconde électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de la seconde électrode faisant face à la surface dudit film, de façon à obtenir un assemblage électrode - membrane en polymère thermostable - électrode ; puis i) on sèche complètement ledit assemblage électrode - membrane - électrode obtenu lors de l'étape h) .
6. Procédé de préparation d'un assemblage électrode - membrane - électrode (EME) , dans lequel on effectue les étapes suivantes : a) on imprègne un renfort par une solution d'un polymère thermostable, de façon à obtenir un film de solution de polymère thermostable renforcé et autosupporté ; puis b) on sèche partiellement ledit film de solution de polymère thermostable renforcé et autosupporté, par évaporation du solvant de ladite solution ; c) on dépose une électrode sur chacune des faces dudit film de solution de polymère thermostable, en cas de séchage, avant qu'il ne soit totalement sec, la face active de chacune des électrodes faisant face à chacune des surfaces dudit film ; d) on sèche complètement ledit assemblage obtenu lors de l'étape c) .
7. Procédé selon l'une quelconque des revendications 1 à 6, réalisé en continu.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit polymère thermostable est un polymère échangeur d'ions, tel qu'un polymère conducteur protonique.
9. Procédé selon la revendication 8, dans lequel ledit polymère est choisi parmi les polyimides sulfonés, les polyéthersulfones sulfonés, les polystyrènes sulfonés et leurs dérivés sulfonés, les polyétheréthercétones sulfonés et leurs dérivés sulfonés, les polybenzoxazoles sulfonés, les polybenzimidazoles sulfonés, les polyparaphénylènes sulfonés et leurs dérivés sulfonés.
10. Assemblage comprenant au moins une électrode et une membrane susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 1 à 4 et 7 à 9.
11. Assemblage électrode - membrane - électrode susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 5 à 9.
12. Pile à combustible comprenant au moins un assemblage électrode - membrane - électrode selon la revendication 11.
PCT/FR2001/000624 2000-03-03 2001-03-02 Procede de preparation d'assemblages electrode - membrane, assemblages ainsi obtenus et piles a combustible comprenant ces assemblages WO2001065623A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001564409A JP2003526184A (ja) 2000-03-03 2001-03-02 電極−膜アセンブリの製造方法および電極−膜−電極アセンブリの製造方法ならびにそのようにして得られたアセンブリさらにはこれらアセンブリを備えた燃料電池デバイス
EP01911830A EP1259995A1 (fr) 2000-03-03 2001-03-02 Procede de preparation d'assemblages electrode - membrane, assemblages ainsi obtenus et piles a combustible comprenant ces assemblages
CA002400146A CA2400146A1 (fr) 2000-03-03 2001-03-02 Procede de preparation d'assemblages electrode - membrane et electrode - membrane - electrode, assemblages ainsi obtenus, et dispositif de pile a combustible comprenant ces assemblages
US10/220,068 US20030022054A1 (en) 2000-03-03 2001-03-02 Method for preparing electrode-membrane assemblies, resulting assemblies and fuel cells comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/02765 2000-03-03
FR0002765A FR2805927B1 (fr) 2000-03-03 2000-03-03 Procede de preparation d'assemblages electrodes-membrane-et electrode-membraneelectrode, assemblage ainsi obtenus, et dispositif de pile combustible comprenant ces assemblages

Publications (1)

Publication Number Publication Date
WO2001065623A1 true WO2001065623A1 (fr) 2001-09-07

Family

ID=8847700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000624 WO2001065623A1 (fr) 2000-03-03 2001-03-02 Procede de preparation d'assemblages electrode - membrane, assemblages ainsi obtenus et piles a combustible comprenant ces assemblages

Country Status (5)

Country Link
EP (1) EP1259995A1 (fr)
JP (1) JP2003526184A (fr)
CA (1) CA2400146A1 (fr)
FR (1) FR2805927B1 (fr)
WO (1) WO2001065623A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073540A2 (fr) 2002-02-26 2003-09-04 E.I. Du Pont De Nemours And Company Production de membranes recouvertes d'un catalyseur
US7396607B2 (en) 2003-02-20 2008-07-08 Jsr Corporation Manufacturing process for membrane-electrode assemblies
US7722975B2 (en) 2002-12-13 2010-05-25 Pirelli & C. S.P.A. Fuel cell and membrane-electrode assembly thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002342116A1 (en) * 2001-10-24 2003-05-06 E.I. Du Pont De Nemours And Company Continuous production of catalyst coated membranes
US20040036394A1 (en) * 2002-08-21 2004-02-26 3M Innovative Properties Company Process for preparing multi-layer proton exchange membranes and membrane electrode assemblies

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403675A (en) * 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
JPH07176317A (ja) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd 電極/イオン交換薄膜接合体の製造方法、及び電極/イオン交換薄膜/電極接合体の製造方法
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
WO1997023919A1 (fr) * 1995-12-22 1997-07-03 Hoechst Research & Technology Deutschland Gmbh & Co.Kg Procede de production en continu de composites membrane-electrode
WO1997023916A2 (fr) * 1995-12-22 1997-07-03 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Composites et leur production en continu
WO1997024777A1 (fr) * 1995-12-28 1997-07-10 Research Foundation Of The State University Of New York Membranes faites de melanges a base de poly(oxyde de phenylene) sulfone pour elements electrochimiques polymeres ameliores
FR2748485A1 (fr) * 1996-05-07 1997-11-14 Commissariat Energie Atomique Polyimides sulfones, membranes preparees avec ceux-ci, et dispositif de pile a combustible comprenant ces membranes
US5723086A (en) * 1992-12-07 1998-03-03 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Electrode membrane
DE19653484A1 (de) * 1996-12-20 1998-06-25 Fraunhofer Ges Forschung Verfahren zur Herstellung von Membran-Elektroden-Einheiten und eine so hergestellte Membran-Elektroden-Einheit
WO1998052732A1 (fr) * 1997-05-22 1998-11-26 Aventis Research & Technologies Gmbh & Co Kg Procede de production de membrane electrolyte polymere et d'une pile a combustible
US6001500A (en) * 1996-06-05 1999-12-14 Southwest Res Inst Cylindrical proton exchange membrane fuel cells and methods of making same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723086A (en) * 1992-12-07 1998-03-03 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Electrode membrane
US5403675A (en) * 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
JPH07176317A (ja) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd 電極/イオン交換薄膜接合体の製造方法、及び電極/イオン交換薄膜/電極接合体の製造方法
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
WO1997023919A1 (fr) * 1995-12-22 1997-07-03 Hoechst Research & Technology Deutschland Gmbh & Co.Kg Procede de production en continu de composites membrane-electrode
WO1997023916A2 (fr) * 1995-12-22 1997-07-03 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Composites et leur production en continu
WO1997024777A1 (fr) * 1995-12-28 1997-07-10 Research Foundation Of The State University Of New York Membranes faites de melanges a base de poly(oxyde de phenylene) sulfone pour elements electrochimiques polymeres ameliores
FR2748485A1 (fr) * 1996-05-07 1997-11-14 Commissariat Energie Atomique Polyimides sulfones, membranes preparees avec ceux-ci, et dispositif de pile a combustible comprenant ces membranes
US6001500A (en) * 1996-06-05 1999-12-14 Southwest Res Inst Cylindrical proton exchange membrane fuel cells and methods of making same
DE19653484A1 (de) * 1996-12-20 1998-06-25 Fraunhofer Ges Forschung Verfahren zur Herstellung von Membran-Elektroden-Einheiten und eine so hergestellte Membran-Elektroden-Einheit
WO1998052732A1 (fr) * 1997-05-22 1998-11-26 Aventis Research & Technologies Gmbh & Co Kg Procede de production de membrane electrolyte polymere et d'une pile a combustible

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 123, no. 14, 2 October 1995, Columbus, Ohio, US; abstract no. 174986, KANEKO, MINORU ET AL: "Manufacture of electrode/ion exchanger and electrode/ion exchanger/electrode laminates" XP002154758 *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10 30 November 1995 (1995-11-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073540A2 (fr) 2002-02-26 2003-09-04 E.I. Du Pont De Nemours And Company Production de membranes recouvertes d'un catalyseur
WO2003073540A3 (fr) * 2002-02-26 2005-02-10 Du Pont Production de membranes recouvertes d'un catalyseur
US7722975B2 (en) 2002-12-13 2010-05-25 Pirelli & C. S.P.A. Fuel cell and membrane-electrode assembly thereof
US7396607B2 (en) 2003-02-20 2008-07-08 Jsr Corporation Manufacturing process for membrane-electrode assemblies

Also Published As

Publication number Publication date
FR2805927B1 (fr) 2002-04-12
CA2400146A1 (fr) 2001-09-07
FR2805927A1 (fr) 2001-09-07
EP1259995A1 (fr) 2002-11-27
JP2003526184A (ja) 2003-09-02

Similar Documents

Publication Publication Date Title
KR100493991B1 (ko) 막전극접합체의 제조방법 및 고체고분자형 연료전지의제조방법
KR100667717B1 (ko) 출력 전력이 향상된 연료 전지 멤브레인 전극 조립체
FR2755541A1 (fr) Electrodes de diffusion gazeuse a base de melanges de poly(fluorure de vinylidene) et de carbone
US20060180796A1 (en) Polymer electrolyte material, polymer electrolyte part, membrane electrode composite and polymer electrolyte type fuel cell
EP0600888A1 (fr) Couche catalyseur membrane pour piles a combustible.
KR100853713B1 (ko) 연료전지용 고분자 복합막 및 이를 포함하는 연료전지
FR2755542A1 (fr) Electrodes de diffusion gazeuse a base de melanges polyethersulfone et carbone
JPH1134083A (ja) 燃料電池用高分子電解質膜の製造方法及び燃料電池
CA2587729A1 (fr) Solution servant a ameliorer des composants de cellules electrochimiques et d&#39;autres systemes et dispositifs electrochimiques
JP2008512844A (ja) 接着性促進層を有する膜及び膜電極アセンブリー
JP2004185930A (ja) 固体高分子型燃料電池の製造方法
WO2001065623A1 (fr) Procede de preparation d&#39;assemblages electrode - membrane, assemblages ainsi obtenus et piles a combustible comprenant ces assemblages
FR2853456A1 (fr) Micropiles a combustible destinees particulierement aux dispositifs electroniques portables et aux dispositifs de telecommunications
JPH06251779A (ja) 燃料電池用固体高分子電解質層と電極との接合体の作成方法
FR2995143A1 (fr) Formulation d&#39;une couche active aux performances ameliorees
EP1282185A2 (fr) Procédé de réalisation d&#39;une pile à combustible à géometrie cylindrique
US20030022054A1 (en) Method for preparing electrode-membrane assemblies, resulting assemblies and fuel cells comprising same
EP1529068B1 (fr) Polymeres fluores
EP1343835A1 (fr) Membrane conductrice ionique organique pour pile a combustible et son procede de fabrication
JP5129990B2 (ja) 燃料電池用膜−電極接合体の製造方法と燃料電池用膜−電極接合体ならびに燃料電池
EP4293762A1 (fr) Formation d&#39;une couche microporeuse mpl en surface d&#39;une couche active pour un convertisseur electrochimique
EP3120406B1 (fr) Assemblage membrane-electrodes pour pemfc et procede de fabrication
JP2005011590A (ja) 膜電極接合体およびそれを用いる膜電極接合体中間体の製造方法
WO2004091026A2 (fr) Micropiles a combustible destinees particulierement aux dispositif electroniques portables et aux dispositifs de telecommunications
TWI387146B (zh) 多層質子交換膜及其製備方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001911830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2400146

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 564409

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10220068

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001911830

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001911830

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载