WO2000037492A2 - ACIDES NUCLEIQUES huHDGFH, POLYPEPTIDES, PROCEDES ET UTILISATIONS DE CEUX-CI - Google Patents
ACIDES NUCLEIQUES huHDGFH, POLYPEPTIDES, PROCEDES ET UTILISATIONS DE CEUX-CI Download PDFInfo
- Publication number
- WO2000037492A2 WO2000037492A2 PCT/US1999/030932 US9930932W WO0037492A2 WO 2000037492 A2 WO2000037492 A2 WO 2000037492A2 US 9930932 W US9930932 W US 9930932W WO 0037492 A2 WO0037492 A2 WO 0037492A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- huhdgfh
- polypeptide
- nucleic acid
- isolated
- present
- Prior art date
Links
- 101001083798 Homo sapiens Hepatoma-derived growth factor Proteins 0.000 title 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 212
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 199
- 229920001184 polypeptide Polymers 0.000 claims abstract description 189
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 139
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 129
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 129
- 238000000034 method Methods 0.000 claims abstract description 104
- 239000013598 vector Substances 0.000 claims abstract description 62
- 230000009261 transgenic effect Effects 0.000 claims abstract description 35
- 108090000623 proteins and genes Proteins 0.000 claims description 89
- 108091033319 polynucleotide Proteins 0.000 claims description 63
- 102000040430 polynucleotide Human genes 0.000 claims description 63
- 239000002157 polynucleotide Substances 0.000 claims description 63
- 239000012634 fragment Substances 0.000 claims description 55
- 125000003729 nucleotide group Chemical group 0.000 claims description 45
- 239000002773 nucleotide Substances 0.000 claims description 44
- 102000004169 proteins and genes Human genes 0.000 claims description 37
- 150000001413 amino acids Chemical class 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 29
- 239000013615 primer Substances 0.000 claims description 29
- 239000002987 primer (paints) Substances 0.000 claims description 29
- 230000000295 complement effect Effects 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 21
- 230000027455 binding Effects 0.000 claims description 20
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000006467 substitution reaction Methods 0.000 claims description 15
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 12
- 238000012217 deletion Methods 0.000 claims description 10
- 230000037430 deletion Effects 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 10
- 230000037431 insertion Effects 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 8
- 230000035772 mutation Effects 0.000 claims description 7
- 108020004711 Nucleic Acid Probes Proteins 0.000 claims description 5
- 239000002853 nucleic acid probe Substances 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 4
- 230000003834 intracellular effect Effects 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 2
- 108010052188 hepatoma-derived growth factor Proteins 0.000 abstract description 8
- 102100031000 Hepatoma-derived growth factor Human genes 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 126
- 230000014509 gene expression Effects 0.000 description 53
- 108020004414 DNA Proteins 0.000 description 49
- 241001465754 Metazoa Species 0.000 description 34
- 235000001014 amino acid Nutrition 0.000 description 34
- 235000018102 proteins Nutrition 0.000 description 33
- 239000013612 plasmid Substances 0.000 description 31
- 229940024606 amino acid Drugs 0.000 description 30
- 239000002299 complementary DNA Substances 0.000 description 27
- 238000010367 cloning Methods 0.000 description 23
- 239000000523 sample Substances 0.000 description 22
- 238000009396 hybridization Methods 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 20
- 239000013604 expression vector Substances 0.000 description 17
- 238000003752 polymerase chain reaction Methods 0.000 description 17
- 230000003321 amplification Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 238000003199 nucleic acid amplification method Methods 0.000 description 15
- 238000013518 transcription Methods 0.000 description 15
- 230000035897 transcription Effects 0.000 description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 14
- 230000014616 translation Effects 0.000 description 14
- 108091026890 Coding region Proteins 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 13
- 230000000875 corresponding effect Effects 0.000 description 13
- 238000000746 purification Methods 0.000 description 13
- 238000013519 translation Methods 0.000 description 13
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 239000003550 marker Substances 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 11
- 230000008488 polyadenylation Effects 0.000 description 11
- 241000701447 unidentified baculovirus Species 0.000 description 11
- 241000238631 Hexapoda Species 0.000 description 10
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 238000002955 isolation Methods 0.000 description 10
- 210000004962 mammalian cell Anatomy 0.000 description 10
- 229960000485 methotrexate Drugs 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 9
- 229960000723 ampicillin Drugs 0.000 description 9
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 108091008146 restriction endonucleases Proteins 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- 241000701022 Cytomegalovirus Species 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- -1 amino acids Aspartate Chemical class 0.000 description 7
- 230000000890 antigenic effect Effects 0.000 description 7
- 238000004113 cell culture Methods 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 239000011543 agarose gel Substances 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 230000002163 immunogen Effects 0.000 description 6
- 238000003259 recombinant expression Methods 0.000 description 6
- 241000699802 Cricetulus griseus Species 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 108700019146 Transgenes Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000004408 hybridoma Anatomy 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 230000001575 pathological effect Effects 0.000 description 5
- 230000007170 pathology Effects 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010188 recombinant method Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229930024421 Adenine Natural products 0.000 description 4
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 4
- 101150074155 DHFR gene Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 229960000643 adenine Drugs 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 3
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 3
- 108020005038 Terminator Codon Proteins 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000013599 cloning vector Substances 0.000 description 3
- 108020001096 dihydrofolate reductase Proteins 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 241001515965 unidentified phage Species 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 2
- 102100030009 Azurocidin Human genes 0.000 description 2
- 101710154607 Azurocidin Proteins 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 241001131785 Escherichia coli HB101 Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 108010054278 Lac Repressors Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101710182846 Polyhedrin Proteins 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000012761 co-transfection Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108010066381 preproinsulin Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 230000005026 transcription initiation Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- FMYBFLOWKQRBST-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]acetic acid;nickel Chemical compound [Ni].OC(=O)CN(CC(O)=O)CC(O)=O FMYBFLOWKQRBST-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000256113 Culicidae Species 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241001596967 Escherichia coli M15 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101710141347 Major envelope glycoprotein Proteins 0.000 description 1
- 101100278853 Mus musculus Dhfr gene Proteins 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 241001477931 Mythimna unipuncta Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 101000703421 Rattus norvegicus Rho GTPase-activating protein 39 Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 101100289792 Squirrel monkey polyomavirus large T gene Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 101150104425 T4 gene Proteins 0.000 description 1
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- SWPYNTWPIAZGLT-UHFFFAOYSA-N [amino(ethoxy)phosphanyl]oxyethane Chemical compound CCOP(N)OCC SWPYNTWPIAZGLT-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- OZRNSSUDZOLUSN-LBPRGKRZSA-N dihydrofolic acid Chemical compound N=1C=2C(=O)NC(N)=NC=2NCC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OZRNSSUDZOLUSN-LBPRGKRZSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000009585 enzyme analysis Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 239000006451 grace's insect medium Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000010005 growth-factor like effect Effects 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000003203 nucleic acid sequencing method Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- RLZZZVKAURTHCP-UHFFFAOYSA-N phenanthrene-3,4-diol Chemical compound C1=CC=C2C3=C(O)C(O)=CC=C3C=CC2=C1 RLZZZVKAURTHCP-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 201000011531 vascular cancer Diseases 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/50—Fibroblast growth factor [FGF]
- C07K14/503—Fibroblast growth factor [FGF] basic FGF [bFGF]
Definitions
- the present invention relates to compounds and compositions comprising novel human homologs of hepatoma- derived growth factor homologous (huHDGFh) polypeptides, nucleic acids, host cells, transgenics, chimerics, antibodies, compositions, and methods of making and using thereof .
- huHDGFh hepatoma- derived growth factor homologous
- Hepatoma-derived growth factor is a heparin- binding protein which is mitogenic for fibroblasts and some hepatoma cells (Nakamura, H. et al . , J. Biol . Chem. , 269(40) :25143-25149 (1994); Nakamura, H. et al . , Clin . Chim.
- HDGF was purified from the conditioned medium of a human hepatoma-derived cell line, HuH-7 by tritiated thymidine incorporation into Swiss 3T3 cells.
- HDGF has no signal peptide, yet is secreted into the medium of COS-7 cells after transfection of the cDNA clone. It is a heparin-binding protein and is ubiquitously expressed in several tumor-derived cell lines and tissues. It is localized in the cytoplasm of hepatoma cells and has strong growth stimulating activity.
- Such cytokines or growth factor like molecules related to HDGF satisfy a need in the art by providing new diagnostic or therapeutic compositions useful in diagnosing and treating infections; autoimmune disorders, vascular diseases and cancers.
- the present invention provides isolated nucleic acids and encoded huHDGFh polypeptides, including specified fragments and variants thereof, as well as huHDGFh compositions, probes, primers, vectors, host cells, antibodies, transgenics, chimerics and methods of making and using thereof, as described and enabled herein.
- the present invention provides, in one aspect, isolated nucleic acid molecules comprising or complementary to a polynucleotide encoding specific huHDGFh polypeptides, as fragments or specified variants, comprising at least one domain thereof .
- polypeptides are provided as non-limiting examples by the corresponding domains, specified fragments and/or specified variants of huHDGFh polypeptides corresponding to at least 90-100% of SEQ ID NO:2.
- the present invention further provides recombinant vectors, comprising 1-40 of said isolated huHDGFh nucleic acid molecules of the present invention, host cells containing such nucleic acids and/or recombinant vectors, as well as methods of making and/or using such nucleic acid, vectors and/or host cells.
- the present invention also provides methods of making or using such nucleic acids, vectors and/or host cells, such as but not limited to, using them for the production of huHDGFh nucleic acids and/or polypeptides by known recombinant, synthetic and/or purification techniques, based on the teaching and guidance presented herein in combination with what is known in the art.
- the present invention also provides an isolated huHDGFh polypeptide, comprising at least one fragment, domain or specified variant of at least 90-100% of the contiguous amino acids of at least one portion of SEQ ID NO: 2.
- the present invention also provides an isolated huHDGFh polypeptide as described herein, wherein the polypeptide further comprises at least one specified substitution, insertion or deletion corresponding to portions or residues Of SEQ ID NO: 2.
- the present invention also provides an isolated huHDGFh polypeptide as described herein, wherein the polypeptide has at least one activity, such as, but not limited to, inducing cell proliferation, hematopoiesis, lymphocyte proliferation, and angiogenesis (Nakamura, H. et al . , Clin . Chim.
- a huHDGFh polypeptide can thus be screened for a corresponding activity according to known methods .
- the present invention also provides a composition
- a composition comprising an isolated huHDGFh nucleic acid and/or polypeptide as described herein and a carrier or diluent.
- the carrier or diluent can optionally be pharmaceutically acceptable, according to known methods.
- the present invention also provides an isolated nucleic acid probe, primer or fragment, as described herein, wherein the nucleic acid comprises a polynucleotide of at least 10 nucleotides, corresponding or complementary to at least 10 nucleotides of SEQ ID NO:l.
- the present invention also provides a recombinant vector comprising an isolated huHDGFh nucleic acid as described herein.
- the present invention also provides a host cell, comprising an isolated huHDGFh nucleic acid as described herein.
- the present invention also provides a method for constructing a recombinant host cell that expresses a huHDGFh polypeptide, comprising introducing into the host cell a huHDGFh nucleic acid in replicatable form as described herein to provide the recombinant host cell .
- the present invention also provides a recombinant host cell provided by a method as described herein.
- the present invention also provides a method for expressing at least one huHDGFh polypeptide in a recombinant host cell, comprising culturing a recombinant host cell as described herein under conditions wherein at least one huHDGFh polypeptide is expressed in detectable or recoverable amounts.
- the present invention also provides an isolated huHDGFh polypeptide produced by a recombinant, synthetic, and/or any suitable purification method as described herein and/or as known in the art .
- the present invention also provides a huHDGFh antibody or fragment, comprising a polyclonal and/or monoclonal antibody or fragment that specifically binds at least one epitope specific to at least one huHDGFh polypeptide as described herein.
- the present invention also provides a method for producing a huHDGFh antibody or antibody fragment, comprising generating the antibody or fragment that binds at least one epitope that is specific to an isolated huHDGFh polypeptide as described herein, the generating done by knowing recombinant, synthetic and/or hybridoma methods.
- the present invention also provides a huHDGFh antibody or fragment produced by a method as described herein or as known in the art .
- the present invention also provides a method for identifying compounds that bind a huHDGFh polypeptide, comprising a) admixing at least one isolated huHDGFh polypeptide as described herein with a test compound or composition; and b) detecting at least one binding interaction between the polypeptide and the compound or composition, optionally further comprising detecting a change in biological activity, such as a reduction or increase.
- the present invention provides isolated, recombinant and/or synthetic nucleic acid molecules comprising at least one polynucleotide encoding at least one huHDGFh polypeptide comprising specific full length sequences, fragments and specified variants thereof, such polypeptides, and methods of making and using said nucleic acids and polypeptides thereof .
- a huHDGFh polypeptide of the invention comprises at least one fragment, domain, and/or specified variant as a portion or fragment of a huHDGFh protein as described herein.
- the present invention also provides at least one utility by providing isolated nucleic acid comprising polynucleotides of sufficient length and complementarity to a huHDGFh nucleic acid for use as probes or amplification primers in the detection, quantitation, or isolation of gene sequences or transcripts.
- isolated nucleic acids of the present invention can be used as probes for detecting deficiencies in the level of mRNA, in screens for detection of mutations in at least one huHDGFh gene (e.g., substitutions, deletions, or additions) , or for monitoring upregulation of expression of said gene, or changes in biological activity as described herein in screening assays of compounds, and/or for detection of any number of allelic variants (polymorphisms or isoforms) of the gene.
- huHDGFh gene e.g., substitutions, deletions, or additions
- the isolated nucleic acids of the present invention can also be used for recombinant expression of huHDGFh polypeptides, or for use as immunogens in the preparation and/or screening of antibodies .
- the isolated nucleic acids of the present invention can also be employed for use in sense or antisense suppression of one or more huHDGFh genes or nucleic acids, in a host cell, or tissue in vivo or in vitro. Attachment of chemical agents which bind, intercalate, cleave and/or crosslink to the isolated nucleic acids of the present invention can also be used to modulate transcription or translation of at least one nucleic acid disclosed herein.
- a "polynucleotide” comprises at least 10-20 nucleotides of a nucleic acid (RNA, DNA or combination thereof) , provided by any means, such as synthetic, recombinant isolation or purification method steps.
- antibody refers to intact molecules as well as to fragments thereof, such as Fa, F(ab') 2/ and Fv fragments which are capable of binding the eptitopic determinant .
- Antibodies that bind huHDGFh polypeptides can be prepared using intac polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
- the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
- an animal e.g., a mouse, a rat, or a rabbit
- an animal e.g., a mouse, a rat, or a rabbit
- RNA e.g., a mouse, a rat, or a rabbit
- complementarity refers to the capacity of purine, pyrimidine, synthetic or modified nucleotides to associate by partial or complete complementarity through hydrogen or other bonding to form partial or complete double- or triple-stranded nucleic acid molecules .
- the following base pairs occur by complete complementarity: (i) guanine (G) and cytosine (C) ; (ii) adenine (A) and thymine (T) ; and adenine (A) and uracil (U) .
- Partial complementarity refers to association of two or more bases by one or more hydrogen bonds or attraction that is less than the complete complementarity as described above .
- Partial or complete complementarity can occur between any two nucleotides, including naturally occurring or modified bases, e.g., as listed in 37 CFR ⁇ 1.822. All such nucleotides are included in polynucleotides of the invention as described herein.
- amino acid change or substitution in reference to an amino acid change or substitution is intended to indicate an amino acid has been replaced with a similar amino acid. Similar amino acids are amino acids that, because of size, charge, polarity and conformation, are more readily substituted without significantly affecting the structure and/or function of the protein. Thus, one skilled in the art generally does not expect a "conservative" amino acid change or substitution to result in any measurable difference in any particular characteristic, property, and/or activity of a polypeptide having a particular conservative amino acid substitution. Specific examples of amino acid changes or substitutions considered to be conservative are known in the art.
- non-polar amino acids Glycine, Alanine, Valine, Isoleucine, and Leucine include, but are not limited to, the non-polar amino acids Glycine, Alanine, Valine, Isoleucine, and Leucine; the non-polar aromatic amino acids Phenylalanine, Tryptophan, and Tyrosine; the neutral polar amino acids Serine, Threonine, Cysteine, Glutamine, Asparagine, and Methionine; the negatively charged amino acids Lysine, Arginine, and Histidine; the positively charged amino acids Aspartate and Glutamate, represent groups of conservative amino acids. Substitution of any one for another in the same group would generally be considered to be a "conservative" substitution by one skilled in the art (See generally, James D. Watson et al . , Molecular Biology of the Gene (1987) ) .
- fusion protein denotes a hybrid protein molecule not found in nature comprising a translational fusion or enzymatic fusion in which two or more different proteins or fragments thereof are covalently linked on a single polypeptide chain.
- polypeptide also includes such fusion proteins.
- “Host cell” refers to any eucaryotic, procaryotic, or fusion or other cell or pseudo cell or membrane-containing construct that is suitable for propagating and/or expressing an isolated nucleic acid that is introduced into a host cell by any suitable means known in the art (e.g., but not limited to, transformation or transfection, or the like) , or induced to express an endogenous nucleic acid encoding a huHDGFh polypeptide according to the present invention.
- the cell can be part of a tissue or organism, isolated in culture or in any other suitable form.
- hybridization refers to a process in which a partially or completely single-stranded nucleic acid molecule joins with a complementary strand through nucleotide base pairing. Hybridization can occur under conditions of low, moderate or high stringency, with high stringency preferred. The degree of hybridization depends upon, for example, the degree of homology, the stringency conditions, and the length of hybridizing strands as known in the art .
- isolated nucleic acid molecule is intended a nucleic acid molecule, DNA, RNA, or both which has been removed from its native or naturally occurring environment.
- isolated nucleic acid molecules include recombinant nucleic acid molecules maintained in heterologous host cells or purified (partially or substantially) nucleic acid molecules in solution.
- isolated RNA molecules include in vivo or in vitro RNA transcripts of the nucleic acid molecules of the present invention.
- Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically, purified from or provided in cells containing such nucleic acids, where the nucleic acid exists in other than a naturally occurring form, quantitatively or qualitatively.
- isolated used in reference to at least one polypeptide of the invention describes a state of isolation such that the peptide or polypeptide is not in a naturally occurring form and/or has been purified to remove at least some portion of cellular or non-cellular molecules with which the protein is naturally associated.
- isolated may include the addition of other functional or structural polypeptides for a specific purpose, where the other peptide may occur naturally associated with at least one polypeptide of the present invention, but for which the resulting compound or composition does not exist naturally.
- a “nucleic acid probe,” “oligonucleotide probe,” or “probe” as used herein comprises at least one detectably labeled or unlabeled nucleic acid which hybridizes under specified hybridization conditions with at least one other nucleic acid. This term also refers to a single- or partially double-stranded nucleic acid, oligonucleotide or polynucleotide that will associate with a complementary or partially complementary target nucleic acid to form at least a partially double-stranded nucleic acid molecule.
- a nucleic acid probe may be an oligonucleotide or a nucleotide polymer.
- a probe can optionally contain a detectable moiety which may be attached to the end(s) of the probe or be internal to the sequence of the probe, termed a “detectable probe” or “detectable nucleic acid probe . "
- plasmid refers to an extrachromosomal genetic element.
- the starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accordance with published procedures.
- equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.
- a "primer” is a nucleic acid fragment or oligonucleotide which functions as an initiating substrate for enzymatic or synthetic elongation of, for example, a nucleic acid molecule, e.g., using an amplification reaction, such as, but not limited to, a polymerase chain reaction (PCR) , as known in the art.
- PCR polymerase chain reaction
- Recombinant DNA cloning vector refers to any autonomously replicating agent, including, but not limited to, plasmids and phages, comprising a DNA molecule to which one or more additional DNA segments can or have been added.
- recombinant DNA expression vector or "expression vector” as used herein refers to any recombinant DNA cloning vector, for example a plasmid or phage, in which a promoter and other regulatory elements are present thereby enabling transcription of an inserted DNA.
- stringency refers to hybridization conditions for nucleic acids in solution. High stringency conditions disfavor non-homologous base pairing. Low stringency conditions have much less of this effect. Stringency may be altered, for example, by changes in temperature and/or salt concentration, or other conditions, as well known in the art.
- a non-limiting example of "high stringency” conditions includes, for example, (a) a temperature of about 42°C , a formamide concentration of about ⁇ 20%, and a low salt (SSC) concentration, or, alternatively, a temperature of about 65° C, or less, and a low salt (SSPE) concentration; (b) hybridization in 0.5 M NaHP04, 7% sodium dodecyl sulfate (SDS) , 1 mM EDTA at 65°C (See, e.g., Ausubel, et al . , ed., Current Protocols in Molecular Biology, 1987-1998, Wiley Interscience, New York, at ⁇ 2.10.3).
- SSC comprises a hybridization and wash solution.
- a stock 2OX SSC solution contains 3M sodium chloride, 0.3M sodium citrate, pH 7.0.
- SSPE comprises a hybridization and wash solution.
- a IX SSPE solution contains 180 mM NaCl, 9mM Na2HP04 , 0.9 mM NaH2P04 and 1 mM EDTA, pH 7.4.
- transgenic animal means a gene which is incorporated into the genome of an animal and is expressed in the animal, resulting in the presence of at least one huHDGFh polypeptide expressed by the transgenic animal .
- variant when used in herein refers to an amino acid sequence that is altered by one or more amino acids.
- the variant may have “conservative” changes and/or “non-conservative” changes.
- Analagous minor variations may also include amino acid deletions or insertions, or both.
- Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNASTAR software.
- vector refers to a nucleic acid compound used for introducing exogenous or endogenous nucleic acid into host cells.
- a vector comprises a nucleotide sequence which may encode one or more polypeptide molecules. Plasmids, cosmids, viruses and bacteriophages, in a natural state or which have undergone recombinant engineering, are non-limiting examples of commonly used vectors to provide recombinant vectors comprising at least one desired isolated nucleic acid molecule.
- nucleic acid molecule of the present invention encoding a huHDGFh polypeptide can be obtained using well-known methods.
- Nucleic acid molecules of the present invention can be in the form of RNA, such as mRNA, hnRNA, tRNA or any other form, or in the form of DNA, including, but not limited to, cDNA and genomic DNA obtained by cloning or produced synthetically, or any combination thereof.
- the DNA can be triple-stranded, double-stranded or single-stranded, or any combination thereof. Any portion of at least one strand of the DNA or RNA can be the coding strand, also known as the sense strand, or it can be the non-coding strand, also referred to as the anti-sense strand.
- Isolated nucleic acid molecules of the present invention include nucleic acid molecules comprising an open reading frame (ORF) shown in SEQ ID NO:l, nucleic acid molecules comprising the coding sequence for a huHDGFh polypeptide; and nucleic acid molecules which comprise a nucleotide sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode at least one huHDGFh polypeptide as described herein.
- the genetic code is well known in the art.
- nucleic acid molecules are provided encoding the mature huHDGFh polypeptide or the full-length huHDGFh polypeptide lacking the N-terminal methionine.
- the invention also provides an isolated nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO:l, or a nucleic acid molecule having a sequence complementary thereto.
- Such isolated molecules, particularly nucleic acid molecules are useful as probes for gene mapping by in situ hybridization with chromosomes, and for detecting transcription, translation and/or expression of the huHDGFh gene in human tissue, for instance, by Northern blot analysis for mRNA detection.
- nucleotide sequences identified by sequencing a nucleic acid molecule herein can be or were identified using an automated nucleic acid sequencer, and all amino acid sequences of polypeptides encoded by nucleic acid molecules identified herein can be or were identified by codon correspondence or by translation of a nucleic acid sequence identified using method steps as described herein or as known in the art. Therefore, as is well known in the art that for any nucleic acid sequence identified by this automated approach, any nucleotide sequence identified herein may contain some errors which are reproducibly correctable by resequencing based upon an available or a vector or host cell containing the nucleic acid molecule using well-known methods.
- Nucleotide sequences identified by automation are typically at least about 95% to at least about 99.999% identical to the actual nucleotide sequence of the sequenced nucleic acid molecule.
- the actual sequence can be more precisely identified by other approaches including manual nucleic acid sequencing methods well known in the art.
- a single insertion or deletion in an identified nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the identified amino acid sequence encoded by an identified nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced nucleic acid molecule, beginning at the point of such an insertion or deletion.
- Nucleic Acid Fragments The present invention is further directed to fragments of the isolated nucleic acid molecules described herein.
- a fragment of an isolated nucleic acid molecule is meant a molecule having at least 10 nucleotides of a nucleotide sequence of a cDNA or a nucleotide sequence shown in SEQ ID NO:l, and is intended to mean fragments at least about 10 nucleotides, and at least about 40 nucleotides in length, which are useful, inter alia as diagnostic probes and primers as described herein.
- fragments such as at least about 50, 100, 120, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and/or 4000 or more nucleotides in length, are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence as shown in SEQ ID NO:l.
- a fragment at least 10 nucleotides in length for example, is intended fragments which include 10 or more contiguous nucleotides from the nucleotide sequence of a cDNA or the nucleotide sequence as shown in SEQ ID NO:l, or consensus sequences thereof, as determined by methods known in the art.
- nucleotide fragments are useful according to the present invention for screening DNA sequences that code for one or more fragments of a huHDGFh polypeptide as described herein.
- Such screening can include the use of so-called "DNA chips" for screening DNA sequences of the present invention of varying lengths, as described, e.g., in U.S. Patent Nos. 5,631,734, 5,624,711, 5,744,305, 5,770,456, 5,770,722, 5,675,443, 5,695,940, 5,710,000, 5,733,729, which are entirely incorporated herein by reference .
- nucleic acid molecules of the present invention which comprise a nucleic acid encoding a huHDGFh polypeptide can include, but are not limited to, those encoding the amino acid sequence of the mature polypeptide, by itself; the coding sequence for the mature polypeptide and additional sequences, such as the coding sequence of at least one signal leader or fusion peptide or of the mature polypeptide, with or without the aforementioned additional coding sequences, such as at least one intron, together with additional, non-coding sequences, including but not limited to, introns and non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences that play a role in transcription, mRNA processing, including splicing and polyadenylation signals (for example - ribosome binding and stability of mRNA) ; an additional coding sequence which codes for additional amino acids, such as those which provide additional functionalities.
- sequence encoding a polypeptide can be fused to a marker sequence, such as a sequence encoding a peptide that facilitates purification of the fused polypeptide.
- Preferred nucleic acid fragments of the present invention also include nucleic acid molecules encoding epitope-bearing portions of a huHDGFh polypeptide.
- the invention provides a polynucleotide (either DNA or RNA) that comprises at least about 20 nt, still more preferably at least about 30 nt, and even more preferably at least about 30-2000 nt of a nucleic acid molecule described herein. These are useful as diagnostic probes and primers as discussed above and in more detail below.
- a polynucleotide which hybridizes only to a poly-A sequence such as the 3' terminal poly (A) of a huHDGFh cDNA shown in SEQ ID NO:l, or to a complementary stretch of T (or U) resides, would not be included in a probe of the invention, since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone) .
- the present invention also provides subsequences of full-length nucleic acids. Any number of subsequences can be obtained by reference to SEQ ID NO: 1, or a complementary sequence, and using primers which selectively amplify, under stringent conditions to: at least two sites to the polynucleotides of the present invention, or to two sites within the nucleic acid which flank and comprise a polynucleotide of the present invention, or to a site within a polynucleotide of the present invention and a site within the nucleic acid which comprises it .
- a variety of methods for obtaining 5' and/or 3' ends is well known in the art.
- the present invention provides huHDGFh polynucleotides having the sequence of the huHDGFh gene, nuclear transcript, cDNA, or complementary sequences and/or subsequences thereof .
- Primer sequences can be obtained by reference to a contiguous subsequence of a polynucleotide of the present invention.
- Primers are chosen to selectively hybridize, under PCR amplification conditions, to a polynucleotide of the present invention in an amplification mixture comprising a genomic and/or cDNA library from the same species.
- the primers are complementary to a subsequence of the amplified nucleic acid.
- the primers will be constructed to anneal at their 5' terminal ends to the codon encoding the carboxy or amino terminal amino acid residue (or the complements thereof) of the polynucleotides of the present invention.
- the primer length in nucleotides is selected from the group of integers consisting of from at least 15 to 50.
- the primers can be at least 15, 18, 20, 25, 30, 40, or 50 nucleotides in length or any range or value therein.
- a non-annealing sequence at the 5' end of the primer (a "tail") can be added, for example, to introduce a cloning site at the terminal ends of the amplified DNA.
- the amplification primers may optionally be elongated in the 3 ' direction with additional contiguous or complementary nucleotides from the polynucleotide sequences, such as SEQ ID N0:1, from which they are derived.
- the number of nucleotides by which the primers can be elongated is selected from the group of integers consisting of from at least 1 to at least 25.
- the primers can be elongated with an additional 1, 5, 10, or 15 nucleotides or any range or value therein.
- a lengthened primer sequence can be employed to increase specificity of binding (i.e., annealing) to a target sequence, or to add useful sequences, such as links or restriction sites.
- the amplification products can be translated using expression systems well known to those of skill in the art and as discussed, infra.
- the resulting translation products can be confirmed as polypeptides of the present invention by, for example, assaying for the appropriate catalytic activity (e.g., specific activity and/or substrate specificity), or verifying the presence of one or more linear epitopes which are specific to a polypeptide of the present invention.
- the present invention provides isolated nucleic acids that hybridize under selective hybridization conditions to a polynucleotide disclosed herein, e.g., SEQ ID NO:l.
- a polynucleotide disclosed herein e.g., SEQ ID NO:l.
- the polynucleotides of this embodiment can be used for isolating, detecting, and/or quantifying nucleic acids comprising such polynucleotides.
- polynucleotides of the present invention can be used to identify, isolate, or amplify partial or full-length clones in a library.
- the polynucleotides are genomic or cDNA sequences isolated, or otherwise complementary to, a cDNA from a human or mammalian nucleic acid library.
- the cDNA library comprises at least 80% full-length sequences, preferably at least 85% or 90% full- length sequences, and more preferably at least 95% full- length sequences.
- the cDNA libraries can be normalized to increase the representation of rare sequences .
- Low stringency hybridization conditions are typically, but not exclusively, employed with sequences having a reduced sequence identity relative to complementary sequences. Moderate and high stringency conditions can optionally be employed for sequences of greater identity. Low stringency conditions allow selective hybridization of sequences having about 70% sequence identity and can be employed to identify orthologous or paralogous sequences.
- polynucleotides of this invention will encode an epitope of a polypeptide encoded by the polynucleotides described herein.
- the polynucleotides of this invention embrace nucleic acid sequences which can be employed for selective hybridization to a polynucleotide encoding a polypeptide of the present invention.
- Screening polypeptides for specific binding to antibodies or fragments can be conveniently achieved using peptide display libraries.
- This method involves the screening of large collections of peptides for individual members having the desired function or structure.
- Antibody screening of peptide display libraries is well known in the art.
- the displayed peptide sequences can be from 3 to 5000 or more amino acids in length, frequently from 5-100 amino acids long, and often from about 8 to 15 amino acids long.
- several recombinant DNA methods have been described.
- One type involves the display of a peptide sequence on the surface of a bacteriophage or cell . Each bacteriophage or cell contains the nucleotide sequence encoding the particular displayed peptide sequence.
- the present invention provides isolated nucleic acids comprising huHDGFh polynucleotides, wherein the polynucleotides are complementary to the polynucleotides described herein, above.
- complementary sequences base-pair throughout the entirety of their length with such polynucleotides (i.e., have 100% sequence identity over their entire length) .
- Complementary bases associate through hydrogen bonding in double-stranded nucleic acids.
- the following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil. (See, e.g., Ausubel, supra; or Sambrook, supra)
- the isolated nucleic acids of the present invention can be made using (a) standard recombinant methods, (b) synthetic techniques, (c) purification techniques, or combinations thereof, as well known in the art.
- the nucleic acids may conveniently comprise sequences in addition to a polynucleotide of the present invention.
- a multi-cloning site comprising one or more endonuclease restriction sites may be inserted into the nucleic acid to aid in isolation of the polynucleotide.
- translatable sequences may be inserted to aid in the isolation of the translated polynucleotide of the present invention.
- a hexa-histidine marker sequence provides a convenient means to purify the proteins of the present invention.
- the nucleic acid of the present invention - excluding the polynucleotide sequence - is optionally a vector, adapter, or linker for cloning and/or expression of a polynucleotide of the present invention.
- cloning and/or expression sequences may be added to such cloning and/or expression sequences to optimize their function in cloning and/or expression, to aid in isolation of the polynucleotide, or to improve the introduction of the polynucleotide into a cell .
- the length of a nucleic acid of the present invention less the length of its polynucleotide of the present invention is less than 20 kilobase pairs, often less than 15 kb, and frequently less than 10 kb.
- Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art. (See, e.g., Ausubel, supra; or Sambrook, supra)
- RNA, cDNA, genomic DNA, or a hybrid thereof can be obtained from biological sources using any number of cloning methodologies known to those of skill in the art.
- oligonucleotide probes which selectively hybridize, under stringent conditions, to the polynucleotides of the present invention are used to identify the desired sequence in a cDNA or genomic DNA library. While isolation of RNA, and construction of cDNA and genomic libraries is well known to those of ordinary skill in the art. (See, e.g., Ausubel, supra; or Sambrook, supra)
- a cDNA or genomic library can be screened using a probe based upon the sequence of a polynucleotide of the present invention, such as those disclosed herein. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different organisms.
- Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different organisms.
- degrees of stringency of hybridization can be employed in the assay; and either the hybridization or the wash medium can be stringent. As the conditions for hybridization become more stringent, there must be a greater degree of complementarity between the probe and the target for duplex formation to occur.
- the degree of stringency can be controlled by temperature, ionic strength, pH and the presence of a partially denaturing solvent such as formamide.
- the stringency of hybridization is conveniently varied by changing the polarity of the reactant solution through, for example, manipulation of the concentration of formamide within the range of 0% to 50%.
- the degree of complementarity (sequence identity) required for detectable binding will vary in accordance with the stringency of the hybridization medium and/or wash medium.
- the degree of complementarity will optimally be 100%; however, it should be understood that minor sequence variations in the probes and primers may be compensated for by reducing the stringency of the hybridization and/or wash medium.
- RNA amplification processes include, but are not limited to, polymerase chain reaction (PCR) and related amplification processes (see, e.g., U.S. Patent Nos. 4,683,195, 4,683,202, 4,800,159, 4,965,188, to Mullis, et al . ; 4,795,699 and 4,921,794 to Tabor, et al ; 5,142,033 to Innis; 5,122,464 to Wilson, et al .
- PCR polymerase chain reaction
- RNA mediated amplification which uses anti- sense RNA to the target sequence as a template for double- stranded DNA synthesis (U.S. Patent No. 5,130,238 to Malek, et al , with the tradename NASBA) , the entire contents of which are herein incorporated by reference. (See, e.g., Ausubel, supra; or Sambrook, supra)
- PCR polymerase chain reaction
- in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes.
- examples of techniques sufficient to direct persons of skill through in vitro amplification methods are found in Berger, Sambrook, and Ausubel, as well as Mullis, et al . , U.S. Patent No.
- the isolated nucleic acids of the present invention can also be prepared by direct chemical synthesis by methods such as the phosphotriester method of Narang, et al . , Meth .
- Chemical synthesis generally produces a single-stranded oligonucleotide, which may be converted into double-stranded DNA by hybridization with a complementary sequence, or by polymerization with a DNA polymerase using the single strand as a template.
- a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.
- the present invention further provides recombinant expression cassettes comprising a nucleic acid of the present invention.
- a nucleic acid sequence of the present invention for example a cDNA or a genomic sequence encoding a full- length polypeptide of the present invention, can be used to construct a recombinant expression cassette which can be introduced into at least one desired host cell.
- a recombinant expression cassette will typically comprise a polynucleotide of the present invention operably linked to transcriptional initiation regulatory sequences that will direct the transcription of the polynucleotide in the intended host cell .
- heterologous and non-heterologous (i.e., endogenous) promoters can be employed to direct expression of the nucleic acids of the present invention. These promoters can also be used, for example, in recombinant expression cassettes to drive expression of antisense nucleic acids to reduce, increase, or alter huHDGFh content and/or composition in a desired tissue.
- isolated nucleic acids which serve as promoter or enhancer elements can be introduced in the appropriate position (generally upstream) of a non- heterologous form of a polynucleotide of the present invention so as to up or down regulate expression of a polynucleotide of the present invention.
- endogenous promoters can be altered in vivo or in vitro by mutation, deletion and/or substitution.
- a polynucleotide of the present invention can be expressed in either sense or anti-sense orientation as desired. It will be appreciated that control of gene expression in either sense or anti-sense orientation can have a direct impact on the observable characteristics.
- Another method of suppression is sense suppression.
- Introduction of nucleic acid configured in the sense orientation has been shown to be an effective means by which to block the transcription of target genes.
- a variety of cross-linking agents, alkylating agents and radical generating species as pendant groups on polynucleotides of the present invention can be used to bind, label, detect and/or cleave nucleic acids.
- the present invention also relates to vectors that include isolated nucleic acid molecules of the present invention, host cells that are genetically engineered with the recombinant vectors, and the production of huHDGFh polypeptides or fragments thereof by recombinant techniques, as is well known in the art. See, e.g., Sambrook, et al . , 1989; Ausubel, et al . , 1987-1998, each entirely incorporated herein by reference.
- the polynucleotides can optionally be joined to a vector containing a selectable marker for propagation in a host.
- a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it can be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
- the DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, or any other suitable promoter.
- an appropriate promoter such as the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, or any other suitable promoter.
- Other suitable promoters will be known to the skilled artisan.
- the expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation.
- the coding portion of the mature transcripts expressed by the constructs will preferably include a translation initiating at the beginning and a termination codon (e.g., UAA, UGA or UAG) appropriately positioned at the end of the mRNA to be translated, with VAA and VAG preferred for mammalian or eukaryotic cell expression.
- a translation initiating at the beginning e.g., UAA, UGA or UAG
- a termination codon e.g., UAA, UGA or UAG
- Expression vectors will preferably include at least one selectable marker.
- markers include, e.g., dihydrofolate reductase, ampicillin (G418) , or neomycin resistance for eukaryotic cell culture, and tetracycline or ampicillin resistance genes for culturing in E. coli and other bacteria or prokaryotics .
- Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS and Bowes melanoma cells; and plant cells.
- Vectors preferred for use in bacteria include pQE70, pQE60 and pQE- 9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia.
- Preferred eucaryotic vectors include pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3 , pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.
- Introduction of a vector construct into a host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Sambrook, supra, Chapters 1-4 and 16-18; Ausubel, supra, Chapters 1, 9, 13, 15, 16.
- Polypeptide (s) of the present invention can be expressed in a modified form, such as a fusion protein, and can include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, can be added to the N-terminus of a polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties can be added to a polypeptide to facilitate purification. Such regions can be removed prior to final preparation of a polypeptide. Such methods are described in many standard laboratory manuals, such as Sambrook, supra, Chapters 17.29-17.42 and 18.1-18.74; Ausubel, supra, Chapters 16, 17 and 18.
- nucleic acids of the present invention may express a protein of the present invention in a recombinantly engineered cell, such as bacteria, yeast, insect, or mammalian cells.
- the cells produce the protein in a non-natural condition (e.g., in quantity, composition, location, and/or time) , because they have been genetically altered through human intervention to do so.
- the expression of isolated nucleic acids encoding a protein of the present invention will typically be achieved by operably linking, for example, the DNA or cDNA to a promoter (which is either constitutive or inducible) , followed by incorporation into an expression vector.
- the vectors can be suitable for replication and integration in either prokaryotes or eukaryotes .
- Typical expression vectors contain transcription and translation terminators, initiation sequences and promoters useful for regulation of the expression of the DNA encoding a protein of the present invention.
- expression vectors which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator.
- a strong promoter to direct transcription
- a ribosome binding site for translational initiation to translational initiation
- a transcription/translation terminator to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein.
- modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly
- nucleic acids of the present invention can be expressed in a host cell by turning on (by manipulation) in a host cell that contains endogenous DNA encoding a polypeptide of the present invention.
- Such methods are well known in the art, e.g., as described in US patent Nos. 5,580,734, 5,641,670, 5,733,746, and 5,733,761, entirely incorporated herein by reference.
- Prokaryotic cells may be used as hosts for expression. Prokaryotes most frequently are represented by various strains of E. coli; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang, et al . , Nature 198:1056 (1977)), the tryptophan (trp) promoter system (Goeddel, et al . , Nucleic Acids Res .
- selection markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol .
- Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transformed with the plasmid vector DNA. Expression systems for expressing a protein of the present invention are available using Bacillus sp. and Salmonella (Palva, et al . , Gene 22:229-235 (1983); Mosbach, et al . , Nature 302:543-545 (1983)).
- eukaryotic expression systems such as yeast, insect cell lines, plant and mammalian cells, are known to those of skill in the art .
- a nucleic acid of the present invention can be expressed in these eukaryotic systems.
- yeast Synthesis of heterologous proteins in yeast is well known.
- F. Sherman, et al . Methods in Yeast Genetics, Cold Spring Harbor Laboratory (1982) is a well-recognized work describing the various methods available to produce the protein in yeast.
- Two widely utilized yeast for production of eukaryotic proteins are Saccharomyces cerevisiae and Pichia pastoris.
- Vectors, strains, and protocols for expression in Saccharomyces and Pichia are known in the art and available from commercial suppliers (e.g., Invitrogen) .
- Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphoglycerate kinase or alcohol oxidase, and an origin of replication, termination sequences and the like as desired.
- a protein of the present invention once expressed, can be isolated from yeast by lysing the cells and applying standard protein isolation techniques to the lysates .
- the monitoring of the purification process can be accomplished by using Western blot techniques or radioimmunoassay of other standard immunoassay techniques .
- the sequences encoding proteins of the present invention can also be ligated to various expression vectors for use in transfecting cell cultures of, for instance, mammalian, insect, or plant origin.
- Illustrative of cell cultures useful for the production of the peptides are mammalian cells. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used.
- a number of suitable host cell lines capable of expressing intact proteins have been developed in the art, and include the HEK293, BHK21, and CHO cell lines.
- Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g., the CMV promoter, a HSV tk promoter or pgk (phosphoglycerate kinase) promoter) , an enhancer (Queen, et al . , Immunol . Rev. 89:49 (1986)), and processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site), and transcriptional terminator sequences.
- Other animal cells useful for production of proteins of the present invention are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7th edition, 1992) .
- Appropriate vectors for expressing proteins of the present invention in insect cells are usually derived from the SF9 baculovirus.
- suitable insect cell lines include mosquito larvae, silkworm, armyworm, moth and Drosophila cell lines such as a Schneider cell line (See Schneider, J. Embryol . Exp . Morphol . 27:353-365 (1987) .
- polyadenlyation or transcription terminator sequences are typically incorporated into the vector.
- An example of a terminator sequence is the polyadenlyation sequence from the bovine growth hormone gene . Sequences for accurate splicing of the transcript may also be included.
- An example of a splicing sequence is the VP1 intron from SV40 (Sprague, et al . , J. Virol . 45:773-781 (1983)).
- gene sequences to control replication in the host cell may be incorporated into the vector such as those found in bovine papilloma virus type-vectors.
- bovine papilloma virus type-vectors M. Saveria- Campo, Bovine Papilloma Virus DNA, a Eukaryotic Cloning Vector in DNA Cloning Vol. II, a Practical Approach, D. M. Glover, Ed., IRL Press, Arlington, VA, pp. 213-238 (1985).
- a huHDGFh polypeptide can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.
- Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eucaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells.
- polypeptides of the present invention can be glycosylated or can be non- glycosylated.
- polypeptides of the invention can also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Such methods are described in many standard laboratory manuals, such as Sambrook, supra, Chapters 17.37-17.42; Ausubel, supra, Chapters 10, 12, 13, 16, 18 and 20.
- the invention further provides an isolated huHDGFh polypeptide having fragments or specified variants of the amino acid sequence encoded by the amino acid sequence in SEQ ID NO:2.
- the isolated proteins of the present invention comprise a polypeptide encoded by any one of the polynucleotides of the present invention as discussed more fully, supra, or polypeptides which are specified fragments or variants thereof .
- the proteins of the present invention or variants thereof can comprise any number of contiguous amino acid residues from a polypeptide of the present invention, wherein that number is selected from the group of integers consisting of from 90-100% of the number of contiguous residues in a full-length huHDGFh polypeptide.
- this subsequence of contiguous amino acids is at least 50, 60, 70, 80, or 90 amino acids in length.
- the number of such subsequences can be any integer selected from the group consisting of from 1 to 20, such as 2, 3, 4, or 5.
- the present invention includes biologically active polypeptides of the present invention (i.e., enzymes).
- biologically active polypeptides have a specific activity at least 20%, 30%, or 40%, and preferably at least 50%, 60%, or 70%, and most preferably at least 80%, 90%, or 95%-100% of that of the native (non- synthetic) or endogenous polypeptide.
- polypeptides of the present invention will, when presented as an immunogen, elicit production of an antibody specifically reactive to a polypeptide of the present invention encoded by a polynucleotide of the present invention as described, supra.
- Exemplary polypeptides include those which are full-length, such as those disclosed herein.
- the proteins of the present invention will not bind to antisera raised against a polypeptide of the present invention which has been fully immunosorbed with the same polypeptide.
- Immunoassays for determining binding are well known to those of skill in the art.
- a preferred immunoassay is a competitive immunoassay as discussed, infra.
- the proteins of the present invention can be employed as immunogens for constructing antibodies immunoreactive to a protein of the present invention for such exemplary utilities as immunoassays or protein purification techniques.
- a huHDGFh polypeptide of the present invention can include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation, as specified herein.
- the number of amino acid substitutions a skilled artisan would make depends on many factors, including those described above. Generally speaking, the number of amino acid substitutions, insertions or deletions for any given huHDGFh polypeptide will not be more than 40, 30, 20, 10, 5, or 3, such as 1-30 or any range or value therein, as specified herein.
- huHDGFh polypeptides of the present invention can include but are not limited to, at least one selected from SEQ ID NO: 2.
- a huHDGFh polypeptide can further comprise a polypeptide of 203 contiguous amino acids of SEQ ID NO: 2 .
- a huHDGFh polypeptide further includes an amino acid sequence selected from SEQ ID NO: 2.
- Non-limiting mutants that can enhance or maintain at least one of the listed activities include, but are not limited to, any of the above polypeptides, further comprising at least one mutation corresponding to at least one substitution selected from the group consisting of 9F, IIP, 151, 29V, 31D, 32V, 321, 33A, 34D, 41T, 41P, 44L, 621, 66S, 66D, 67K, 68N, 68C, 70E, 72Y, 75P, 89D, 89Q, 93K, 93H, 94A, 95S, 96Y, 97S, 98S, 98A, 99Q, 99Y, 100P, 101P, 103T, 103S, 104K, 104S, and 105S of SEQ ID N0:2.
- the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention according to methods well known in the art. See, e.g., Colligan, et al , . ed. , Current Protocols in Immunology, Greene Publishing, NY (1993-1998) , Ausubel, supra, each entirely incorporated herein by reference .
- the epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide described herein.
- An "immunogenic epitope" can be defined as a part of a polypeptide that elicits an antibody response when the whole polypeptide is the immunogen.
- a region of a polypeptide molecule to which an antibody can bind is defined as an "antigenic epitope.”
- the number of immunogenic epitopes of a polypeptide generally is less than the number of antigenic epitopes. See, for instance, Geysen, et al . , Proc . Natl . Acad . Sci . USA 81:3998-4002 (1983) .
- peptides or polypeptides bearing an antigenic epitope i.e., that contain at least a portion of a region of a polypeptide molecule to which an antibody can bind
- relatively short synthetic peptides that mimic part of a polypeptide sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked polypeptide. See, for instance, J. G. Sutcliffe, et al . , "Antibodies that react with pre- identified sites on polypeptides," Science 219:660-666 (1983) .
- Antigenic epitope-bearing peptides and polypeptides of the invention are useful to raise antibodies, including monoclonal antibodies, or screen antibodies, including fragments or single chain antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson, et al . , Cell 37:767-778 (1984) at 777.
- Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least five, more preferably at least nine, and most preferably between at least about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention.
- the epitope-bearing peptides and polypeptides of the invention can be produced by any conventional means.
- R. A. Houghten "General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids," Proc. Natl . Acad. Sci . USA 82:5131-5135 (1985) .
- This “Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten, et al . (1986).
- huHDGFh polypeptides of the present invention and the epitope- bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG) , resulting in chimeric polypeptides.
- IgG immunoglobulins
- These fusion proteins facilitate purification and show an increased half-life in vivo. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4- polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EPA 394,827; Traunecker, et al . , Nature 331:84-86 (1988)).
- Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than the monomeric huHDGFh polypeptide or polypeptide fragment alone (Fountoulakis, et al . , J. Biochem . 270:3958-3964 (1995)).
- the polypeptides of this invention and fragments thereof may be used in the production of antibodies.
- antibody as used herein describes antibodies, fragments of antibodies (such as, but not limited, to Fab, Fab 1 , Fab2 ' , and Fv fragments), and modified versions thereof, as well known in the art (e.g., chimeric, humanized, recombinant, veneered, resurfaced or CDR-grafted) such antibodies are capable of binding antigens of a similar nature as the parent antibody molecule from which they are derived.
- the instant invention also encompasses single chain polypeptide binding molecules .
- Single chain antibodies and libraries thereof are yet another variety of genetically engineered antibody technology that is well known in the art. (See, e.g., R. E. Bird, et al . , Science 242:423-426 (1988); PCT Publication Nos. WO 88/01649, WO 90/14430, and WO 91/10737.
- Single chain antibody technology involves covalently joining the binding regions of heavy and light chains to generate a single polypeptide chain. The binding specificity of the intact antibody molecule is thereby reproduced on a single polypeptide chain.
- Antibodies included in this invention are useful in diagnostics, therapeutics or in diagnostic/therapeutic combinations .
- polypeptides of this invention or suitable fragments thereof can be used to generate polyclonal or monoclonal antibodies, and various inter-species hybrids, or humanized antibodies, or antibody fragments, or single-chain antibodies .
- the techniques for producing antibodies are well known to skilled artisans. (See, e.g., Colligan supra; Monoclonal Antibodies: Principles & Applications, Ed. J. R. Birch & E. S. Lennox, Wiley-Liss (1995) .
- a polypeptide used as an immunogen may be modified or administered in an adjuvant, by subcutaneous or intraperitoneal injection into, for example, a mouse or a rabbit.
- Hybridomas that secrete a desired antibody molecule can be screened by a variety of well known methods, for example ELISA assay, Western blot analysis, or radioimmunoassay (Lutz, et al . Exp . Cell Res . 175:109-124 (1988); Monoclonal Antibodies: Principles & Applications, Ed. J. R. Birch & E. S. Lennox, Wiley-Liss (1995) ; Colligan, supra) .
- labeled antibodies are desirable. Procedures for labeling antibody molecules are widely known, including for example, the use of radioisotopes, affinity labels, such as biotin or avidin, enzymatic labels, for example horseradish peroxidase, and fluorescent labels, such as FITC or rhodamine (See, e.g., Colligan, supra). Labeled antibodies are useful for a variety of diagnostic applications. In one embodiment the present invention relates to the use of labeled antibodies to detect the presence of a huHDGFh polypeptide. Alternatively, the antibodies could be used in a screen to identify potential modulators of a huHDGFh polypeptide.
- the antibody or compound to be tested is labeled by any suitable method.
- Competitive displacement of an antibody from an antibody-antigen complex by a test compound such that a test compound-antigen complex is formed provides a method for identifying compounds that bind HPLFP.
- Transgenics and Chimeric Non-Human Mammals Another embodiment of the present invention provides transgenic non-human mammals carrying a recombinant human huHDGFh gene construct in its somatic and germ cells.
- the recombinant gene construct may be composed of regulatory DNA sequences that belong to the native huHDGFh gene or those which are derived from an alternative source.
- promoter are defined in this context as any and all DNA elements necessary for the functional expression of a gene. Promoters drive the expression of structural genes and may be modulated by inducers and repressors. Numerous promoters have been described in the literature and are easily within the grasp of the ordinarily skilled artisan. Viral promoters, such as the SV40 early promoter, are consistent with the invention though mammalian promoters are preferred.
- the promoter is chosen such that the level of expression is sufficient to promote physiological consequences in the transgenic non-human mammal, or ancestor of said mammal.
- the genome of the transgenic mammal contains at least 30 copies of a transgene. More preferably, the genome of the transgenic mammal contains at least 50 copies, and may contain 100-200 or more copies of the transgene.
- said nucleic acid is introduced into said mammal at an embryonic stage, preferably the 1-1000 cell or oocyte stage, and, most preferably not later than about the 64-cell stage. Most preferably the transgenic mammal is homozygous for the transgene .
- chimeric non-human mammals in which fewer than all of the somatic and germ cells contain a DNA construct comprising a nucleic acid encoding a huHDGFh polypeptide of the present invention.
- Contemplated chimeric non-human mammals include animals produced when fewer than all of the cells of the morula are transfected in the process of producing the transgenic animal.
- Transgenic and chimeric non-human mammals having human cells or tissue engrafted therein are also encompassed by the present invention.
- Methods for providing chimeric non-human mammals are provided, e.g., in U.S. Serial Nos. 07/508,225, 07/518,748, 07/529,217, 07/562,746, 07/596,518, 07/574,748, 07/575,962, 07/207,273, 07/241,590 and 07/137,173, which are entirely incorporated herein by reference, for their description of how to engraft human cells or tissue into non- human mammals .
- genetic constructs comprising at least one of the huHDGFh nucleic acid sequences as defined herein may be used to create transgenic "knockouts" of the huHDGFh gene.
- the present invention also provides a transgenic animal which has been engineered by homologous recombination to be deficient in the expression of the endogenous huHDGFh gene.
- the invention provides a method of producing an heterozygous or homozygous transgenic animal deficient in or lacking functional HDGFH proteins, respectfully, said method comprising: a) obtaining a DNA construct comprising a disrupted huHDGFh gene, wherein said disruption is by the insertion of an heterologous marker sequence; b) introducing said DNA construct into an ES cell of said animal such that the endogenous HDGFH gene is disrupted by homologous recombination; c) selecting ES cells comprising said disrupted allele; d) incorporating the ES cells of step c) into a mouse embryo; e) transferring said embryo into a pseudopregnant animal of the said species; f) developing said embryo into a viable offspring; g) screening offspring to identify heterozygous animal comprising said disrupted HDGFH gene; and h) if desired, breeding said heterozygous animal to produce homozygous transgenic animals of said species, wherein the said homozygous animal does
- Transgenic and chimeric non-human mammals of the present invention may be used for analyzing the consequences of over- expression of at least one huHDGFh polypeptide in vivo. Such animals are also useful for testing the effectiveness of therapeutic and/or diagnostic agents, either associated or unassociated with delivery vectors or vehicles, which preferentially bind to an huHDGFh polypeptide of the present invention or act to indirectly modulate huHDGFh activity.
- huHDGFh transgenic non-human mammals are useful as an animal models in both basic research and drug development endeavors.
- Transgenic animals carrying at least one huHDGFh polypeptide or nucleic acid can be used to test compounds or other treatment modalities which may prevent, suppress, or cure a pathology or disease associated with at least one of the above mentioned huHDGFh activities .
- Such transgenic animals can also serve as a model for the testing of diagnostic methods for those same diseases.
- tissues derived from huHDGFh transgenic non-human mammals are useful as a source of cells for cell culture in efforts to develop in vitro bioassays to identify compounds that modulate huHDGFh activity or huHDGFh dependent signaling.
- another aspect of the present invention contemplates a method of identifying compounds efficacious in the treatment of at least one previously described disease or pathology associated with aberrant pre-optic regulatory factor-2 activity.
- a non-limiting example of such a method comprises: a) generating an huHDGFh transgenic non-human animal which is, as compared to a wild-type animal, pathologically distinct in some detectable or measurable manner from wild- type version of said non-human mammal; b) exposing said transgenic animal to a compound, and; c) determining the progression of the pathology in the treated transgenic animal, wherein an arrest, delay, or reversal in disease progression in transgenic animal treated with said compound as compared to the progression of the pathology in an untreated control animals is indicative that the compound is useful for the treatment of said pathology
- Another embodiment of the present invention provides a method of identifying compounds capable of inhibiting huHDGFh activity in vivo and/or in vitro wherein said method comprises : a) administering an
- Another embodiment of the invention provides a method for identifying compounds capable of overcoming deficiencies in huHDGFh activity in vivo or in vitro wherein said method comprises: a) administering an experimental compound to an huHDGFh transgenic non-human animal, or tissues derived therefrom, exhibiting one or more physiological or pathological conditions attributable to the disruption of the endogenous HDGFH gene; and b) observing or assaying said animal and/or animal tissues to detect changes in said physiological or pathological condition or conditions.
- a compound's ability to modulate human huHDGFh in the body of the transgenic animal are consistent with the invention. Observing the reversal of a pathological condition in the transgenic animal after administering a compound is one such means .
- Another more preferred means is to assay for markers of huHDGFh activity in the blood of a transgenic animal before and after administering an experimental compound to the animal.
- the level of skill of an artisan in the relevant arts readily provides the practitioner with numerous methods for assaying physiological changes related to therapeutic modulation of huHDGFh activity.
- the experimental compound may be administered when applicable, either superficially, orally, parenterally (e.g.
- intravenous infusion or injection by intravenous infusion or injection) or a combination of injection and infusion (iv) , intramuscularly (im) , or subcutaneously (sc) .
- iv intravenous infusion or injection
- iv intramuscularly
- sc subcutaneously
- a preferred route of compound administration to an animal is iv, while oral administration is most preferred.
- Example 1 Expression and Purification of a huHDGFh Polypeptide in E. coli
- the bacterial expression vector pQE60 is used for bacterial expression in this example. (QIAGEN, Inc., Chatsworth, CA) .
- pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site (“RBS”), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri- acetic acid (“Ni-NTA”) affinity resin sold by QIAGEN, Inc., and suitable single restriction enzyme cleavage sites.
- a DNA fragment encoding a polypeptide can be inserted in such a way as to produce that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the carboxyl terminus of that polypeptide.
- a polypeptide coding sequence can optionally be inserted such that translation of the six His codons is prevented and, therefore, a polypeptide is produced with no 6 X His tag.
- the nucleic acid sequence encoding the desired portion of a huHDGFh polypeptide lacking the hydrophobic leader sequence is amplified from a cDNA clone using PCR oligonucleotide primers (based on the sequences presented, e.g., as presented in SEQ ID NO:l), which anneal to the amino terminal encoding DNA sequences of the desired portion of a huHDGFh polypeptide and to sequences in the construct 3 ' to the cDNA coding sequence. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.
- the 5' and 3' primers have nucleotides corresponding or complementary to a portion of the coding sequence of a huHDGFh, e.g., as presented in SEQ ID NO:l, according to known method steps.
- SEQ ID NO:l a portion of the coding sequence of a huHDGFh
- the amplified huHDGFh nucleic acid fragments and the vector pQE60 are digested with appropriate restriction enzymes and the digested DNAs are then ligated together. Insertion of the huHDGFh DNA into the restricted pQE60 vector places a huHDGFh polypeptide coding region including its associated stop codon downstream from the IPTG-inducible promoter and in-frame with an initiating AUG codon. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.
- E. coli strain M15/rep4 containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein.
- This strain which is only one of many that are suitable for expressing huHDGFh polypeptide, is available commercially from QIAGEN, Inc. Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.
- Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 ⁇ g/ml) and kanamycin (25 ⁇ g/ml) .
- the O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250.
- the cells are grown to an optical density at 600 run ("OD600") of between 0.4 and 0.6.
- Isopropyl-b-D-thiogalactopyranoside (“IPTG”) is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lad repressor.
- Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.
- the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH8.
- the cell debris is removed by centrifugation, and the supernatant containing the huHDGFh is dialyzed against 50 mM Na-acetate buffer pH6, supplemented with 200 mM NaCl .
- a polypeptide can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH7.4, containing protease inhibitors.
- the protein is made soluble according to known method steps. After renaturation the polypeptide is purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column is used to obtain pure huHDGFh polypeptide. The purified polypeptide is stored at 4°C or frozen at -40°C to -120°C.
- Example 2 Cloning and Expression of a huHDGFh Polypeptide in a Baculovirus Expression System
- the plasmid shuttle vector pA2 GP is used to insert the cloned DNA encoding the mature polypeptide into a baculovirus to express a huHDGFh polypeptide, using a baculovirus leader and standard methods as described in Summers, et al . , A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricultural Experimental Station Bulletin No. 1555 (1987) .
- This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by the secretory signal peptide (leader) of the baculovirus gp67 polypeptide and convenient restriction sites such as BamHI, Xba I, and Asp718.
- the polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation.
- the plasmid contains the beta-galactosidase gene from E. coli under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene.
- the inserted genes are flanked on both sides by viral sequences for cell- mediated homologous recombination with wild-type viral DNA to generate viable virus that expresses the cloned polynucleotide .
- baculovirus vectors are used in place of the vector above, such as pAc373, pVL941 and pAcIMl, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required.
- Such vectors are described, for instance, in Luckow, et al . , Virology 170:31-39.
- the cDNA sequence encoding the mature huHDGFh polypeptide in a clone, lacking the AUG initiation codon and the naturally associated nucleotide binding site, is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene.
- Non-limiting examples include 5' and 3' primers having nucleotides corresponding or complementary to a portion of the coding sequence of a huHDGFh polypeptide, e.g., as presented in SEQ ID NO:l, according to known method steps .
- the amplified fragment is isolated from a 1% agarose gel using a commercially available kit (e.g., "Geneclean, " BIO 101 Inc., La Jolla, CA) .
- the fragment then is then digested with the appropriate restriction enzyme and again is purified on a 1% agarose gel. This fragment is designated herein "FI" .
- the plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art.
- the DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, CA) . This vector DNA is designated herein "VI”.
- E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates.
- Bacteria are identified that contain the plasmid with the human huHDGFh gene using the PCR method, in which one of the primers that is used to amplify the gene and the second primer is from well within the vector so that only those bacterial colonies containing the huHDGFh gene fragment will show amplification of the DNA.
- the sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid is designated herein pBac huHDGFh .
- plasmid pBachuHDGFh Five ⁇ g of the plasmid pBachuHDGFh is co-transfected with 1.0 ⁇ g of a commercially available linearized baculovirus DNA ( "BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA) , using the lipofection method described by Feigner, et al . , Proc. Natl. Acad. Sci . USA 84:7413-7417 (1987) .
- baculovirus DNA "BaculoGoldTM baculovirus DNA”
- plaque assay After four days the supernatant is collected and a plaque assay is performed, according to known methods.
- An agarose gel with "Blue Gal” (Life Technologies, Inc., Rockville, MD) is used to allow easy identification and isolation of gal-expressing clones, which produce blue- stained plaques.
- a detailed description of a "plaque assay” of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies, Inc., Rockville, MD, page 9-10). After appropriate incubation, blue stained plaques are picked with a micropipettor tip (e.g., Eppendorf) .
- a micropipettor tip e.g., Eppendorf
- the agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 ⁇ l of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4°C.
- the recombinant virus is called V-huHDGFh.
- Sf9 cells are grown in Grace's medium supplemented with 10% heat- inactivated FBS.
- the cells are infected with the recombinant baculovirus V-huHDGFh at a multiplicity of infection ("MOI") of about 2.
- MOI multiplicity of infection
- the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available, e.g., from Life Technologies, Inc., Rockville, MD) . If radiolabeled polypeptides are desired, 42 hours later, 5 mCi of 35S- methionine and 5 mCi 35S-cysteine (available from Amersham) are added.
- the cells are further incubated for 16 hours and then they are harvested by centrifugation.
- the polypeptides in the supernatant as well as the intracellular polypeptides are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled) . Microsequencing of the amino acid sequence of the amino terminus of purified polypeptide can be used to determine the amino terminal sequence of the mature polypeptide and thus the cleavage point and length of the secretory signal peptide.
- a typical mammalian expression vector contains at least one promoter element, which mediates the initiation of transcription of mRNA, the polypeptide coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing.
- Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pIRESlneo, pRetro-Off, pRetro-On, PLXSN, or pLNCX (Clonetech Labs, Palo Alto, CA) , pcDNA3.1 (+/-), pcDNA/Zeo (+/-) or pcDNA3.
- Mammalian host cells that could be used include human Hela 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV 1, quail QCl-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.
- the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome.
- a selectable marker such as dhfr, gpt, neomycin, or hygromycin allows the identification and isolation of the transfected cells.
- the transfected gene can also be amplified to express large amounts of the encoded polypeptide.
- the DHFR (dihydrofolate reductase) marker is useful to develop cell lines that carry several hundred or even several thousand copies of the gene of interest .
- Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy, et al . , Biochem. J. 227:277-279 (1991); Bebbington, et al . , Bio/Technology 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome.
- the expression vectors pCl and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen, et al . , Molec. Cell . Biol . 5:438-447 (1985)) plus a fragment of the CMV-enhancer (Boshart, et al . , Cell 41:521-530 (1985)).
- LTR Rous Sarcoma Virus
- CMV-enhancer Boshart, et al . , Cell 41:521-530 (1985)
- Multiple cloning sites e.g., with the restriction enzyme cleavage sites BamHI, Xbal and Asp718, facilitate the cloning of the gene of interest .
- the vectors contain in addition the 3 ' intron, the polyadenylation and termination signal of the rat preproinsulin gene.
- the expression plasmid, phuHDGFh HA is made by cloning a cDNA encoding huHDGFh into the expression vector pcDNAI/Amp or pcDNAIII (which can be obtained from Invitrogen, Inc.).
- the expression vector pcDNAl/amp contains: (1) an E. coli origin of replication effective for propagation in E.
- a CMV promoter a polylinker, an SV40 intron
- the HA tag corresponds to an epitope derived from the influenza hemagglutinin polypeptide described by Wilson, et al . , Cell 37 : 767-778
- pcDNAIII contains, in addition, the selectable neomycin marker.
- a DNA fragment encoding the huHDGFh is cloned into the polylinker region of the vector so that recombinant polypeptide expression is directed by the CMV promoter.
- the plasmid construction strategy is as follows .
- the huHDGFh cDNA of a clone is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of huHDGFh in E. coli.
- Non-limiting examples of suitable primers include those based on the coding sequence presented in SEQ ID NO:l, as they encode huHDGFh polypeptides as described herein.
- the PCR amplified DNA fragment and the vector, pcDNAI/Amp are digested with suitable restriction enzyme (s) and then ligated.
- the ligation mixture is transformed into E. coli strain SURE (available from Stratagene Cloning Systems, 11099 North Torrey Pines Road, La Jolla, CA 92037) , and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the huHDGFh-encoding fragment .
- COS cells are transfected with an expression vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook, et al . , Molecular Cloning: a Laboratory Manual, Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989) . Cells are incubated under conditions for expression of huHDGFh by the vector.
- huHDGFh-HA fusion polypeptide is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow, et al . , Antibodies : A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988) .
- the cells are labeled by incubation in media containing 35S-cysteine for 8 hours.
- the cells and the media are collected, and the cells are washed and lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson, et al . cited above.
- Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody.
- the precipitated polypeptides then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.
- Plasmid pC4 is used for the expression of huHDGFh polypeptide.
- Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146) .
- the plasmid contains the mouse DHFR gene under control of the SV40 early promoter.
- Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate .
- the amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., F.
- Plasmid pC4 contains for expressing the gene of interest the strong promoter of the long terminal repeat (LTR) of the Rous Sarcoma Virus (Cullen, et al . , Molec. Cell . Biol . 5:438-447 (1985)) plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart, et al . , Cell 41:521-530 (1985)) . Downstream of the promoter are BamHI, Xbal, and Asp718 restriction enzyme cleavage sites that allow integration of the genes.
- LTR long terminal repeat
- CMV cytomegalovirus
- the plasmid contains the 3 ' intron and polyadenylation site of the rat preproinsulin gene.
- Other high efficiency promoters can also be used for the expression, e.g., the human b-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI .
- Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the huHDGFh in a regulated way in mammalian cells (M. Gossen, and H. Bujard, Proc. Natl . Acad. Sci . USA 89: 5547-5551 (1992)) .
- Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate .
- the plasmid pC4 is digested with restriction enzymes and then dephosphorylated using calf intestinal phosphatase by procedures known in the art.
- the vector is then isolated from a 1% agarose gel.
- the DNA sequence encoding the complete huHDGFh polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5 ' and 3 ' sequences of the gene .
- Non- limiting examples include 5' and 3' primers having nucleotides corresponding or complementary to a portion of the coding sequence of a huHDGFh, e.g., as presented in SEQ ID NO:l, according to known method steps.
- the amplified fragment is digested with suitable endonucleases and then purified again on a 1% agarose gel.
- the isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase.
- E. coli HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.
- Chinese hamster ovary (CHO) cells lacking an active DHFR gene are used for transfection.
- 5 ⁇ g of the expression plasmid pC4 is cotransfected with 0.5 ⁇ g of the plasmid pSV2-neo using lipofectin.
- the plasmid pSV2neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418.
- the cells are seeded in alpha minus MEM supplemented with 1 ⁇ g/ml G418.
- the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 ⁇ g/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM) .
- Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 mM, 2 mM, 5 mM, ⁇ o mM, 20 mM) . The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 mM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reverse phase HPLC analysis.
- Example 4 Tissue Distribution of huHDGFh mRNA Expression Northern blot analysis is carried out to examine huHDGFh gene expression in human tissues, using methods described by, among others, Sambrook, et al . , cited above.
- a cDNA probe containing the entire nucleotide sequence of a huHDGFh polypeptide (SEQ ID NO:l) is labeled with 3 P using the RediprimeTM DNA labeling system (Amersham Life Science) , according to the manufacturer's instructions. After labeling, the probe is purified using a CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to the manufacturer's protocol number PT1200-1. The purified and labeled probe is used to examine various human tissues for huHDGFh mRNA.
- MTN Multiple Tissue Northern
- H human tissues
- IM human immune system tissues
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU20595/00A AU2059500A (en) | 1998-12-22 | 1999-12-22 | Huhdgfh nucleic acids, polypeptides, methods and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11334498P | 1998-12-22 | 1998-12-22 | |
US60/113,344 | 1998-12-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000037492A2 true WO2000037492A2 (fr) | 2000-06-29 |
WO2000037492A3 WO2000037492A3 (fr) | 2000-09-14 |
Family
ID=22348901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/030932 WO2000037492A2 (fr) | 1998-12-22 | 1999-12-22 | ACIDES NUCLEIQUES huHDGFH, POLYPEPTIDES, PROCEDES ET UTILISATIONS DE CEUX-CI |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2059500A (fr) |
WO (1) | WO2000037492A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001085775A1 (fr) * | 2000-04-17 | 2001-11-15 | Shanghai Cancer Institute | Nouvelle proteine humaine associee aux tumeurs et sa sequence de codage |
WO2003057883A1 (fr) * | 2002-01-11 | 2003-07-17 | Long Yu | Facteur 5 de croissance derive de l'hepatome humain, sa sequence codante, procede pour le produire et ses utilisations |
EP1123976A4 (fr) * | 1998-09-22 | 2004-09-15 | Long Yu | Nouvelle sequence codant pour le facteur de croissance derive de l'hepatome humain et polypeptide code par cette sequence d'adn, et procede de production de ceux-ci |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002501747A (ja) * | 1998-01-29 | 2002-01-22 | インサイト・ファーマスーティカルズ・インコーポレイテッド | ヒト・成長因子ホモログ |
US6893844B1 (en) * | 1998-09-22 | 2005-05-17 | Long Yu | DNA encoding a new human hepatoma derived growth factor and producing method thereof |
-
1999
- 1999-12-22 AU AU20595/00A patent/AU2059500A/en not_active Abandoned
- 1999-12-22 WO PCT/US1999/030932 patent/WO2000037492A2/fr active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1123976A4 (fr) * | 1998-09-22 | 2004-09-15 | Long Yu | Nouvelle sequence codant pour le facteur de croissance derive de l'hepatome humain et polypeptide code par cette sequence d'adn, et procede de production de ceux-ci |
WO2001085775A1 (fr) * | 2000-04-17 | 2001-11-15 | Shanghai Cancer Institute | Nouvelle proteine humaine associee aux tumeurs et sa sequence de codage |
US7112419B2 (en) | 2000-04-17 | 2006-09-26 | Shanghai Cancer Institute | Human hepatoma associated protein and the polynucleotide encoding said polypeptide |
WO2003057883A1 (fr) * | 2002-01-11 | 2003-07-17 | Long Yu | Facteur 5 de croissance derive de l'hepatome humain, sa sequence codante, procede pour le produire et ses utilisations |
US7361486B2 (en) | 2002-01-11 | 2008-04-22 | Long Yu | Polynucleotide, vector, host cell and method for producing human hepatoma-derived growth factor 5 polypeptide |
Also Published As
Publication number | Publication date |
---|---|
WO2000037492A3 (fr) | 2000-09-14 |
AU2059500A (en) | 2000-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2003029401A2 (fr) | Acides nucleiques codant pour la proteine de reconnaissance du peptidoglycane et methodes d'utilisation associees | |
KR20010012554A (ko) | 항미생물성 펩티드 | |
WO1998015624A1 (fr) | Galectine 8, 9, 10, et 10sv | |
WO2000015798A2 (fr) | Facteur de croissance transformant beta - 9 mammaliens (ztgfss9) | |
CA2365040A1 (fr) | Compositions hob-bp2h, leurs techniques et leurs utilisations | |
WO2000015781A1 (fr) | Antagonistes du facteur de croissance des fibroblastes | |
WO2000037492A2 (fr) | ACIDES NUCLEIQUES huHDGFH, POLYPEPTIDES, PROCEDES ET UTILISATIONS DE CEUX-CI | |
CN1289852A (zh) | 一种人固氮基因同源蛋白及其编码序列 | |
WO2000012117A1 (fr) | ACIDES NUCLEIQUES, POLYPEPTIDES HOMOLOGUES DE Wnt, PROCEDES ET UTILISATIONS | |
WO2000005248A1 (fr) | Cellules hotes, vecteurs, polypeptides, acides nucleiques de gdf-3 humains et leur methodes d'utilisation | |
WO2000012532A1 (fr) | Acides nucleiques d'homologue du facteur 8, polypeptides, procedes et utilisations | |
WO2000006714A1 (fr) | ACIDES NUCLEIQUES DDKh-3, POLYPEPTIDES, VECTEURS, CELLULES HOTES, PROCEDES ET UTILISATIONS | |
JP2002508166A (ja) | ヒトDendriacおよびBrainiac−3 | |
WO2002002771A2 (fr) | Nouveau gene hsparc-11 et procedes de fabrication et d'utilisation de ce dernier | |
EP1325029A2 (fr) | Nouvelles proteines secretees et utilisations de ces dernieres | |
US20030211991A1 (en) | Human sez6 nucleic acids and polypeptides | |
WO2000006591A2 (fr) | Acide nucleique adap, polypeptides, vecteurs, cellules hotes, techniques et utilisations | |
US20030120039A1 (en) | Human preoptic regulatory factor-2 and uses thereof | |
WO2001083552A2 (fr) | Acides nucleiques et polypeptides sez6 humains | |
WO2001042464A2 (fr) | Facteur 2 de regulation preoptique humain et ses utilisations | |
US20070020277A1 (en) | Human Oncogene Induced Secreted Protein I | |
WO2001000662A2 (fr) | Utilisation de polypeptides fgh-8 humains comme agents neurotrophiques | |
MXPA01002039A (en) | Factor 8 homologue nucleic acids, polypeptides, methods, uses | |
WO2001066738A2 (fr) | Acides nucleiques codant des polypeptides crsp1 humains et utilisations de ces derniers | |
WO2000034782A1 (fr) | Compositions flint et leurs utilisations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |