WO2000019470A1 - Condensateurs a electrolyte a haute energie pour defibrillateurs implantables - Google Patents
Condensateurs a electrolyte a haute energie pour defibrillateurs implantables Download PDFInfo
- Publication number
- WO2000019470A1 WO2000019470A1 PCT/US1999/022552 US9922552W WO0019470A1 WO 2000019470 A1 WO2000019470 A1 WO 2000019470A1 US 9922552 W US9922552 W US 9922552W WO 0019470 A1 WO0019470 A1 WO 0019470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foil
- cavities
- average
- perforations
- sectional area
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 72
- 239000011888 foil Substances 0.000 claims abstract description 227
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000002560 therapeutic procedure Methods 0.000 claims description 4
- 101001135572 Homo sapiens Tyrosine-protein phosphatase non-receptor type 2 Proteins 0.000 claims description 2
- ZSXIWLKQXGPMMF-UHFFFAOYSA-N PPCPP Chemical compound PPCPP ZSXIWLKQXGPMMF-UHFFFAOYSA-N 0.000 claims description 2
- 102100033141 Tyrosine-protein phosphatase non-receptor type 2 Human genes 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000000712 assembly Effects 0.000 abstract description 17
- 238000000429 assembly Methods 0.000 abstract description 17
- 210000000038 chest Anatomy 0.000 abstract 1
- 208000003663 ventricular fibrillation Diseases 0.000 abstract 1
- 239000000123 paper Substances 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 206010061592 cardiac fibrillation Diseases 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000002600 fibrillogenic effect Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 208000010496 Heart Arrest Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- OTRAYOBSWCVTIN-UHFFFAOYSA-N OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N Chemical compound OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N OTRAYOBSWCVTIN-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/055—Etched foil electrodes
Definitions
- the present invention concerns electrolytic capacitors, particularly those for use in medical devices, such as implantable defibrillators.
- a defibrillator To restore normal heart contraction and expansion, paramedics and other medical workers use a device, called a defibrillator, to electrically shock a fibrillating heart.
- a typical implantable defibrillator includes a set of electrical leads, which extend from a sealed housing into the heart of a patient after implantation. Within the housing are a battery for supplying power, heart- monitoring circuitry for detecting fibrillation, and a capacitor for storing and delivering a burst of electric charge through the leads to the heart.
- the capacitor is typically an aluminum electrolytic capacitor, which usually includes a sandwich- like assembly of two strips of aluminum foil with two strips of paper, known as separators, between them.
- One of the aluminum foils serves as a cathode (negative) foil, and the other serves as an anode (positive) foil.
- two foils are stacked one on the other to form a dual anode. Attached to each foil is an aluminum tab which electrically connects the foil to other parts of the capacitor.
- the foil-and-paper assembly known as an active element, is then placed in a case, usually made of aluminum, and the paper is soaked, or impregnated, with a liquid electrolyte — a very electrically conductive solution containing free positive or negative ions.
- a liquid electrolyte a very electrically conductive solution containing free positive or negative ions.
- the case is sealed shut with a lid called a header. Extending from the header are two terminals connected respectively to the anode foil and cathode foil via the aluminum tabs.
- manufacturers of aluminum electrolytic capacitors have improved capacitor performance through the development of aluminum foils with increased surface areas. Increasing surface area of a foil, particularly the anode foil, increases capacitance and thus the charge-storage capacity of a capacitor.
- tunnel-etched foils not only have less surface area than core- etched foils but are also quite brittle and tend to break easily, particularly when rolling or winding the foils to form cylindrical capacitors. Accordingly, there remains a need to develop more durable foil structures.
- the present inventors devised a new foil structure which combines the durability of core-etched foils with the electrolyte- flow advantages of tunnel-etched foils.
- the inventors applied the new foil structure in novel ways to build new capacitor foil assemblies and new capacitors in cylindrical and flat configurations, for example.
- these advances allow construction of smaller medical devices, such as implantable defibrillators.
- one embodiment of the new foil structure is a foil having one or more holes or perforations and one or more cavities with a depth less than the foil thickness.
- each perforation and cavity has a cross-sectional area, with the perforations having a larger, for example, 2 to 100 times larger, average cross-sectional area than the cavities.
- One method of making the new foil structure includes perforating a foil and forming cavities into one or both of its surfaces. Other methods form the cavities before perforating the foil.
- Figure 1 is an enlarged perspective view of an exemplary foil structure 8 that embodies the invention
- Figure 2 is a perspective view of an exemplary cylindrical electrolytic capacitor 10 which incorporates the foil structure of Figure 1
- Figure 3 is a cross-sectional view of an exemplary electrolytic capacitor 10 which incorporates the foil structure of Figure 1 ;
- Figure 4 is a cross-sectional view of a layered capacitive assembly 21 which forms an active element 20 of capacitor 10 and which incorporates the Figure 1 foil structure;
- Figures 5A-5C are perspective views of other capacitor configurations that incorporate the Figure 1 foil structure;
- Figure 6 is a cross-sectional view of a symmetric capacitive assembly 60 which incorporates the Figure 1 foil structure and which is particularly suited for flat capacitor configurations; and
- Figure 7 is a block diagram of generic implantable defibrillator 70 including a capacitor that incorporates the Figure 1 foil structure.
- FIG. 1 shows an enlarged perspective view of a foil structure 8 which the inventors call a "perforated-core-etched" foil.
- Foil structure 8 can be made of aluminum, tantalum, hafnium, niobium, titanium, zirconium, and combinations of these metals. However, the invention is not limited to any particular foil composition or class of foil compositions.
- Foil structure 8 includes opposing surfaces 8a and 8b which define an average foil thickness 8t and a set of perforations 8p which extend through foil structure 8 from surface 8a to surface 8b.
- Surfaces 8a and 8b include respective sets of surface cavities (or depressions) 9a and 9b, which have generally cylindrical, conical, or hemispherical shapes.
- Surface cavities 9a have an average maximum depth Da which is less than thickness 8t, and surface cavities 9b having an average maximum depth Db which is also less than thickness 8t.
- depths Da and Db are measured along dimensions generally perpendicular to respective surfaces 8a and 8b.
- Cavities 9a and 9b also have respective average maximum cross- sectional areas Sa and Sb (which are not shown in the figure.) Cross-sectional area is measured in a plane substantially parallel to one of surfaces 8a and 8b.
- average maximum depths Da and depths Db are approximately equal to one third or one quarter of thickness 8t, and cross- sectional areas Sa and Sb are substantially equal and range inclusively between about 0.16 and 0.36 square-microns.
- other embodiments use different equal and unequal depths Da and Db and different and unequal cross-sectional areas Sa and Sb.
- the exemplary embodiment adheres to the constraint that the sum of average maximum depths Da and Db is less than thickness 8t.
- Adherence to this constraint ensures that a significant number of cavities 9a are separated from a significant number of cavities 9b by a solid region of foil material. These regions of solid material not only provide foil structure 8 with greater structural integrity but also greater surface area than conventional tunnel- etched foils. However, in some embodiments of the invention, one or more of cavities 9a intersect one or more of cavities 9b, thereby forming openings through the foil. The number of these intersections and resultant openings can be regulated through selection of appropriate cavity formation techniques and cavity depths.
- foil structure 8 includes a set of one or more perforations (or holes) 8p.
- Perforations 8p have an average maximum cross-sectional area Sp measured in a plane substantially parallel to one of surfaces 8a and 8b.
- perforations 8p have a generally circular cross-section in the exemplary embodiment, other embodiments use perforations with elliptical, triangular, square, or rectangular cross-sections.
- the layout or arrangement of perforations 8p takes any number of forms, including for example, a random distribution and a specific pattern with each perforation having a predetermined position relative to other perforations.
- the number of perforations per unit area is chosen to optimize relevant criteria, such as capacitor electrical performance or foil structural properties.
- average maximum cross-sectional area Sp of perforations 8p is larger than average maximum cross-sectional areas Sa and Sb of cavities 9a and 9b. More precisely, area Sp in the exemplary embodiment ranges between about 500 square-microns and 32 square-millimeters. In other embodiments, area Sp ranges between 2-50, 10-75, 25-100, or 2-100 times larger than surface areas Sa and Sb. Additionally, the exemplary embodiment provides a total perforation area (number of perforations times average maximum cross- sectional area Sp) which is no more than about 20 percent of the foil surface area.
- foil structure 8 The inventors have devised a number of ways of making foil structure 8. For example, one method initially core-etches a foil using conventional etching techniques to form cavities 9a and 9b and then perforates the core-etched foil. Another method entails initially perforating a foil to form perforations 8p and then etching the perforated foil to form cavities 9a and 9b. (For more details on a conventional etching technology, see, for example, U.S. Patent 4,395,305 to Whitman, which is entitled Chemical Etching of Aluminum Capacitor Foil and incorporated herein by reference.) Perforations 8p can be formed using lasers, chemical etchants, or mechanical dies, for example. Conceptually, cavities 9a and 9b could also be formed using lasers. Thus, the invention is not limited to any particular technique or combination of techniques for forming perforations 8p and cavities 9a and 9b.
- further processing of the foils entails applying an insulative, or dielectric, coating to one or both sides of the foils.
- suitable coatings include metallic oxides such as aluminum or tantalum oxide.
- Exemplary Foil Assemblies Incorporating the New Foil Structure Foil structure 8 can be combined with other foils structures to form various electrically and/or mechanically advantageous foil assemblies. Many of these assemblies are particularly useful as multiple anodes structures in flat, semi-cylindrical, and cylindrical capacitors.
- the inventors devised several foil assemblies that combine foil structure 8 with core-etched and tunnel-etched foils.
- one foil assembly stacks two or three foils incorporating foil structure 8 to form a dual- or triple-foil assembly which can serve as a dual or triple anode.
- Another foil assembly stacks a core-etched foil between two foils incorporating foil structure 8. Table 1 describes these and several other foil assemblies.
- foil assembly 7 comprises a foil similar to foil structure 8 between two tunnel-etched foils.
- Other novel assemblies result from combining two or more of these assemblies. For instance, combining two assembly Is yields a PPPP structure, and combining assemblies 2 and 3 yields a PPPPCP structure. Additionally, still other novel assemblies result from inserting insulators and electrolyte-impregnated substrates, such as paper, between adjacent foils of an assembly.
- FIG. 2 shows a perspective view of an exemplary electrolytic capacitor 10 which incorporates one or more foils incorporating foil structure 8 or one or more of the foil assemblies described above.
- capacitor 10 embodies many novel space-saving features.
- FIG. 2 shows that capacitor 10 has a diameter lOd of about 14.5 millimeters and a total height lOh of about 30 millimeters, thereby occupying a total volume of about five cubic-centimeters.
- Capacitor 10 also includes a cylindrical aluminum case 12, a header (or lid) 14, and two aluminum terminals 16 and 18. Two rivets 15 and 17 fasten terminals 16 and 18 to header 14.
- Case 12, which houses an active element 20 (not visible in this view), includes a circumferential seating groove 12a and a rolled lip 12b, both of which secure header 14 to case 12.
- Figure 3 a cross-sectional view taken along line 3-3 in Figure 2, shows that case 12 has a thickness 12t and groove 12a is spaced a distance 12d from lip 12b. Thickness 12t is about 0.010 inches, and distance 12d is about 0.145 inches. Additionally, groove 12a has a radius of about 0.035 inches, and lip 12b, which is formed by rolling over the top edge of case 12, has a radius of about 0.015 inches. (Some embodiments compress or flatten groove 12a to reduce capacitor height and volume.) Header 14, which comprises a rubber layer 14a and a phenolic-resin layer 14b, has a total thickness 14t of about two millimeters.
- FIG. 3 also shows that capacitor 10 includes an active element 20 wound around mandrel region 28 and two pairs of insulative inserts 30a-30b and 32a-32b respectively positioned adjacent the top and bottom of active element 20.
- Mandrel region 28 has an exemplary width or diameter 28w of about 2.5 millimeters.
- insulative inserts 30a-30b and 32a-32b comprise respective pairs of paper disks, with each disk having a thickness of one one-thousandth of an inch and a diameter of about 14 millimeters
- the insulative inserts ensure electrical isolation of conductive portions of active element 20 from anode tab 25 and rivets 15 and 17 and from the bottom interior surface of case 12.
- Figure 3 omits a 1.125- inch-wide plastic insulative sheath that surrounds the vertical surfaces of active element 20.
- Active element 20 comprises about 19 turns of a layered capacitive assembly 21.
- capacitive assembly 21 includes a cathode 22, an anode structure 24, and four electrolyte-impregnated separators 26a, 26b, 26c, and 26d.
- Cathode 22 and anode 24 each have a width (or height) 22w.
- cathode 22 and the one or more constituents of anode structure 24 are about 24 millimeters wide and 100 microns thick.
- Cathode 22 is about 422 millimeters long, and anode structure 24 is about 410 millimeters long.
- Anode structure 24 can assume a variety of novel forms, the simplest being a single foil member incorporating foil structure 8 of Figure 1. Some embodiments provide anode structure 24 with one or more of the novel foil assemblies described using Table 1.
- the exemplary embodiment connects anode structure 24 to one anode tab regardless of the number of foils constituting the anode structure.
- Figure 3 shows an exemplary aluminum anode tab 25.
- Other embodiments provide individual anode tabs for each anode members, with the tabs connected together to form a joint or composite anode tab. For more details on these or other types of tabs incorporated in other embodiments of the invention, see co-pending U.S.
- Anode tab 25, shown in Figure 3, is ultrasonically welded to rivet 15 and thus electrically connected to terminal 16.
- the exemplary embodiment folds anode tab 25 over itself; however, other embodiments omit this fold to reduce the space between header 14 and the top of active element 20.
- cathode 22 includes a cathode tab which is similarly connected via rivet 17 to terminal 18.
- capacitive assembly 21 includes thin electrolyte-impregnated separators 26, specifically 26a, 26b, 26c, and 26d.
- separators 26a-26d each consists of kraft paper impregnated with an electrolyte, such as an ethylene- glycol base combined with polyphosphates or ammonium pentaborate, and each has a thickness less than 0.001 inches. More specifically, the exemplary embodiment uses one or more papers of the following thicknesses: 0.000787, 0.0005 inches, and 0.00025 inches, with thicker papers preferably placed nearer the center of the active element to withstand the greater tensile stress that interior separators experience during winding.
- each of separators 26a-26d has a width 26w which is less than four millimeters wider than cathode 22 and anode 24 to provide end margins 27a and 27b.
- width 26w is about 27 millimeters, or three millimeters wider than cathode 22 and anode 24, to provide end margins 27a and 27b of about 1.5 millimeters.
- Other embodiments of the invention provide at least one end margins of about 1.75, 1.25, 1, 0.75, 0.5, 0.25, and even 0.0 millimeters.
- Figures 5A, 5B, and 5C show other capacitor configurations encompassed by the invention. More specifically, Figure 5A shows a semi-cylindrical (or "D") capacitor; Figure 5B shows an asymmetric semi-cylindrical capacitor; and Figure 5C shows a flat (or more precisely a rectangular parallelepiped) capacitor. Figure 6 show a cross-sectional view of a capacitive assembly 60 particularly useful for flat capacitors such as the one shown in Figure 5C.
- capacitive assembly 60 includes an anode structure 62 between two cathode foils 64a and 64b. Electrolyte-impregnated separators 63a and 63b lie respectively between anode structure 62 and cathode foils 64a and
- separators 63a and 63b each comprise two or more layers of kraft paper of thicknesses similar to separators 26 of Figure 4.
- Anode structure 62 comprises one or more of the foil assemblies identified in
- FIG. 7 shows one of the many applications for exemplary capacitor 10: a generic implantable defibrillator 70. More specifically, defibrillator 70 includes a lead system 72, which after implantation electrically contacts strategic portions of a patient's heart, a monitoring circuit 74 for monitoring heart activity through one or more of the leads of lead system 72, and a therapy circuit 76 which delivers electrical energy through lead system 72 to the patient's heart.
- a lead system 72 which after implantation electrically contacts strategic portions of a patient's heart
- monitoring circuit 74 for monitoring heart activity through one or more of the leads of lead system 72
- a therapy circuit 76 which delivers electrical energy through lead system 72 to the patient's heart.
- Therapy circuit 76 includes an energy storage component 76a which incorporates at least one capacitor having one or more of the novel features of capacitor 10.
- Defibrillator 70 operates according to well known and understood principles.
- the innovations of capacitor 10 can be incorporated into other cardiac rhythm management systems, such as heart pacers, combination pacer-defibrillators, and drug-delivery devices for diagnosing or treating cardiac arrhythmias. They can be incorporated also into non-medical applications, for example, photographic flash equipment. Indeed, the innovations of capacitor 10 are pertinent to any application where small, high energy, low equivalent-series-resistance (ERS) capacitors are desirable.
- ERS equivalent-series-resistance
- the inventors devised a new foil structure which combines the durability of core-etched foils with the electrolyte flow advantages of tunnel-etched foils.
- the inventors applied the new foil structure to build new capacitors and implantable defibrillators.
- the embodiments described above are intended only to illustrate and teach one or more ways of practicing or implementing the present invention, not to restrict its breadth or scope.
- the actual scope of the invention, which embraces all ways of practicing or implementing the concepts and principles of the invention, is defined only by the following claims and their equivalents.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrotherapy Devices (AREA)
Abstract
Les défibrillateurs implantables se placent dans la poitrine de patients exposés à des risques de fibrillation ventriculaire, trouble cardiaque pouvant être fatal. Un élément essentiel de ces défibrillateurs est constitué par un condensateur à électrolyte, en aluminium, qui stocke de l'énergie électrique et peut envoyer une ou plusieurs secousses vitales à un coeur en train de fibriller. Soucieux de réduire la taille de ces dispositifs, les constructeurs de condensateurs ont mis au point des feuilles d'aluminium spéciales, à noyaux et tunnels réalisés par gravure. Malheureusement, les feuilles à noyaux réalisés par gravure ne donnent pas de bons résultats avec les condensateurs à anodes multiples, et les feuilles à tunnels gravés sont cassantes et ont tendance à se rompre au cours de la fabrication de certains condensateurs courants. C'est pourquoi les inventeurs ont conçu une nouvelle structure en feuille présentant une ou plusieurs perforations et une ou plusieurs cavité d'une épaisseur inférieure à celle de la feuille. Selon un mode de réalisation, la section des perforations est, par exemple, de 2 à 200 fois plus importante que celle des cavités. Selon d'autres modes de réalisation, on trouve des ensembles feuilles, des condensateurs et des défibrillateurs implantables qui offrent les avantages des nouvelles structures en feuille.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU62744/99A AU6274499A (en) | 1998-09-30 | 1999-09-30 | High-energy electrolytic capacitors for implantable defibrillators |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16372898A | 1998-09-30 | 1998-09-30 | |
US09/163,728 | 1998-09-30 | ||
US09/165,848 US6275729B1 (en) | 1998-10-02 | 1998-10-02 | Smaller electrolytic capacitors for implantable defibrillators |
US09/165,779 | 1998-10-02 | ||
US09/165,848 | 1998-10-02 | ||
US09/165,779 US6556863B1 (en) | 1998-10-02 | 1998-10-02 | High-energy capacitors for implantable defibrillators |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000019470A1 true WO2000019470A1 (fr) | 2000-04-06 |
Family
ID=27388920
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/022540 WO2000019467A1 (fr) | 1998-09-30 | 1999-09-30 | Condensateurs electrolytiques de taille reduite pour defibrillateurs internes |
PCT/US1999/022552 WO2000019470A1 (fr) | 1998-09-30 | 1999-09-30 | Condensateurs a electrolyte a haute energie pour defibrillateurs implantables |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/022540 WO2000019467A1 (fr) | 1998-09-30 | 1999-09-30 | Condensateurs electrolytiques de taille reduite pour defibrillateurs internes |
Country Status (2)
Country | Link |
---|---|
AU (2) | AU6404199A (fr) |
WO (2) | WO2000019467A1 (fr) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002003406A3 (fr) * | 2000-06-30 | 2003-01-30 | Medtronic Inc | Dispositif medical implantable possedant un condensateur electrolytique plat a feuilles anode |
WO2002003404A3 (fr) * | 2000-06-30 | 2003-02-27 | Metronic Inc | Dispositif medical implantable a feuilles anode specialisees |
WO2002037515A3 (fr) * | 2000-11-03 | 2003-06-19 | Cardiac Pacemakers Inc | Procede permettant d'interconnecter des anodes et des cathodes dans un condensateur plat |
WO2003090238A1 (fr) * | 2002-04-17 | 2003-10-30 | Medtronic, Inc. | Procedes de fabrication de couches anodiques de condensateurs electrolytiques plats destines a des dispositifs medicaux implantables |
US6684102B1 (en) | 2000-11-03 | 2004-01-27 | Cardiac Pacemakers, Inc. | Implantable heart monitors having capacitors with endcap headers |
US6687118B1 (en) | 2000-11-03 | 2004-02-03 | Cardiac Pacemakers, Inc. | Flat capacitor having staked foils and edge-connected connection members |
US6699265B1 (en) | 2000-11-03 | 2004-03-02 | Cardiac Pacemakers, Inc. | Flat capacitor for an implantable medical device |
US6736956B1 (en) | 2001-05-07 | 2004-05-18 | Pacesetter, Inc. | Non-uniform etching of anode foil to produce higher capacitance gain without sacrificing foil strength |
US6763265B2 (en) | 2000-11-03 | 2004-07-13 | Cardiac Pacemakers, Inc. | Method of constructing a capacitor stack for a flat capacitor |
US6802954B1 (en) | 2002-07-18 | 2004-10-12 | Pacesetter, Inc. | Creation of porous anode foil by means of an electrochemical drilling process |
US6819953B2 (en) | 2000-03-01 | 2004-11-16 | Cardiac Pacemakers, Inc. | System and method for detection of pacing pulses within ECG signals |
US6957103B2 (en) | 2000-11-03 | 2005-10-18 | Cardiac Pacemakers, Inc. | Configurations and methods for making capacitor connections |
US6985351B2 (en) | 2000-11-03 | 2006-01-10 | Cardiac Pacemakers, Inc. | Implantable heart monitors having flat capacitors with curved profiles |
US7075777B2 (en) | 2004-07-16 | 2006-07-11 | Cardiac Pacemakers, Inc. | Method and apparatus for a capacitor shell including two mateable cupped components |
US7107099B1 (en) | 2000-11-03 | 2006-09-12 | Cardiac Pacemakers, Inc. | Capacitor having a feedthrough assembly with a coupling member |
US7120008B2 (en) | 2004-07-16 | 2006-10-10 | Cardiac Pacemakers, Inc. | Method and apparatus for capacitor interconnection using a metal spray |
US7154739B2 (en) | 2000-11-03 | 2006-12-26 | Cardiac Pacemakers, Inc. | Flat capacitor having an active case |
US7224575B2 (en) | 2004-07-16 | 2007-05-29 | Cardiac Pacemakers, Inc. | Method and apparatus for high voltage aluminum capacitor design |
US7327552B2 (en) | 2005-05-09 | 2008-02-05 | Cardiac Pacemakers, Inc. | Method and apparatus for electrically connecting capacitor electrodes using a spray |
US7336998B2 (en) | 2003-06-24 | 2008-02-26 | Cardiac Pacemakers, Inc. | External discrimination between pace pulses at different heart locations |
US7352560B2 (en) | 2004-07-16 | 2008-04-01 | Cardiac Pacemakers, Inc. | Method and apparatus for interconnecting electrodes with partial titanium coating |
US7355840B2 (en) | 2005-05-09 | 2008-04-08 | Cardiac Pacemakers, Inc. | Method and apparatus for a capacitor shell including two mateable cupped components |
US7456077B2 (en) | 2000-11-03 | 2008-11-25 | Cardiac Pacemakers, Inc. | Method for interconnecting anodes and cathodes in a flat capacitor |
US7479349B2 (en) | 2002-12-31 | 2009-01-20 | Cardiac Pacemakers, Inc. | Batteries including a flat plate design |
US7532456B2 (en) | 2004-07-16 | 2009-05-12 | Cardiac Pacemakers, Inc. | Method and apparatus for a partially etched capacitor layer including a connection member |
US7564677B2 (en) | 2005-04-22 | 2009-07-21 | Cardiac Pacemakers, Inc. | Method and apparatus for a spacer for an electrode layer gap in a power source |
US7768772B2 (en) | 2004-11-24 | 2010-08-03 | Cardiac Pacemakers, Inc. | Method and apparatus for providing flexible partially etched capacitor electrode interconnect |
US9093683B2 (en) | 2002-12-31 | 2015-07-28 | Cardiac Pacemakers, Inc. | Method and apparatus for porous insulative film for insulating energy source layers |
US9852849B2 (en) | 2016-05-27 | 2017-12-26 | Pacesetter, Inc. | Using etch resist patterns and formation for facilitation of laser cutting, particle and leakage current reduction |
US9969030B2 (en) | 2016-05-12 | 2018-05-15 | Pacesetter, Inc. | Laser drilling of metal foils for assembly in an electrolytic capacitor |
US10090112B2 (en) | 2016-01-15 | 2018-10-02 | Pacesetter, Inc. | Use of etch resist masked anode frame for facilitation of laser cutting, particle and leakage current reduction |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108122676A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | Φ6.3×15铝壳电解电容器 |
CN108122680A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | φ7.5铝壳电解电容器 |
CN108122679A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | 125℃宽温度电解电容器 |
CN108122674A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | Φ16×36加绝缘垫片电解电容器 |
CN108122675A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | 550v以上电压电解电容器 |
CN108122681A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | 耐6kv雷击电解电容器 |
CN108122677A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | φ20×35铝壳耐高纹波电解电容器 |
CN108122678A (zh) * | 2016-11-29 | 2018-06-05 | 无锡泰威电子有限公司 | φ8.2铝壳电解电容器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0753868A2 (fr) * | 1995-07-11 | 1997-01-15 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Condensateur électrolytique, en particulier condensateur électrolytique en tantale |
US5697953A (en) * | 1993-03-13 | 1997-12-16 | Angeion Corporation | Implantable cardioverter defibrillator having a smaller displacement volume |
EP0851446A2 (fr) * | 1996-12-25 | 1998-07-01 | KDK Corporation | Feuille d'électrode en aluminium pour condensateur électrolytique et condensateur électrolytique utilisant cette feuille |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02276222A (ja) * | 1989-04-18 | 1990-11-13 | Matsushita Electric Ind Co Ltd | 電解コンデンサ用封口体及びその製造方法 |
JPH0474409A (ja) * | 1990-07-16 | 1992-03-09 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0855762A (ja) * | 1994-08-11 | 1996-02-27 | Marcon Electron Co Ltd | 電解コンデンサ |
JPH08293430A (ja) * | 1995-04-24 | 1996-11-05 | Matsushita Electric Ind Co Ltd | チップ形アルミ電解コンデンサの製造方法 |
US5748439A (en) * | 1995-06-06 | 1998-05-05 | Telectronics Pacing Systems, Inc. | Capacitors having high strength electrolytic capacitor separators |
-
1999
- 1999-09-30 WO PCT/US1999/022540 patent/WO2000019467A1/fr active Application Filing
- 1999-09-30 AU AU64041/99A patent/AU6404199A/en not_active Abandoned
- 1999-09-30 WO PCT/US1999/022552 patent/WO2000019470A1/fr active Application Filing
- 1999-09-30 AU AU62744/99A patent/AU6274499A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5697953A (en) * | 1993-03-13 | 1997-12-16 | Angeion Corporation | Implantable cardioverter defibrillator having a smaller displacement volume |
EP0753868A2 (fr) * | 1995-07-11 | 1997-01-15 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Condensateur électrolytique, en particulier condensateur électrolytique en tantale |
EP0851446A2 (fr) * | 1996-12-25 | 1998-07-01 | KDK Corporation | Feuille d'électrode en aluminium pour condensateur électrolytique et condensateur électrolytique utilisant cette feuille |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6819953B2 (en) | 2000-03-01 | 2004-11-16 | Cardiac Pacemakers, Inc. | System and method for detection of pacing pulses within ECG signals |
WO2002003404A3 (fr) * | 2000-06-30 | 2003-02-27 | Metronic Inc | Dispositif medical implantable a feuilles anode specialisees |
WO2002003406A3 (fr) * | 2000-06-30 | 2003-01-30 | Medtronic Inc | Dispositif medical implantable possedant un condensateur electrolytique plat a feuilles anode |
US6621686B1 (en) | 2000-06-30 | 2003-09-16 | Medtronic, Inc. | Implantable medical device having flat electrolytic capacitor formed with partially through-etched and through-hole punctured anode sheets |
US6957103B2 (en) | 2000-11-03 | 2005-10-18 | Cardiac Pacemakers, Inc. | Configurations and methods for making capacitor connections |
US7072713B2 (en) | 2000-11-03 | 2006-07-04 | Cardiac Pacemakers, Inc. | Flat capacitor for an implantable medical device |
US6687118B1 (en) | 2000-11-03 | 2004-02-03 | Cardiac Pacemakers, Inc. | Flat capacitor having staked foils and edge-connected connection members |
US6699265B1 (en) | 2000-11-03 | 2004-03-02 | Cardiac Pacemakers, Inc. | Flat capacitor for an implantable medical device |
US6709946B2 (en) | 2000-11-03 | 2004-03-23 | Cardiac Pacemakers, Inc. | Method for interconnecting anodes and cathodes in a flat capacitor |
US7576973B2 (en) | 2000-11-03 | 2009-08-18 | Cardiac Pacemakers, Inc. | Configurations and methods for making capacitor connections |
US6763265B2 (en) | 2000-11-03 | 2004-07-13 | Cardiac Pacemakers, Inc. | Method of constructing a capacitor stack for a flat capacitor |
US7365960B2 (en) | 2000-11-03 | 2008-04-29 | Cardiac Pacemakers, Inc. | Capacitor having a feedthrough assembly with a coupling member |
US7456077B2 (en) | 2000-11-03 | 2008-11-25 | Cardiac Pacemakers, Inc. | Method for interconnecting anodes and cathodes in a flat capacitor |
US7355841B1 (en) | 2000-11-03 | 2008-04-08 | Cardiac Pacemakers, Inc. | Configurations and methods for making capacitor connections |
US7347880B2 (en) | 2000-11-03 | 2008-03-25 | Cardiac Pacemakers, Inc. | Flat capacitor having staked foils and edge-connected connection members |
US6985351B2 (en) | 2000-11-03 | 2006-01-10 | Cardiac Pacemakers, Inc. | Implantable heart monitors having flat capacitors with curved profiles |
US6999304B2 (en) | 2000-11-03 | 2006-02-14 | Cardiac Pacemakers, Inc. | Foil structures for use in a capacitor with an anode foil and a cathode foil stacked together |
US6684102B1 (en) | 2000-11-03 | 2004-01-27 | Cardiac Pacemakers, Inc. | Implantable heart monitors having capacitors with endcap headers |
US9443660B2 (en) | 2000-11-03 | 2016-09-13 | Cardiac Pacemakers, Inc. | Flat capacitor for an implantable medical device |
US7107099B1 (en) | 2000-11-03 | 2006-09-12 | Cardiac Pacemakers, Inc. | Capacitor having a feedthrough assembly with a coupling member |
US10032565B2 (en) | 2000-11-03 | 2018-07-24 | Cardiac Pacemakers, Inc. | Flat capacitor for an implantable medical device |
US7154739B2 (en) | 2000-11-03 | 2006-12-26 | Cardiac Pacemakers, Inc. | Flat capacitor having an active case |
US7157671B2 (en) | 2000-11-03 | 2007-01-02 | Cardiac Pacemakers, Inc. | Flat capacitor for an implantable medical device |
EP1744333A1 (fr) * | 2000-11-03 | 2007-01-17 | Cardiac Pacemakers, Inc. | Procede d'interconnexion d'anodes et de cathodes dans un condensateur plat |
US7177692B2 (en) | 2000-11-03 | 2007-02-13 | Cardiac Pacemakers, Inc. | Capacitor having a feedthrough assembly with a coupling member |
US7190569B2 (en) | 2000-11-03 | 2007-03-13 | Cardiac Pacemakers, Inc. | Implantable heart monitors having capacitors with endcap headers |
US7190570B2 (en) | 2000-11-03 | 2007-03-13 | Cardiac Pacemakers, Inc. | Configurations and methods for making capacitor connections |
US7221556B2 (en) | 2000-11-03 | 2007-05-22 | Cardiac Pacemakers, Inc. | Implantable medical device with a capacitor that includes stacked anode and cathode foils |
WO2002037515A3 (fr) * | 2000-11-03 | 2003-06-19 | Cardiac Pacemakers Inc | Procede permettant d'interconnecter des anodes et des cathodes dans un condensateur plat |
US6736956B1 (en) | 2001-05-07 | 2004-05-18 | Pacesetter, Inc. | Non-uniform etching of anode foil to produce higher capacitance gain without sacrificing foil strength |
US6885548B2 (en) | 2002-04-17 | 2005-04-26 | Medtronic, Inc. | Methods of fabricating anode layers of flat electrolytic capacitors |
WO2003090238A1 (fr) * | 2002-04-17 | 2003-10-30 | Medtronic, Inc. | Procedes de fabrication de couches anodiques de condensateurs electrolytiques plats destines a des dispositifs medicaux implantables |
US6802954B1 (en) | 2002-07-18 | 2004-10-12 | Pacesetter, Inc. | Creation of porous anode foil by means of an electrochemical drilling process |
US9620806B2 (en) | 2002-12-31 | 2017-04-11 | Cardiac Pacemakers, Inc. | Batteries including a flat plate design |
US10115995B2 (en) | 2002-12-31 | 2018-10-30 | Cardiac Pacemakers, Inc. | Batteries including a flat plate design |
US9093683B2 (en) | 2002-12-31 | 2015-07-28 | Cardiac Pacemakers, Inc. | Method and apparatus for porous insulative film for insulating energy source layers |
US7479349B2 (en) | 2002-12-31 | 2009-01-20 | Cardiac Pacemakers, Inc. | Batteries including a flat plate design |
US7336998B2 (en) | 2003-06-24 | 2008-02-26 | Cardiac Pacemakers, Inc. | External discrimination between pace pulses at different heart locations |
US7224575B2 (en) | 2004-07-16 | 2007-05-29 | Cardiac Pacemakers, Inc. | Method and apparatus for high voltage aluminum capacitor design |
US7532456B2 (en) | 2004-07-16 | 2009-05-12 | Cardiac Pacemakers, Inc. | Method and apparatus for a partially etched capacitor layer including a connection member |
US7682921B2 (en) | 2004-07-16 | 2010-03-23 | Cardiac Pacemakers, Inc. | Method and apparatus for interconnecting electrodes with partial titanium coating |
US7075777B2 (en) | 2004-07-16 | 2006-07-11 | Cardiac Pacemakers, Inc. | Method and apparatus for a capacitor shell including two mateable cupped components |
US7120008B2 (en) | 2004-07-16 | 2006-10-10 | Cardiac Pacemakers, Inc. | Method and apparatus for capacitor interconnection using a metal spray |
US7352560B2 (en) | 2004-07-16 | 2008-04-01 | Cardiac Pacemakers, Inc. | Method and apparatus for interconnecting electrodes with partial titanium coating |
US7768772B2 (en) | 2004-11-24 | 2010-08-03 | Cardiac Pacemakers, Inc. | Method and apparatus for providing flexible partially etched capacitor electrode interconnect |
US7564677B2 (en) | 2005-04-22 | 2009-07-21 | Cardiac Pacemakers, Inc. | Method and apparatus for a spacer for an electrode layer gap in a power source |
US7872857B2 (en) | 2005-04-22 | 2011-01-18 | Cardiac Pacemakers, Inc. | Spacer for an electrode layer gap in a power source |
US7355840B2 (en) | 2005-05-09 | 2008-04-08 | Cardiac Pacemakers, Inc. | Method and apparatus for a capacitor shell including two mateable cupped components |
US8870973B2 (en) | 2005-05-09 | 2014-10-28 | Cardiac Pacemakers, Inc. | Method and apparatus for a capacitor shell including two mateable cupped components |
US7327552B2 (en) | 2005-05-09 | 2008-02-05 | Cardiac Pacemakers, Inc. | Method and apparatus for electrically connecting capacitor electrodes using a spray |
US8012222B2 (en) | 2005-05-09 | 2011-09-06 | Cardiac Pacemakers, Inc. | Method and apparatus for interconnecting electrodes with partial titanium coating |
US7722683B2 (en) | 2005-05-09 | 2010-05-25 | Cardiac Pacemakers, Inc. | Method and apparatus for a capacitor shell including two mateable cupped components |
US10090112B2 (en) | 2016-01-15 | 2018-10-02 | Pacesetter, Inc. | Use of etch resist masked anode frame for facilitation of laser cutting, particle and leakage current reduction |
US10825613B2 (en) | 2016-01-15 | 2020-11-03 | Pacesetter, Inc. | Use of etch resist masked anode frame for facilitation of laser cutting, particle and leakage current reduction |
US9969030B2 (en) | 2016-05-12 | 2018-05-15 | Pacesetter, Inc. | Laser drilling of metal foils for assembly in an electrolytic capacitor |
US11185948B2 (en) | 2016-05-12 | 2021-11-30 | Pacesetter, Inc. | Laser drilling of metal foils for assembly in an electrolytic capacitor |
US12033807B2 (en) | 2016-05-12 | 2024-07-09 | Pacesetter, Inc. | Laser drilling of metal foils for assembly in an electrolytic capacitor |
US9852849B2 (en) | 2016-05-27 | 2017-12-26 | Pacesetter, Inc. | Using etch resist patterns and formation for facilitation of laser cutting, particle and leakage current reduction |
Also Published As
Publication number | Publication date |
---|---|
AU6404199A (en) | 2000-04-17 |
AU6274499A (en) | 2000-04-17 |
WO2000019467A1 (fr) | 2000-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6421226B1 (en) | High-energy capacitors for implantable defibrillators | |
US6426864B1 (en) | High energy capacitors for implantable defibrillators | |
WO2000019470A1 (fr) | Condensateurs a electrolyte a haute energie pour defibrillateurs implantables | |
US7251123B2 (en) | Smaller electrolytic capacitors for implantable defibrillators | |
US5808857A (en) | Capacitor foil with enhanced surface area | |
US8543201B2 (en) | Flat capacitor having staked foils and edge-connected connection members | |
US5584890A (en) | Methods of making multiple anode capacitors | |
US8451587B2 (en) | Method for interconnecting anodes and cathodes in a flat capacitor | |
US6571126B1 (en) | Method of constructing a capacitor stack for a flat capacitor | |
US6409776B1 (en) | Implantable medical device having flat electrolytic capacitor formed with nonthrough-etched and through-hole punctured anode sheets | |
US7456077B2 (en) | Method for interconnecting anodes and cathodes in a flat capacitor | |
US6815306B1 (en) | Floating anode DC electrolytic capacitor | |
US6736956B1 (en) | Non-uniform etching of anode foil to produce higher capacitance gain without sacrificing foil strength | |
JP2004505436A (ja) | 特殊な陽極シートを有する植え込み可能な医療機器 | |
WO1998014969A1 (fr) | Condensateurs a anodes multiples et procedes de fabrication associes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |