+

WO2001063915A1 - Light-receiving sensor enabling superwide-angle image pickup, and electronic digital camera comprising it - Google Patents

Light-receiving sensor enabling superwide-angle image pickup, and electronic digital camera comprising it Download PDF

Info

Publication number
WO2001063915A1
WO2001063915A1 PCT/JP2001/001260 JP0101260W WO0163915A1 WO 2001063915 A1 WO2001063915 A1 WO 2001063915A1 JP 0101260 W JP0101260 W JP 0101260W WO 0163915 A1 WO0163915 A1 WO 0163915A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving sensor
angle
wide
ultra
Prior art date
Application number
PCT/JP2001/001260
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Ishizuki
Original Assignee
Hideaki Ishizuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hideaki Ishizuki filed Critical Hideaki Ishizuki
Priority to AU34106/01A priority Critical patent/AU3410601A/en
Publication of WO2001063915A1 publication Critical patent/WO2001063915A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • Light-receiving sensor that enables ultra-wide-angle imaging, and electronic digital cameras using it
  • the present invention uses a lens with excellent ultra-wide-angle optical characteristics and a special optical system that uses a concave spherical optical sensor to capture and observe images and information with a viewing angle near 180 degrees at a time.
  • a lens with excellent ultra-wide-angle optical characteristics and a special optical system that uses a concave spherical optical sensor to capture and observe images and information with a viewing angle near 180 degrees at a time.
  • a conventional electronic or digital camera using a light receiving sensor optically forms a planar image using a complicated imaging lens system having an optical design that combines several lenses. This is because the angle of incidence of light rays, the so-called angle of view, is narrow, and generally only images in the observation viewing angle range of about 30 to 50 degrees can be taken, and there are only functionally limited uses. .
  • an ultra-wide-angle aspheric lens that forms an image with excellent optical characteristics without causing total reflection even when the incident angle of light reaches 90 degrees.
  • This lens breaks the usual concept of planar imaging and utilizes the characteristic of the field curvature in front of the plane characteristic of high-angle incidence.
  • the light beam can be converged without difficulty, and the aberrations that characterize the optical characteristics can be significantly reduced to a wide viewing angle. Become. Therefore, including C C D and C-M O S
  • the light receiving surface of the light receiving element and sensor is formed as a spherical concave surface, an aspherical concave surface, and a cylindrical concave surface that approximates a spherical surface to the light reception near the equatorial plane.
  • FIG. 1 is a cross-sectional view showing an image formed by ray tracing of a super-wide-angle aspheric single lens for image capturing according to the present invention
  • FIG. 2 facilitates observation of a concave spherical surface near an equatorial plane. Therefore, the image plane is a concave cylindrical shape
  • the third figure is a spot focusing figure obtained as a result of ray tracing in the first figure
  • the fourth figure is the optical characteristics and resolution of this lens
  • Fig. 5 (a) shows an example of a semiconductor sensor for imaging a concave spherical surface
  • Fig. 5 (b) shows a bundle light whose end surface is polished to a concave spherical surface.
  • FIG. 2 is a diagram illustrating a fiber. The best form for carrying out Inoaki
  • FIG. 1 is an analysis example showing actual ray tracing of the ultra-wide-angle aspherical single lens 1 developed in the present invention. Rays incident from infinity at an angle of 0 ° to 10 °, 20 ° 30 ° at an interval of 10 ° to 80 ° are refracted by an ultra-wide-angle aspherical single lens 1, and each ray has a constant radius.
  • a ray tracing diagram that focuses on P 0, P 1, P 2, P 3 --- P 8 on the circumference and converges on the spherical imaging section 2 to an ultra-wide angle is shown.
  • the aperture 3 is realized by, for example, providing a groove having an appropriate width in the center of the lens by cutting or the like, and fitting a black light-blocking member or the like into the groove.
  • This figure shows a two-dimensional cross section, but in three dimensions a naturally spherical image is formed. Although a single lens is shown in the figure, it goes without saying that a compound lens having the same light collecting principle may be used.
  • Fig. 2 shows only the area near the equatorial plane of the spherical surface (Y in the figure) in order to make use of the above-mentioned principle of spherical imaging in actual applications and to make it possible to easily manufacture a light-receiving sensor for spherical image formation.
  • (Axial direction) is approximated by a plane, and an optical system with a cylindrical concave surface is devised.
  • a ray from, for example, A—A in the (X, Z) plane forms an image at A, 1 A on the circumference at a wide viewing angle 01.
  • r is the cross-sectional radius of the rotating aspheric surface
  • Z is the optical axis whose origin is the vertex of the rotating surface
  • c is the reciprocal of the radius at the origin or the curvature
  • k is the conic coefficient of the aspheric surface, and among even higher order aspherical coefficients
  • ct i is the secondary aspherical coefficient
  • ⁇ 2 is The fourth order aspherical coefficient
  • ⁇ 3 is the sixth order aspherical coefficient and the like.
  • the front surface of the single lens is the first lens surface and the rear surface is the second lens surface.
  • the distance from the lens tip to the center of the aperture is 3 mm
  • the distance from the aperture center to the rear end of the lens Indicates that the distance from the rear end of the lens to the Gaussian imaging plane is 3.5 mm on the optical axis.
  • the curvature for the aspheric surface and the higher order coefficients up to the sixth order are determined and shown.
  • the imaging surface has a concave shape with a radius of -7.453 mm.
  • the lens material is PMMA and the outer diameter is ⁇ 8.0 mm.
  • Fig. 1 As can be seen from Fig. 1, as can be seen from the tracing of a light beam with an incident angle of 10 to 80 degrees, the incident angle and the exit angle are almost equal even at a high angle of incidence, compared to a general plane image.
  • the distance between the imaging positions P 0, P 1, P 2, P 3-P 8 at every 10 ° is also kept very evenly by the arc on the concave light receiving surface in Fig. 1. . That is Even if the observed image is spread out on a plane, the curvature aberration is remarkably small up to wide angles compared to normal, and in this example it is calculated to be within 15% even at around 80 degrees.
  • Fig. 3 shows a spot diagram of parallel incident light rays for performance evaluation when the super-wide-angle aspherical single lens 1 shown in Table 1 is used.
  • P 0, P 1, P 2, and P 3 —P 8 in FIG. 3 correspond to the light condensing positions shown in FIG. 1, respectively, and are described for reference.
  • the scale at the position P 0 in FIG. 3 has a width of 100 microns.
  • An extremely excellent spot image is obtained, and the spot diameter is about 60 to 70 microns up to an incident angle of about 50 °.
  • the shape spreads in the horizontal direction, and the effect of coma becomes remarkable, but the spot diameter is extremely good, about 100 microns.
  • these figures do not show a color display, the spread of spots due to chromatic aberration is hardly observed.
  • FIG. 4 shows the MTF.
  • the vertical axis shows the value of the optical MTF (modulation function), and the horizontal axis shows the spatial frequency (line number / mm) corresponding to the resolution.
  • the numerical values at the top of the figure indicate the incident angles of the rays, and the curve data is written separately for the longitudinal aberration (meridional direction) T and the lateral aberration (sagittal direction) S of ray tracing, and P 0 , Pl, P2, P3--P8 are the MTF characteristics corresponding to the condensing positions shown in FIG. From this figure, a resolution close to 50 (number of lines / mm) can be obtained even at ultra-wide-angle incidence, and high optical characteristics are guaranteed up to a wide viewing angle compared to conventional planar imaging cameras.
  • FIG. 5 shows an example of a light-receiving sensor according to the present invention.
  • FIG. 5 (a) shows an example of a semiconductor sensor for concave spherical imaging, and a spherical imaging section 2 includes a silicon substrate 5 and a silicon substrate 5.
  • FIG. 3 is a schematic diagram including a circuit pattern 6 formed by transfer.
  • imaging devices for capturing images include semiconductor devices such as CCD sensors and C-MOS.
  • C-MOS pixel transfer is a method in which, when extracting a signal at an observation place on a two-dimensional (X, Y) plane, each of X and ⁇ is addressed (specified) to extract the electric charge of the intersecting pixel. This method is easy to speed up It has a characteristic.
  • CCDs have a problem in that charges cannot be transferred at high speed due to the structure of transmitting charges in a bucket relay, but they have the advantage that noise is small and high image quality can be secured.
  • these configurations use a polycrystalline silicon planar substrate that has been mirror polished, and in our present invention, it has a concave spherical surface, a concave cylindrical surface, or a concave cylindrical surface. Since it is formed by an aspherical surface, it seems very difficult to bend and mold a conventional hard silicon substrate.
  • One way to solve this is to use a liquid crystal or amorphous high-purity silicon for the silicon substrate 5 or to develop a new semiconductor material, as shown in Fig. 5 (a).
  • FIG. 5 (b) on the right side of FIG. 5 is a view showing a bundle optical fiber 17 of another embodiment, the end face of which is polished to a concave spherical surface.
  • This is based on the imaging principle shown in Fig. 1 and transmitted to the inside of the optical fiber to a relatively wide angle by imaging on a concave spherical surface from an aspheric objective lens located near the center of the spherical imaging section 2. Then, a method of observing an image with a semiconductor detection element and a light receiving sensor connected to the end face of the exit light exit is conceivable.
  • the ultra-wide angle is difficult because the numerical aperture NA of the optical fiber is limited by its material, an image with little field curvature aberration and distortion can be expected by the principle of the present invention.
  • the electronic device and digital device that enable imaging with an ultra-wide angle and high optical characteristics use a light-receiving sensor using a semiconductor element such as a CCD sensor or a C-MOS to achieve an ultra-wide angle. It provides high-resolution, high-resolution images with low distortion in a wide variety of industrial fields, including surveillance cameras and observation fields for medical purposes. As a result, the performance of information transmission is greatly improved, which is useful for accurate and high-speed information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

A light-receiving sensor comprising a semiconductor device, e.g. a CCD or a C-MOS, and an electronic digital camera comprising the light-receiving sensor. The light receiving sensor has a light-receiving surface of a concave spherical focusing cross-section (2), and a diaphragm (3) is disposed the central position in the thickness of a superwide-angle aspherical single lens (1). Excellent focusing characteristics are provided up to a superwide angle and an image can be observed with high resolution and high optical characteristics.

Description

明細書  Specification
超広角 撮像を可能にする受光センサー、 及びそれを用いた電子 デジタ 力メラ ' 、 技術分野  Light-receiving sensor that enables ultra-wide-angle imaging, and electronic digital cameras using it
本発明は、 優れた超広角の光学特性を持つレンズと、 凹面球面形状の光 学センサーによる特殊光学系により、一度に 1 8 0度近辺の視野角の画像、 情報を取り込み観測可能にした電子カメラ、デジタルカメラ等の装置に関 する。 背景技術  The present invention uses a lens with excellent ultra-wide-angle optical characteristics and a special optical system that uses a concave spherical optical sensor to capture and observe images and information with a viewing angle near 180 degrees at a time. Related to devices such as cameras and digital cameras. Background art
従来の受光センサーを用いた電子、 デジタルカメラは、 例えば何枚かの レンズを組み合わせた光学設計による複雑な撮像レンズ系により、光学的 に平面結像を行っている。 これは、 光線の入射角、 いわゆる画角も狭く一 般にはせいぜい 3 0〜 5 0度程度の観察視野角の領域しか撮影できず、機 能的にも限られた用途のものしかなかった。 これらは、 普通のレンズ設計 方法に基づく光学設計を行っているためで、入射角度が高角度に至るほど 像面が湾曲した、 いわゆる像面湾曲収差が著しくなり、 受光面が平面であ る結像システムへの補正が困難となる。 従って、 さらに広角な視野角がお よ 8 0度〜 1 2 0度近い市販の監視カメラでは、高角度入射の光束を著し く急激に屈折させ、定まった平面上に極めて困難な光学的に集光させるた め、 著しい歪曲収差が生ずる。 即ち、 監視カメラ、 歯科用、 医療用のカメ ラあるいは撮像装置も含め、 超広角監視、 観察のニーズが多大であるにも かかわらず、 撮像画面の端 (超広角な入射領域) では画像が著しく歪み、 原形を留めないか、 ピン トがぼけてしまうため形状認識、 文字認識などの 厳密な観察要求に際し支障を生じてる。  A conventional electronic or digital camera using a light receiving sensor optically forms a planar image using a complicated imaging lens system having an optical design that combines several lenses. This is because the angle of incidence of light rays, the so-called angle of view, is narrow, and generally only images in the observation viewing angle range of about 30 to 50 degrees can be taken, and there are only functionally limited uses. . These are optical designs based on ordinary lens design methods, and as the angle of incidence increases, the image surface curves, that is, the so-called field curvature aberration increases, and the light receiving surface becomes flat. Correction to the imaging system becomes difficult. Therefore, with a commercially available surveillance camera having a wider viewing angle of about 80 to 120 degrees, the light beam incident at a high angle is remarkably sharply refracted and extremely difficult optically on a fixed plane. Since the light is focused, significant distortion occurs. In other words, despite the enormous need for super-wide-angle monitoring and observation, including surveillance cameras, dental and medical cameras, and imaging devices, images are remarkable at the edges of the imaging screen (ultra-wide-angle incident area). Distortion, the original shape is not retained, or the focus is blurred, which hinders strict observation requirements such as shape recognition and character recognition.
従って、本発明ではこのような従来の受光センサーを用いたカメラに見 られるような著しい収差を取り除き、およそ全視野角が 1 8 0度に近い観 察領域までいわゆる撙型歪曲収差等の収差を除去した、 高解像度、 高画質 の観測が可能な、 電子、 デジタルカメラを提供することを目的とする。 発明の開示 Therefore, in the present invention, such a remarkable aberration as seen in a camera using the conventional light receiving sensor is removed, and the viewing angle is approximately 180 degrees. It is an object of the present invention to provide an electronic or digital camera capable of observing high resolution and high image quality while eliminating aberrations such as so-called 撙 -type distortion up to the observation region. Disclosure of the invention
上記目的を達成するために、光線の入射角が 9 0度に至っても全反射な どが生ぜず、 優れた光学特性で結像する超広角非球面レンズを開発した。 このレンズは通常の平面結像の概念を打破し、高角入射に特徴的な平面の 手前の像面湾曲の特性を利用した。 即ち、 結像面を平面から変えて像面湾 曲の位置に一致させることにより、 無理なく光束が収束することができ、 光学的特性を特徴づける収差を、広視野角まで著しく減ずることが可能な る。 従って C C D、 C一 M O Sを含めた  To achieve the above objective, we have developed an ultra-wide-angle aspheric lens that forms an image with excellent optical characteristics without causing total reflection even when the incident angle of light reaches 90 degrees. This lens breaks the usual concept of planar imaging and utilizes the characteristic of the field curvature in front of the plane characteristic of high-angle incidence. In other words, by changing the image plane from a plane to match the position of the curvature of the image plane, the light beam can be converged without difficulty, and the aberrations that characterize the optical characteristics can be significantly reduced to a wide viewing angle. Become. Therefore, including C C D and C-M O S
受光素子、 センサーの受光面形状を球面形状凹面、 非球面形状凹面、 その 赤道面近辺の受光に対し球面近似した円柱状凹面に形成した観察装置を 発明した。 図面の簡単な説明 We have invented an observation device in which the light receiving surface of the light receiving element and sensor is formed as a spherical concave surface, an aspherical concave surface, and a cylindrical concave surface that approximates a spherical surface to the light reception near the equatorial plane. BRIEF DESCRIPTION OF THE FIGURES
第一図は、この発明に関わる画像撮影用超広角非球面単レンズの光線追 跡による結像を示す断面図であり、第二図は凹面球面の赤道面近辺での観 察を容易にするため、 結像面を凹面円筒形状にした図であり、 第三図は、 第一図の光線追跡の結果得られたスポット集光図であり、 第四図は、 この レンズの光学特性、 分解能を示す M T F関数の図であり、 第五図は、 その ( a ) 図が凹球面結像用の半導体センサーの例を示し、 その ( b ) 図は端 面が凹球面に研磨されたバンドル光ファイバ一を示す図である。 猪明を実施するための最良の形態  FIG. 1 is a cross-sectional view showing an image formed by ray tracing of a super-wide-angle aspheric single lens for image capturing according to the present invention, and FIG. 2 facilitates observation of a concave spherical surface near an equatorial plane. Therefore, the image plane is a concave cylindrical shape, the third figure is a spot focusing figure obtained as a result of ray tracing in the first figure, and the fourth figure is the optical characteristics and resolution of this lens Fig. 5 (a) shows an example of a semiconductor sensor for imaging a concave spherical surface, and Fig. 5 (b) shows a bundle light whose end surface is polished to a concave spherical surface. FIG. 2 is a diagram illustrating a fiber. The best form for carrying out Inoaki
本発明をより詳細に説述するために、添付の図面に従ってこれを説明す る。 第 1図は本発明において開発された超広角非球面単レンズ 1の、実際 の光線追跡を示した解析例である。 0度から 1 0度間隔で 1 0度、 2 0度 3 0度—— 8 0度までの角度で無限遠から入射した光線は、超広角非球面 単レンズ 1により屈折後、 それぞれ、 一定半径の円周上の P 0、 P 1、 P 2、 P 3—— P 8に集光し、 超広角まで球面結像断面 2に集光する光線追 跡図が示されている。 絞り 3は、 レンズの中心部を切削加工などで適切な 幅の溝を設け、その部分に黒塗りを施した遮光部材などをはめ込む方法な どにより実現する。 この図は 2次元断面で示したものであるが、 三次元で は当然球面上の結像が形成される。 図では単レンズが示されているが、 当 然のことながら、 同じ集光原理を持つ複合レンズを用いてもよい。 The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an analysis example showing actual ray tracing of the ultra-wide-angle aspherical single lens 1 developed in the present invention. Rays incident from infinity at an angle of 0 ° to 10 °, 20 ° 30 ° at an interval of 10 ° to 80 ° are refracted by an ultra-wide-angle aspherical single lens 1, and each ray has a constant radius. A ray tracing diagram that focuses on P 0, P 1, P 2, P 3 --- P 8 on the circumference and converges on the spherical imaging section 2 to an ultra-wide angle is shown. The aperture 3 is realized by, for example, providing a groove having an appropriate width in the center of the lens by cutting or the like, and fitting a black light-blocking member or the like into the groove. This figure shows a two-dimensional cross section, but in three dimensions a naturally spherical image is formed. Although a single lens is shown in the figure, it goes without saying that a compound lens having the same light collecting principle may be used.
第 2図は実際に上記の球面結像の原理を実際の応用に活かすために、 又、 球面結像の受光センサ一を容易に製作可能にするため、 球面の赤道面 近辺のみ (図の Y軸方向) を平面近似し、 円筒状の凹面を有する光学系を 工夫したものである。図で(X、 Z )平面内の例えば A— Aからの光線は、 広視野角 0 1で円周上の A,一 A,に結像する。 しかし、 Y軸に沿う方向の B一 Bからの光線は比較的狭い視野角 Θ 2で直線上の B,一 B 'に結像す ると考えると像面湾曲は小さく省略できるので、 8 '— 8,は¥方向に沿う 直線上にあるとしても、結像特性に対する影響は省略できるものと考える。 この方法は、一方方向にのみ広がりを有し超広角な観察を必要とするパノ ラマ風景を撮影可能にする電子カメラ等の応用に適し、より実用的な発明 と考える。 非球面レンズの形状を一般的に用いられる表現を用いると、  Fig. 2 shows only the area near the equatorial plane of the spherical surface (Y in the figure) in order to make use of the above-mentioned principle of spherical imaging in actual applications and to make it possible to easily manufacture a light-receiving sensor for spherical image formation. (Axial direction) is approximated by a plane, and an optical system with a cylindrical concave surface is devised. In the figure, a ray from, for example, A—A in the (X, Z) plane forms an image at A, 1 A on the circumference at a wide viewing angle 01. However, assuming that rays from B-B in the direction along the Y-axis are imaged on a straight line B, 1B 'with a relatively narrow viewing angle Θ2, the field curvature can be reduced and 8' — Even if 8, is on a straight line along the ¥ direction, the effect on the imaging characteristics can be omitted. This method is suitable for applications such as an electronic camera that can capture a panoramic landscape that requires only an ultra-wide-angle observation, and is considered to be a more practical invention. Using commonly used expressions for the shape of an aspheric lens,
Z = c r 2 / ( 1 + s q r t ( 1一 ( 1 + k ) c 2 r 2 ) + a , r 2 + a 2 r 4 + a 3 r 6 + o Z = cr 2 / (1 + sqrt (1-1 (1 + k) c 2 r 2 ) + a, r 2 + a 2 r 4 + a 3 r 6 + o
及び c = 1 / R  And c = 1 / R
で表示される。  Is displayed with.
ここで、 rは回転非球面の断面半径、 Zは原点を回転曲面の頂点とた光軸 方向の曲面の位置座標、 cは原点における半径の逆数即ち曲率、 kは非球 面の円錐係数、 偶数次の高次非球面係数の中で ct iは 2次の非球面係数、 α 2は 4次の非球面係数、 α 3は 6次の非球面係数等である。 Where r is the cross-sectional radius of the rotating aspheric surface, and Z is the optical axis whose origin is the vertex of the rotating surface The position coordinates of the surface in the direction, c is the reciprocal of the radius at the origin or the curvature, k is the conic coefficient of the aspheric surface, and among even higher order aspherical coefficients, ct i is the secondary aspherical coefficient, α 2 is The fourth order aspherical coefficient, α 3 is the sixth order aspherical coefficient and the like.
第 1図、 第 2図に示され本発明に用いた超広角非球面単レンズ、 及び 受光面の形状は、 次の表 1に示される。 表 1  The super-wide-angle aspherical single lens used in the present invention shown in FIGS. 1 and 2 and the shape of the light receiving surface are shown in Table 1 below. table 1
Figure imgf000006_0001
表 1 の例では入射光に対し、 単レンズの前面をレンズ第一面、 後面を レンズ第二面とする。 物体の位置を第一面から無限遠におき、 絞り 4を単 レンズの中間に設けた場合、 レンズの先端から絞りの中心までの距離が 3 m m , 絞りの中心からレンズの後端までの距離が 3m m、 レンズの後端か らガウスの結像面までの距離が光軸上で 3. 5m mになることを示す。 これ らの最適設計の例で非球面に対する曲率、 6次までの高次係数が決定され 示されている。 結像面に関しては、 その半径が- 7. 453m mの凹面形状であ る。 レンズの材質は P M M A、 外径は φ 8· 0m mである。 図 1 からも示さ れるように、 10度〜 80度の入射角の光束の追跡でも分かるように一般の 平面結像と比して、 高角入射に至っても入射角と射出角がほぼ等しく、 従 つて又、 第 1図の凹面受光面上の円弧で、 各 10° おきの結像位置 P 0、 P 1 、 P 2、 P 3—— P 8間の距離も、 きわめて等間隔が保たれる。 即ち 観測画像を平面に展開しても、湾曲収差が広角まで通常と比べると著 しく少なく、 この例ではおよそ 80度近辺でも 15%以内と計算される。
Figure imgf000006_0001
In the example shown in Table 1, for the incident light, the front surface of the single lens is the first lens surface and the rear surface is the second lens surface. When the object is positioned at infinity from the first surface and the aperture 4 is provided in the middle of the single lens, the distance from the lens tip to the center of the aperture is 3 mm, the distance from the aperture center to the rear end of the lens Indicates that the distance from the rear end of the lens to the Gaussian imaging plane is 3.5 mm on the optical axis. In these optimal design examples, the curvature for the aspheric surface and the higher order coefficients up to the sixth order are determined and shown. The imaging surface has a concave shape with a radius of -7.453 mm. The lens material is PMMA and the outer diameter is φ8.0 mm. As can be seen from Fig. 1, as can be seen from the tracing of a light beam with an incident angle of 10 to 80 degrees, the incident angle and the exit angle are almost equal even at a high angle of incidence, compared to a general plane image. In addition, the distance between the imaging positions P 0, P 1, P 2, P 3-P 8 at every 10 ° is also kept very evenly by the arc on the concave light receiving surface in Fig. 1. . That is Even if the observed image is spread out on a plane, the curvature aberration is remarkably small up to wide angles compared to normal, and in this example it is calculated to be within 15% even at around 80 degrees.
第 3図は、 表 1 に示される超広角非球面単レンズ 1を用いた場合の、 性能評価のため、 平行入射光線のスポッ トダイアグラムに示す。 第 3図の P 0、 P 1、 P 2、 P 3—— P 8は、 第 1図に示した集光位置にそれぞれ 相当し、 参考のために記載したものである。 第 3図の P 0の位置にあるス ケールは、 その幅が 1 0 0 ミクロンである。 極めて優れたスポッ ト像が得 られ、 約 50° の入射角程度まではスポッ ト径も 60〜70 ミクロン程度とな る。 80 度近辺ではその形状が横方向に広がり、 コマ収差の影響が顕著に なるが、 スポッ ト径は、 100 ミクロン程度と極めて良好である。 これらの 図ではカラー表示でないが、色収差によるスポッ トの広がりはほとんど見 られない。  Fig. 3 shows a spot diagram of parallel incident light rays for performance evaluation when the super-wide-angle aspherical single lens 1 shown in Table 1 is used. P 0, P 1, P 2, and P 3 —P 8 in FIG. 3 correspond to the light condensing positions shown in FIG. 1, respectively, and are described for reference. The scale at the position P 0 in FIG. 3 has a width of 100 microns. An extremely excellent spot image is obtained, and the spot diameter is about 60 to 70 microns up to an incident angle of about 50 °. In the vicinity of 80 degrees, the shape spreads in the horizontal direction, and the effect of coma becomes remarkable, but the spot diameter is extremely good, about 100 microns. Although these figures do not show a color display, the spread of spots due to chromatic aberration is hardly observed.
第 4図は M T Fを示す。 縦軸は光学的な M T F (変調関数) の値を示 し、 横軸は分解能に相当する空間周波数 (線数/ m m ) を示す。 図の上部 に記載されている数値は光線の入射角度を示し、 光線追跡の縦方向収差 (子午方向) Tと横方向収差 (サジタル方向) Sに分けて曲線データーが 書かれており、 P 0、 P l、 P 2、 P 3—— P 8は第 1図に示される集光 位置に対応する M T F特性である。 この図から超広角の入射に際しても、 5 0 (線数/ m m ) に近い解像度が得られ、 従来の平面結像カメラと比し て、 高光学特性が広視野角まで保証される。  FIG. 4 shows the MTF. The vertical axis shows the value of the optical MTF (modulation function), and the horizontal axis shows the spatial frequency (line number / mm) corresponding to the resolution. The numerical values at the top of the figure indicate the incident angles of the rays, and the curve data is written separately for the longitudinal aberration (meridional direction) T and the lateral aberration (sagittal direction) S of ray tracing, and P 0 , Pl, P2, P3--P8 are the MTF characteristics corresponding to the condensing positions shown in FIG. From this figure, a resolution close to 50 (number of lines / mm) can be obtained even at ultra-wide-angle incidence, and high optical characteristics are guaranteed up to a wide viewing angle compared to conventional planar imaging cameras.
第 5図は本発明による受光センサー作成の例を示し、 左図の ( a ) は 凹球面結像用の半導体センサ一の例を示し、 球面結像断面 2は、 シリ コン 基板 5 とこれに転写形成された回路パターン 6から構成される概略図で ある。 現在の画像取込用の撮像素子には、 C C Dセンサー、 C一 M O Sな どの半導体素子がある。 C一 M O Sでは画素の転送は、 二次元 (X, Y) 平 面で観察場所の信号を取り出す際に Xと γのそれぞれをァ ドレス (指定) して交差した画素の電荷を取り出す方式であり、 この方式は高速化しやす い特徴を持つ。 一方、 C C Dでは電荷をバケツリ レーで送る構造上、 高速 で転送できないという問題があるが、ノィズが少なく高画質が確保できと 言うようなメ リ ッ トを持つ。 しカゝし、 いずれにせよこれらの構成は鏡面研 磨がなされている多結晶シリ コン平面基板を用いており、我々の今回の発 明では凹面の球面か、 凹面の円筒面か、 凹面の非球面等により形成されて いるので、 従来の硬いシリコン基板を曲げて、 成形加工する事は非常に困 難と思われる。 それを解決する方法の一つは、 第 5図の (a ) において、 シリ コン基板 5を液晶あるいは非晶質のァモルファスな高純度シリ コン を用いるか、 新たな半導体材料が新規に開発され、 その柔軟性、 堅さによ つて任意の自由な曲面を容易に形成できる方法が期待される。またはその 後、これらのものを凹面球面の形状に結晶化焼結させる技術を開発するこ とが考えられる。 他の方法においては、 超薄型のシリ コン基板を加工可能 にし、 折り曲げにより凹面円筒面が可能となると思われる。 これらの凹面 上のシリコン等の球面に、回路などのパターンを記録したマスクパターン の情報を、 紫外線照射露光によりフォ ト レジス トに書き込む際には、 第 1 図に示した集光の原理を用い観察物体の位置をマスクパターンに置き換 え、 回路パターンの精度にあわせてより高性能、 高解像度な超広角な非球 面レンズ系を用いる。 薄いシリ コン基板を折り曲げる際には、 当然のこと ながら露光技術は不要になる。 FIG. 5 shows an example of a light-receiving sensor according to the present invention. FIG. 5 (a) shows an example of a semiconductor sensor for concave spherical imaging, and a spherical imaging section 2 includes a silicon substrate 5 and a silicon substrate 5. FIG. 3 is a schematic diagram including a circuit pattern 6 formed by transfer. Currently, imaging devices for capturing images include semiconductor devices such as CCD sensors and C-MOS. In C-MOS, pixel transfer is a method in which, when extracting a signal at an observation place on a two-dimensional (X, Y) plane, each of X and γ is addressed (specified) to extract the electric charge of the intersecting pixel. This method is easy to speed up It has a characteristic. On the other hand, CCDs have a problem in that charges cannot be transferred at high speed due to the structure of transmitting charges in a bucket relay, but they have the advantage that noise is small and high image quality can be secured. In any case, these configurations use a polycrystalline silicon planar substrate that has been mirror polished, and in our present invention, it has a concave spherical surface, a concave cylindrical surface, or a concave cylindrical surface. Since it is formed by an aspherical surface, it seems very difficult to bend and mold a conventional hard silicon substrate. One way to solve this is to use a liquid crystal or amorphous high-purity silicon for the silicon substrate 5 or to develop a new semiconductor material, as shown in Fig. 5 (a). A method that can easily form an arbitrary free curved surface due to its flexibility and rigidity is expected. Or, after that, it is conceivable to develop a technology to crystallize and sinter these into a concave spherical shape. Other methods would allow ultra-thin silicon substrates to be machined, and bending would allow concave cylindrical surfaces. When writing the information of the mask pattern, which records the pattern of the circuit etc. on the spherical surface of silicon etc. on these concave surfaces, into the photo resist by UV irradiation exposure, the principle of light collection shown in Fig. 1 is used. Replace the position of the observation object with a mask pattern, and use an ultra-wide-angle aspheric lens system with higher performance and higher resolution according to the accuracy of the circuit pattern. When bending thin silicon substrates, naturally, exposure technology is not required.
第 5図の右図の (b ) は他の実施例で、 端面が凹球面に研磨されたバ ンドル光ファイバ一 7を示す図である。これは第 1図に示す結像原理に従 つて、球面結像断面 2の中心付近におかれた非球面対物レンズからの凹面 球面への結像によって、 比較的広角まで光ファイバ一内部に伝達され、 そ の射出光出口の端面に接続された半導体検出素子、受光センサーにより画 像を観測する方法が考えられる。 しかし、 光ファイバ一の開口数 N Aが、 その材質により限定されるため超広角は困難にしても、本発明による原理 により、 像面湾曲収差、 歪曲収差の少ない画像が期待される。 産業上の利用可能性 FIG. 5 (b) on the right side of FIG. 5 is a view showing a bundle optical fiber 17 of another embodiment, the end face of which is polished to a concave spherical surface. This is based on the imaging principle shown in Fig. 1 and transmitted to the inside of the optical fiber to a relatively wide angle by imaging on a concave spherical surface from an aspheric objective lens located near the center of the spherical imaging section 2. Then, a method of observing an image with a semiconductor detection element and a light receiving sensor connected to the end face of the exit light exit is conceivable. However, even if the ultra-wide angle is difficult because the numerical aperture NA of the optical fiber is limited by its material, an image with little field curvature aberration and distortion can be expected by the principle of the present invention. Industrial applicability
以上のように、 本発明にかかる超広角、 高光学特性の撮像を可能にする電 子、 デジタル装置は、 C C Dセンサー、 C— M O Sなどの半導体素子を用 いた受光センサ一を用い、 超広角を必要とする監視カメラ、 医療用目的の 観察分野などを含めた多岐にわたる産業分野において、 歪みの少なく、 高 解像度、 高光学特性な画像を提供する。 これにより、 情報伝達の性能が遙 かに向上し、 情報の正確化、 高速化に役立てられる。 As described above, the electronic device and digital device according to the present invention that enable imaging with an ultra-wide angle and high optical characteristics use a light-receiving sensor using a semiconductor element such as a CCD sensor or a C-MOS to achieve an ultra-wide angle. It provides high-resolution, high-resolution images with low distortion in a wide variety of industrial fields, including surveillance cameras and observation fields for medical purposes. As a result, the performance of information transmission is greatly improved, which is useful for accurate and high-speed information.

Claims

請求の範囲 The scope of the claims
1 .受光面が凹面球面形状、 あるいは凹面非球面形状に配列された要素よ り形成される C C D素子、 C一 M O S等を用いた受光センサー。 1. A light-receiving sensor that uses a CCD element, C-MOS, etc., formed of elements whose light-receiving surface is arranged in a concave spherical shape or a concave aspherical shape.
2 .請求項 1 に記載された受光センサーに関し、 凹面の円筒形状から形成 されるもの。  2. The light-receiving sensor according to claim 1, which is formed of a concave cylindrical shape.
3 .請求項 1及び 2に記載された形状の受光センサ一に関し、 ァモルファ ス液晶、 非晶質物質などで作成されたシリ コン基板部と、 回路パター ンを有する素子。  3. A light-receiving sensor having a shape according to claim 1 or 2, wherein the device has a silicon substrate portion made of amorphous liquid crystal, an amorphous material, or the like, and a circuit pattern.
4 .請求項 2に記載された形状の受光センサーに関し、極めて薄い C C D、 C一 M O S等の半導体素子などを折り曲げ等により、湾曲させたもの。  4. A light-receiving sensor having a shape according to claim 2, wherein a semiconductor element such as an extremely thin CCD or C-MOS is bent by bending or the like.
5 . レンズ系がそのセンター位置に絞り 3を設けた超広角非球面単レンズ 1により構成され、 請求項 1及び 2に記載された受光系を有する、 超広角 な視野の撮影が可能な電子カメラ、 デジタル撮影装置。 5. An electronic camera capable of capturing an ultra-wide-angle field of view, having a light-receiving system according to claims 1 and 2, wherein the lens system is constituted by an ultra-wide-angle aspherical single lens 1 provided with an aperture 3 at the center position thereof. , Digital photography equipment.
6 . レンズ系が複数枚数の球面レンズあるいは非球面レンズから構成され, 請求項 1及び 2に記載された受光系を有する、超広角な視野の撮影が可能 な電子カメラ、 デジタル撮影装置。 6. An electronic camera and a digital photographing apparatus capable of photographing an ultra-wide-angle field of view, wherein the lens system comprises a plurality of spherical lenses or aspherical lenses, and has the light receiving system according to claim 1 or 2.
PCT/JP2001/001260 2000-02-22 2001-02-21 Light-receiving sensor enabling superwide-angle image pickup, and electronic digital camera comprising it WO2001063915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU34106/01A AU3410601A (en) 2000-02-22 2001-02-21 Light-receiving sensor enabling superwide-angle image pickup, and electronic digital camera comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-105564 2000-02-22
JP2000105564 2000-02-22

Publications (1)

Publication Number Publication Date
WO2001063915A1 true WO2001063915A1 (en) 2001-08-30

Family

ID=18618886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001260 WO2001063915A1 (en) 2000-02-22 2001-02-21 Light-receiving sensor enabling superwide-angle image pickup, and electronic digital camera comprising it

Country Status (2)

Country Link
AU (1) AU3410601A (en)
WO (1) WO2001063915A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477312B2 (en) 2003-07-04 2009-01-13 Sony Corporation Photographing apparatus, photographing method, and method for measuring converted data representing a fiber-array image
WO2012147841A1 (en) * 2011-04-26 2012-11-01 ソニー株式会社 Image pickup device and electronic apparatus
JP2015028664A (en) * 2014-10-31 2015-02-12 コニカミノルタ株式会社 Imaging optical system
US9104018B2 (en) 2012-03-30 2015-08-11 Canon Kabushiki Kaisha Imaging apparatus having a curved image surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160268A (en) * 1987-12-17 1989-06-23 Nec Corp Wide range high resolution image pickup system
JPH01202989A (en) * 1988-02-09 1989-08-15 Nec Corp Solid-state image pickup device
JPH03194429A (en) * 1989-12-21 1991-08-26 Matsushita Electric Ind Co Ltd Pyroelectric type infrared-ray detecting device
JPH04196689A (en) * 1990-11-26 1992-07-16 Seiko Epson Corp image input device
JPH06133229A (en) * 1992-10-16 1994-05-13 Fuji Photo Optical Co Ltd Solid-state image pickup element having micro lens
JPH10108078A (en) * 1996-09-26 1998-04-24 Nec Corp Solid-state imaging camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160268A (en) * 1987-12-17 1989-06-23 Nec Corp Wide range high resolution image pickup system
JPH01202989A (en) * 1988-02-09 1989-08-15 Nec Corp Solid-state image pickup device
JPH03194429A (en) * 1989-12-21 1991-08-26 Matsushita Electric Ind Co Ltd Pyroelectric type infrared-ray detecting device
JPH04196689A (en) * 1990-11-26 1992-07-16 Seiko Epson Corp image input device
JPH06133229A (en) * 1992-10-16 1994-05-13 Fuji Photo Optical Co Ltd Solid-state image pickup element having micro lens
JPH10108078A (en) * 1996-09-26 1998-04-24 Nec Corp Solid-state imaging camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477312B2 (en) 2003-07-04 2009-01-13 Sony Corporation Photographing apparatus, photographing method, and method for measuring converted data representing a fiber-array image
WO2012147841A1 (en) * 2011-04-26 2012-11-01 ソニー株式会社 Image pickup device and electronic apparatus
JP2012237966A (en) * 2011-04-26 2012-12-06 Sony Corp Image pickup device and electronic apparatus
US10330888B2 (en) 2011-04-26 2019-06-25 Sony Corporation Imaging device and electronic apparatus
US9104018B2 (en) 2012-03-30 2015-08-11 Canon Kabushiki Kaisha Imaging apparatus having a curved image surface
US9453986B2 (en) 2012-03-30 2016-09-27 Canon Kabushiki Kaisha Imaging apparatus having a curved image surface
JP2015028664A (en) * 2014-10-31 2015-02-12 コニカミノルタ株式会社 Imaging optical system

Also Published As

Publication number Publication date
AU3410601A (en) 2001-09-03

Similar Documents

Publication Publication Date Title
JP5724755B2 (en) Imaging system
CN109407272B (en) electronic device
JP4813669B2 (en) Zoom lens
JP5370109B2 (en) Imaging lens and imaging apparatus
US20040008407A1 (en) Method for designing a lens system and resulting apparatus
JP4274602B2 (en) Objective optical system
WO2008079403A2 (en) Three-element photographic objective with reduced tolerance sensitivities
JP2008281760A (en) Photographic lens and photographic device
TW201118412A (en) Single focus wide-angle lens module
JP7559045B2 (en) Wide-field objective lens
US6985184B2 (en) Electronic camera
JP5716547B2 (en) Imaging lens, camera device, and portable information terminal device
WO2020017258A1 (en) Lens system, image capture device, and image capture system
US10462363B2 (en) Optical apparatus
KR20200026694A (en) Wide-angle imaging lens
JP2005181596A (en) Wide angle lens
JPH1184234A (en) Photographing lens
US20220066127A1 (en) Optical lens and electronic apparatus
JP6004073B2 (en) Optical system and imaging apparatus
JP5839135B2 (en) Spherical optical system and imaging device
JP5783314B2 (en) Spherical optical system and imaging system
WO2001063915A1 (en) Light-receiving sensor enabling superwide-angle image pickup, and electronic digital camera comprising it
JP3752025B2 (en) Large aperture ultra wide angle lens system
JP5298878B2 (en) Imaging lens, camera device, and portable information terminal device
JP5668818B2 (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AT AU BG BR CA CN CZ DE DK ES FI GB HU IL IN JP KP KR MX NZ PL PT RO RU SE SK UA US YU ZA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 562015

Kind code of ref document: A

Format of ref document f/p: F

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载