WO2001061989A1 - Image processing method and image processing device - Google Patents
Image processing method and image processing device Download PDFInfo
- Publication number
- WO2001061989A1 WO2001061989A1 PCT/JP2000/000978 JP0000978W WO0161989A1 WO 2001061989 A1 WO2001061989 A1 WO 2001061989A1 JP 0000978 W JP0000978 W JP 0000978W WO 0161989 A1 WO0161989 A1 WO 0161989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- continuous
- noise
- processing
- continuous area
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 97
- 238000003672 processing method Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 claims description 36
- 238000012935 Averaging Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 6
- 239000003086 colorant Substances 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 9
- 238000005315 distribution function Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
Definitions
- the present invention relates to an image processing method and an image processing apparatus for digital images, and more particularly to a case where low-resolution image data is printed or displayed at a high resolution, a case where a high-compression image is reproduced, or image data which has been subjected to an enlargement process.
- TECHNICAL FIELD The present invention relates to an image processing method and an image processing apparatus in a case where a certain area is printed or displayed with a uniform color and density, such as when printing or displaying an image. Background art
- the size of the output image will be 1-8, that is, 0.6 mm 0. 6 mm.
- the image size of the original 5 cm x 5 cm and 72 dpi image is 14 2 pixels XI 42 pixels
- the size of 5 cm x 5 cm at 600 dpi is 1 It is 18 1 pixel x 1 18 1 pixel. Therefore, it is necessary to assign 8 pixels ⁇ 8 pixels to one original pixel.
- the simplest method is to assign 8 pixels ⁇ 8 pixels of the same color and level to one original pixel. Also, the pixel at the predetermined position of 8 pixels ⁇ 8 pixels is set to the same color and level as the original one pixel, and the other pixels are interpolated with the adjacent pixels of the predetermined position of 8 pixels ⁇ 8 pixels to smoothly interpolate. Those who want to change to There is also a law.
- a similar layout method is applied when enlarging the original image, and a large area where pixels of similar colors and levels are continuous may be formed.
- image data is compressed in order to transfer and store the image data.
- compression is performed in units of 8 pixels ⁇ 8 pixels in accordance with the level of the spatial frequency.
- the spatial frequency is low, it is compressed into one piece of information, so when decompressed, 8 pixels x 8 pixels have the same color and level.
- 8 pixels x 8 pixels have the same color and level.
- the same color and level units will be continuous if they are grouped in units of 8 pixels x 8 pixels Cases arise. When such data is restored, a region in which pixels of the same color and level are continuous over a wide range occurs.
- Images like the ones described above are subject to different impressions than natural images taken with the camera. This is mainly due to gradients and drawing planes. This is due to the uniform or simple repetition of the change.
- pixels of a single density are not continuous, and pixels of pixels with slightly different densities are not It is represented by a gathering.
- a region where pixels of the same color and level are continuous over a wide range is formed.
- Figure 1 is a diagram showing an example of the above image. Since the body of the train is painted with the same intention in each area, as shown in the enlarged part, only the color border is a small strip. Area is formed, but the other parts A and B are regarded as the same color, and a large continuous area is formed. In the case of a blue sky without clouds, the portion indicated by C is also determined to be almost a continuous region, and the portion D is determined to be a similar white continuous region.
- the present invention solves such a problem, and performs processing such that the enlarged image, the restored image obtained by restoring the compressed image, and the artificially created image become images giving a more natural impression.
- the purpose is to realize an image processing method and apparatus.
- noise is added only to a region where similar colors and levels are continuous.
- the image processing method of the present invention detects a continuous area having a level difference of a predetermined value or less in an image, determines whether to perform noise addition processing on the detected continuous area, and performs the noise addition processing. Noise is generated and added to each image in the continuous area.
- the image processing apparatus of the present invention has an image data memory for holding image data, and a continuous area detection unit for detecting a continuous area having a level difference of a predetermined value or less in an image from the image data.
- An additional processing application determination unit that determines whether to perform noise addition processing on the continuous area, and a noise addition processing that generates and adds noise to each image in the continuous area on which noise addition processing is performed.
- the image processing apparatus according to the present invention is characterized in that the statistical processing is performed on unnaturally uniform continuous areas having similar colors and levels. The noise addition processing based on the day and night gives a natural impression.
- a normal distribution function or a uniform distribution function is used, and the standard deviation and the like are appropriately determined based on the average value of each color signal such as RGB of pixels in a continuous area as a center. And generate noise. It is desirable that the value of the standard deviation in the case of the normal distribution function be appropriately determined according to the target image.For example, in the case of a 256-level image, a value of about 100 to 180 For an image, it is 3 to 6 when the image is a face such as a human face or an object, and is 7 to 10 when a natural image such as a landscape generally has no surface. If it is a uniform distribution function, it is not necessary to set the standard deviation, but it is necessary to set the noise level.
- each color signal such as RGB of pixels in the continuous area
- this may be shifted. For example, shifting to a brighter direction can avoid dull images. It is also possible to shift in the darker direction.
- the continuous area is, for example, a predetermined level for each color signal such as RGB. This is an area where pixels in the difference are continuous.
- the continuous area includes both a large area and a small area, but only the large area needs to be subjected to noise addition processing. Therefore, the additional processing application determination unit determines that noise addition processing is to be performed only on a large continuous area having a number of pixels equal to or greater than a predetermined value in the continuous area.
- a pixel level histogram creation unit that creates a histogram of the level of each pixel in the image data in parallel with the storage of the image data, and the continuous area detection unit refers to the histogram to determine the frequency of occurrence. It is desirable to search for a continuous area in order from the pixel level with the largest value.
- the continuous region detection unit searches for a continuous region only for a predetermined number of pixel levels having a high occurrence frequency or searches for a continuous region only for a pixel level whose occurrence frequency is equal to or higher than a predetermined value. I do.
- an averaging process determining unit that determines whether to perform the averaging process is performed based on image data at a boundary portion of a region adjacent to the continuous region where the noise adding process is performed, and an averaging process is performed.
- an averaging processing unit that performs averaging processing on the boundary part determined to be different.
- the noise addition processing unit generates noise for each image in the continuous area after the averaging processing has been performed.
- FIG. 1 is a diagram illustrating an example in which a continuous area having similar colors and levels is determined.
- FIG. 2 is a diagram showing the configuration of the image processing apparatus according to the first embodiment of the present invention. You.
- FIG. 3 is a flowchart showing a processing routine in the first embodiment.
- FIG. 4 is a flowchart showing a noise addition processing routine in the first embodiment.
- FIG. 5 is a diagram illustrating a configuration of an image processing apparatus according to a second embodiment of the present invention.
- FIG. 6 is a diagram showing a configuration of a modification of the second embodiment.
- FIG. 7 is a diagram illustrating the averaging process according to the third embodiment of the present invention.
- FIG. 8 is a flowchart showing the averaging routine in the third embodiment.
- FIG. 2 is a diagram showing the configuration of the image processing apparatus according to the first embodiment of the present invention
- FIG. 3 is a flowchart showing the entire noise adding process of the first embodiment
- FIG. This is a flowchart showing noise addition processing.
- the first embodiment is an example in which low-resolution image data is printed by a high-resolution image forming apparatus (printer).
- the input image data is 8-bit RGB data. 6 gradations can be expressed.
- Each part in Fig. 2 is formed as a processing unit in the computer.
- step 101 the user selects whether or not to perform noise addition processing on data. If not in the noise addition processing mode, the image data is sent directly to the binary / multi-value processing section 18 as normal processing, and the result is stored in the print data memory 19 and printed. If the noise addition processing mode has been selected, in step 102, the image data is stored in a bitmap format image data memory 1 for processing. Expands to 1.
- the pixel level histogram creation unit 1 checks the level (RGB level) of each pixel of the input image data and counts the number of pixels at each level. To create a histogram. In the present embodiment, it is determined whether or not there is a continuous area in descending order of the number of pixels at a level where the number of pixels is a predetermined number or more from the histogram.
- the noise addition level is determined. This determines how much noise is added depending on the target image. If a normal distribution function is used, the standard deviation is determined, and if it is a uniform distribution function, the width is determined. For example, the standard deviation is about 3 to 6 for a face such as a human face or an object, and about 7 to 10 for a natural image such as a landscape where there is generally no face. .
- step 105 the level of the maximum number of pixels is selected from the uniform region extraction processing unit 13 power histogram, and in step 106, it is determined whether the number of pixels is equal to or greater than a predetermined value.
- a width may be set for a certain level, and the number of pixels within the width may be targeted. If the number of pixels is not equal to or larger than the predetermined value, the process ends. This is because it is determined that there is no large continuous area.
- Such a determination condition is stored in the processing execution determination condition information memory 15 in advance, and is provided to the uniform region extraction processing unit 13 via the region information memory 14.
- a continuous area is searched in step 107.
- This is a continuous area of selected levels, ie, the same RGB data or a series of similar data with only one or two levels of RGB values (R ⁇ l, G ⁇ l, B ⁇ 1, etc.). To explore. There may be more than one such continuous region for a level.
- step 108 it is determined whether such a continuous area is equal to or larger than a predetermined size. This is because the number of pixels in each continuous area is greater than This is performed by determining whether Since the noise addition processing is more effective when applied to a continuous area having a certain size or more, even a continuous area, a small area is excluded from the target.
- Information on the continuous area determined to be subjected to the noise addition processing is stored in the clipped image memory 16.
- step 109 the noise generation processing unit 17 performs a process of adding noise in each continuous region determined to perform the noise addition process.
- the part that does not perform noise addition processing is sent to the binary / Z-multivalue processing section 18 as it is.
- an example of generating noise using a normal distribution function will be described with reference to FIG.
- step 121 the average of the image levels of the pixels in the target continuous area is calculated for each of the RGB data.
- step 122 the standard deviation of the normal distribution determined in step 104 is set. Steps
- the random numbers generated according to the normal distribution function are (1-5, _ 6, 1), (2, — 5, 1), (3,-2 , 3),..., the corrected data is (1 2 3, 1 2 2, 1 2 7) ⁇ (1 3 0, 1 2 3, 1 2 9), (1 3 1, 1 2 6, 1 2 5).
- the above is the noise addition processing.
- the noise given by the noise adding process can be modified in various ways depending on how the image is changed, and those parameters can be stored in advance in the processing execution determination condition information memory 15.
- the processing in the noise generation processing unit 17 may be changed accordingly. For example, it is possible to select processing such as shifting the average value (the average value of the standard deviation) in the brighter direction with respect to the average value of the levels in the continuous area. Conversely, it is also possible to shift in a long direction. It is desirable that this shift amount can be set interactively by the user while watching the screen.
- step 110 the level having the next largest number of pixels after the histogram is selected, and steps 106 and thereafter are repeated. In this way, it is determined whether there is a continuous area to be processed at a level having a relatively large number of pixels in the histogram, and noise addition processing is performed on the continuous area to be processed.
- the stored image data is stored. Thereafter, printing is performed according to the image data.
- FIG. 5 is a diagram illustrating a configuration of a video image processing device according to a second embodiment of the present invention.
- the first embodiment is an apparatus for processing image data to be printed
- the second embodiment is an apparatus for processing video data to be displayed on a display device.
- the video data is temporarily expanded and stored in the bitmap format temporary storage memory 21.
- the conditions stored in the processing execution determination condition information memory 23 by the uniform area cutout processing unit 22 are the same as in the first embodiment.
- a continuous area to be processed is searched for, and data indicating the continuous area to be processed is stored in the continuous area data memory 24.
- the continuous area data memory 24 the average value of the image level of each continuous area necessary for the noise addition processing is also stored.
- the noise generation processing unit 25 corrects each pixel in the continuous area based on the data stored in the continuous area data memory 24, and displays the corrected data in the display data memory.
- the data stored in the display data memory 26 can be switched between the data after correction and the data stored in the uncorrected temporary storage memory 21. It is possible to switch between data that has been processed and data that has not been processed.
- a difference holding memory 27 holds only data of a continuous area processed by the noise generation processing unit 25 as a difference. Then, a combining circuit 28 that combines the image data that has not been processed with the data held in the difference holding memory 27 may be provided. In this case, the memory capacity can be reduced.
- an averaging process is performed between pixels adjacent at the boundary to remove an unnatural boundary line.
- the averaging process is performed by averaging data of adjacent pixels for each of RGB.
- the averaging process and the noise addition process of the present invention can be performed together. In this case, after performing the averaging process at the boundary of the continuous region, the noise adding process is performed within the continuous region.
- FIG. 7 is a diagram for explaining an example of processing in a case where noise addition processing is performed after averaging processing is performed.
- the averaging process is performed on a portion that is separated by 10 or more at any level of RGB from a region where the pixel value of the pixel is adjacent to the adjacent region.
- the area shown by the broken line is the continuous area where the noise addition processing is performed, and the RGB values of the pixels in this area are all (124, 152, 189).
- the RGB values of the pixels in the left area are all (1 2 7, 1 5 5, 1 9 2), and the RGB values of the pixels in the right area are all (1 2 0, 1 5 8, 1 9 4) ), And neither averaging process is performed. Note that the force (not shown) All of the raw RGB values are (127, 155, 192), and no averaging is performed.
- the RGB values of the pixels adjacent to this area on the upper side are (13 2, 1 45, 1 19), (1 3 1, 1 4 4, 1 18), (1 2 7, 1 4 1, 1 1), (1 2 1, 1 3 4, 1 6), (1 1 6, 1 2 8, 1 16), (1 2 4, 1 3 6, 1 2 4), (144, 154, 158) and (162, 173, 177), and the averaging process is performed.
- the RGB values of the upper pixel are, in order from the left side, (128, 149, 154), (128, 148, 154), (126, 146) , 1 5 1) ⁇ (1 2 3, 1 4 3, 1 4 8), (1 2 0, 1 4 0, 1 5 3), (1 2 4, 1 4 4, 1 5 7), (1 3 4, 15 3, 17 4), (14 3, 16 3, 18 3).
- noise addition processing is performed on each pixel within the area indicated by the broken line.
- the result of adding noise to the above averaged value in accordance with the normal distribution with a standard deviation of 4 is, for example, (1 19, 144, 1 47), (1 1 8, 155, 155), (127, 149, 156), (119, 140, 144), (129, 141, 144) 5), (127, 141, 154), (136, 154, 169), and (153, 163, 184).
- FIG. 8 is a flowchart showing the processing in the case where the noise addition processing is performed after the averaging processing is performed.
- processing is performed until a continuous region to be processed is determined. Then, in step 131, the area around the continuous area is examined, and in step 132, it is determined whether there is a boundary that requires averaging. You. If the averaging process is required, the averaging process is performed in step 133, and then the noise adding process similar to that described in the first and second embodiments is performed in step 134. If the averaging process is not required, the process proceeds to step 134 to perform the noise adding process.
- the present invention can be applied to multi-valued image data to be printed by a printing device such as a printer or multi-valued image data to be displayed on a display, and image quality can be improved.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
Abstract
An image processing method and device for processing a magnified image, a restructured image restructured from a compressed image, and an artificial image into images imparting an impression of natural images. A continuous region in which the level difference is at a predetermined or lower level is detected in an image. It is judged whether or not noise should be added to the detected continuous region. Noise is generated and added to each image in the continuous region to which noise has been judged to be added. Noise is added according to statistic data to the continuous region where colors are similar and the levels are continuous, causing the image to be unnaturally uniform.
Description
明 細 書 画像処理方法及び画像^理装置 技術分野 Description Image processing method and image processing device
本発明は、 デジタル画像の画像処理方法及び画像処理装置に関し 、 特に低解像度の画像データを高解像度で印刷や表示する場合や、 高圧縮された画像を再生する場合や、 拡大処理処理した画像データ を印刷や表示する場合などの、 一定領域が均一な色及び濃度で印刷 や表示される場合の画像処理方法及び画像処理装置に関する。 背景技術 The present invention relates to an image processing method and an image processing apparatus for digital images, and more particularly to a case where low-resolution image data is printed or displayed at a high resolution, a case where a high-compression image is reproduced, or image data which has been subjected to an enlargement process. TECHNICAL FIELD The present invention relates to an image processing method and an image processing apparatus in a case where a certain area is printed or displayed with a uniform color and density, such as when printing or displaying an image. Background art
低解像度の画像を高解像度の画像形成装置で印刷や表示する場合 、 所望の大きさの画像を得るには、 元の低解像度の画像を高解像度 の画像に変換する必要がある。 例えば、 5 c m X 5 c mの大きさで 7 2 d p i の画像データをそのまま 6 0 0 d p i のプリ ンタに供給 すると、 出力される画像の大きさは 1 ノ 8 に、 すなわち 0 . 6 mm 0. 6 mmになる。 この場合、 元の 5 c m x 5 c mの大きさで 7 2 d p i の画像の画素数は 1 4 2画素 X I 4 2画素であり、 6 0 0 d p i での 5 c m X 5 c mの大きさは、 1 1 8 1 画素 x 1 1 8 1 画 素である。 従って、 元の 1 画素に対して、 8画素 X 8画素を割り付 ける必要がある。 When printing or displaying a low-resolution image with a high-resolution image forming apparatus, it is necessary to convert the original low-resolution image into a high-resolution image in order to obtain an image of a desired size. For example, if 72-dpi image data with a size of 5 cm x 5 cm is supplied to a 600-dpi printer as it is, the size of the output image will be 1-8, that is, 0.6 mm 0. 6 mm. In this case, the image size of the original 5 cm x 5 cm and 72 dpi image is 14 2 pixels XI 42 pixels, and the size of 5 cm x 5 cm at 600 dpi is 1 It is 18 1 pixel x 1 18 1 pixel. Therefore, it is necessary to assign 8 pixels × 8 pixels to one original pixel.
このような割付方法と しては、 各種ある。 もっと も単純な方法は 、 元の 1 画素に対して同じ色及びレベルの 8画素 X 8画素を割り付 ける方法である。 また、 8画素 X 8画素の所定の位置の画素を元の 1 画素の同じ色及びレベルと し、 他の画素は隣接する 8画素 X 8画 素の所定の位置の画素とで補間して滑らかに変化するようにする方
法もある。 There are various allocation methods. The simplest method is to assign 8 pixels × 8 pixels of the same color and level to one original pixel. Also, the pixel at the predetermined position of 8 pixels × 8 pixels is set to the same color and level as the original one pixel, and the other pixels are interpolated with the adjacent pixels of the predetermined position of 8 pixels × 8 pixels to smoothly interpolate. Those who want to change to There is also a law.
元の 1 画素に対して同じ色及びレベルの 8 画素 X 8 画素を割り付 ける方法では、 8 画素 X 8 画素の 6 4 画素は同じ色及びレベルで表 される。 また、 捕間して滑らかに変化させる方法でも、 元の画像で 隣接する画素が同じ色及びレベルある場合や、 その差が小さい場合 には、 同 じような色及びレベルの画像が連続するこ とになり、 同じ よう な色及びレベルの画素が連続した広い領域が形成されるこ とが のる。 In the method of assigning 8 pixels x 8 pixels of the same color and level to one original pixel, 64 pixels of 8 pixels x 8 pixels are represented by the same color and level. Also, even in the method of interpolating and changing smoothly, if adjacent pixels have the same color and level in the original image, or if the difference is small, images of the same color and level may be continuous. As a result, a large area in which pixels of similar colors and levels are continuous can be formed.
元の画像を拡大する場合も同様の割付方法が適用され、 同じよう な色及びレベルの画素が連続した広い領域が形成される こ とがある o A similar layout method is applied when enlarging the original image, and a large area where pixels of similar colors and levels are continuous may be formed.o
また、 画像データを転送したり記憶するために、 画像データを圧 縮する こ とが行われている。 例えば、 一般的な J P E Gでは、 8 画 素 X 8画素単位のかたま りで空間周波数の高低に応じて圧縮を行つ ている。 空間周波数が低いと 1 つの情報に圧縮されるため復元した 時には、 8 画素 X 8 画素が同じ色及びレベルになる。 また、 単一に ならなく ても、 2 、 3種類のレベルの矩形状の配列で表現される。 元の画像で画素毎に少しの差はあるが同 じよ う な色及びレベルが広 く 連続している場合、 8 画素 X 8 画素単位でま とめる と同 じ色及び レベルの単位が連続する場合が生じる。 このようなデータを復元す ると、 広い範囲に渡って同じ色及びレベルの画素が連続した領域が 生じる。 In addition, image data is compressed in order to transfer and store the image data. For example, in general JPEG, compression is performed in units of 8 pixels × 8 pixels in accordance with the level of the spatial frequency. When the spatial frequency is low, it is compressed into one piece of information, so when decompressed, 8 pixels x 8 pixels have the same color and level. Also, even if they are not a single, they are represented by a rectangular array of a few levels. In the original image, if there are slight differences between pixels, but similar colors and levels are widely continuous, the same color and level units will be continuous if they are grouped in units of 8 pixels x 8 pixels Cases arise. When such data is restored, a region in which pixels of the same color and level are continuous over a wide range occurs.
上記のよ うな、 広い範囲に渡って同 じ色及びレベルの画素が連続 した領域は、 コ ンピュータグラフ ィ ッ クなどの人工的に作成した画 像でも生じる。 As described above, a region in which pixels of the same color and level are continuous over a wide range occurs even in an artificially created image such as a computer graphic.
上記のような画像は、 カメ ラで撮影した自然な画像とは異なる印 象を受ける。 この原因は、 主と してグラデーシ ョ ンや平面の描画が
均一又は単純な変化の繰り返しであることに起因している。 Images like the ones described above are subject to different impressions than natural images taken with the camera. This is mainly due to gradients and drawing planes. This is due to the uniform or simple repetition of the change.
単一色で塗装された物体をカメ ラで撮影した写真を拡大してみる と、 そのような部分であっても単一濃度の画素が連続しているわけ ではなく 、 微妙に濃度の異なる画素の集まりによって表現されてい る。 これに対して、 上記のような画像では、 広い範囲に渡って同じ 色及びレベルの画素が連続した領域が形成される。 If you enlarge a photograph of an object painted with a single color using a camera, even in such a part, pixels of a single density are not continuous, and pixels of pixels with slightly different densities are not It is represented by a gathering. On the other hand, in the image as described above, a region where pixels of the same color and level are continuous over a wide range is formed.
図 1 は、 上記のような画像の例を示す図であり、 電車の車体は領 域毎に同じ意図で塗装されているので、 拡大した部分に示すように 、 色の境界部のみ小さな短冊状の領域が形成されるが、 他の部分 A 、 Bは同じ色とみなされ、 大きな連続領域が形成される。 また、 雲 のない青空であれば、 Cで示す部分もほとんど連続領域と判定され 、 Dの部分も同じような白色の連続領域と判定される。 Figure 1 is a diagram showing an example of the above image. Since the body of the train is painted with the same intention in each area, as shown in the enlarged part, only the color border is a small strip. Area is formed, but the other parts A and B are regarded as the same color, and a large continuous area is formed. In the case of a blue sky without clouds, the portion indicated by C is also determined to be almost a continuous region, and the portion D is determined to be a similar white continuous region.
このような場合、 非常に不自然な印象を与えるという問題があつ た。 発明の開示 In such a case, there was a problem of giving a very unnatural impression. Disclosure of the invention
本発明は、 このような問題を解決するもので、 上記のような拡大 した画像、 圧縮画像を復元した復元画像及び人工的に作った画像が より自然な印象を与える画像になるように処理する画像処理方法及 び装置の実現を目的とする。 The present invention solves such a problem, and performs processing such that the enlarged image, the restored image obtained by restoring the compressed image, and the artificially created image become images giving a more natural impression. The purpose is to realize an image processing method and apparatus.
上記目的を実現するため、 本発明の画像処理方法及び装置では、 同じような色及びレベルの連続した領域についてのみ、 ノイズ (雑 音) を付加する。 In order to achieve the above object, according to the image processing method and apparatus of the present invention, noise (noise) is added only to a region where similar colors and levels are continuous.
すなわち、 本発明の画像処理方法は、 画像内でレベル差が所定値 以下の連続した連続領域を検出し、 検出した前記連続領域について 、 ノイズ付加処理を行うかを判定し . 及びノイズ付加処理を行う連 続領域内の各画像に対してノイズを発生させて付加することを特徴
とする。 That is, the image processing method of the present invention detects a continuous area having a level difference of a predetermined value or less in an image, determines whether to perform noise addition processing on the detected continuous area, and performs the noise addition processing. Noise is generated and added to each image in the continuous area. And
また、 本発明の画像処理装置は、 画像データを保持する画像デー タメ モ リ と、 画像データから、 画像においてレベル差が所定値以下 の連続した連続領域を検出する連続領域検出部と、 検出 した連続領 域について、 ノ イズ付加処理を行うかを判定する付加処理適用判定 部と、 ノ イ ズ付加処理を行う連続領域内の各画像に対してノ イズを 発生させて付加するノ イズ付加処理部とを備えるこ とを特徴とする 本発明の画像処理方法及び装置によれば、 同 じよ う な色及びレべ ルの連続した不自然に均一になっている連続領域に対して統計的デ 一夕に基づく ノ イ ズ付加処理を施すので、 自然な印象が与えられる 。 統計的データと しては、 例えば、 正規分布関数や一様分布関数を 使用 し、 連続領域内の画素の R G Bなどの各色信号毎の平均値を中 心と して、 標準偏差などを適宜定めてノ イズを発生させる。 正規分 布関数の場合の標準偏差の値は、 対象となる画像に応じて適宜定め る こ とが望ま し く 、 例えば、 2 5 6 レベルの画像で 1 0 0 〜 1 8 0 程度のレベルの画像に対して、 人の顔や物体など面である場合には 3 〜 6 、 風景などの自然画で般的に面が一存在しない場合には、 7 〜 1 0程度である。 一様分布関数であれば、 標準偏差を設定する必 要はないが、 ノ ィズのレベルは設定する必要がある。 Further, the image processing apparatus of the present invention has an image data memory for holding image data, and a continuous area detection unit for detecting a continuous area having a level difference of a predetermined value or less in an image from the image data. An additional processing application determination unit that determines whether to perform noise addition processing on the continuous area, and a noise addition processing that generates and adds noise to each image in the continuous area on which noise addition processing is performed. According to the image processing method and apparatus of the present invention, the image processing apparatus according to the present invention is characterized in that the statistical processing is performed on unnaturally uniform continuous areas having similar colors and levels. The noise addition processing based on the day and night gives a natural impression. As the statistical data, for example, a normal distribution function or a uniform distribution function is used, and the standard deviation and the like are appropriately determined based on the average value of each color signal such as RGB of pixels in a continuous area as a center. And generate noise. It is desirable that the value of the standard deviation in the case of the normal distribution function be appropriately determined according to the target image.For example, in the case of a 256-level image, a value of about 100 to 180 For an image, it is 3 to 6 when the image is a face such as a human face or an object, and is 7 to 10 when a natural image such as a landscape generally has no surface. If it is a uniform distribution function, it is not necessary to set the standard deviation, but it is necessary to set the noise level.
また、 連続領域内の画素の R G Bなどの各色信号毎の平均値を確 率関数の中心と したが、 これをシフ ト させてもよい。 例えば、 明る い方向にシフ トすると、 画像がく すむのを避ける こ とができる。 更 に暗い方向にシフ 卜 させるこ と も可能である。 Although the average value of each color signal such as RGB of pixels in the continuous area is set as the center of the probability function, this may be shifted. For example, shifting to a brighter direction can avoid dull images. It is also possible to shift in the darker direction.
使用する関数、 分布の幅に関連する値、 及び中心値などは、 オペ レー夕が画像をみて任意に設定できるよ う にするこ とが望ま しい。 連続領域は、 例えば、 R G Bなどの各色信号毎に、 所定のレベル
差内の画素が連続する領域である。 連続領域には、 画素数の大きな 領域も小さな領域もあるが、 ノ ィズ付加処理を施す必要のあるのは 大きな領域のみである。 そこで、 付加処理適用判定部は、 連続領域 のうち画素数が所定値以上の大きな連続領域に対してのみノ イズ付 加処理を行う と判定する。 It is desirable that the function to be used, the value related to the width of the distribution, and the center value can be set arbitrarily by the operator by viewing the image. The continuous area is, for example, a predetermined level for each color signal such as RGB. This is an area where pixels in the difference are continuous. The continuous area includes both a large area and a small area, but only the large area needs to be subjected to noise addition processing. Therefore, the additional processing application determination unit determines that noise addition processing is to be performed only on a large continuous area having a number of pixels equal to or greater than a predetermined value in the continuous area.
すべての連続領域を探してノ イズ付加処理を行うか判定すると、 処理時間が長く なるという問題を生じる。 そこで、 画像データの記 憶時に並行して画像データにおける各画素のレベルのヒス ト グラム を作成する画素レベルヒス ト グラム作成部を備え、 連続領域検出部 は、 ヒス ト グラムを参照して、 発生頻度の大きな画素レベルから順 に連続領域を探すこ とが望ま しい。 この場合、 連続領域検出部は、 発生頻度が大きな上位の所定個数の画素レベルについてのみ連続領 域を探すよ うにするか、 発生頻度が所定値以上の画素レベルについ てのみ連続領域を探すよう にする。 If it is determined whether noise addition processing should be performed by searching all continuous areas, there is a problem that processing time becomes longer. Therefore, a pixel level histogram creation unit is provided that creates a histogram of the level of each pixel in the image data in parallel with the storage of the image data, and the continuous area detection unit refers to the histogram to determine the frequency of occurrence. It is desirable to search for a continuous area in order from the pixel level with the largest value. In this case, the continuous region detection unit searches for a continuous region only for a predetermined number of pixel levels having a high occurrence frequency or searches for a continuous region only for a pixel level whose occurrence frequency is equal to or higher than a predetermined value. I do.
なお、 隣接した連続領域の境界において、 色味がある程度異なる 場合、 隣接した画素同士の平均化処理を行う こ とによって、 不自然 な境界線の除去が可能である。 平均化処理を行う には、 ノ イズ付加 処理を行う連続領域に隣接する領域の境界部の画像データから、 平 均化処理を行うかを判定する平均化処理判定部と、 平均化処理を行 う と判定された境界部について平均化処理を行う平均化処理部とを 備え、 ノ イズ付加処理部は、 平均化処理が行われた後の連続領域内 の各画像に対してノ イズを発生させて付加する。 図面の簡単な説明 In the case where the hue differs to some extent at the boundary between adjacent continuous regions, it is possible to remove an unnatural boundary by averaging adjacent pixels. In order to perform the averaging process, an averaging process determining unit that determines whether to perform the averaging process is performed based on image data at a boundary portion of a region adjacent to the continuous region where the noise adding process is performed, and an averaging process is performed. And an averaging processing unit that performs averaging processing on the boundary part determined to be different.The noise addition processing unit generates noise for each image in the continuous area after the averaging processing has been performed. Let me add. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 同じような色及びレベルの連続領域と判定される例を示 す図である。 FIG. 1 is a diagram illustrating an example in which a continuous area having similar colors and levels is determined.
図 2 は、 本発明の第 1 実施例の画像処理装置の構成を示す図であ
る。 FIG. 2 is a diagram showing the configuration of the image processing apparatus according to the first embodiment of the present invention. You.
図 3 は、 第 1 実施例における処理ルーチ ンを示すフ ローチ ヤ一ト めな。 FIG. 3 is a flowchart showing a processing routine in the first embodiment.
図 4 は、 第 1 実施例におけるノ イズ付加処理ルーチ ンを示すフ ロ 一チヤ 一 トである。 FIG. 4 is a flowchart showing a noise addition processing routine in the first embodiment.
図 5 は、 本発明の第 2 実施例の画像処理装置の構成を示す図であ FIG. 5 is a diagram illustrating a configuration of an image processing apparatus according to a second embodiment of the present invention.
0 ο 0 ο
図 6 は、 第 2実施例の変形例の構成を示す図である。 FIG. 6 is a diagram showing a configuration of a modification of the second embodiment.
図 7 は、 本発明の第 3 実施例における平均化処理を説明する図で ある。 FIG. 7 is a diagram illustrating the averaging process according to the third embodiment of the present invention.
図 8 は、 第 3 実施例における平均化処理ルーチ ンを示すフ ローチ ヤー トである。 発明を実施するための最良の形態 FIG. 8 is a flowchart showing the averaging routine in the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
図 2 は、 本発明の第 1 実施例の画像処理装置の構成を示す図であ り、 図 3 は第 1 実施例のノ イズ付加処理の全体を示すフ ローチヤ一 トであり、 図 4 はノ イズ付加処理を示すフ ロ ーチ ャ ー トである。 第 1 実施例は、 低解像度の画像データを高解像度の画像形成装置 (プ リ ンタ) にて印刷する例であり、 例えば、 入力画像データは 8 ビッ 卜の R G Bデータであり、 各色で 2 5 6 階調が表現できる。 図 2 の 各部はコ ンピュータ内の処理ュニッ 卜 と して形成される。 FIG. 2 is a diagram showing the configuration of the image processing apparatus according to the first embodiment of the present invention, FIG. 3 is a flowchart showing the entire noise adding process of the first embodiment, and FIG. This is a flowchart showing noise addition processing. The first embodiment is an example in which low-resolution image data is printed by a high-resolution image forming apparatus (printer). For example, the input image data is 8-bit RGB data. 6 gradations can be expressed. Each part in Fig. 2 is formed as a processing unit in the computer.
まず、 ステッ プ 1 0 1 で、 ユーザがデータに対してノ ィズ付加処 理を行うかどうかの選択を行う。 ノ イズ付加処理モー ドでなければ 、 通常処理と して画像データは 2 値/多値化処理部 1 8 に直接送ら れ、 その結果が印刷データメ モ リ 1 9 に記憶されて印刷される。 ノ ィズ付加処理モー ドが選択されていたならば、 ステ ップ 1 0 2で、 画像データは、 処理のためビッ トマップ形式の画像データメ モ リ 1
1 に展開される。 これと同時に、 ステップ 1 0 3 で、 画素レベルヒ ス ト グラム作成部 1 が、 入力される画像データの各画素毎の レべ ノレ ( R G Bのレベル) を調べ、 各レベルの画素の個数をカウ ン ト し てヒス ト グラムを作成する。 本実施例では、 ヒス ト グラムから画素 数が所定数以上のレベルについて、 画素数の多い順に連続領域があ るかの判定を行う。 First, in step 101, the user selects whether or not to perform noise addition processing on data. If not in the noise addition processing mode, the image data is sent directly to the binary / multi-value processing section 18 as normal processing, and the result is stored in the print data memory 19 and printed. If the noise addition processing mode has been selected, in step 102, the image data is stored in a bitmap format image data memory 1 for processing. Expands to 1. At the same time, in step 103, the pixel level histogram creation unit 1 checks the level (RGB level) of each pixel of the input image data and counts the number of pixels at each level. To create a histogram. In the present embodiment, it is determined whether or not there is a continuous area in descending order of the number of pixels at a level where the number of pixels is a predetermined number or more from the histogram.
ステップ 1 0 4 で、 ノイズ付加レベルを決定する。 これは対象画 像によってどの程度のノ イズを付加するかを決定する もので、 正規 分布関数を使用する場合には標準偏差を決定し、 一様分布関数であ れば幅を決定する。 例えば、 標準偏差であれば、 人の顔や物体など 面である場合には 3〜 6 、 風景などの自然画で般的に面が一存在し ない場合には、 7〜 1 0程度である。 In step 104, the noise addition level is determined. This determines how much noise is added depending on the target image. If a normal distribution function is used, the standard deviation is determined, and if it is a uniform distribution function, the width is determined. For example, the standard deviation is about 3 to 6 for a face such as a human face or an object, and about 7 to 10 for a natural image such as a landscape where there is generally no face. .
ステップ 1 0 5で、 均一領域切り 出 し処理部 1 3 力 ヒス ト グラ ムから最大画素数のレベルを選択し、 ステップ 1 0 6でその画素数 が所定以上であるか判定する。 この場合、 ある レベルに対して幅を 設定し、 その幅内の画素数を対象と してもよい。 も し画素数が所定 以上でなければ、 終了する。 これは大きな連続領域が存在しないと 判断されるためである。 このような判定条件は、 処理実行判定条件 情報メ モ リ 1 5 にあらかじめ記憶されており、 領域情報メ モ リ 1 4 を介して均一領域切り 出 し処理部 1 3 に提供される。 In step 105, the level of the maximum number of pixels is selected from the uniform region extraction processing unit 13 power histogram, and in step 106, it is determined whether the number of pixels is equal to or greater than a predetermined value. In this case, a width may be set for a certain level, and the number of pixels within the width may be targeted. If the number of pixels is not equal to or larger than the predetermined value, the process ends. This is because it is determined that there is no large continuous area. Such a determination condition is stored in the processing execution determination condition information memory 15 in advance, and is provided to the uniform region extraction processing unit 13 via the region information memory 14.
画素数が所定以上であれば、 ステップ 1 0 7 で、 連続領域を探索 する。 これは、 選択されたレベル、 すなわち同一の R G Bデータ又 はそれと R G Bの値が 1 、 2 レベルの違い (R ± l 、 G ± l 、 B土 1 など) しかない類似したデータが連続した連続領域を探索する。 このような連続領域は、 1 つのレベルに対して複数ある場合もある 。 ステップ 1 0 8では、 このような連続領域が所定の大きさ以上で あるか判定する。 これは各連続領域内の画素数が所定値以上である
か判定することにより行う。 ノ イズ付加処理は、 ある程度以上の大 きさの連続領域に対して施すこ とにより効果があるので、 たとえ連 続領域であつても小さな領域は対象から除く 。 ノ ィズ付加処理を施 すと判定された連続領域に関する情報は、 切り出 し画像メ モ リ 1 6 に記憶される。 If the number of pixels is equal to or larger than a predetermined value, a continuous area is searched in step 107. This is a continuous area of selected levels, ie, the same RGB data or a series of similar data with only one or two levels of RGB values (R ± l, G ± l, B 土 1, etc.). To explore. There may be more than one such continuous region for a level. In step 108, it is determined whether such a continuous area is equal to or larger than a predetermined size. This is because the number of pixels in each continuous area is greater than This is performed by determining whether Since the noise addition processing is more effective when applied to a continuous area having a certain size or more, even a continuous area, a small area is excluded from the target. Information on the continuous area determined to be subjected to the noise addition processing is stored in the clipped image memory 16.
ステップ 1 0 9では、 ノ ィズ発生処理部 1 7が、 ノ ィズ付加処理 を行う と判定された各連続領域内で、 ノ ィズを付加する処理を行う 。 ノ イズ付加処理を行わない部分については、 そのまま 2値 Z多値 化処理部 1 8 に送られる。 この処理には各種の方法がありえる力 こ こでは正規分布関数を使用 してノ イズを発生させる例を図 4 を参 照して説明する。 In step 109, the noise generation processing unit 17 performs a process of adding noise in each continuous region determined to perform the noise addition process. The part that does not perform noise addition processing is sent to the binary / Z-multivalue processing section 18 as it is. There are various methods for this processing. Here, an example of generating noise using a normal distribution function will be described with reference to FIG.
ステップ 1 2 1 では、 対象とする連続領域内の画素の画像レベル の平均を R G Bの各データ毎に算出する。 ステップ 1 2 2 では、 ス テツプ 1 0 4で決定した正規分布の標準偏差を設定する。 ステップ In step 121, the average of the image levels of the pixels in the target continuous area is calculated for each of the RGB data. In step 122, the standard deviation of the normal distribution determined in step 104 is set. Steps
1 2 3 では最初の画素を設定し、 ステップ 1 2 4 で正規分布関数に 従って R、 G、 B毎に乱数を発生させ、 ステップ 1 2 5 で乱数を各 R G Bの値に付加し、 2値 Z多値化処理部 1 8 で処理して印刷デ一 タメ モ リ 1 9 に記憶する。 これを対象とする連続領域内のすべての 画素について行う。 例えば、 連続領域内の画像データ (R G B ) が1 2 3 sets the first pixel, generates random numbers for each of R, G, and B according to the normal distribution function in step 1 24, and adds random numbers to each RGB value in step 1 25 The data is processed by the Z multi-value processing section 18 and stored in the print data memory 19. This is performed for all pixels in the continuous area. For example, if the image data (RGB) in the continuous area is
( 1 2 8, 1 2 8 , 1 2 8 ) である時、 正規分布関数に従って発生 させた乱数が (一 5, _ 6, 1 ) 、 ( 2, — 5 , 1 ) 、 ( 3, - 2 , 3 ) 、 …という結果であれば、 補正後のデータは、 ( 1 2 3, 1 2 2, 1 2 7 ) ヽ ( 1 3 0, 1 2 3, 1 2 9 ) , ( 1 3 1 , 1 2 6 , 1 2 5 ) という具合になる。 以上がノ イズ付加処理である。 なお 、 ノ イズ付加処理で与えるノ イズは、 画像をどのよう に変化させる かで、 様々な変形例が可能であり、 それらのパラメ ータをあらかじ め処理実行判定条件情報メ モ リ 1 5 に記憶しておく 力、、 ユーザが任
意に設定できるように しておき、 これに応じてノイズ発生処理部 1 7 における処理を変更するようにしてもよい。 例えば、 連続領域内 のレベルの平均値に対 して、 平均値 (標準偏差の平均値) を明るい 方向にシフ 卜させるなどの処理が選択できるようにする。 逆に、 喑 い方向にシフ 卜させるこ と も可能である。 このシフ ト量はユーザが 画面をみながら対話的に設定できるようにすることが望ま しい。 When (1 2 8, 1 2 8, 1 2 8), the random numbers generated according to the normal distribution function are (1-5, _ 6, 1), (2, — 5, 1), (3,-2 , 3),…, the corrected data is (1 2 3, 1 2 2, 1 2 7) ヽ (1 3 0, 1 2 3, 1 2 9), (1 3 1, 1 2 6, 1 2 5). The above is the noise addition processing. The noise given by the noise adding process can be modified in various ways depending on how the image is changed, and those parameters can be stored in advance in the processing execution determination condition information memory 15. The power to remember The processing in the noise generation processing unit 17 may be changed accordingly. For example, it is possible to select processing such as shifting the average value (the average value of the standard deviation) in the brighter direction with respect to the average value of the levels in the continuous area. Conversely, it is also possible to shift in a long direction. It is desirable that this shift amount can be set interactively by the user while watching the screen.
ステップ 1 1 0では、 ヒス トグラムの次に画素数の多いレベルを 選択し、 ステップ 1 0 6以降を繰り返す。 このように して、 ヒス ト グラム中のある程度画素数の多いレベルについて、 処理の対象とな る連続領域があるか判定され、 処理の対象となる連続領域について ノ イズ付加処理が行われ、 処理された画像データが記憶される。 そ の後、 この画像データに従って印刷が行われる。 In step 110, the level having the next largest number of pixels after the histogram is selected, and steps 106 and thereafter are repeated. In this way, it is determined whether there is a continuous area to be processed at a level having a relatively large number of pixels in the histogram, and noise addition processing is performed on the continuous area to be processed. The stored image data is stored. Thereafter, printing is performed according to the image data.
図 5 は、 本発明の第 2実施例の映像画像処理装置の構成を示す図 である。 第 1 実施例は印刷する画像データを処理する装置であった が、 第 2実施例は表示デバイスに表示する映像データを処理する装 ι#であな。 FIG. 5 is a diagram illustrating a configuration of a video image processing device according to a second embodiment of the present invention. Although the first embodiment is an apparatus for processing image data to be printed, the second embodiment is an apparatus for processing video data to be displayed on a display device.
映像データは、 一旦ビッ トマップ形式の一時保存メ モ リ 2 1 に展 開して保持する。 一時保存メ モ リ 2 1 に保持された画像データに対 して、 第 1 実施例と同様に、 均一領域切り出 し処理部 2 2が処理実 行判定条件情報メモリ 2 3 に記憶された条件に基づいて処理対象と なる連続領域を探索し、 処理対象となる連続領域を示すデータを連 続領域データメ モリ 2 4 に記憶する。 なお、 連続領域データメ モ リ 2 4 には、 ノイズ付加処理に必要な各連続領域の画像レベルの平均 値なども一緒に記憶する。 The video data is temporarily expanded and stored in the bitmap format temporary storage memory 21. For the image data held in the temporary storage memory 21, the conditions stored in the processing execution determination condition information memory 23 by the uniform area cutout processing unit 22 are the same as in the first embodiment. Then, a continuous area to be processed is searched for, and data indicating the continuous area to be processed is stored in the continuous area data memory 24. In the continuous area data memory 24, the average value of the image level of each continuous area necessary for the noise addition processing is also stored.
ノ イズ発生処理部 2 5 は、 第 1 実施例と同様に、 連続領域データ メ モ リ 2 4 に記憶されたデータに基づいて連続領域内の各画素を補 正し、 補正したデータを表示データメ モリ 2 6 に記憶する。 こ こで
、 表示データメ モリ 2 6 に記憶するデータを、 補正後のデ一夕と補 正されていない一時保存メ モリ 2 1 に保持されたデータとの間で切 り換えられるようになつており、 処理を施したデータと処理を行わ ないデータの間で切り換えられるようになつている。 As in the first embodiment, the noise generation processing unit 25 corrects each pixel in the continuous area based on the data stored in the continuous area data memory 24, and displays the corrected data in the display data memory. Store in memory 26. here The data stored in the display data memory 26 can be switched between the data after correction and the data stored in the uncorrected temporary storage memory 21. It is possible to switch between data that has been processed and data that has not been processed.
また、 図 6 に示すように、 表示データメ モリ 2 6 の代わりに、 ノ ィズ発生処理部 2 5で処理を施した連続領域のデータのみを差分と して保持する差分保持メ モ リ 2 7 と、 処理を施していない画像デー 夕と差分保持メ モリ 2 7 に保持されたデータを合成する合成回路 2 8を設けるようにしてもよい。 これであれば、 メ モ リの容量を低減 できる。 As shown in FIG. 6, instead of the display data memory 26, a difference holding memory 27 holds only data of a continuous area processed by the noise generation processing unit 25 as a difference. Then, a combining circuit 28 that combines the image data that has not been processed with the data held in the difference holding memory 27 may be provided. In this case, the memory capacity can be reduced.
隣接した領域同士の境界において、 色味がある程度異なる場合、 境界で隣接した画素同士の平均化処理を行う ことで、 不自然な境界 線を除去することが行われている。 一般に、 平均化処理は隣接した 画素のデータを R G Bそれぞれについて平均をとることで行う。 平 均化処理と本発明のノイズ付加処理を合わせて行う ことも可能であ る。 この場合には、 連続領域の境界において平均化処理を行った後 、 連続領域内でノイズ付加処理を行う。 In the case where the hue is somewhat different at the boundary between adjacent regions, an averaging process is performed between pixels adjacent at the boundary to remove an unnatural boundary line. Generally, the averaging process is performed by averaging data of adjacent pixels for each of RGB. The averaging process and the noise addition process of the present invention can be performed together. In this case, after performing the averaging process at the boundary of the continuous region, the noise adding process is performed within the continuous region.
図 7 は、 平均化処理を行った後ノイズ付加処理を行う場合の処理 例を説明する図である。 こ こでは、 画素のデ一夕値が隣接する領域 とでは R G Bのいずれかのレベルで 1 0以上離れている部分に関し て平均化処理を行う とする。 FIG. 7 is a diagram for explaining an example of processing in a case where noise addition processing is performed after averaging processing is performed. Here, it is assumed that the averaging process is performed on a portion that is separated by 10 or more at any level of RGB from a region where the pixel value of the pixel is adjacent to the adjacent region.
図 7 において、 破線で示した範囲内がノイズ付加処理を行う連続 領域であり、 この領域内の画素の R G B値はすべて ( 1 2 4, 1 5 2 , 1 8 9 ) である。 左側の領域の画素の R G B値は、 すべて ( 1 2 7 , 1 5 5 , 1 9 2 ) であり、 右側の領域の画素の R G B値は、 すべて ( 1 2 0, 1 5 8 , 1 9 4 ) であり、 いずれも平均化処理は 行われない。 なお、 図示していない力《、 この領域の下側の領域の画
素の R G B値もすベて ( 1 2 7, 1 5 5, 1 9 2 ) であり、 平均化 処理は行われない。 In Fig. 7, the area shown by the broken line is the continuous area where the noise addition processing is performed, and the RGB values of the pixels in this area are all (124, 152, 189). The RGB values of the pixels in the left area are all (1 2 7, 1 5 5, 1 9 2), and the RGB values of the pixels in the right area are all (1 2 0, 1 5 8, 1 9 4) ), And neither averaging process is performed. Note that the force (not shown) All of the raw RGB values are (127, 155, 192), and no averaging is performed.
この領域と上側で隣接する画素の R G B値は、 左側から順に ( 1 3 2 , 1 4 5 , 1 1 9 ) 、 ( 1 3 1 , 1 4 4 , 1 1 8 ) 、 ( 1 2 7 , 1 4 0, 1 1 2 ) 、 ( 1 2 1 , 1 3 4, 1 0 6 ) 、 ( 1 1 6 , 1 2 8, 1 1 6 ) 、 ( 1 2 4 , 1 3 6 , 1 2 4 ) 、 ( 1 4 3 , 1 5 4 , 1 5 8 ) 、 ( 1 6 2, 1 7 3 , 1 7 7 ) であり、 平均化処理が行 われる。 平均化の手法も各種あるが、 こ こではもつとも単純に、 上 下に隣接する 2つの画素の平均値を求め、 2つの画素の値とする。 すなわち、 上下に隣接する 2つの画素は同じ値になる。 これにより 、 上側の画素の R G B値は、 左側から順に ( 1 2 8, 1 4 9 , 1 5 4 ) 、 ( 1 2 8 , 1 4 8, 1 5 4 ) , ( 1 2 6 , 1 4 6, 1 5 1 ) ヽ ( 1 2 3 , 1 4 3, 1 4 8 ) , ( 1 2 0 , 1 4 0, 1 5 3 ) 、 ( 1 2 4, 1 4 4, 1 5 7 ) 、 ( 1 3 4 , 1 5 3, 1 7 4 ) , ( 1 4 3, 1 6 3, 1 8 3 ) となる。 このような平均化を行つた後、 破線 で示した範囲内の領域内の各画素について、 ノイズ付加処理を行う 。 例えば、 上記の平均化した上側の値に対して標準偏差 4の正規分 布に従ってノイズを付加した結果は、 例えば、 左側から順に ( 1 1 9, 1 4 4, 1 4 7 ) , ( 1 1 8 , 1 5 5, 1 5 5 ) 、 ( 1 2 7 , 1 4 9 , 1 5 6 ) 、 ( 1 1 9 , 1 4 0 , 1 4 3 ) 、 ( 1 2 9 , 1 4 1 , 1 4 5 ) 、 ( 1 2 7 , 1 4 1 , 1 5 4 ) , ( 1 3 6, 1 5 4 , 1 6 9 ) 、 ( 1 5 3, 1 6 3, 1 8 4 ) となる。 The RGB values of the pixels adjacent to this area on the upper side are (13 2, 1 45, 1 19), (1 3 1, 1 4 4, 1 18), (1 2 7, 1 4 1, 1 1 2), (1 2 1, 1 3 4, 1 6), (1 1 6, 1 2 8, 1 16), (1 2 4, 1 3 6, 1 2 4), (144, 154, 158) and (162, 173, 177), and the averaging process is performed. There are various averaging methods, but in this case, we simply calculate the average value of the two adjacent pixels above and below, and use that value as the value of the two pixels. That is, two vertically adjacent pixels have the same value. As a result, the RGB values of the upper pixel are, in order from the left side, (128, 149, 154), (128, 148, 154), (126, 146) , 1 5 1) ヽ (1 2 3, 1 4 3, 1 4 8), (1 2 0, 1 4 0, 1 5 3), (1 2 4, 1 4 4, 1 5 7), (1 3 4, 15 3, 17 4), (14 3, 16 3, 18 3). After performing such averaging, noise addition processing is performed on each pixel within the area indicated by the broken line. For example, the result of adding noise to the above averaged value in accordance with the normal distribution with a standard deviation of 4 is, for example, (1 19, 144, 1 47), (1 1 8, 155, 155), (127, 149, 156), (119, 140, 144), (129, 141, 144) 5), (127, 141, 154), (136, 154, 169), and (153, 163, 184).
図 8 は、 上記の平均化処理を行った後ノィズ付加処理を行う場合 の処理を示すフローチヤ一 卜である。 FIG. 8 is a flowchart showing the processing in the case where the noise addition processing is performed after the averaging processing is performed.
第 1実施例及び第 2実施例で、 処理対象の連続領域を決定するま での処理を行う。 その後、 ステップ 1 3 1 で、 連続領域の周囲を調 ベ、 ステップ 1 3 2 で平均化処理が必要な境界が存在するか判定す
る。 平均化処理が必要であれば、 ステップ 1 3 3 で平均化処理を行 つた後、 ステップ 1 3 4 で第 1 実施例及び第 2実施例で説明したの と同様のノ イズ付加処理を行う。 も し、 平均化処理が必要でなけれ ば、 ステップ 1 3 4 に進み、 ノ イズ付加処理を行う。 In the first embodiment and the second embodiment, processing is performed until a continuous region to be processed is determined. Then, in step 131, the area around the continuous area is examined, and in step 132, it is determined whether there is a boundary that requires averaging. You. If the averaging process is required, the averaging process is performed in step 133, and then the noise adding process similar to that described in the first and second embodiments is performed in step 134. If the averaging process is not required, the process proceeds to step 134 to perform the noise adding process.
以上、 本発明の実施例を説明したが、 本発明には各種の変形例が 可能であるこ とはいう までもない。 産業上の利用の可能性 Although the embodiments of the present invention have been described above, it is needless to say that various modifications can be made to the present invention. Industrial applicability
本発明により、 再生時の解像度を向上させたり、 拡大処理したり 、 圧縮された画像データを再現する時に生じる同 じ色及びレベルの 連続するこ とによる不自然な印象を低減するこ とが可能になり、 よ り 自然な感じを与える画像が生成できる。 ADVANTAGE OF THE INVENTION By this invention, it is possible to improve the resolution at the time of reproduction | regeneration, to perform enlargement processing, and to reduce the unnatural impression by the same color and the continuation of the level which arises when reproducing compressed image data. , And an image that gives a more natural feeling can be generated.
本発明は、 プリ ンタなどの印刷装置で印刷する多値の画像データ や、 ディ スプレイで表示する多値の画像データであれば適用でき、 画像品質を改善するこ とが可能である。
The present invention can be applied to multi-valued image data to be printed by a printing device such as a printer or multi-valued image data to be displayed on a display, and image quality can be improved.
Claims
1 . 画像内でレベル差が所定値以下の連続した連続領域を検出し 検出 した前記連続領域について、 ノ ィズ付加処理を行うかを判定 し、 及び 1. Detect a continuous area having a level difference of not more than a predetermined value in an image, and determine whether to perform noise addition processing on the detected continuous area, and
ノ イズ付加処理を行う前記連続領域内の各画像に対してノ イズを 発生させて付加するこ とを特徴とする画像処理方法。 An image processing method, characterized in that noise is generated and added to each image in the continuous area where noise addition processing is performed.
2 . 画像データを保持する画像データメ モ リ と、 2. An image data memory that holds the image data,
前記画像データから、 画像においてレベル差が所定値以下の連続 した連続領域を検出する連続領域検出部と、 A continuous region detecting unit that detects a continuous continuous region having a level difference equal to or less than a predetermined value in the image from the image data;
検出 した前記連続領域について、 ノ ィズ付加処理を行うかを判定 する付加処理適用判定部と、 An additional processing application determining unit that determines whether to perform a noise adding process on the detected continuous region;
ノ イズ付加処理を行う前記連続領域内の各画像に対してノ イズを 発生させて付加するノ イズ付加処理部とを備えるこ とを特徴とする 画像処理装置。 An image processing apparatus, comprising: a noise addition processing unit that generates noise and adds noise to each image in the continuous area that performs noise addition processing.
3 . 請求項 2 に記載の画像処理装置であって、 3. The image processing apparatus according to claim 2, wherein
前記付加処理適用判定部は、 前記連続領域のう ち画素数が所定値 以上の大きな連続領域に対してノ ィズ付加処理を行う と判定する画 像処理装置。 The image processing device, wherein the additional processing application determination unit determines that the noise addition processing is to be performed on a large continuous area having a number of pixels of a predetermined value or more in the continuous area.
4 . 請求項 2 に記載の画像処理装置であって、 4. The image processing apparatus according to claim 2, wherein
前記画像データにおける各画素のレベルのヒス ト グラムを作成す る画素レベルヒス トグラム作成部を備え、 A pixel level histogram creating unit for creating a histogram of the level of each pixel in the image data;
前記連続領域検出部は、 前記ヒス ト グラムを参照して、 発生頻度 の大きな画素レベルから順に連続領域を探す画像処理装置。 The image processing device, wherein the continuous region detection unit searches for a continuous region in descending order of pixel frequency with reference to the histogram.
5 . 請求項 4 に記載の画像処理装置であって、 5. The image processing apparatus according to claim 4, wherein
前記連続領域検出部は、 発生頻度が大きな所定個数の画素レベル
について連続領域を探す画像処理装置。 The continuous area detection unit is configured to detect a predetermined number of pixel levels having a high frequency of occurrence. An image processing apparatus that searches for a continuous area for.
6 . 請求項 4 に記載の画像処理装置であって、 6. The image processing apparatus according to claim 4, wherein
前記連続領域検出部は、 発生頻度が所定値以上の画素レベルにつ いて連続領域を探す画像処理装置。 The image processing device, wherein the continuous area detection unit searches for a continuous area for a pixel level whose occurrence frequency is equal to or higher than a predetermined value.
7 . 請求項 2 に記載の画像処理装置であって、 7. The image processing apparatus according to claim 2, wherein
ノィズ付加処理を行う前記連続領域に隣接する領域の境界部の画 像データから、 平均化処理を行うかを判定する平均化処理判定部と 平均化処理を行う と判定された境界部について平均化処理を行う 平均化処理部とを備え、 An averaging processing determination unit that determines whether to perform averaging processing from image data of a boundary part of an area adjacent to the continuous area where noise addition processing is performed, and an averaging processing unit that determines that averaging processing is performed. Averaging unit that performs the processing,
前記ノイズ付加処理部は、 平均化処理が行われた後の連続領域内 の各画像に対してノイズを発生させて付加する画像処理装置。
The image processing device, wherein the noise addition processing unit generates and adds noise to each image in the continuous area after the averaging process is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2000/000978 WO2001061989A1 (en) | 2000-02-21 | 2000-02-21 | Image processing method and image processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2000/000978 WO2001061989A1 (en) | 2000-02-21 | 2000-02-21 | Image processing method and image processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001061989A1 true WO2001061989A1 (en) | 2001-08-23 |
Family
ID=11735704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/000978 WO2001061989A1 (en) | 2000-02-21 | 2000-02-21 | Image processing method and image processing device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001061989A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047021A1 (en) * | 2002-11-19 | 2004-06-03 | Koninklijke Philips Electronics N.V. | A unit for and method of image conversion |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03128373U (en) * | 1990-04-03 | 1991-12-24 |
-
2000
- 2000-02-21 WO PCT/JP2000/000978 patent/WO2001061989A1/en active Search and Examination
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03128373U (en) * | 1990-04-03 | 1991-12-24 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047021A1 (en) * | 2002-11-19 | 2004-06-03 | Koninklijke Philips Electronics N.V. | A unit for and method of image conversion |
CN1310188C (en) * | 2002-11-19 | 2007-04-11 | 皇家飞利浦电子股份有限公司 | A unit for and method of image conversion |
US7623738B2 (en) | 2002-11-19 | 2009-11-24 | Koninklijke Philips Electronics N.V. | Method, apparatus and a unit for image conversion |
KR101034508B1 (en) * | 2002-11-19 | 2011-05-17 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Unit and method for image conversion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW409210B (en) | Continuous tone compression/decompression apparatus and method, data process apparatus and device, and memory media for storing the programs executing these methods | |
JPH08228282A (en) | Processing method of document picture and binary picture picture element processor | |
JP3715719B2 (en) | Image processing apparatus and method, and computer-readable memory | |
US7742190B2 (en) | Image processing method and apparatus | |
JPH0559633B2 (en) | ||
JP4105378B2 (en) | Image conversion apparatus and image conversion method | |
WO2001061989A1 (en) | Image processing method and image processing device | |
JP2972172B2 (en) | Halftone area detection method | |
JP3117331B2 (en) | Image data processing device | |
US20050105114A1 (en) | Image processing method and apparatus | |
WO2000057631A1 (en) | Image processing device and processing method | |
JP3277818B2 (en) | Multi-value image binarization device | |
JPH05284347A (en) | Color picture output device | |
JP3004245B2 (en) | Halftone area detection method | |
JP2777378B2 (en) | Halftone area detection method | |
JP3004244B2 (en) | Area separation device | |
JP4024643B2 (en) | Image signal processing device | |
JP2777379B2 (en) | Area separation device | |
JP2972171B2 (en) | Halftone area detection method | |
JP2001352453A (en) | Image-reproducing device | |
JPH05176168A (en) | Adaptive halftone processing system | |
JPH07262351A (en) | Image processor and control method for the same | |
JP2724177B2 (en) | Halftone area separation method | |
JP2001292319A5 (en) | ||
JP2004118244A (en) | Image processing method, image processor, image forming apparatus, computer program, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: JP |