WO2000035372A2 - Matrices multiples pour tissus modifies - Google Patents
Matrices multiples pour tissus modifies Download PDFInfo
- Publication number
- WO2000035372A2 WO2000035372A2 PCT/US1999/029489 US9929489W WO0035372A2 WO 2000035372 A2 WO2000035372 A2 WO 2000035372A2 US 9929489 W US9929489 W US 9929489W WO 0035372 A2 WO0035372 A2 WO 0035372A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- matrix
- matrices
- blood vessel
- collagen
- cells
- Prior art date
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 71
- 102000008186 Collagen Human genes 0.000 claims abstract description 39
- 108010035532 Collagen Proteins 0.000 claims abstract description 39
- 229920001436 collagen Polymers 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 34
- 229920002683 Glycosaminoglycan Polymers 0.000 claims abstract description 33
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 22
- 229920001577 copolymer Polymers 0.000 claims abstract description 9
- 238000001727 in vivo Methods 0.000 claims abstract 2
- 210000004027 cell Anatomy 0.000 claims description 44
- 210000000329 smooth muscle myocyte Anatomy 0.000 claims description 39
- 102000007547 Laminin Human genes 0.000 claims description 29
- 108010085895 Laminin Proteins 0.000 claims description 29
- 108010067306 Fibronectins Proteins 0.000 claims description 28
- 102000016359 Fibronectins Human genes 0.000 claims description 28
- 102100030951 Tissue factor pathway inhibitor Human genes 0.000 claims description 26
- 108010013555 lipoprotein-associated coagulation inhibitor Proteins 0.000 claims description 26
- 108010014258 Elastin Proteins 0.000 claims description 23
- 102000016942 Elastin Human genes 0.000 claims description 23
- 229920002549 elastin Polymers 0.000 claims description 23
- 210000002889 endothelial cell Anatomy 0.000 claims description 19
- 210000002950 fibroblast Anatomy 0.000 claims description 16
- 238000010899 nucleation Methods 0.000 claims description 11
- 102000012422 Collagen Type I Human genes 0.000 claims description 9
- 108010022452 Collagen Type I Proteins 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229920001287 Chondroitin sulfate Polymers 0.000 claims description 6
- 102000004266 Collagen Type IV Human genes 0.000 claims description 5
- 108010042086 Collagen Type IV Proteins 0.000 claims description 5
- -1 GAG Proteins 0.000 claims description 5
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 5
- 208000007536 Thrombosis Diseases 0.000 claims description 5
- 210000003850 cellular structure Anatomy 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 4
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 claims description 3
- 229940059329 chondroitin sulfate Drugs 0.000 claims description 3
- 229920000669 heparin Polymers 0.000 claims description 3
- 229960002897 heparin Drugs 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 210000000663 muscle cell Anatomy 0.000 claims 1
- 230000002792 vascular Effects 0.000 description 15
- 239000011148 porous material Substances 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 210000001367 artery Anatomy 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 230000005012 migration Effects 0.000 description 7
- 238000013508 migration Methods 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 102000006495 integrins Human genes 0.000 description 6
- 108010044426 integrins Proteins 0.000 description 6
- 229920000249 biocompatible polymer Polymers 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 206010020718 hyperplasia Diseases 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 230000000541 pulsatile effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000001453 nonthrombogenic effect Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 229920002971 Heparan sulfate Polymers 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 230000003872 anastomosis Effects 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000003169 placental effect Effects 0.000 description 2
- 230000010118 platelet activation Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- HVAUUPRFYPCOCA-AREMUKBSSA-N 2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C HVAUUPRFYPCOCA-AREMUKBSSA-N 0.000 description 1
- KKJUPNGICOCCDW-UHFFFAOYSA-N 7-N,N-Dimethylamino-1,2,3,4,5-pentathiocyclooctane Chemical compound CN(C)C1CSSSSSC1 KKJUPNGICOCCDW-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 241000545744 Hirudinea Species 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 108010003541 Platelet Activating Factor Proteins 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229940094517 chondroitin 4-sulfate Drugs 0.000 description 1
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000007646 directional migration Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003815 prostacyclins Chemical class 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 238000009781 safety test method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 210000001644 umbilical artery Anatomy 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000002073 venous valve Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/507—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
- C08L89/04—Products derived from waste materials, e.g. horn, hoof or hair
- C08L89/06—Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
Definitions
- Neointimal hyperplasia also known as intimal hyperplasia, is the proliferation of the smooth muscle cells (SMCs) and excessive production by these cells of extracellular matrix. Generally, this phenomenon is seen at the sites of anastomoses, that is, where the vascular graft is sutured to the parent or recipient vessel. It is also the phenomenon described by restenosis, that is, closure of a vessel after some intervention (e.g., PTCA).
- the SMCs adopt a synthetic phenotype; they proliferate, migrate, and secrete more matrix than is appropriate. Some of this phenotypic shift is due to a shift in signal transduction by surface integrins on the SMCs, especially those specific for the adhesion proteins, laminin and fibronectin.
- One aspect of the invention features a method of producing a multilayered cellular structure, including (i) forming a plurality of matrices; seeding at least one of the matrices with living cells; and (iii) assembling the matrices into a single multilayered cellular structure.
- the matrices are tubular and of different diameters.
- the matrices include a copolymer of collagen and a glycosaminoglycan
- the living cells include smooth muscle cells, endothelial cells, fibroblasts, or any combination thereof.
- the matrices differ in their mechanical properties.
- the mechanical property which differs between matrices is pore size, pore orientation, mean molecular weight between crosslinks (Mc), or percent porosity (void fraction).
- the matrices contain different amounts of elastin, laminin, fibronectin, or Tissue Factor Pathway Inhibitor (TFPI), or any combination thereof.
- the invention features a method of producing a prosthetic blood vessel, including the steps of (i) forming a plurality of tubular matrices of different diameters; (ii) seeding at least one of the tubular matrices with living cells; and (iii) assembling the tubular matrices into a single, concentric multilayered tube.
- the invention features a method of producing a prosthetic blood vessel, including the steps of (i) forming a plurality of matrices; (ii) seeding at least one of the matrices with living cells; (iii) shaping the matrices to form tubular matrices of different diameters; and (iv) assembling the tubular matrices into a single multilayered tube.
- the invention features a method of producing a prosthetic blood vessel, including the steps of (i) forming a tubular matrix; and (ii) seeding the tubular matrix with living cells.
- the matrix includes a co-polymer of collagen and a glycosaminoglycan.
- the matrix also includes elastin, laminin, fibronectin, or Tissue
- the living cells include smooth muscle cells, endothelial cells, or any combination thereof.
- the invention features a method of producing a prosthetic blood vessel, including the steps of (i) forming a matrix; (ii) seeding the matrix with living cells; and (iii) shaping the matrix to form a tube.
- the matrix includes a co-polymer of collagen and a glycosaminoglycan.
- the matrix can also include elastin, laminin, fibronectin, or Tissue Factor Pathway Inhibitor (TFPI), or any combination thereof.
- the living cells include smooth muscle cells, endothelial cells, or any combination thereof.
- the invention features a matrix including a co-polymer of collagen and glycosaminoglycan, and also includes at least two of the following: elastin, laminin, fibronectin, and Tissue Factor Pathway Inhibitor
- the glycosaminoglycan is chondroitin sulfate or heparin.
- the collagen is type I or type IV collagen.
- the co-polymer of collagen and glycosaminoglycan is acid precipitated.
- the matrix also includes TFPI, elastin, laminin, and/or fibronectin.
- the invention features a multilayered blood vessel prosthesis which includes (i) an inner layer comprising type I collagen, type IN collagen, GAG, elastin, and laminin; and (ii) an outer layer comprising type I collagen, GAG, elastin, and fibronectin.
- the inner layer is seeded externally with smooth muscle cells and is seeded internally with endothelial cells.
- the outer layer is seeded internally with smooth muscle cells and is seeded externally with fibroblasts.
- the multilayered blood vessel prostheses also includes at least one medial layer comprising collagen, GAG, elastin, and fibronectin. In a related embodiment, the medial layers are seeded internally and externally with smooth muscle cells.
- Biocompatible polymers include poly- ⁇ -acetylglucosamine (chitin), polyurethanes, polyether block amides, fluoropolymers such as polytetrafluoroethylene, polyethylene, polyester, and polyethylene terephthalate. Biocompatible polymers also include collagen-based polymers, with or without associated glycosaminoglycans, elastin, fibronectin, laminin, or combinations thereof. Any of the 20-odd collagens thus far identified can be used; those most preferred are Type I and Type IV collagens. A biocompatible polymer is intended to contact cells, biological fluids, and preparations derived from cells.
- Cells include individual cells; animal tissues such as blood, muscle, nerves, tendons, cartilage, bone, and vasculature including veins, arteries, valves, placental and umbilical material, and organs of animals; and tissues of plants.
- a biocompatible polymer of the invention is generally nontoxic. In some cases, the polymer can be designed to release, leech, degrade, or selectively bind biologically active substances, and direct favorable cellular processes.
- a “bioresorbable material,” in amounts used with the invention, can be degraded in, or by, the body without producing unacceptable levels of harmful metabolites or stimulation of adverse immune responses including cellular proliferation, calcification, or synthesis of excessive fibrotic tissue.
- the degradation occurs gradually, at a predetermined rate, to allow fibroblasts, endothelial cells, or other vascular, muscular, or other tissue to replace the bioresorbable material.
- the time interval can be days, weeks, months or years.
- the rate of degradation can be regulated by regulating the matrix components.
- Compliance is a measure of the degree to which a material stretches as a result of an applied stress.
- compliance is defined as a change in volume of the structure divided by the change in pressure necessary to cause the change in volume
- Abbot Biological and Synthetic Vascular Prostheses, J.C. Stanley (ed), Grune and
- compliance is the percent change in diameter per unit of pressure.
- the compliance of the prosthesis should closely match that of the adjacent living tissue to which the prosthesis is being attached.
- compliance is generally between 4% and 12%. and preferably between 6% and 9%.
- 4% compliance means that an artery or vascular graft stretches 4% as a result of the difference between systolic and diastolic pressures—that is, at 120mm Hg, a graft or artery would have a diameter that is 4% larger than at 80mm Hg.
- the collagen material as precipitated with a glycosaminoglycan, is nearly insoluble in water (or saline) at physiologic pH prior to crosslinking.
- the crosslinking makes it less susceptible to degradation.
- Crosslinking reduces aqueous solubility of a collagen-bound material and increases fracture stress and resistance to enzymatic degradation (for example, by collagenase, which cleave the collagen into smaller, soluble fragments).
- Crosslinking conditions can be selected to provide the desired level of crosslink density, to reduce the surface functional groups, or otherwise modulate mechanical or biological properties.
- GAG Glycosaminoglycans
- GAGs include, but are not limited to, chondroitin-6-sulfate, chondroitin-4-sulfate, heparin sulfate, dermatan sulfate, keratin sulfate, chitosan, hyaluronic acid, and heparin.
- Combinations of glycosaminoglycans can also be used.
- Porcity is the estimate or index of the ratio of the void within a material to the total volume occupied by the material including the voids, expressed as a percentage void to the total volume.
- the invention provides improved vascular grafts which resist failure, particularly at anastomoses.
- the invention also provides vascular grafts with excellent mechanical and biological properties in a much shorter time period than is possible by other methods.
- tubular or bifurcated matrix analogs constructed of a biocompatible polymer matrix analog which can be comprised of type I and type IV collagen, a glycosaminoglycan such as chondroitin sulfate or heparin sulfate, elastin, an adhesion protein such as laminin, or fibronectin, and Tissue Factor Pathway Inhibitor (TFPI).
- a biocompatible polymer matrix analog which can be comprised of type I and type IV collagen, a glycosaminoglycan such as chondroitin sulfate or heparin sulfate, elastin, an adhesion protein such as laminin, or fibronectin, and Tissue Factor Pathway Inhibitor (TFPI).
- a biocompatible polymer matrix analog which can be comprised of type I and type IV collagen, a glycosaminoglycan such as chondroitin sulfate or heparin sulfate, elastin,
- the matrix includes collagen/GAG, precipitated in an acidic medium (pH ⁇ 4.25) and freeze dried.
- both pathways of thrombus formation are inhibited and the resulting conduit is largely non- thrombogenic.
- adhesion proteins such as laminin or fibronectin, to regulate SMC phenotype.
- Elastin can also be included to increase compliance and to increase fracture toughness.
- the extracellular matrix (ECM) analog can be formed into at least two tubes, sized such that one tube fits snugly inside the other.
- the tubes can be manufactured such that the chemical or physical compositions, or both, are different in each of the tubes. It is particularly useful to construct the inner tube such that the pores in the ECM are smaller than those in the outer tube. For example, it can be desirable for the inner tube to have pores of between one and 10 microns in average size, while the outer or subsequent tube can be optimal with pores that average 40-80 microns in diameter. Additionally, the inner tube can be much thinner than the outer tube, and the inner tube can be also have a higher concentration of elastin.
- SMCs Collected endothelial or SMCs, after isolation and sufficient growth, a then seeded onto one or more of the tubes.
- Some of the tubes can be seeded with SMCs internally and externally, while others are only seeded externally. Additionally, the inner-most tube can be seeded externally with SMCs, then cultured for a few days, then seeded internally with endothelial cells.
- the tubes are eventually assembled and further grown, yielding a construct of concentric layers of tissue containing endothelial cells and SMCs.
- Fibroblasts can be added to the outermost surface for the final culture period, or it can be beneficial to construct a similar adventitial layer comprised of ECM and fibroblasts, and then assemble the adventitial layer onto the medial and intimal layers. This method yields an arterial graft with excellent mechanical and biological properties in a much shorter time period than is possible by other methods.
- the matrices are formed into sheets.
- the sheets can be manufactured such that the chemical or physical composition, or both, are different for each sheet.
- endothelial or SMCs are seeded.
- the matrix sheets are shaped into tubes.
- the matrix sheet can be overlaid and allowed to attach to each other prior to forming tubes.
- the sheets can be shaped individually into tubes of different sizes and then assembled into a multicellular structure.
- culture medium can be forced through the lumen of the tube in a pulsatile fashion in addition to bathing the tube in the culture medium. This will orient the SMCs in a circumferential direction, as in a natural artery. The pulsatile flow will also cause the endothelial cells to adopt an elongate, 'cobblestone' appearance, as in a normal artery.
- the cells on the matrices can be made to produce more matrix proteins than usual by culturing the cells in the presence of ascorbic acid. This yields a high-strength prosthesis faster than would be otherwise possible. This also leads to more rapid integration of the concentric layers once they are assembled. After the layers are sufficiently fused, the arterial analog is then packaged for sterile transfer to the operation room, where it is implanted in the patient.
- the matrix can include (i) a glycosaminoglycan, (ii) a collagen, (iii) an integrin receptor ligand such as laminin and fibronectin, (iv) elastin, and (v) TFPI. Each of these components is described further.
- a matrix can include between 1% and 10% glycosaminoglycan (GAG) by dry weight, and preferably between 3% and 8% GAG by dry weight, such as 4% or 7%.
- GAG glycosaminoglycan
- N preferred GAG is chondroitin-6-sulfate.
- a matrix can include between 50% and 99% collagen, such as Type IV or Type I collagen.
- the degree of crosslinking of the collagen determines the mechanical and bioresorptive properties of the matrix. Increases in the collagen/elastin ratio will decrease elasticity and, to a minor extent, decrease the resorption rate.
- the resorption rate primarily is determined by the mean molecular weight between crosslinks. The limit for this value is a function of the GAG content. How close one comes to that limiting value is determined by the processing after precipitation. Thus, two grafts with very different compositions could have identical crosslink densities (Mc), which would yield similar resorption rates.
- a matrix can include between about 0.0001% and 0.1 % by dry weight of the integrin receptor ligand, and preferably between 0.001% and 0.01%.
- Preferred integrin receptor ligands are laminin and fibronectin.
- Laminin and fibronectin are both adhesion proteins which link the matrix with SMCs via the surface integrins on those cells.
- laminin is the integrin receptor ligand present on the matrix, the laminin causes SMCs to migrate and undergo the phenotypic shift in from the desired contractile type to the undesirable synthetic type. For some grafts, or portions of grafts, the opposite result is desired.
- the matrix ligand is fibronectin, which causes the SMCs to remain or become contractile, and, thus, to not migrate and proliferate.
- the composition of the matrices of the invention can be varied to control SMC phenotype.
- TFPI can be included in the matrix in amounts to at least partially inhibit thrombus formation.
- TFPI in amounts up to 0.5% of the matrix weight can be used, preferably between 0.00 1% and 0. 1%.
- a matrix can also include elastin.
- Elastin is added to the matrix to increase its compliance and to increase fracture toughness. Up to 30% by weight elastin can be used, preferably between 5 and 20%.
- Pore size can be used alone or in combination with ligands to assist in directed migration of cells toward a desired region of the shaped mate.
- the shaped material can be, for example, a sheet, a tube, a bifurcated tube, or tapered tube.
- one portion such as an inner surface of a tube, has smaller pores than another surface, such as an outer surface of a tube, or vice versa.
- the shaped material is a vascular graft, it is desirable to encourage migration of SMCs toward the outer surface or middle portion of the graft, and migration of vascular endothelial cells along the inner surface of the graft.
- Matrices can also include other substances on the surface of the shaped polymer composition, or throughout the polymer composition.
- examples include ligands which promote selective migration of desired cells towards or adherence to a surface, or which reduce migration or adherence of undesirable cells, such as platelets.
- platelet activation is inhibited by the use of prostacyclin, a prostacyclin analog, or other platelet-activating factor antagonists.
- Other targeting, repelling, or nutrient substances include VEGF, TGF-beta, or any other desired growth factor or inhibitor.
- the three main cell types that make up an artery are SMCs, endothelial cells, and fibroblasts.
- SMCs SMCs
- endothelial cells SMCs
- fibroblasts fibroblasts.
- the cells can be collected from the patient and cultured.
- the cells can be allogenic, coming from donated placental or umbilical tissue.
- the cells can arise from embryonic stem cells which have become SMCs, endothelial cells, or fibroblasts (or precursors to these cells) through a cell- intrinsic program, response to exogenously-applied factors, or a combination of both.
- the cells can be increased in number through extended culturing prior to being seeded onto the matrix.
- SMCs, endothelial cells, and fibroblasts respond differently to matrix and adhesion proteins.
- different regions of a graft require different proportions of cell types.
- the amount of fibronectin and/or laminin in any region of the graft can be varied according to the needs of that region.
- the concentrations of these proteins will vary depending on the properties required at individual radial and longitudinal positions in the graft.
- endothelial cells eventually line the inner surface of the graft, and therefore collagen GAG/laminin is used to mimic basement membrane in this region. Small pores at the inner surface of the graft will prevent the SMCs from contacting the laminin, and thus discourage SMC migration and proliferation.
- the medial matrix can have both fibronectin and laminin, and the relative amounts of the two adhesion proteins can vary with the length of the graft. For example, because of the problem with anastomotic hyperplasia, it is desirable to have no laminin or fibronectin at the ends of the graft. Moving towards the central portion of the graft, it can be beneficial to have higher laminin and fibronectin content in order to encourage the SMCs to continue to migrate, so that they can eventually populate the entire graft.
- the outer portion of an artery, the adventitia, is largely populated by fibroblasts.
- a third composition of the ECM analog can be employed in this outer region of the graft.
- this outer fibroblast layer is critical in that the collagenous matrix of the adventitia provides much of the ultimate mechanical strength of the artery.
- a thin layer of relatively dense collagen with fibronectin, perhaps with little GAG, can be appropriate for the outer section of the graft.
- This outer layer must serve two functions initially; it must provide the ultimate strength to prevent rapture of the graft while other cells are migrating, and it must also provide a hospitable environment for proliferation and matrix turnover by fibroblasts.
- the inner portion of the graft will have high laminin content and small pores.
- the small pore size prevents the SMCs from interacting with the laminin, thus encouraging endothelialization, and discouraging migration, proliferation and synthesis by the SMCs.
- the medial portion of the graft will have larger pores and a mixture of laminin and fibronectin, which will lead to control of the phenotype of the SMCs and also of the eventual population of the entire medial portion of the graft with SMCs of the contractile phenotype.
- the outer portion of the graft will likely be more dense, and will have more fibronectin than the other two regions if it is needed to encourage fibroblast growth.
- Vascular grafts The invention features prosthetic devices and methods for producing such devices for cardiovascular grafting.
- Shapes for prosthetic devices in the cardiovascular system include valves, elbows, T-joints, tubes, branched tubes, and tubes with varying or tapering diameters.
- Cardiovascular prostheses include small and large diameter vascular prostheses, aortic valves, venous valves, mitral valves, and prostheses used in techniques such as coronary artery bypass grafting, coronary stenting, coronary stent-grafting, transvascular shunting, transmyocardial revascularization, and endovascular grafting of aortic, peripheral, or carotid disease.
- Cardiovascular prostheses preferably approximate the mechanical and performance properties of the natural tissue, particularly puncture-resistance, kink resistance, self-sealing, non-thrombogenicity, and infection resistance. Additional physical characteristics include suture retention, water permeability, integral water leakage, water entry pressure, circumferential tensile strength, longitudinal tensile strength, burst strength, diaphragm burst strength, probe burst strength, pressurized burst strength, strength after repeated puncture, usable length, relaxed internal diameter, pressurized internal diameter, and wall thickness. International quality control standards and safety testing procedures are known in the art and are described, for example, in ISO/DIS 7198 (ISO/TC 1501SC 2 N169), CEN/TC 28/WG 3/TF2, and the Revised A.A.M.I. Standard.
- a small diameter vascular graft has an inner diameter between 1.0 mm and 6.0 mm, preferably between 1.5 and 4.0 mm; and a wall thickness between 0.25 mm and 3 mm, preferably between 0.5 mm. and 1.5 mm.
- a vascular graft can have branches (e.g., a bifurcated or trifurcated graft), or tapering ends such that the diameter at one end is smaller than the diameter at another end, or have both branches and tapering portions.
- the vascular conduit can have a variable modulus along the length, without varying the diameter.
- bifurcated graft is between 3 and 9 inches long, preferably between 5 and 8 inches long, and has a proximal diameter of about 6 mm at the end to be attached to the descending aorta.
- the two distal ends have diameters of about 2.5 mm and are to be attached to the coronary arteries.
- the proximal end will stretch more than the distal ends, as the elasticity of each end should match the natural tissue (aortic and coronary arterial, respectively).
- the proximal end of a graft is sewn to the ascending aorta.
- a matrix tube is formed by creating an acidic dispersion of type I collagen in acetic acid at pH of ⁇ 4.2. Chondroitin-6-sulfate, also in acetic acid, is slowly added to the collagen suspension with mixing. The precipitate is then centrifuged to concentrate, and the concentrated slurry is injected into a mold, which defines an annular space of 2.5 mm. ID and 3.0 mm OD. The mold is submerged in a bath of liquid nitrogen, and rapidly frozen. The mold is then vented, and placed in a freeze-drying chamber. The aqueous solution of acetic acid is sublimed, and the collagen/GAG matrix is stabilized by the formation of crosslinks by a dehydration reaction.
- the tube is then cultured in DMEM with 10%> fetal bovine serum and 50 ⁇ g/ml sodium ascorbate in a CO 2 incubator, 92%o air, 8% CO 2 at 37° C. After 24 hours, the tube is connected to a pulsatile apparatus, which forces the same culture medium through the lumen of the tube with slowly increasing force. After one week, this tube is placed within a series of slightly larger, similarly constructed tubes, and this assembly is then returned to the incubator and connected to the pulsatile apparatus for further culturing of two weeks. A similar layer of matrix seeded with fibroblasts is added externally, and after one more week of culture, the graft is ready for implantation.
- a flat sheet matrix is made by pouring the slurry onto the steel sheet, and spreading the slurry to a uniform thickness of 0.005 inches. This sheet is then placed on the shelf in the freeze dryer, and rapidly frozen. Subsequent steps are as in Example 1, until SMCs are seeded onto the sheet at a density of
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Transplantation (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Polymers & Plastics (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Botany (AREA)
- Materials For Medical Uses (AREA)
- Peptides Or Proteins (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU24798/00A AU2479800A (en) | 1998-12-16 | 1999-12-13 | Multiple matrices for engineered tissues |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21297398A | 1998-12-16 | 1998-12-16 | |
US09/212,973 | 1998-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000035372A2 true WO2000035372A2 (fr) | 2000-06-22 |
WO2000035372A3 WO2000035372A3 (fr) | 2001-12-13 |
Family
ID=22793192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/029489 WO2000035372A2 (fr) | 1998-12-16 | 1999-12-13 | Matrices multiples pour tissus modifies |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2479800A (fr) |
WO (1) | WO2000035372A2 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1609492A1 (fr) * | 2003-03-31 | 2005-12-28 | Teijin Limited | Article en elastine moule et son procede de production |
US7053051B2 (en) | 2003-10-28 | 2006-05-30 | Medtronic, Inc. | Methods of preparing crosslinked materials and bioprosthetic devices |
WO2006099016A2 (fr) * | 2005-03-09 | 2006-09-21 | Providence Health System | Greffe composite |
WO2007138269A2 (fr) * | 2006-05-25 | 2007-12-06 | Intercytex Limited | Réparation tissulaire |
WO2009047347A1 (fr) * | 2007-10-11 | 2009-04-16 | Inserm (Institut National De Sante Et De La Recherche Medicale) | Procédé de préparation d'un échafaudage poreux pour l'ingénierie tissulaire |
WO2011123665A1 (fr) * | 2010-03-31 | 2011-10-06 | Biolife Solutions, Inc. | Procédés et compositions pour le traitement des brûlures et des blessures |
US9051550B2 (en) | 2009-04-09 | 2015-06-09 | Arizona Board Of Regents, On Behalf Of The University Of Arizona | Cellular seeding and co-culture of a three dimensional fibroblast construct |
CN108404219A (zh) * | 2018-02-11 | 2018-08-17 | 华中科技大学 | 一种基于冷冻铸造技术的小口径人工血管及其制备方法 |
CN115998953A (zh) * | 2023-02-07 | 2023-04-25 | 苏州大学 | 一种双重仿生取向的人工小血管及其制备方法 |
US11890395B2 (en) | 2017-06-16 | 2024-02-06 | Avery Therapeutics, Inc. | Three dimensional tissue compositions and methods of use |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938524A (en) * | 1973-06-11 | 1976-02-17 | Sparks Charles Howard | Compliant mandrel and mandrel assembly for growing graft tubes |
US5336256A (en) * | 1986-04-17 | 1994-08-09 | Uab Research Foundation | Elastomeric polypeptides as vascular prosthetic materials |
US5716394A (en) * | 1994-04-29 | 1998-02-10 | W. L. Gore & Associates, Inc. | Blood contact surfaces using extracellular matrix synthesized in vitro |
US5735897A (en) * | 1993-10-19 | 1998-04-07 | Scimed Life Systems, Inc. | Intravascular stent pump |
US5879383A (en) * | 1994-04-29 | 1999-03-09 | W. L. Gore & Associates, Inc. | Blood contact surfaces using endothelium on a subendothelial matrix |
-
1999
- 1999-12-13 WO PCT/US1999/029489 patent/WO2000035372A2/fr active Application Filing
- 1999-12-13 AU AU24798/00A patent/AU2479800A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938524A (en) * | 1973-06-11 | 1976-02-17 | Sparks Charles Howard | Compliant mandrel and mandrel assembly for growing graft tubes |
US5336256A (en) * | 1986-04-17 | 1994-08-09 | Uab Research Foundation | Elastomeric polypeptides as vascular prosthetic materials |
US5735897A (en) * | 1993-10-19 | 1998-04-07 | Scimed Life Systems, Inc. | Intravascular stent pump |
US5716394A (en) * | 1994-04-29 | 1998-02-10 | W. L. Gore & Associates, Inc. | Blood contact surfaces using extracellular matrix synthesized in vitro |
US5879383A (en) * | 1994-04-29 | 1999-03-09 | W. L. Gore & Associates, Inc. | Blood contact surfaces using endothelium on a subendothelial matrix |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1609492A1 (fr) * | 2003-03-31 | 2005-12-28 | Teijin Limited | Article en elastine moule et son procede de production |
EP1609492A4 (fr) * | 2003-03-31 | 2007-12-26 | Teijin Ltd | Article en elastine moule et son procede de production |
US7053051B2 (en) | 2003-10-28 | 2006-05-30 | Medtronic, Inc. | Methods of preparing crosslinked materials and bioprosthetic devices |
WO2006099016A2 (fr) * | 2005-03-09 | 2006-09-21 | Providence Health System | Greffe composite |
WO2006099016A3 (fr) * | 2005-03-09 | 2006-12-21 | Providence Health System | Greffe composite |
WO2007138269A2 (fr) * | 2006-05-25 | 2007-12-06 | Intercytex Limited | Réparation tissulaire |
WO2007138269A3 (fr) * | 2006-05-25 | 2008-04-17 | Intercytex Ltd | Réparation tissulaire |
JP2011500119A (ja) * | 2007-10-11 | 2011-01-06 | アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) | 組織工学用多孔質足場の調製方法 |
WO2009047347A1 (fr) * | 2007-10-11 | 2009-04-16 | Inserm (Institut National De Sante Et De La Recherche Medicale) | Procédé de préparation d'un échafaudage poreux pour l'ingénierie tissulaire |
US9028857B2 (en) | 2007-10-11 | 2015-05-12 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Method for preparing porous scaffold for tissue engineering |
US9555164B2 (en) | 2007-10-11 | 2017-01-31 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Method for preparing porous scaffold for tissue engineering |
US9051550B2 (en) | 2009-04-09 | 2015-06-09 | Arizona Board Of Regents, On Behalf Of The University Of Arizona | Cellular seeding and co-culture of a three dimensional fibroblast construct |
US9976123B2 (en) | 2009-04-09 | 2018-05-22 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Cellular seeding and co-culture of a three dimensional fibroblast construct |
US11345894B2 (en) | 2009-04-09 | 2022-05-31 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Cellular seeding and co-culture of a three dimensional fibroblast construct |
WO2011123665A1 (fr) * | 2010-03-31 | 2011-10-06 | Biolife Solutions, Inc. | Procédés et compositions pour le traitement des brûlures et des blessures |
US11890395B2 (en) | 2017-06-16 | 2024-02-06 | Avery Therapeutics, Inc. | Three dimensional tissue compositions and methods of use |
CN108404219A (zh) * | 2018-02-11 | 2018-08-17 | 华中科技大学 | 一种基于冷冻铸造技术的小口径人工血管及其制备方法 |
CN115998953A (zh) * | 2023-02-07 | 2023-04-25 | 苏州大学 | 一种双重仿生取向的人工小血管及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2479800A (en) | 2000-07-03 |
WO2000035372A3 (fr) | 2001-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5879383A (en) | Blood contact surfaces using endothelium on a subendothelial matrix | |
Scherner et al. | In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? | |
AU685441B2 (en) | Tissue equivalents | |
US5716394A (en) | Blood contact surfaces using extracellular matrix synthesized in vitro | |
US4787900A (en) | Process for forming multilayer bioreplaceable blood vessel prosthesis | |
CN102076366A (zh) | 组织工程血管 | |
US12168083B2 (en) | Method for producing a fibrin-based bioartificial, primarily acellular construct, and the construct itself | |
JP2002527191A (ja) | 移植用心臓血管部品及びその製造方法 | |
JPH04242642A (ja) | ハイブリッド人工血管及びその製造方法 | |
Liu et al. | Development of a decellularized human amniotic membrane-based electrospun vascular graft capable of rapid remodeling for small-diameter vascular applications | |
Yao et al. | Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels | |
WO2000035372A2 (fr) | Matrices multiples pour tissus modifies | |
US20080268017A1 (en) | Method of producing tissue by placing a molding support within a body cavity | |
González-Pérez et al. | Biohybrid elastin-like venous valve with potential for in situ tissue engineering | |
Hess et al. | Seeding of enzymatically derived and subcultivated canine endothelial cells on fibrous polyurethane vascular prostheses | |
Matsuda et al. | Newly designed compliant hierarchic hybrid vascular grafts wrapped with a microprocessed elastomeric film—I: Fabrication procedure and compliance matching | |
Ota | Towards an ideal polyurethane graft for hemodialysis | |
Ferrari et al. | Small diameter vascular grafts coated with gelatin | |
Vindigni et al. | New developments in tissue engineering of microvascular prostheses | |
US20040126404A1 (en) | Implant material | |
Wilhelmi et al. | Materials used for hemodialysis vascular access: current strategies and a call to action | |
Noishiki et al. | Development of a growable vascular graft | |
EP0504262A1 (fr) | Prothese creuse pour viscere et methode d'implantation | |
AU752591B2 (en) | Implant material | |
JPH04300559A (ja) | 複合化人工血管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
122 | Ep: pct application non-entry in european phase |