+

WO2000031813A1 - Pile a combustible avec introduction du combustible par une plaque perforee - Google Patents

Pile a combustible avec introduction du combustible par une plaque perforee Download PDF

Info

Publication number
WO2000031813A1
WO2000031813A1 PCT/DE1999/003711 DE9903711W WO0031813A1 WO 2000031813 A1 WO2000031813 A1 WO 2000031813A1 DE 9903711 W DE9903711 W DE 9903711W WO 0031813 A1 WO0031813 A1 WO 0031813A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
perforated plate
electrode
area
fuel
Prior art date
Application number
PCT/DE1999/003711
Other languages
German (de)
English (en)
Inventor
Frank Thom
Ernst Riensche
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to AU30303/00A priority Critical patent/AU3030300A/en
Publication of WO2000031813A1 publication Critical patent/WO2000031813A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell.
  • fuel cells which have a cathode, an electrolyte and an anode.
  • An oxidizing agent e.g. air
  • fuel e.g. hydrogen
  • German patent application 197 15 256.2-45 shows that distributor structures are to be provided in the aforementioned channels or rooms.
  • the distribution structures are designed like a comb. They are intended to ensure an even distribution of the equipment in the respective room.
  • the equipment reaches the electrodes and is used up in the process. Subsequently, the consumed, in other words depleted operating resources emerge again and are led out of the fuel cell.
  • Oxygen ions are formed on the cathode of the high-temperature fuel cell known from DE 44 30 958 Cl in the presence of the oxidizing agent.
  • the oxygen ions pass through the solid electrolyte and recombine on the anode side with the hydrogen from the fuel to form water.
  • the recombination releases electrons and thus generates electrical energy.
  • Protons are formed on the anode of the PEM fuel cell known from DE 195 31 852 Cl in the presence of the fuel by means of a catalyst.
  • the protons pass through the electrolyte membrane and combine on the cathode side with the oxygen from the oxidizing agent to form water. Electrons are released at the anode and consumed at the cathode, generating electrical energy.
  • the equipment In order to achieve good efficiency levels, the equipment must be distributed evenly in a fuel cell.
  • a mixture of gases and / or liquids is usually present in an electrode space of a fuel cell (space in which the electrode is located). It can be fuel gases diluted with inert gases. By reforming or oxidizing a fuel, such as a methanol-water mixture, can in the concerned
  • the gases or liquids on the respective electrodes should be mixed homogeneously in order to achieve good performance.
  • non-humidified gases that is, gases that are not separately humidified in humidification devices
  • the electrode surfaces are to be supplied with equipment in a particularly uniform manner. Otherwise, an electrode and possibly an electrolyte membrane. Local dehydration results in loss of performance and can cause damage.
  • Feed and discharge channels have holes that adjoin the electrode of the fuel cell.
  • the equipment flows through the holes and thus reaches perpendicular to the electrode and to the interface between the electrolyte and the electrode. In the same way they flow out again vertically.
  • Punchers of different sizes are also provided in order to achieve a uniform distribution of the gases along the electrode surface.
  • the low intermixing is disadvantageous in particular when local, reaction-related temperature gradients occur.
  • a temperature difference results in a lower efficiency because the operating temperature deviates locally from a temperature optimum.
  • the structure with the separate inlet and outlet channels basically results in a halving of the number of times through which the equipment enters the fuel cell or a stack of fuel cells. This disadvantage can be compensated for by a higher throughput.
  • a higher throughput results in a higher pressure loss and thus a lower efficiency.
  • the object of the invention is to provide a fuel cell with an improved management of the resources.
  • the task is solved by a fuel cell in which an electrode passes from one to the
  • Electrode surface adjacent channel or space is separated by a perforated plate.
  • a perforated plate is a flat, perforated element. It is arranged parallel to the layers of the fuel cell (electrode and electrolyte layers). The corresponding equipment is fed in and out via the adjacent room or duct. The punch or opening The plate n are macroscopically large, i.e. visible to the naked eye.
  • the gas supply here is also the gas discharge.
  • the density and / or the diameter of the holes increases in the direction of flow of the gas.
  • Gases pass through the holes to the adjacent electrode. The gases do not regularly flow out directly through an adjacent hole. It occurs in
  • the passage area is referred to below as the area through which equipment flows through the perforated plate. It therefore represents a sum of the areas of the holes in the demanding plate.
  • the passage area increases in the flow direction by at least 10%, preferably by at least 100%.
  • the passage area of the plate according to the claims in the entry area of the operating means into the fuel cell is thus at least 10% smaller in comparison to the conditions in the exit area. Passage areas that relate to parts of the plate of equal size in the entrance and exit area are considered.
  • An increase of at least 100% ensures, compared to the increase of 10%, the desired local uniform distribution in an improved manner.
  • a high-temperature fuel cell in which the perforated plate is made of a high-alloy, heat-resistant steel (e.g. X8 CrNiMoNb 16 16) or an electrically conductive ceramic (e.g.
  • La (Sr, Ca) Cr0 3 ) exists. These materials are suitable for use in a high-temperature fuel cell because they are heat-resistant and corrosion-resistant.
  • the passage area of a perforated plate is at least twice as large as the exit area. Operating resources then pass through the passage area to a significant extent instead of merely escaping through the exit area.
  • the exit area is to be understood as the area of the exit opening out of the fuel cell.
  • the fuel gas emerging from the fuel cell is fed to a next fuel cell or fed back to the same fuel cell.
  • a perforated sheet forms the plate as claimed.
  • the sheet is welded to the connecting element.
  • connection element can be produced together with the perforated plate from a workpiece.
  • holes are drilled in a metal block that run parallel to the metal block. These are used to feed equipment into the interior of a metal block.
  • Fuel cell stack At right angles to this, holes are drilled in such a way that equipment can pass from the parallel holes to an electrode that is still to be attached. Grooves are milled into the workpiece on the opposite side to the aforementioned electrode. An operating medium is conducted to the counter electrode via the grooves.
  • a one-piece connecting element bipolar plate which has a plate as defined in the claim.
  • the supply and discharge channels for air and fuel are arranged parallel and flat next to one another.
  • This arrangement of the channels is e.g. within a one-piece component.
  • the one-piece component preferably consists of a high-temperature alloy. Bores in the component form the channels. From the air channel (channel into which the oxidizing agent, such as air, is introduced during the operation of the fuel cell) towards the cathode and from the fuel channel (channel into which the fuel is introduced during operation of the fuel cell) towards the anode in particular vertical holes are provided.
  • the bipolar plate with the channels is then very compact.
  • the volume and weight of a stack of fuel cells can thus be kept low.
  • Figure 1 shows a perforated plate in top view (top) and in a side view (bottom).
  • Equipment flowing to the fuel cell first reaches the area with the small holes and finally the area with the large rectangles.
  • the access to the electrode is suitably controlled by providing the differently sized passage areas.
  • FIG. 2 shows a side view of a bipolar plate into which perforated plates are integrated in the sense of the invention. Holes are shown into which the equipment is introduced. From the holes branch vertical holes, which are indicated by the dashed lines. Again, the vertically branching bores in the entry area differ from those in the exit area analogously to the manner shown in FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Une pile à combustible comprenant un électrolyte et des électrodes en contact des deux côtés avec ledit électrolyte. Au moins une électrode est séparée du canal ou de l'espace adjacent par une plaque perforée. Le combustible est amené ou retiré par ledit canal ou espace adjacent. La variation de la taille des perforations permet de doser le combustible lors de l'alimentation ou du retrait, ce qui améliore les performances de la pile à combustible.
PCT/DE1999/003711 1998-11-23 1999-11-18 Pile a combustible avec introduction du combustible par une plaque perforee WO2000031813A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU30303/00A AU3030300A (en) 1998-11-23 1999-11-18 Fuel cell with operating material that is introduced via a perforated plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853911.8 1998-11-23
DE19853911A DE19853911A1 (de) 1998-11-23 1998-11-23 Brennstoffzelle mit Zuführung eines Betriebsmittels über eine gelochte Platte

Publications (1)

Publication Number Publication Date
WO2000031813A1 true WO2000031813A1 (fr) 2000-06-02

Family

ID=7888668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003711 WO2000031813A1 (fr) 1998-11-23 1999-11-18 Pile a combustible avec introduction du combustible par une plaque perforee

Country Status (3)

Country Link
AU (1) AU3030300A (fr)
DE (1) DE19853911A1 (fr)
WO (1) WO2000031813A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756149B2 (en) 2001-10-23 2004-06-29 Ballard Power Systems Inc. Electrochemical fuel cell with non-uniform fluid flow design
DE10317976A1 (de) * 2003-04-17 2004-10-28 Bayerische Motoren Werke Aktiengesellschaft Festoxid-Brennstoffzelle und Verfahren zu ihrer Herstellung
WO2004109833A3 (fr) * 2003-06-10 2005-03-24 Ballard Power Systems Pile a combustible electrochimique possedant une couche de distribution de fluide a permeabilite non uniforme

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905564C2 (de) * 1999-02-11 2001-06-28 Forschungszentrum Juelich Gmbh Brennstoffzellenstapel mit Zuführungs- und/oder Abführungskanälen
DE19935719C2 (de) 1999-07-29 2003-01-30 Forschungszentrum Juelich Gmbh Kühlsystem für Brennstoffzellen
DE10036916B4 (de) * 2000-07-28 2006-12-21 Truma Gerätetechnik GmbH & Co. KG Brennstoffzellenstapel und Verfahren zur Befeuchtung eines Reaktionsmittels bei einem Brennstoffzellenstapel
DE10045098A1 (de) * 2000-09-12 2002-04-04 Siemens Ag Brennstoffzellenanlage mit verbesserter Reaktionsgasausnutzung
DE10238857A1 (de) * 2002-08-24 2004-03-04 Bayerische Motoren Werke Ag Verfahren zum Herstellen einer Einzel-Brennstoff-Zelle
DE10238860A1 (de) 2002-08-24 2004-03-04 Bayerische Motoren Werke Ag Brennstoff-Zelle mit einer das Brenngas über der Elektroden-Oberfläche verteilenden perforierten Folie
FR2858116B1 (fr) * 2003-07-24 2005-11-11 Peugeot Citroen Automobiles Sa Cellule de pile comprenant un systeme de distribution des gaz reactifs
JP4271166B2 (ja) * 2004-12-13 2009-06-03 株式会社東芝 燃料電池
CN101364651A (zh) * 2004-12-13 2009-02-11 株式会社东芝 燃料电池
EP2144317B1 (fr) * 2005-10-07 2012-08-08 Seiko Instruments Inc. Pile à combustible
GB2440038B (en) * 2006-07-07 2009-04-15 Ceres Ip Co Ltd Metal substrate for fuel cells
DE102006033130A1 (de) * 2006-07-18 2008-01-24 Forschungszentrum Jülich GmbH Strukturierte Elektrode für den Einsatz in einer Brennstoffzelle
JP2008235026A (ja) 2007-03-20 2008-10-02 Toshiba Corp 燃料分布調整方法、燃料分布調整膜、燃料分布調整膜の製造方法、燃料電池、および燃料電池の製造方法
DE102021115772A1 (de) 2021-06-18 2022-12-22 MTU Aero Engines AG Brennstoffzelle mit materialschlüssig an einem Gasdiffusionselement angeordnetem Strukturelement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140559A (ja) * 1987-11-27 1989-06-01 Hitachi Ltd 燃料電池
JPH0218867A (ja) * 1988-07-07 1990-01-23 Sanyo Electric Co Ltd 内部改質型燃料電池
JPH0240862A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 内部改質型燃料電池
EP0440968A1 (fr) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Elément pour l'obtention d'une distribution aussi uniforme que possible sur la surface d'une cellule à combustible céramique en forme de plaques fonctionnant à haute température
EP0496889A1 (fr) * 1990-07-24 1992-08-05 Kabushiki Kaisha Toshiba Separateur et son procede de fabrication
DE19746074A1 (de) * 1996-10-18 1998-05-14 Toshiba Kawasaki Kk Brennstoffelement
DE19649456A1 (de) * 1996-11-28 1998-06-04 Siemens Ag Hochtemperatur-Brennstoffzelle
US6007933A (en) * 1998-04-27 1999-12-28 Plug Power, L.L.C. Fuel cell assembly unit for promoting fluid service and electrical conductivity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8602823A (nl) * 1985-11-08 1987-06-01 Toshiba Kk Gesmolten carbonaatbrandstofcel.
DE4120359C2 (de) * 1990-06-21 1993-11-18 Deutsche Aerospace Verfahren zur Herstellung einer elektrochemischen Zelle und deren Verwendung
DE19517042C1 (de) * 1995-05-10 1996-12-05 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung
DE19713250C2 (de) * 1997-03-29 2002-04-18 Ballard Power Systems Elektrochemischer Energiewandler mit Polymerelektrolytmembran

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140559A (ja) * 1987-11-27 1989-06-01 Hitachi Ltd 燃料電池
JPH0218867A (ja) * 1988-07-07 1990-01-23 Sanyo Electric Co Ltd 内部改質型燃料電池
JPH0240862A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 内部改質型燃料電池
EP0440968A1 (fr) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Elément pour l'obtention d'une distribution aussi uniforme que possible sur la surface d'une cellule à combustible céramique en forme de plaques fonctionnant à haute température
EP0496889A1 (fr) * 1990-07-24 1992-08-05 Kabushiki Kaisha Toshiba Separateur et son procede de fabrication
DE19746074A1 (de) * 1996-10-18 1998-05-14 Toshiba Kawasaki Kk Brennstoffelement
DE19649456A1 (de) * 1996-11-28 1998-06-04 Siemens Ag Hochtemperatur-Brennstoffzelle
US6007933A (en) * 1998-04-27 1999-12-28 Plug Power, L.L.C. Fuel cell assembly unit for promoting fluid service and electrical conductivity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 393 (E - 814) 31 August 1989 (1989-08-31) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 161 (E - 0909) 28 March 1990 (1990-03-28) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 194 (E - 0919) 20 April 1990 (1990-04-20) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756149B2 (en) 2001-10-23 2004-06-29 Ballard Power Systems Inc. Electrochemical fuel cell with non-uniform fluid flow design
DE10317976A1 (de) * 2003-04-17 2004-10-28 Bayerische Motoren Werke Aktiengesellschaft Festoxid-Brennstoffzelle und Verfahren zu ihrer Herstellung
DE10317976B4 (de) * 2003-04-17 2013-05-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Festelektrolyt-Brennstoffzelle und Verfahren zu ihrer Herstellung sowie Verwendung der Festelektrolyt-Brennstoffzelle als Elektrolyseur
WO2004109833A3 (fr) * 2003-06-10 2005-03-24 Ballard Power Systems Pile a combustible electrochimique possedant une couche de distribution de fluide a permeabilite non uniforme
US7374838B2 (en) 2003-06-10 2008-05-20 Ballard Power Systems Inc. Electrochemical fuel cell with fluid distribution layer having non-uniform permeability

Also Published As

Publication number Publication date
DE19853911A1 (de) 2000-05-25
AU3030300A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
WO2000031813A1 (fr) Pile a combustible avec introduction du combustible par une plaque perforee
DE69936421T2 (de) Separator für eine einheitszelle einer brennstoffzelle und diesen verwendende brennstoffzelle
DE112004002358B4 (de) Feststoffoxid-Brennstoffzelle
WO2000048262A1 (fr) Empilement de piles a combustible avec introduction d'un produit d'alimentation a travers une plaque perforee
DE102005014170A1 (de) Separator und Brennstoffzelle mit diesem Separator
EP4154335B1 (fr) Plaque bipolaire et empilement de piles à combustible
DE19808331C2 (de) Gasverteiler für eine Brennstoffzelle
DE19935719C2 (de) Kühlsystem für Brennstoffzellen
DE102008005502A1 (de) Brennstoffzelle, insbesondere zur Anordnung in einem Brennstoffzellenstapel sowie Brennstoffzellenstapel
WO2021233647A1 (fr) Plaque bipolaire
DE10243153B4 (de) Brennstoffzelle
DE10112074A1 (de) Brennstoffzelle mit gleichmäßiger Verteilung von Betriebsmitteln
DE10233982B4 (de) Bipolare Platte für eine Brennstoffzelle und Brennstoffzellenstapel
DE10038589A1 (de) Elektrochemische Zelle
EP4165706B1 (fr) Pile individuelle et empilement de piles à combustible ayant des structures élastiques pour distribuer uniformément des milieux de travail
DE102016205010A1 (de) Bipolarplatte, Brennstoffzelle und ein Kraftfahrzeug
WO2002097908A2 (fr) Interconnecteur pour pile a combustible
DE102020114066A1 (de) Bipolarplatte
DE102015222552A1 (de) Brennstoffzellenstapel Bipolarplatten aufweisend sowie Brennstoffzellensystem
DE10006699B4 (de) Brennstoffzelle mit Abdichtung für Betriebsstoffe
EP4165705B1 (fr) Plaque bipolaire et empilement de piles à combustible
DE102019200617A1 (de) Gasverteilerstrukturen für Brennstoffzellen und Elektrolyseure
EP4150687B1 (fr) Plaque bipolaire et empilement de piles à combustible
DE102019220604A1 (de) Bipolarplatte für eine Brennstoffzelle und Verfahren zur Medienverteilung in einer Bipolarplatte
DE102020114305A1 (de) Bipolarplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载