WO2000034353A2 - Method for the synthesis of thermoplastic elastomers in non-halogenated solvents - Google Patents
Method for the synthesis of thermoplastic elastomers in non-halogenated solvents Download PDFInfo
- Publication number
- WO2000034353A2 WO2000034353A2 PCT/US1999/024013 US9924013W WO0034353A2 WO 2000034353 A2 WO2000034353 A2 WO 2000034353A2 US 9924013 W US9924013 W US 9924013W WO 0034353 A2 WO0034353 A2 WO 0034353A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blocks
- isocyanate
- reactive
- halogenated solvent
- derivatives
- Prior art date
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 46
- 229920002725 thermoplastic elastomer Polymers 0.000 title claims abstract description 42
- 230000015572 biosynthetic process Effects 0.000 title description 8
- 238000003786 synthesis reaction Methods 0.000 title description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 78
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229920000642 polymer Polymers 0.000 claims abstract description 43
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 36
- 125000005442 diisocyanate group Chemical group 0.000 claims abstract description 33
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 150000002921 oxetanes Chemical class 0.000 claims abstract description 14
- 238000010533 azeotropic distillation Methods 0.000 claims abstract description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 35
- 239000000178 monomer Substances 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 24
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 19
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000003380 propellant Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 15
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 13
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 claims description 12
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 125000000524 functional group Chemical group 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 239000002360 explosive Substances 0.000 claims description 6
- 150000002576 ketones Chemical class 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 150000002170 ethers Chemical class 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 5
- 150000002895 organic esters Chemical class 0.000 claims 4
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- 150000002924 oxiranes Chemical class 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 90
- -1 e.g. Polymers 0.000 description 68
- 239000000243 solution Substances 0.000 description 51
- 239000000203 mixture Substances 0.000 description 41
- 238000006243 chemical reaction Methods 0.000 description 29
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 21
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 229920001400 block copolymer Polymers 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 238000009472 formulation Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 150000002009 diols Chemical class 0.000 description 8
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 7
- 239000012975 dibutyltin dilaurate Substances 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 7
- 239000000806 elastomer Substances 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 150000004292 cyclic ethers Chemical class 0.000 description 6
- 239000012948 isocyanate Substances 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 229920001519 homopolymer Polymers 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- XVLDLRUWOGLKIT-UHFFFAOYSA-N 3-(azidomethyl)-3-methyloxetane Chemical compound [N-]=[N+]=NCC1(C)COC1 XVLDLRUWOGLKIT-UHFFFAOYSA-N 0.000 description 4
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- GOPVUFFWLXPUBM-UHFFFAOYSA-N 3,3-bis(azidomethyl)oxetane Chemical compound [N-]=[N+]=NCC1(CN=[N+]=[N-])COC1 GOPVUFFWLXPUBM-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000010538 cationic polymerization reaction Methods 0.000 description 3
- ISXUHJXWYNONDI-UHFFFAOYSA-L dichloro(diphenyl)stannane Chemical compound C=1C=CC=CC=1[Sn](Cl)(Cl)C1=CC=CC=C1 ISXUHJXWYNONDI-UHFFFAOYSA-L 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- QUAMCNNWODGSJA-UHFFFAOYSA-N 1,1-dinitrooxybutyl nitrate Chemical compound CCCC(O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QUAMCNNWODGSJA-UHFFFAOYSA-N 0.000 description 2
- JSOGDEOQBIUNTR-UHFFFAOYSA-N 2-(azidomethyl)oxirane Chemical compound [N-]=[N+]=NCC1CO1 JSOGDEOQBIUNTR-UHFFFAOYSA-N 0.000 description 2
- QOPMHMFIIMJWET-UHFFFAOYSA-N 3,3-bis(bromomethyl)oxetane Chemical compound BrCC1(CBr)COC1 QOPMHMFIIMJWET-UHFFFAOYSA-N 0.000 description 2
- CXURGFRDGROIKG-UHFFFAOYSA-N 3,3-bis(chloromethyl)oxetane Chemical compound ClCC1(CCl)COC1 CXURGFRDGROIKG-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- NDYLCHGXSQOGMS-UHFFFAOYSA-N CL-20 Chemical compound [O-][N+](=O)N1C2N([N+]([O-])=O)C3N([N+](=O)[O-])C2N([N+]([O-])=O)C2N([N+]([O-])=O)C3N([N+]([O-])=O)C21 NDYLCHGXSQOGMS-UHFFFAOYSA-N 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- 229920002633 Kraton (polymer) Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- BRUFJXUJQKYQHA-UHFFFAOYSA-O ammonium dinitramide Chemical compound [NH4+].[O-][N+](=O)[N-][N+]([O-])=O BRUFJXUJQKYQHA-UHFFFAOYSA-O 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 229960002380 dibutyl phthalate Drugs 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- TVWTZAGVNBPXHU-FOCLMDBBSA-N dioctyl (e)-but-2-enedioate Chemical compound CCCCCCCCOC(=O)\C=C\C(=O)OCCCCCCCC TVWTZAGVNBPXHU-FOCLMDBBSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- CRJZNQFRBUFHTE-UHFFFAOYSA-N hydroxylammonium nitrate Chemical compound O[NH3+].[O-][N+]([O-])=O CRJZNQFRBUFHTE-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 2
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 2
- 239000012974 tin catalyst Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- AGCQZYRSTIRJFM-UHFFFAOYSA-N triethylene glycol dinitrate Chemical compound [O-][N+](=O)OCCOCCOCCO[N+]([O-])=O AGCQZYRSTIRJFM-UHFFFAOYSA-N 0.000 description 2
- IPPYBNCEPZCLNI-UHFFFAOYSA-N trimethylolethane trinitrate Chemical compound [O-][N+](=O)OCC(C)(CO[N+]([O-])=O)CO[N+]([O-])=O IPPYBNCEPZCLNI-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- NLQMSBJFLQPLIJ-UHFFFAOYSA-N (3-methyloxetan-3-yl)methanol Chemical compound OCC1(C)COC1 NLQMSBJFLQPLIJ-UHFFFAOYSA-N 0.000 description 1
- IXYHLWZRPFVFON-UHFFFAOYSA-N (3-methyloxetan-3-yl)methyl nitrate Chemical compound [O-][N+](=O)OCC1(C)COC1 IXYHLWZRPFVFON-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- MTZUIIAIAKMWLI-UHFFFAOYSA-N 1,2-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC=C1N=C=O MTZUIIAIAKMWLI-UHFFFAOYSA-N 0.000 description 1
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- LSLGCKBDVWXMSH-UHFFFAOYSA-N 1-[1-(2,2-dinitropropoxy)ethoxy]-2,2-dinitropropane;1-(2,2-dinitropropoxymethoxy)-2,2-dinitropropane Chemical compound [O-][N+](=O)C([N+]([O-])=O)(C)COCOCC(C)([N+]([O-])=O)[N+]([O-])=O.[O-][N+](=O)C(C)([N+]([O-])=O)COC(C)OCC(C)([N+]([O-])=O)[N+]([O-])=O LSLGCKBDVWXMSH-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- QVBUIFOTVMXGNC-UHFFFAOYSA-N 3,3-bis(2-methoxyethoxymethyl)oxetane Chemical compound COCCOCC1(COCCOC)COC1 QVBUIFOTVMXGNC-UHFFFAOYSA-N 0.000 description 1
- BRXHTTSEEAVSLR-UHFFFAOYSA-N 3,3-bis(ethoxymethyl)oxetane Chemical compound CCOCC1(COCC)COC1 BRXHTTSEEAVSLR-UHFFFAOYSA-N 0.000 description 1
- MSXYVRFANVULOQ-UHFFFAOYSA-N 3,3-bis(fluoromethyl)oxetane Chemical compound FCC1(CF)COC1 MSXYVRFANVULOQ-UHFFFAOYSA-N 0.000 description 1
- JRMFTYIUHNPQQY-UHFFFAOYSA-N 3,3-bis(iodomethyl)oxetane Chemical compound ICC1(CI)COC1 JRMFTYIUHNPQQY-UHFFFAOYSA-N 0.000 description 1
- NDRGXRWCWFISPL-UHFFFAOYSA-N 3,3-bis(methoxymethyl)oxetane Chemical compound COCC1(COC)COC1 NDRGXRWCWFISPL-UHFFFAOYSA-N 0.000 description 1
- MGBZKWOJRYGRTO-UHFFFAOYSA-N 3-(bromomethyl)-3-methyloxetane Chemical compound BrCC1(C)COC1 MGBZKWOJRYGRTO-UHFFFAOYSA-N 0.000 description 1
- MCZYEFODKAZWIH-UHFFFAOYSA-N 3-(chloromethyl)-3-methyloxetane Chemical compound ClCC1(C)COC1 MCZYEFODKAZWIH-UHFFFAOYSA-N 0.000 description 1
- UAYNHSVKPDQASH-UHFFFAOYSA-N 3-(iodomethyl)-3-methyloxetane Chemical compound ICC1(C)COC1 UAYNHSVKPDQASH-UHFFFAOYSA-N 0.000 description 1
- QEJPOEGPNIVDMK-UHFFFAOYSA-N 3-bromo-2,2-bis(bromomethyl)propan-1-ol Chemical compound OCC(CBr)(CBr)CBr QEJPOEGPNIVDMK-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- HXWNCIUWKWGDQL-UHFFFAOYSA-N 3-methyl-3-(octoxymethyl)oxetane Chemical compound CCCCCCCCOCC1(C)COC1 HXWNCIUWKWGDQL-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100027311 Beta,beta-carotene 15,15'-dioxygenase Human genes 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 125000000030 D-alanine group Chemical group [H]N([H])[C@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 1
- 101000937772 Homo sapiens Beta,beta-carotene 15,15'-dioxygenase Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- KYIMHWNKQXQBDG-UHFFFAOYSA-N N=C=O.N=C=O.CCCCCC Chemical compound N=C=O.N=C=O.CCCCCC KYIMHWNKQXQBDG-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000907903 Shorea Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RDHRAVKUBRYNAV-UHFFFAOYSA-N [3-(acetyloxymethyl)oxetan-3-yl]methyl acetate Chemical compound CC(=O)OCC1(COC(C)=O)COC1 RDHRAVKUBRYNAV-UHFFFAOYSA-N 0.000 description 1
- QSGREIXRTDCBHO-UHFFFAOYSA-N [3-(hydroxymethyl)oxetan-3-yl]methanol Chemical compound OCC1(CO)COC1 QSGREIXRTDCBHO-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- LNWBFIVSTXCJJG-UHFFFAOYSA-N [diisocyanato(phenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(N=C=O)(N=C=O)C1=CC=CC=C1 LNWBFIVSTXCJJG-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XYODKMYYACGWBN-UHFFFAOYSA-N aminoazanium;nitroformate Chemical compound [NH3+]N.[O-]C(=O)[N+]([O-])=O XYODKMYYACGWBN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000005335 azido alkyl group Chemical group 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004965 chloroalkyl group Chemical group 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- LYAGTVMJGHTIDH-UHFFFAOYSA-N diethylene glycol dinitrate Chemical compound [O-][N+](=O)OCCOCCO[N+]([O-])=O LYAGTVMJGHTIDH-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- KJIVJRGXJXQEQK-UHFFFAOYSA-N n-(cyanomethyl)-n-methylnitrous amide Chemical compound O=NN(C)CC#N KJIVJRGXJXQEQK-UHFFFAOYSA-N 0.000 description 1
- AHEWHAMJWCRNHP-UHFFFAOYSA-N n-[(3,3-dimethyloxetan-2-yl)methyl]nitramide Chemical compound CC1(C)COC1CN[N+]([O-])=O AHEWHAMJWCRNHP-UHFFFAOYSA-N 0.000 description 1
- OIDDSISIBQBLTA-UHFFFAOYSA-N n-[1-[3-(1-nitramidoethyl)oxetan-3-yl]ethyl]nitramide Chemical compound [O-][N+](=O)NC(C)C1(C(C)N[N+]([O-])=O)COC1 OIDDSISIBQBLTA-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- UIAMCVSNZQYIQS-KTKRTIGZSA-N oleonitrile Chemical compound CCCCCCCC\C=C/CCCCCCCC#N UIAMCVSNZQYIQS-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- ADZAAKGRMMGJKM-UHFFFAOYSA-N oxiran-2-ylmethyl nitrate Chemical compound [O-][N+](=O)OCC1CO1 ADZAAKGRMMGJKM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33348—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6674—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
- C08G65/16—Cyclic ethers having four or more ring atoms
- C08G65/18—Oxetanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/22—Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
Definitions
- This invention relates to a method of synthesizing energetic thermoplastic elastomers which are useful as binders of high energy compositions, such as rocket motor propellants, gun propellants, explosive munitions, gas generants of vehicle supplemental restraint systems, or the like.
- Solid high energy compositions such as propellants, explosives, gas generants, and the like comprise solid particulates, such as fuel particulates and/or oxidizer particulates, dispersed and immobilized throughout a polymeric binder matrix.
- thermoplastic elastomers suitable as binders for solid, high energy compositions have a melting temperature of between about 60°C and about 120°C.
- the melting temperature is desirably at least about 60°C because the propellant composition may be subject to somewhat elevated temperatures during storage and transport, and significant softening of the propellant composition at such elevated temperatures is unwanted.
- the setting of the melting temperature at not more than about 120°C is determined by the instability, at elevated temperatures, of many components which ordinarily go into high energy compositions, particularly oxidizer particulates and energetic plasticizers.
- Many thermoplastic elastomers exhibit high melt viscosities which preclude high solids loading and many show considerable creep and/or shrinkage after processing. Thermoplastic elastomers typically obtain their thermoplastic properties from segments that form glassy domains which may contribute to physical properties adverse to their use as binders.
- Crosslinkable thermoplastic elastomers are block copolymers with the property of forming physical cross-links at predetermined temperatures.
- thermoplastic elastomer e.g., Kraton, brand TPE
- Kraton brand TPE
- the glass transition point of one component block At temperatures below 109°C, the glassy blocks of Kraton form glassy domains and thus physically cross-link the amorphous segments.
- the strength of these elastomers depends upon the degree of phase separation.
- the melt viscosity increases, thus having a deleterious effect on the processibility of the material.
- U.S. Patent No. 4,361,526 proposes a thermoplastic elastomeric binder which is a block copolymer of a diene and styrene, the styrene blocks providing a meltable crystal structure and the diene blocks imparting rubbery or elastomeric properties to the copolymer.
- the '526 patent states that this polymer is processed with a volative organic solvent. Solvent processing is undesirable inasmuch as the dissolved composition cannot be cast in a conventional manner, e.g., into a rocket motor casing. Furthermore, solvent-based processing presents problems with respect to removal and recovery of solvent.
- thermoplastic materials proposed by the '613 patent involve elastomers having both (A) and (B) blocks, each derived from cyclic ethers, such as oxetane and oxetane derivatives and tetrahydrofuran (THF) and tetrahydrofuran derivatives.
- the monomer or combination of monomers of the (A) blocks are selected for providing a crystalline structure at usual ambient temperatures, such as below about 60°C, whereas the monomer or combination of monomers of the (B) blocks are selected to ensure an amorphous structure at usual ambient temperatures, such as above about -20°C.
- Typical of these materials is the random block copolymer (poly(3- azidomethyl-3-methyloxetane)-poly(3,3-bis(azidomethyl)oxetane), also known as poly(AMMO/ ⁇ AMO).
- AMO/ ⁇ AMO random block copolymer
- block copolymers have good energetic and mechanical properties. Additionally, the block copolymers can be processed without solvents to serve as binders in high performance, reduced vulnerability explosive, propellant, and gas generant formulations. Advantageously, the block copolymers exhibit good compatibility with most materials used in such energetic formulations.
- halogenated solvents such as methylene chloride.
- Several drawbacks have been associated with the use of the halogenated solvents disclosed in the 978 and '613 patents.
- One drawback is the detrimental impact that halogenated solvents have on the environment.
- Another drawback of halogenated solvents is attributable to the additional drying steps which the pre-polymer block are subject to after there formation.
- the pre-polymer blocks are typically dried either with chemical drying agent, e.g., desiccants followed by filtration or by the azeotropic removal of water.
- the azeotropic removal of water is performed with toluene, which is different from the solvent selected for linking the pre-polymer blocks.
- toluene which is different from the solvent selected for linking the pre-polymer blocks.
- the performance of an additional drying step and the use of different solvents in the azeotropic drying step and the linking step complicates processing and increases overall processing time.
- toluene does not completely dissolve the end-capped blocks prior to the linking reaction and can interfere with the end-capping and linking catalysts.
- Yet another drawback associated with halogenated solvents is the relatively low concentrations of pre-polymer blocks and linking compounds that may be loaded in halogenated solvents for processing.
- the loading of the thermoplastic elastomer ingredients is limited by the solubility of the ingredients in the solvent.
- thermoplastic elastomers by linking energetic polyether diols and diisocyanates typically use approximately 30-40% by weight solutions of the reactants in dichloromethane and 0.1 % by weight tin catalyst. Additionally, completion of the reaction in halogenated solvents typically takes several days to a week.
- a method of synthesizing an energetic thermoplastic elastomer binder that is in a solid state at room temperature and is derived from A blocks which are crystalline at temperatures below about 60°C and B blocks are amorphous at temperatures above about -20°C.
- the A blocks may include one or more polyethers derived from monomers of oxetane derivatives and/or tetrahydrofuran derivatives.
- the B blocks may include one or more polyethers derived from monomers of oxetane and its derivatives, tetrahydrofuran and its derivatives, and/or oxirane and its derivatives.
- polyoxetane blocks A and polyoxirane blocks B may be linked by end-capping the blocks with diisocyanates and linking the end-capped blocks with difunctional linking chemicals in which each of the two terminal functional groups are reactive with an isocyanate moiety of the diisocyanate.
- the A and B blocks are dissolved into solution comprising one or more non-halogenated solvents.
- the solvent or solvents selected preferably are capable of dissolving more than 25% by weight of the blocks (based on total weight of the solvents and blocks) into solution, more preferably at least 35% by weight into solution, and still more preferably 50% by weight into solution.
- the solvents preferably do not interfere with the end capping catalyst, such as dibutyl tin dilaurate.
- Representative solvents include ethers, esters, and ketones. Tetrahydrofuran is the preferred solvent because of its excellent solubility.
- the A and B blocks are mixed together at approximately the stoichiometric ratios that the blocks are intended to be present in the energetic thermoplastic elastomer.
- the solution is then dried by azeotropic removal of water with excess solvent.
- the A and B blocks are end-capped in the solvent with one or more diisocyanates. The end-capping may be performed prior or subsequent to the mixing step, but subsequent to the drying step.
- the diisocyanate preferably has one isocyanate moiety which is more reactive, preferably at least about five times as reactive, with the terminal hydroxyl group of each of the blocks than the other isocyanate moiety, whereby the more reactive isocyanate moiety tends to react with the terminal-hydroxyl groups of the blocks, leaving the less reactive isocyanate moiety free and unreactive.
- the mixture is reacted with a chain extender having two isoyanate-reactive groups that are sufficiently unhindered to react with the free and unreacted isocyanate groups of the end-capped blocks. In this manner, the end- capped blocks are linked, but not crosslinked, to form a thermoplastic elastomer.
- FIGS. 1 and 2 are graphs showing the properties of a thermoplastic elastomer prepared in accordance with an embodiment of this invention. DETAILED DESCRIPTION OF THE INVENTION
- thermoplastic elastomer (AB) n polymers of this invention include A blocks which are crystalline at temperatures below about 60°C, preferably at temperatures below about 75°C, and B blocks which are amorphous at temperatures down to about -20°C.
- Each of the A and B blocks are polyethers derived from cyclic ethers.
- the A blocks are derived from monomers of oxetane derivatives and/or THF derivatives.
- the B blocks are derived from monomers of oxetane and its derivatives, THF and its derivatives, and/or monomers of oxirane and its derivatives, preferably energetic oxirane derivatives.
- the polymers melt at temperatures between about 60°C and about 120°C, and more preferably between about 75°C and about 100°C.
- the A and B blocks are mutually miscible in the melt. Consequently, the melt viscosity of the block copolymer decreases rapidly as the temperature is raised above the melting point, whereby high energy formulations may include high solids content, e.g., up to about 95% by weight of solid particulates, and can be easily processed.
- the invention also includes other thermoplastic elastomer block structures, such as ABA tri-block polymers and A n B star polymers. Contributing to the miscibility of the A and B blocks is their similar chemical structure.
- Oxetane monomer units that may be used in forming the A and B blocks of the present invention have the general formula:
- oxetane derivatives that may be used in forming the A blocks in accordance with this invention are generally symmetrically-substituted oxetanes including, but are not limited to, the following: BEMO (3,3- (bis(ethoxymethyl)oxetane), BCMO (3,3-bis(chloromethyl)oxetane), BMMO (3,3- bis(methoxymethyl)oxetane), BFMO (3,3-bis(fluoromethyl)oxetane), BAOMO (3,3- bis(acetoxymethyl)oxetane), BHMO (3,3-bis(hydroxymethyl)oxetane), BMEMO (3,3-bis(methoxyethoxymethyl)oxetane), BLMO (3,3-bis(iodomethyl)oxetane), BNMO (3,3-bis(nitratomethyl)oxetane), BMNAMO (3,3-
- oxetanes derivatives that may be used in forming the B blocks in accordance with this invention are generally unsymmetrically-substituted oxetanes including, but are not limited to, the following: HMMO (3-hydroxymethyl-3- methyloxetane), OMMO (3-octoxymethyl-3-methyloxetane), CMMO (3- chloromethyl-3-methyloxetane), AMMO (3-azidomethyl-3-methyloxetane), LMMO (3-iodomethyl-3-methyloxetane), PMMO (3-propynomethylmethyloxetane), NMMO (3-nitratomethyl-3-methyloxetane), and MNAMMO (3-methylnitraminomethyl-3- methyloxetane).
- HMMO 3-hydroxymethyl-3- methyloxetane
- OMMO 3-octoxymethyl-3-methyloxetane
- CMMO
- Tetrahydrofuran monomer units that may be used in forming the blocks of the present invention have the general formula:
- Rj-R 4 groups are the same or different and are selected from moieties set forth above in connection with the description of suitable oxetane derivatives.
- Oxirane monomer units used in forming the B blocks of the present invention have the general formula:
- Ri and R 3 are independently selected from hydrogen and methyl
- R 2 and R 4 are independently selected from hydrogen, alkyl containing from 1 to 10 carbon atoms, chloroalkyl and bromoalkyl containing 1 to 2 carbon atoms, and nitratoalkyl, nitratoalkoxy alkyl, nitroalkyl, nitroalkoxyalkyl, azidoalkyl, azidoalkoxyalkyl, fluoronitroalkyl, and fluoronitroalkyoxyalkyl containing 1 to 5 carbon atoms provided that at least one of Ri to R 4 is not hydrogen.
- energetic oxiranes that may be used in forming the B blocks in accordance with this invention include, but are not limited to glycidyl azide polymers (C 3 H 5 N 3 O) (GAP), especially difunctional GAP, and poly(glycidyl nitrate)
- GAP glycidyl azide polymers
- difunctional GAP especially difunctional GAP
- thermoplastic elastomers in accordance with the invention involves
- the selection of the A block may be made based on the properties desired for the intended application of the thermoplastic elastomer.
- Examples of preferred crystalline A blocks include blocks possessing high energy density, such as those formed from BAMO and/or BMNAMO monomers. Melting temperature and ether oxygen content are additional factors that may be taken into consideration in selecting the monomers.
- the properties of the block polymer depends upon the molecular weights of the individual blocks and the total molecular weights.
- the A blocks have number average molecular weights ranging from about 3000 to about 8000, whereas the B blocks have number average molecular weights ranging from about 3000 to about 15,000.
- the weight ratio of A blocks to B blocks is preferably between about 15:85 to about 40:60.
- the preferred sizes of the A and B blocks for any particular binder application may be empirically determined.
- thermoplastic elastomers of this invention preferably are in a solid state at room temperature, have a weight average molecular weight of at least 40,000, more preferably at least 60,000, still more preferably at least 80,000, and a number average molecular weight of at least 10,000, more preferably at least 12,000, still more preferably at least 15,000.
- Thermoplastic elastomers produced in accordance with the present invention may be admixed with other components of a high energy formulation, such as a propellant formulation.
- the binder system in addition to the thermoplastic elastomers, may optionally contain one or more plasticizers for improving the resistance of the thermoplastic elastomer to hardening at low temperatures, which may be included at a plasticizer-to-thermoplastic elastomer weight ratio of up to about 1: 1.
- Suitable high energy plasticizers include glycidyl azide polymer (GAP), nitroglycerine, butanetriol trinitrate (BTTN), alkyl nitratomethyl nitramines, trimethylolethane trinitrate (TMETN), diethylene glycol dinitrate, triethylene glycol dinitrate (TEGDN), bis(dinitropropylacetal/-bis(dinitropropyl)formal (BDNPA/F), and mixtures thereof. Inert plasticizers can also be used.
- GAP glycidyl azide polymer
- BTTN butanetriol trinitrate
- TMETN trimethylolethane trinitrate
- TEGDN triethylene glycol dinitrate
- BDNPA/F bis(dinitropropylacetal/-bis(dinitropropyl)formal
- BDNPA/F bis(dinitropropylacetal/-bis(dinitropropyl)formal
- inert plasticizers include, by way of example, dioctyladipate (DOA), isodecylperlargonate (LDP), dioctylphthalate (DOP), dioctylmaleate (DOM), dibutylphthalate (DBP), oleyl nitrile, triacetin, and combinations thereof.
- DOA dioctyladipate
- LDP isodecylperlargonate
- DOP dioctylphthalate
- DOM dioctylmaleate
- DBP dibutylphthalate
- oleyl nitrile triacetin, and combinations thereof.
- the binder system may also contain a minor amount of a wetting agent or lubricant that enables higher solids loading.
- the solids content of the high energy composition generally ranges from about 50 wt% to about 95 wt%, higher solids loading generally being preferred so long as such loading is consistent with structural integrity.
- the solids include fuel material particles and powders (collectively referred to herein as particulates), such as particulate aluminum, and/or oxidizer particulates.
- Representative fuels include aluminum, magnesium, boron, and beryllium.
- oxidizers and co- oxidizers include ammonium perchlorate; hydroxylammonium nitrate (HAN); ammonium dinitramide (ADN); hydrazinium nitroformate; ammonium nitrate; nitramines such as cyclotetramethylene tetranitramine (HMX) and cyclotrimethylene trinitramine (RDX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazatetracyclo[5.5.0.0 5,9 .0 3,1 I ]-dodecane or 2,4,6,8,10,12- hexanitrohexaazaisowurtzitane (CL-20 or HNIW), and/or 4,10-dinitro-2,6,8,12- tetraoxa-4,10-diazatetracyclo[5.5.0.0 5 ' 9 ,0 3 ' u ]dodecane (TEX), and any combination thereof.
- thermoplastic elastomer may be mixed with the solids and other components of high energy formulation at temperatures above its melting temperature. Blending may be done in conventional mixing apparatus. Because of the low viscosities of the molten polymer, no solvents are required for blending or other processing, such as extrusion.
- thermoplastic elastomer provides for its eventual recycle, as opposed to the burning required for disposal of cross-linked compositions. Because the "pot life" of the thermoplastic propellant exceeds that which would reasonably be required of a propellant or explosive formulation, if any problems develop during casting, the process can be delayed as long as is reasonably necessary, merely by maintaining the formulation in a molten state.
- the oxetane homopolymer blocks may be formed according to the cationic polymerization technique taught by Manser in U.S. Patent No. 4,393,199, the complete disclosure of which is incorporated herein by reference.
- the oxirane homopolymer blocks may be formed according to the technique taught in U.S. Patent No. 5,120,827, the complete disclosure of which is incorporated herein by reference.
- the technique employs an adduct of a substance such as a diol, e.g., 1,4-butane diol (BDO), and a catalyst for cationic polymerization, e.g., BF 3 -etherate.
- BDO 1,4-butane diol
- This adduct forms with the oxetane monomer an initiating species which undergoes chain extension until n moles of monomer have been incorporated in the molecule, n being the ratio of monomers to adduct present.
- n being the ratio of monomers to adduct present.
- Another suitable catalyst system includes co-catalytically effective quantities of one or more triethoxonium salts and one or more alcohols, as disclosed in U.S. Application No. 08/233,219, the complete disclosure of which is incorporated herein by reference to the extent that the disclosure is compatible with this invention.
- triethoxonium salts include triethoxonium hexafluorophosphate, triethoxonium hexafluoroantimonate, and triethoxonium tetrafluoroborate.
- isocyanate-reactive terminal functional groups of the blocks are referred to herein as being hydroxyl groups, the isocyanate- reactive functional groups may also be amines, amides, and/or carboxyl groups.
- the crystalline polyoxetane A blocks and amorphous B blocks, i.e., the respective prepolymers, are each end-capped together or separately with one or more diisocyanates.
- the end-capped A and B blocks are mixed together and joined by a linking compound which has a pair of isocyanate-reactive functionalities that are sufficiently unhindered to allow them to react with the free isocyanate moieties of the end-capped copolymers and thereby join the blocks together.
- Oxetane, THF, and oxirane polymer blocks normally have terminal isocyanate-reactive (e.g., hydroxyl) functions which are end-capped with the diisocyanates in accordance with the invention.
- a first one the isocyanate moieties of the end-capping compound is substantially more reactive with the terminal-hydroxyl moieties of the polymer blocks than the other (e.g., second) isocyanate moiety.
- substituted oxetane-derived hydroxyl end groups units have neopentyl structures, whereby the terminal primary hydroxyl moieties are substantially hindered and therefore less reactive.
- the blocks derived from the oxirane derivatives are secondary alcohols, making their hydroxyl groups less reactive than the primary hydroxyl group of the oxetane-derived A-block.
- the diisocyanate preferably is selected so that one of the isocyanate groups is capable of reacting with a hydroxyl-group of the polymer blocks while the other isocyanate moiety remains free and unreacted.
- Diisocyanates are preferably used because isocyanates of higher functionality would result in undesirable levels of cross-linking. The different reactivities of the isocyanate moieties is desirable to ensure that substantial chain extension through linking of like blocks does not occur.
- one isocyanate moiety of the diisocyanate should preferably be approximately five times more reactive with terminal hydroxyl groups of oxetane and oxirane blocks than the other group.
- one isocyanate moiety is at least about ten times more reactive than the other.
- One diisocyanate which is especially useful for purposes of the invention is 2,4-toluene diisocyanate (TDI) in which the isocyanate moiety in the 4-position is substantially more reactive with hindered terminal hydroxyl moieties than the isocyanate moiety in the 2-position.
- Isophorone diisocyanate (IPDI) is suitable for some applications, though less so than TDI.
- diisocyanates which have not worked well include diphenylmethylene diisocyanate (MDI) and hexamethylene diisocyanate (HDI).
- the diisocyanate is used at an approximately stoichiometric molar amount relative to terminal hydroxyl groups on the polymer chain.
- approximately two molar equivalents e.g., 1.75-2.2 molar equivalents of diisocyanate are used.
- all of the more reactive isocyanate moieties would react with terminal hydroxyl groups, leaving all of the less reactive isocyanate moieties free.
- the end-capping reaction may be maximized for particular polymer chains by some adjustment in the relative molar ratios of polymer block and diisocyanate.
- the A blocks and B blocks are reacted separately with the diisocyanate, so that there is no competition of the blocks for diisocyanate molecules and each separate end-capping reaction may be carried to substantial completion.
- the diisocyanate may react more rapidly with one block than the other, but this difference can be compensated for by a longer reaction time with the slower reacting block.
- the reactivity of the terminal hydroxyl groups varies according to steric factors and also according to side-chain moieties. Energetic oxetanes, for example, generally have side-chain moieties that are electron-withdrawing, making their terminal hydroxyl groups less reactive.
- end-capped (A) blocks are substantially as reactive as end-capped (B) blocks.
- the end-capping reaction is promoted by a suitable urethane catalyst.
- a preferred class of catalysts include organic tin compounds with at least one and preferably two labile groups, such as chloride or acetate, bound directly to the tin.
- Suitable tin catalyst include diphenyl tin dichloride, dibutyl tin dichloride, dibutyl tin dilaurate, dibutyl tin diacetate.
- Tertiary amine catalysts may also be used.
- the linking compound is one which has two functional groups which are sufficiently unhindered to react with the free isocyanate moieties on the end-capped blocks so as to link A blocks to B blocks, A blocks to A blocks, and B blocks to B blocks in a urethane reaction.
- Preferred functional groups are hydroxyl groups, although amine, amide, and carboxyl groups, and mixtures thereof also react in a urethane reaction. Primary functional groups are preferred.
- the linking compound may be a short, straight carbon chain having terminal hydroxyl groups, e.g., 1,4- butanediol, 1 ,3-propanediol, ethylene glycol, and 1,6-hexanediol.
- the linking compound should also be missible with and rapidly dissolve in the non-halogenated solvent so as to ensure chain extension without unwanted amounts of cross-linking.
- the linking compound may be an oligomer, especially a urethane oligomer, having two functional groups which are sufficiently unhindered to react with the free isocyanate moieties on the end-capped blocks so as to link A blocks to B blocks, A blocks to A blocks, and B blocks to B blocks via a urethane reaction.
- Preferred functional groups of the oligomer are hydroxyl groups, although amine, amide, and carboxyl groups, and mixtures thereof also react in a urethane reaction. Primary functional groups are preferred.
- An oligomeric glycol containing urethane moieties is preferably used to react the free isocyanate moieties on the end-capped blocks.
- the oligomeric glycol may be prepared from a mixture of one or more diisocyanates and an excess amount of one or more diols. The diisocyanate(s) and diol(s) selected and the ratio of these reagents may be varied to tailor the properties of the thermoplastic elastomer.
- the diol-to- diisocyanate molar ratio is preferably selected to be between 5: 1 to 5:4, more preferably about 2:1 , to maintain acceptable processing temperatures, obtain adequate linking of the isocyanate-capped prepolymers, and improve the thermomechanical properties of the final thermoplastic elastomer.
- a suitable urethane reaction catalyst promotes the reaction between the diisocyanate(s) and diol(s) to form oligomers.
- the catalysts discussed above in connection with the linking of the A and B blocks are suitable for this purpose.
- diisocyanates for preparing the difunctional oligomer include, by way of example, aliphatic diisocyanates such as hexane diisocyanate, and aryl diisocyanates such as methylene-bis(4-phenyl isocyanate), phenylene diisocyanate, toluene diisocyanate, and xylylene diisocyanate, and any combination thereof.
- the difunctional oligomer has a number average molecular weight M n of from 350 to 900.
- reaction mixtures of the A blocks and B blocks may be mixed together without prior separation of the blocks from their respective end-capping reaction mixtures.
- the linking compound can be added directly to this mixture of A and B blocks. The catalyst is thereby already present when the linking compound is added.
- the linking compound is added in an amount such that the total number of linking-compound functional groups approximately equals the total number of free isocyanate groups of the end-capped polymer blocks.
- the linking compound to polymer block molar ratio is in the range of 0.9- 1.1, e.g., 1.0. Accordingly, optimal molar ratios of blocks and linking chemicals may have to be empirically determined.
- the end-capping reaction and linking reaction are carried out in a suitable non-halogenated solvent, e.g., one which dissolves the polymer and does not react with the free isocyanate moieties.
- a suitable non-halogenated solvent e.g., one which dissolves the polymer and does not react with the free isocyanate moieties.
- the solution is preferably completely free of any halogenated solvent.
- the non-halogenated solvent should not react in the urethane reaction and forms an azeotrope with water.
- Suitable dry solvents include cyclic ethers such as tetrahydrofuran (THF) and 1,4-dioxane; non-cyclic ethers such as ethylene glycol dimethyl ether; ketones such as methyl ethyl ketone ("MEK”); and esters such as ethyl acetate.
- THF tetrahydrofuran
- MEK methyl ethyl ketone
- esters such as ethyl acetate.
- THF tetrahydrofuran
- MEK methyl ethyl ketone
- the solvent forms an azeotrope with water.
- the solution may be dried by azeotropic distillation of the solvent, and optionally further concentrated, e.g., via distillation, in the solution to increase the volumetric loading and reaction rate.
- the blocks then may be end-capped, separately or together, and linked in the same or a different non-halogenated solvent. By distilling off excess solvent to remove water, subsequent reaction with a diisocyanate may proceed without significant interference from competing reactions between the isocyanate moieties and water. Additionally, the solution remains homogeneous and further distillation serves to concentrate the polymer solution, producing higher reaction rates and requiring less reactor capacity.
- the reaction rates may be improved by conducting the end-capping reaction at elevated temperatures, such as 30°C to 80°C, more preferably 40°C to 60°C.
- the process may be conducted by a batch or continuous method.
- the prepolymer and catalyst solution may be continuously fed through a mixer/extruder into which is injected a diisocyanate and a diol at appropriate rates and positions so that urethane linking occurs within the extruder and energetic thermoplastic elastomer is continuously produced for processing.
- the reaction can be followed with NMR and LR.
- NMR the urethane-forming reaction can be followed through the methylene groups on the polymer adjacent to the terminal hydroxyl groups.
- IR the change from isocyanate to urethane can be directly followed.
- dry means that less than 1 wt% water was present.
- poly(azidomethyloxirane) was supplied by 3M Speciality Chemicals of St. Paul, MN (Lot L-12564). Unless otherwise specified, all other materials were obtained from Aldrich of Milwaukee, WI.
- a 5 liter jacketed flask equipped with a mechanical stirrer was charged with 600 grams of tribromoneopentylalcohol (AmeriBrom, Inc. of New York), 1200 ml of toluene, and 6 grams of tetrabutylammonium bromide.
- the mixture was cooled to 12°C and 193 grams of sodium hydroxide was added dropwise as a 40 wt% solution keeping the temperature at 12°C. After 36 hours the reaction mixture was washed with water until the pH was less than 9 to obtain the crude product which was distilled to obtain 3,3-bis(bromomethyl)oxetane at 65% yield.
- the organic phase was separated off and washed with 100 ml of 10 wt% sodium bicarbonate solution before the solvent was removed on a rotovapor.
- the resulting liquid was then poured into 5 liters of methanol to precipitate the polymer, which was filtered from the solution and dried under vacuum at 30°C.
- EXAMPLE 4 Random block copolymer of poly(3-azidomethyl-3-methyloxetane) and poly(3,3-bis(azidomethyl)oxetane) in THF
- 6.5 grams of dry difunctional poly(3- azidomethyl-3-methyloxetane) with a hydroxyl equivalent weight of 3040 and 3.5 grams of dry poly(3,3-bis(azidomethyl)oxetane) with a hydroxyl equivalent weight of 3235 were dissolved in 60 ml of dry tetrahydrofuran.
- the solution was concentrated and dried by evaporation of the tetrahydrofuran under reduced pressure via a rotovapor until 10 grams of the solvent remained.
- 0.25 ml of dibutyltin dilaurate and 0.561 grams of toluene-2,4-diisocyanate were added while stirring with a magnetic stirrer at ambient temperature and pressure. After 15 minutes, 0.145 grams of butane- 1 ,4-diol was added causing the solution to become steadily more viscous. After another 30 minutes, the solution was poured into methanol in a volume ratio of 1:5.
- EXAMPLE 6 Random block copolymer of poly(3-azidomethyl-3-methyloxetane) and poly(3,3-bis(azidomethyl)oxetane) in ethyl acetate
- a urethane oligomer was prepared by dissolving 1.55 grams of toluene-2,4-diisocyanate in 4 ml tetrahydrofuran and adding to the solution 0.1 ml of dibutyltin dilaurate followed by 1.60 grams of butane- 1,4-diol. This reaction mixture was stirred for 1 hour at room temperature.
- the GPC trace in FIG. 1 demonstrates that the prepolymers were linked to produce a copolymer having a higher molecular weight and dispersivity than the homopolymer blocks.
- the DMA trace in FIG. 2 shows the melt transition of random block
- Example 9 0.22 grams of butanediol was added to one quarter of the isocyanate end-capped prepolymer mixture. The reaction was allowed to continue for 14 hours before it was precipitated with methanol in a volume ratio of 1 :5. The methanol was decanted off, and the precipitated polymer was washed three times with fresh methanol (1 :5 volume ratio) to give a rubbery granular product.
- a urethane oligomer was derived from a mixture of 2 ml of tetrahydrofuran, 0.42 grams of toluene-2,4-diisocyanate, 0.43 grams of butane- 1,4- diol, and 0.1 grams of dibutyltin dichloride, which were allowed to react for one hours.
- the urethane oligomer was then added to one quarter of the isocyanate end- capped prepolymer mixture and allowed to react for 14 hours before it was precipitated with methanol in a volume ratio of 1 :5.
- the methanol was decanted off, and the precipitated polymer was washed three times with fresh methanol (1 :5 volume ratio) to give a rubbery granular product.
- Example 1 a urethane oligomer was derived from a mixture of 2 ml of tetrahydrofuran, 0.83 grams of toluene-2,4-diisocyanate, 0.65 grams of butane- 1,4- diol, and 0.1 grams of dibutyltin dichloride, which were allowed to react for one hours.
- the urethane oligomer was then added to one quarter of the isocyanate end- capped prepolymer mixture and allowed to react for 14 hours before it was precipitated with methanol in a volume ratio of 1:5.
- the methanol was decanted off, and the precipitated polymer was washed three times with fresh methanol (1:5 volume ratio) to give a rubbery granular product.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU36907/00A AU3690700A (en) | 1998-11-12 | 1999-11-09 | Method for the synthesis of energetic thermoplastic elastomers in non-halogenated solvents |
US09/831,411 US6997997B1 (en) | 1998-11-12 | 1999-11-09 | Method for the synthesis of energetic thermoplastic elastomers in non-halogenated solvents |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10845598P | 1998-11-12 | 1998-11-12 | |
US60/108,455 | 1998-11-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2000034353A2 true WO2000034353A2 (en) | 2000-06-15 |
WO2000034353A9 WO2000034353A9 (en) | 2000-11-30 |
WO2000034353A3 WO2000034353A3 (en) | 2001-06-28 |
Family
ID=22322327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/024013 WO2000034353A2 (en) | 1998-11-12 | 1999-11-09 | Method for the synthesis of thermoplastic elastomers in non-halogenated solvents |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU3690700A (en) |
WO (1) | WO2000034353A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6600002B2 (en) | 2000-05-02 | 2003-07-29 | Alliant Techsystems, Inc. | Chain-extended poly(bis-azidomethyloxetane), and combustible cartridge cases and ammunition comprising the same |
US6997997B1 (en) | 1998-11-12 | 2006-02-14 | Alliant Techsystems Inc. | Method for the synthesis of energetic thermoplastic elastomers in non-halogenated solvents |
CN108503795A (en) * | 2018-04-19 | 2018-09-07 | 西安近代化学研究所 | Crosslinked glycidyl azide polymer of triazoline key and preparation method thereof |
CN109837053A (en) * | 2019-03-06 | 2019-06-04 | 西安近代化学研究所 | A kind of polyene-based polytetrahydrofuran adhesive and its synthetic method |
CN110591043A (en) * | 2018-06-13 | 2019-12-20 | 南京理工大学 | A self-healing cross-linked azide adhesive and its preparation method |
CN110591041A (en) * | 2018-06-13 | 2019-12-20 | 南京理工大学 | A kind of thermoplastic azide polyurethane elastomer with self-healing property and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806613A (en) * | 1988-03-29 | 1989-02-21 | Morton Thiokol, Inc. | Method of producing thermoplastic elastomers having alternate crystalline structure for use as binders in high-energy compositions |
US5210153A (en) * | 1986-10-29 | 1993-05-11 | Us Navy | Thermoplastic elastomers having alternate crystalline structure for us as high energy binders |
GB2307688A (en) * | 1991-08-14 | 1997-06-04 | Thiokol Corp | Producing thermoplastic elastomers having alternate crystalline structure |
-
1999
- 1999-11-09 AU AU36907/00A patent/AU3690700A/en not_active Abandoned
- 1999-11-09 WO PCT/US1999/024013 patent/WO2000034353A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5210153A (en) * | 1986-10-29 | 1993-05-11 | Us Navy | Thermoplastic elastomers having alternate crystalline structure for us as high energy binders |
US4806613A (en) * | 1988-03-29 | 1989-02-21 | Morton Thiokol, Inc. | Method of producing thermoplastic elastomers having alternate crystalline structure for use as binders in high-energy compositions |
GB2307688A (en) * | 1991-08-14 | 1997-06-04 | Thiokol Corp | Producing thermoplastic elastomers having alternate crystalline structure |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6997997B1 (en) | 1998-11-12 | 2006-02-14 | Alliant Techsystems Inc. | Method for the synthesis of energetic thermoplastic elastomers in non-halogenated solvents |
US6600002B2 (en) | 2000-05-02 | 2003-07-29 | Alliant Techsystems, Inc. | Chain-extended poly(bis-azidomethyloxetane), and combustible cartridge cases and ammunition comprising the same |
CN108503795A (en) * | 2018-04-19 | 2018-09-07 | 西安近代化学研究所 | Crosslinked glycidyl azide polymer of triazoline key and preparation method thereof |
CN108503795B (en) * | 2018-04-19 | 2020-10-27 | 西安近代化学研究所 | Triazoline bond crosslinked poly-azido glycidyl ether and preparation method thereof |
CN110591043A (en) * | 2018-06-13 | 2019-12-20 | 南京理工大学 | A self-healing cross-linked azide adhesive and its preparation method |
CN110591041A (en) * | 2018-06-13 | 2019-12-20 | 南京理工大学 | A kind of thermoplastic azide polyurethane elastomer with self-healing property and preparation method thereof |
CN109837053A (en) * | 2019-03-06 | 2019-06-04 | 西安近代化学研究所 | A kind of polyene-based polytetrahydrofuran adhesive and its synthetic method |
CN109837053B (en) * | 2019-03-06 | 2021-02-26 | 西安近代化学研究所 | Polyene polytetrahydrofuran adhesive and synthesis method thereof |
Also Published As
Publication number | Publication date |
---|---|
AU3690700A (en) | 2000-06-26 |
WO2000034353A3 (en) | 2001-06-28 |
WO2000034353A9 (en) | 2000-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0335499B1 (en) | Method of producing thermoplastic elastomers having alternate crystalline structure for use as binders in high-energy compositions | |
CN107879868B (en) | Azide solid propellant and preparation process thereof | |
GB2307687A (en) | Fibres | |
US20090088506A1 (en) | Synthesis of energetic thermoplastic elastomers containing both polyoxirane and polyoxetane blocks | |
US5516854A (en) | Method of producing thermoplastic elastomers having alternate crystalline structure such as polyoxetane ABA or star block copolymers by a block linking process | |
Dou et al. | Research progress of nitrate ester binders | |
EP1141062B1 (en) | Synthesis of energetic thermoplastic elastomers containing oligomeric urethane linkages | |
US5099042A (en) | Synthesis of tetrafunctional polyethers and compositions formed therefrom | |
US6730181B1 (en) | Process for making stable cured poly(glycidyl nitrate) | |
WO2000034353A2 (en) | Method for the synthesis of thermoplastic elastomers in non-halogenated solvents | |
CN110511372B (en) | Energy-containing terminal isocyanate group curing agent and synthesis method thereof | |
US6508894B1 (en) | Insensitive propellant formulations containing energetic thermoplastic elastomers | |
US6997997B1 (en) | Method for the synthesis of energetic thermoplastic elastomers in non-halogenated solvents | |
US6815522B1 (en) | Synthesis of energetic thermoplastic elastomers containing oligomeric urethane linkages | |
EP1130040B1 (en) | Energetic copolyurethane thermoplastic elastomers | |
US7101955B1 (en) | Synthesis of energetic thermoplastic elastomers containing both polyoxirane and polyoxetane blocks | |
US6861501B1 (en) | Process for making stable cured poly(glycidyl nitrate) and energetic compositions comprising same | |
JP4088729B2 (en) | Block copolymer and propellant | |
GB2307688A (en) | Producing thermoplastic elastomers having alternate crystalline structure | |
JPH075425B2 (en) | Gas generating composition | |
CA2214729C (en) | Energetic copolyurethane thermoplastic elastomer | |
JPH0475878B2 (en) | ||
JP3177698B2 (en) | High energy polyether derivatives | |
CA2218935C (en) | A propellant composition containing energetic copolyurethane thermoplastic elastomer | |
EP1186582A1 (en) | Insensitive propellant formulations containing energetic copolyurethane thermoplastic elastomers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: C2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/2-2/2, DRAWINGS, REPLACED BY NEW PAGES 1/2-2/2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09831411 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |