WO2000011165A1 - COMPOSITIONS DE hKIS ET PROCEDES D'UTILISATION CORRESPONDANTS - Google Patents
COMPOSITIONS DE hKIS ET PROCEDES D'UTILISATION CORRESPONDANTS Download PDFInfo
- Publication number
- WO2000011165A1 WO2000011165A1 PCT/US1999/018903 US9918903W WO0011165A1 WO 2000011165 A1 WO2000011165 A1 WO 2000011165A1 US 9918903 W US9918903 W US 9918903W WO 0011165 A1 WO0011165 A1 WO 0011165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- cell
- serine
- hkis
- isolated nucleic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000000203 mixture Substances 0.000 title claims abstract description 34
- 230000002401 inhibitory effect Effects 0.000 title claims description 10
- 241000282414 Homo sapiens Species 0.000 title description 24
- 230000004663 cell proliferation Effects 0.000 title description 20
- 108091000080 Phosphotransferase Proteins 0.000 title description 7
- 102000020233 phosphotransferase Human genes 0.000 title description 7
- 108010016777 Cyclin-Dependent Kinase Inhibitor p27 Proteins 0.000 title description 2
- 102000000577 Cyclin-Dependent Kinase Inhibitor p27 Human genes 0.000 title description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 60
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 42
- 229920001184 polypeptide Polymers 0.000 claims abstract description 27
- 230000035772 mutation Effects 0.000 claims abstract description 24
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 claims abstract description 21
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 claims abstract description 21
- 108050006400 Cyclin Proteins 0.000 claims abstract description 19
- 229940043355 kinase inhibitor Drugs 0.000 claims abstract description 10
- 239000003757 phosphotransferase inhibitor Substances 0.000 claims abstract description 10
- 230000035755 proliferation Effects 0.000 claims abstract description 10
- 102000016736 Cyclin Human genes 0.000 claims abstract description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 199
- 210000004027 cell Anatomy 0.000 claims description 103
- 102000004169 proteins and genes Human genes 0.000 claims description 100
- 235000018102 proteins Nutrition 0.000 claims description 96
- 150000007523 nucleic acids Chemical class 0.000 claims description 59
- 108020004707 nucleic acids Proteins 0.000 claims description 49
- 102000039446 nucleic acids Human genes 0.000 claims description 49
- 239000013598 vector Substances 0.000 claims description 49
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 claims description 40
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 claims description 40
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 27
- 150000001413 amino acids Chemical class 0.000 claims description 27
- 235000001014 amino acid Nutrition 0.000 claims description 25
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 24
- 108020004705 Codon Proteins 0.000 claims description 19
- 230000026731 phosphorylation Effects 0.000 claims description 17
- 238000006366 phosphorylation reaction Methods 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 15
- 239000013604 expression vector Substances 0.000 claims description 14
- 230000027455 binding Effects 0.000 claims description 13
- 239000013603 viral vector Substances 0.000 claims description 13
- 235000004279 alanine Nutrition 0.000 claims description 12
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 11
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 11
- 239000004473 Threonine Substances 0.000 claims description 11
- 239000002773 nucleotide Substances 0.000 claims description 11
- 125000003729 nucleotide group Chemical group 0.000 claims description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 10
- 239000013612 plasmid Substances 0.000 claims description 10
- -1 threonine amino acid Chemical class 0.000 claims description 10
- 102000003903 Cyclin-dependent kinases Human genes 0.000 claims description 9
- 108090000266 Cyclin-dependent kinases Proteins 0.000 claims description 9
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 9
- 230000000295 complement effect Effects 0.000 claims description 9
- 210000004962 mammalian cell Anatomy 0.000 claims description 9
- 230000002062 proliferating effect Effects 0.000 claims description 5
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims description 5
- 229940126074 CDK kinase inhibitor Drugs 0.000 claims description 4
- 102100034770 Cyclin-dependent kinase inhibitor 3 Human genes 0.000 claims description 4
- 230000010190 G1 phase Effects 0.000 claims description 4
- 101000945639 Homo sapiens Cyclin-dependent kinase inhibitor 3 Proteins 0.000 claims description 4
- 210000005260 human cell Anatomy 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 abstract description 3
- 108020004414 DNA Proteins 0.000 description 61
- 230000014509 gene expression Effects 0.000 description 48
- 102100029604 Interferon alpha-inducible protein 27, mitochondrial Human genes 0.000 description 31
- 238000012546 transfer Methods 0.000 description 30
- 229940024606 amino acid Drugs 0.000 description 18
- 238000001727 in vivo Methods 0.000 description 18
- 230000003612 virological effect Effects 0.000 description 17
- 230000022131 cell cycle Effects 0.000 description 15
- 238000001415 gene therapy Methods 0.000 description 15
- 241000701161 unidentified adenovirus Species 0.000 description 15
- 108091026890 Coding region Proteins 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- 230000001404 mediated effect Effects 0.000 description 13
- 238000013518 transcription Methods 0.000 description 13
- 230000035897 transcription Effects 0.000 description 13
- 108700019146 Transgenes Proteins 0.000 description 12
- 239000002299 complementary DNA Substances 0.000 description 12
- 238000001890 transfection Methods 0.000 description 12
- 102100036691 Proliferating cell nuclear antigen Human genes 0.000 description 11
- 241000700605 Viruses Species 0.000 description 11
- 210000001367 artery Anatomy 0.000 description 11
- 239000002502 liposome Substances 0.000 description 11
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- 230000003993 interaction Effects 0.000 description 9
- 230000010076 replication Effects 0.000 description 9
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003623 enhancer Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000008488 polyadenylation Effects 0.000 description 8
- 241001430294 unidentified retrovirus Species 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000002741 site-directed mutagenesis Methods 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 6
- 208000024172 Cardiovascular disease Diseases 0.000 description 6
- 102000015212 Fas Ligand Protein Human genes 0.000 description 6
- 108010039471 Fas Ligand Protein Proteins 0.000 description 6
- 102100039556 Galectin-4 Human genes 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 6
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000000074 antisense oligonucleotide Substances 0.000 description 6
- 238000012230 antisense oligonucleotides Methods 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 208000037803 restenosis Diseases 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 5
- 102000000311 Cytosine Deaminase Human genes 0.000 description 5
- 108010080611 Cytosine Deaminase Proteins 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 5
- 101000939549 Homo sapiens Serine/threonine-protein kinase Kist Proteins 0.000 description 5
- 102100029680 Serine/threonine-protein kinase Kist Human genes 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 108010005774 beta-Galactosidase Proteins 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000001086 cytosolic effect Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000029087 digestion Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 201000001320 Atherosclerosis Diseases 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 4
- 108010070675 Glutathione transferase Proteins 0.000 description 4
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102000006601 Thymidine Kinase Human genes 0.000 description 4
- 108020004440 Thymidine kinase Proteins 0.000 description 4
- 108010067390 Viral Proteins Proteins 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 102220415795 c.161A>G Human genes 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 230000004186 co-expression Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000005090 green fluorescent protein Substances 0.000 description 4
- 206010020718 hyperplasia Diseases 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000002107 myocardial effect Effects 0.000 description 4
- 230000008692 neointimal formation Effects 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 4
- 239000002644 phorbol ester Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000001177 retroviral effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 238000001086 yeast two-hybrid system Methods 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108091007914 CDKs Proteins 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 241000702421 Dependoparvovirus Species 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000008051 G1/S transition checkpoint Effects 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 208000034827 Neointima Diseases 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 108050002653 Retinoblastoma protein Proteins 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 102000005876 Tissue Inhibitor of Metalloproteinases Human genes 0.000 description 3
- 108010005246 Tissue Inhibitor of Metalloproteinases Proteins 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 102000005936 beta-Galactosidase Human genes 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 210000001715 carotid artery Anatomy 0.000 description 3
- 230000025084 cell cycle arrest Effects 0.000 description 3
- 230000006369 cell cycle progression Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 3
- 229960004413 flucytosine Drugs 0.000 description 3
- 229960002963 ganciclovir Drugs 0.000 description 3
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000012250 transgenic expression Methods 0.000 description 3
- 239000000225 tumor suppressor protein Substances 0.000 description 3
- 208000019553 vascular disease Diseases 0.000 description 3
- 231100000216 vascular lesion Toxicity 0.000 description 3
- 210000005166 vasculature Anatomy 0.000 description 3
- CJDRUOGAGYHKKD-XMTJACRCSA-N (+)-Ajmaline Natural products O[C@H]1[C@@H](CC)[C@@H]2[C@@H]3[C@H](O)[C@@]45[C@@H](N(C)c6c4cccc6)[C@@H](N1[C@H]3C5)C2 CJDRUOGAGYHKKD-XMTJACRCSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 208000010867 Carotid Artery injury Diseases 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 108700003861 Dominant Genes Proteins 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 206010015866 Extravasation Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 101100273713 Homo sapiens CD2 gene Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 2
- 208000024834 Neurofibromatosis type 1 Diseases 0.000 description 2
- 101710090055 Nitric oxide synthase, endothelial Proteins 0.000 description 2
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 2
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 108010071690 Prealbumin Proteins 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 101100539416 Rattus norvegicus Uhmk1 gene Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- 102100029290 Transthyretin Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 230000003143 atherosclerotic effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 101150097077 cki gene Proteins 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 230000036251 extravasation Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 230000003463 hyperproliferative effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 239000012742 immunoprecipitation (IP) buffer Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 201000008026 nephroblastoma Diseases 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 238000003566 phosphorylation assay Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 235000004252 protein component Nutrition 0.000 description 2
- 230000004850 protein–protein interaction Effects 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- QGVLYPPODPLXMB-UBTYZVCOSA-N (1aR,1bS,4aR,7aS,7bS,8R,9R,9aS)-4a,7b,9,9a-tetrahydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-1,1a,1b,4,4a,7a,7b,8,9,9a-decahydro-5H-cyclopropa[3,4]benzo[1,2-e]azulen-5-one Chemical compound C1=C(CO)C[C@]2(O)C(=O)C(C)=C[C@H]2[C@@]2(O)[C@H](C)[C@@H](O)[C@@]3(O)C(C)(C)[C@H]3[C@@H]21 QGVLYPPODPLXMB-UBTYZVCOSA-N 0.000 description 1
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- WALUVDCNGPQPOD-UHFFFAOYSA-M 2,3-di(tetradecoxy)propyl-(2-hydroxyethyl)-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCOCC(C[N+](C)(C)CCO)OCCCCCCCCCCCCCC WALUVDCNGPQPOD-UHFFFAOYSA-M 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000197194 Bulla Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101150028326 CD gene Proteins 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000005483 Cell Cycle Proteins Human genes 0.000 description 1
- 108010031896 Cell Cycle Proteins Proteins 0.000 description 1
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000275449 Diplectrum formosum Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000001388 E2F Transcription Factors Human genes 0.000 description 1
- 108010093502 E2F Transcription Factors Proteins 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 206010048554 Endothelial dysfunction Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 230000037057 G1 phase arrest Effects 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 108700005087 Homeobox Genes Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000658071 Homo sapiens Splicing factor U2AF 65 kDa subunit Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 101100321817 Human parvovirus B19 (strain HV) 7.5K gene Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010024774 Localised infection Diseases 0.000 description 1
- 241001625930 Luria Species 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 102000000422 Matrix Metalloproteinase 3 Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 108091057508 Myc family Proteins 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 208000010359 Newcastle Disease Diseases 0.000 description 1
- 102100028452 Nitric oxide synthase, endothelial Human genes 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108010087776 Proto-Oncogene Proteins c-myb Proteins 0.000 description 1
- 102000009096 Proto-Oncogene Proteins c-myb Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108700025701 Retinoblastoma Genes Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 108010005173 SERPIN-B5 Proteins 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 108010044589 Splicing Factor U2AF Proteins 0.000 description 1
- 102000005771 Splicing Factor U2AF Human genes 0.000 description 1
- 102100035040 Splicing factor U2AF 65 kDa subunit Human genes 0.000 description 1
- 101100289792 Squirrel monkey polyomavirus large T gene Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 230000033540 T cell apoptotic process Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 102100040250 Transcription elongation factor A protein-like 1 Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 1
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- VRGWBRLULZUWAJ-XFFXIZSCSA-N [(2s)-2-[(1r,3z,5s,8z,12z,15s)-5,17-dihydroxy-4,8,12,15-tetramethyl-16-oxo-18-bicyclo[13.3.0]octadeca-3,8,12,17-tetraenyl]propyl] acetate Chemical compound C1\C=C(C)/CC\C=C(C)/CC[C@H](O)\C(C)=C/C[C@@H]2C([C@@H](COC(C)=O)C)=C(O)C(=O)[C@]21C VRGWBRLULZUWAJ-XFFXIZSCSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 210000002945 adventitial reticular cell Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000002095 anti-migrative effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000037741 atherosclerosis susceptibility Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 101150073031 cdk2 gene Proteins 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000008235 cell cycle pathway Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000012303 cytoplasmic staining Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000010595 endothelial cell migration Effects 0.000 description 1
- 230000008694 endothelial dysfunction Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 108010052621 fas Receptor Proteins 0.000 description 1
- 102000018823 fas Receptor Human genes 0.000 description 1
- 230000000893 fibroproliferative effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- VRGWBRLULZUWAJ-UHFFFAOYSA-N fusaproliferin Natural products C1C=C(C)CCC=C(C)CCC(O)C(C)=CCC2C(C(COC(C)=O)C)=C(O)C(=O)C21C VRGWBRLULZUWAJ-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- 210000002816 gill Anatomy 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 101150028578 grp78 gene Proteins 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 231100001252 long-term toxicity Toxicity 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000008883 metastatic behaviour Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 231100000324 minimal toxicity Toxicity 0.000 description 1
- 210000002464 muscle smooth vascular Anatomy 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 231100000299 mutagenicity Toxicity 0.000 description 1
- 230000007886 mutagenicity Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 101150008049 mx gene Proteins 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000019569 negative regulation of cell differentiation Effects 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 108090000155 pancreatic elastase II Proteins 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- QGVLYPPODPLXMB-QXYKVGAMSA-N phorbol Natural products C[C@@H]1[C@@H](O)[C@]2(O)[C@H]([C@H]3C=C(CO)C[C@@]4(O)[C@H](C=C(C)C4=O)[C@@]13O)C2(C)C QGVLYPPODPLXMB-QXYKVGAMSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 238000013310 pig model Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229930185346 proliferin Natural products 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 239000013608 rAAV vector Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 231100001251 short-term toxicity Toxicity 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000012868 site-directed mutagenesis technique Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
- 230000015590 smooth muscle cell migration Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 108091007196 stromelysin Proteins 0.000 description 1
- 210000001768 subcellular fraction Anatomy 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 208000037905 systemic hypertension Diseases 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 238000003160 two-hybrid assay Methods 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000006490 viral transcription Effects 0.000 description 1
- 230000007377 viral translocation Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000003158 yeast two-hybrid assay Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4738—Cell cycle regulated proteins, e.g. cyclin, CDC, INK-CCR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
- C12N2799/022—Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus
Definitions
- CKIs cyclin-dependent kinase inhibitors
- Rb retinoblastoma protein
- CKIs directly implicated in CDK regulation are p21 cip1/Waf1 (Xiong et al., 1993; Harper et al., 1993), p27 Kip1 (Pyoshima and Hunter, 1994; Polyak et al., 1994; Coats et al., 1996), and p16/p15 INK4 (Serrano et al., 1993).
- CKIs to arrest cells in G1 have made the proteins of particular use in gene therapy techniques for treating diseases or disorders associated with cell proliferation, such as cancer and leukemias, psoriasis, bone diseases, fibroproliferative disorders, atherosclerosis, restenosis, and chronic inflammation.
- diseases or disorders associated with cell proliferation such as cancer and leukemias, psoriasis, bone diseases, fibroproliferative disorders, atherosclerosis, restenosis, and chronic inflammation.
- diseases or disorders associated with cell proliferation such as cancer and leukemias, psoriasis, bone diseases, fibroproliferative disorders, atherosclerosis, restenosis, and chronic inflammation.
- diseases or disorders associated with cell proliferation such as cancer and leukemias, psoriasis, bone diseases, fibroproliferative disorders, atherosclerosis, restenosis, and chronic inflammation.
- very little is known about the regulation of these very important proteins in vivo.
- the inventors have discovered a novel mechanism of regulation of CKIs. Specifically, disclosed herein are serine/threonine kinases that inhibit the ability of CKIs to arrest cells in G1. In light of this discovery, the inventors were able to construct a transdominant mutant of a serine/threonine kinase that interferes with the respective endogenous serine/threonine kinase when introduced into a cell transgenically. Furthermore, the inventors were able to construct a CKI unable to be inhibited by a serine/threonine kinase. Such constructs may be used alone, together, or in conjunction with other therapies for inhibiting or reducing cell proliferation.
- the present invention provides isolated nucleic acid segments.
- Such isolated nucleic acid segments may encode wild-type or mutant hKIS polypeptides.
- the isolated nucleic acid segments encode a transdominant mutant hKIS.
- a transdominant mutant hKIS is a polypeptide that is capable of interfering with the ability of endogenous hKIS to phosphorylate p27.
- a transdominant mutant hKIS would lead to or enhance cell cycle arrest in a cell containing the mutant.
- An example of a transdominant mutant hKIS is an hKIS that contains a mutation altering its serine/threonine kinase activity, such as that encoded by SEQ ID NO:3).
- the isolated nucleic acid encodes a cyclin kinase inhibitor containing a mutation at a serine or threonine amino acid. It is preferred that the cyclin kinase inhibitor retains its ability to arrest the cell cycle. Examples of mutated cyclin dependent kinases include mutated of p16, p21 , p27, and p57.
- the isolated nucleic acids of the present invention may be contained in an expression vector.
- the expression vector may be a plasmid or a viral vector.
- the viral vector may be replication deficient and includes a retroviral vector, an adenoviral vector, an adenovirus associated viral vector, or a lentivirai vector.
- the isolated nucleic acids of the present invention may be contained in or associated with a medical device, such as a catheter.
- kits may also include one or more medical devices for administering the nucleic acid or polypeptide to a patient or one or more cells of a patient.
- hKIS Saccharomyces cervisiae.
- hKIS was identified using a yeast two hybrid assay (Example 1).
- hKIS was co-transfected with either p27 K ⁇ p1 , p27 K ⁇ p1 (1-85aa), p27 K ⁇ p1 (144-198aa), p57 K ⁇ p2 , p57 K ⁇ 2 (1-87aa), p57 K ⁇ p2 (260-335aa), and p21 C ⁇ p1 into yeast, ⁇ -galactosidase assay (Sherr, 1994) on selection plates was performed, and the intensity was categorized by visualization at the intensity of the staining.
- CKI cyclin-dependent kinase inhibitor
- ⁇ -gal ⁇ - galactosidase
- CDK CS cyclin-dependent kinase consensus sequence
- NLS nuclear localization signal
- PCNA proliferating cell nuclear antigen
- +++ very strong staining
- ++ strong staining
- (+/-) weak staining
- - no staining. No staining was observed with the GBT9 backbone or irrelevant negative controls, pLAM5' (human laminC/GAL4 DNA binding domain) or pVA3 (murine p53/GAL4 DNA binding domain) (Clontech, Palo Alto, CA).
- the inventors In order to identify proteins that bind to p27, the inventors first utilized the yeast two-hybrid system to identify proteins that associate with p27 in vivo (Fields and Song, 1989; Chien et al, 1991 ; Durfee et al, 1993; Harper et al, 1993). Such analyses led to the discovery a novel gene that encodes a polypeptide that binds to p27 in the yeast assay. This gene is included herein as hKIS (human KIS) DNA and protein sequences (SEQ ID NO:1 and SEQ ID NO:2, respectively).
- hKIS human KIS
- Prominent examples include MDM2, which binds and inhibits the tumor suppressor function of p53, and the transforming proteins encoded by certain DNA viruses (e.g., the SV40 large T antigen), that also bind and inactivate tumor suppressors such as p53 and Rb.
- DNA viruses e.g., the SV40 large T antigen
- the inventors have determined that the interaction between hKIS and p27 reduces the ability of p27 to arrest cells in G1.
- hKIS serves as a dominant gene controlling cell proliferation.
- inhibiting hKIS is a therapeutic approach.
- hKIS inhibition could be achieved by providing to a hyperproliferative cell, or administering to a patient, any compound that inhibits the hKIS gene, mRNA, or protein.
- embodiments of the present invention include assays to find compounds capable of reducing the level of transcription of the hKIS gene.
- Such assays include contacting a cell with a compound and comparing the amount of hKIS RNA in the cell as compared to a control. This comparison may be done through any of a number of techniques including, Northern blotting, semi-quantitative PCR, or RNase protection assays.
- Preferred compounds are hKIS antisense oligonucleotides.
- Other embodiments of the present invention include assays to find compounds that inhibit the ability of serine/threonine kinases, such as hKIS, to phosphorylate CKIs, such as p27. Such methods may be in vitro or in vivo.
- the assay may include contacting a cell or protein composition comprising a hKIS and p27 protein with a compound and determine the ability of the two proteins to interact with each other.
- the ability of the two proteins to interact may be determined by a number of methods including immunoprecipitation, plasmon resonance techniques, or fluorescence energy transfer techniques.
- the substance may permit binding of the two proteins but inhibit phosphorylation. Such instances may be determined by detecting phosphorylation of the CKI.
- cell proliferation may be inhibited by providing to a hyperproliferative cell, or administering to a patient, a CKI comprising one or more mutations that prevent or reduce phosphorylation of the CKI's serine/threonine residues by a serine/kinase, such as hKIS.
- a serine/kinase such as hKIS.
- a such mutated CKI would maintain the ability to arrest cells in G1 phase, as shown in example 1 , yet not be inhibited by the expression of a serine /threonine kinase.
- the mutation may prevent interaction of the CKI with the respective serine/threonine or prevent phosphoryation of one or more serine/threonine subsequent to interaction of the two proteins.
- the mutated CKI is p27 comprising a serine to alanine mutation at amino acid number 10.
- Other methods of inhibiting cell proliferation include, but are not limited to, compounds that reduce transcription of the endogenous hKIS, compounds that prevent translation of hKIS mRNA, compounds that prevent the interaction of hKIS and p27, and compounds that prevent phosphorylation of p27 by hKIS.
- Important aspects of the present invention concern isolated DNA segments and recombinant vectors encoding wild-type, polymorphic or mutant hKIS, and the creation and use of recombinant host cells that express wild- type, polymorphic or mutant hKIS, using the sequence of SEQ ID NO:1.
- the present invention concerns DNA segments, isolatable from mammalian and human cells, that are free from total genomic DNA and that are capable of expressing a protein or polypeptide that has p27-binding activity.
- the DNA segments encode hKIS.
- DNA segment refers to a DNA molecule that has been isolated free of total genomic DNA of a particular species.
- a DNA segment encoding hKIS refers to a DNA segment that contains wild-type, polymorphic or mutant hKIS coding sequences yet is isolated away from, or purified free from, total mammalian or human genomic DNA. Included within the term "DNA segment”, are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like.
- a DNA segment comprising an isolated or purified wild-type, polymorphic or mutant hKIS gene refers to a DNA segment including wild- type, polymorphic or mutant hKIS coding sequences and, in certain aspects, regulatory sequences, isolated substantially away from other naturally occurring genes or protein encoding sequences.
- the term "gene” is used for simplicity to refer to a functional protein, polypeptide, or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides, domains, peptides, fusion proteins and mutants.
- isolated substantially away form other coding sequences means that the gene of interest, in this case the wild-type, polymorphic or mutant hKIS gene forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.
- the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences that encode a wild-type, polymorphic or mutant hKIS protein or peptide that includes within its amino acid sequence a contiguous amino acid sequence in accordance with, or essentially as set forth in, SEQ ID NO:2 corresponding to wild-type, polymorphic or mutant human KIS.
- the invention concerns isolated DNA segments and recombinant vectors that encode a hKIS protein or peptide that includes within its amino acid sequence the substantially full length protein sequence of SEQ ID NO:2.
- sequence essentially as set forth in SEQ ID NO:2 means that the sequence substantially corresponds to a portion of SEQ ID NO:2 and has relatively few amino acids that are not identical to, or a biologically functional equivalent of, the amino acids of SEQ ID NO:2.
- biologically functional equivalent is well understood in the art and is further defined in detail herein. Accordingly, sequences that have between about 70% and about 80%; or more preferably, between about 81 % and about 90%; or even more preferably, between about 91 % and about 99%; of amino acids that are identical or functionally equivalent to the amino acids of SEQ ID NO:2 will be sequences that are "essentially as set forth in SEQ ID NO:2", provided the biological activity of the protein is maintained.
- the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in SEQ ID NO:1.
- the term "essentially as set forth in SEQ ID NO:1 is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of SEQ ID NO:1 and has relatively few codons that are not identical, or functionally equivalent, to the codons of SEQ ID NO:1.
- DNA segments that encode proteins exhibiting p27-binding activity will be most preferred.
- codons that encode the same amino acid such as the six codons for arginine or serine, and also refers to codons that encode biologically equivalent amino acids (see Table 1 , below).
- amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned.
- the addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.
- sequences that have between about 70% and about 79%; or more preferably, between about 80% and about 89%; or even more preferably, between about 90%, 92%, 93%, 94% and about 99%; of nucleotides that are identical to the nucleotides of SEQ ID NO:1 will be sequences that are "essentially set forth in SEQ ID NO:1.”
- Sequences that are essentially the same as those set forth in SEQ ID NO:1 may also be functionally defined as sequences that are capable of hybridizing to a nucleic acid segment containing the complement of SEQ ID NO:1 under relatively stringent conditions. Suitable relatively stringent hybridization conditions will be well known to those of skill in the art, as disclosed herein. Naturally, the present invention also encompasses DNA segments that are complementary, or essentially complementary, to the sequence set forth in SEQ ID NO:1. Nucleic acid sequences that are "complementary" are those that are capable of base-pairing according to the standard Watson-Crick complementarily rules.
- the term "complementary sequences” means nucleic acid sequences that are substantially complementary, as may be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment of SEQ ID NO:1 under relatively stringent conditions such as those described herein.
- the nuclear acid segments of the present invention regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may very considerably.
- nucleic acid fragments of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.
- nucleic acid fragments may be prepared that include a short contiguous stretch identical to or complementary to SEQ ID NO:1 , such as about 8, about 10 to about 14, or about 15 to about 20 nucleotides.
- DNA segments with total lengths of about 1 ,000, about 500, about 200, about 100 and about 50 base pairs in length (including all intermediate lengths) are also contemplated to be useful.
- intermediate lengths means any length between the quoted ranges, such as 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, etc.; 21 , 22, 23, etc.; 30, 31 , 32, etc.; 50, 51 , 52, 53, etc.; 60, 61 , 62, 63, 64, etc.; 100, 101 , 102, 103, etc.; 150, 151 , 152,
- the various probes and primers designed around the disclosed nucleotide sequences of the present invention may be of any length.
- an algorithm defining all primers can be proposed;
- n is an integer from 1 to the last number of the sequence and y is the length of the primer minus one, where n + y does not exceed the last number of the sequence.
- the probes correspond to bases 1 to 10, 2 to 11 , 3 to 12 ... and so on.
- the probes correspond to bases 1 to 15, 2 to 16, 3 to 17... and so on.
- the probes correspond to bases 1 to 20, 2 to 21 , 3 to 22... and so on.
- this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO:1.
- Recombinant vectors and isolated DNA segments may therefore variously include these coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that nevertheless include such coding regions or may encode biologically functional equivalent proteins or peptides that have variant amino acids sequences.
- DNA segments of the present invention encompass biologically functional equivalent hKIS proteins and peptides. Such sequences may arise as a consequence of codon redundancy and functional equivalency that are known to occur naturally with nucleic acid sequences and the proteins thus encoded.
- functionally proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques, e.g., to disrupt the kinase properties of hKIS or to alter the domain of hKIS responsible for interaction with p27.
- DNA segments encoding relatively small peptides such as, for example, peptides of from about 15 to about 50 amino acids in lengths, and more preferably, of from about 15 to about 30 amino acids in length; and also larger polypeptides up to and including proteins corresponding to the full-length sequences set forth in SEQ ID NO:2. It is contemplated that such DNA segments encoding polypeptides or mutants thereof may be useful in methods of interring with the biological function of the endogenous hKIS protein. In a preferred embodiment, the DNA segment is that of SEQ ID NO: 3.
- the present invention concerns isolated DNA segments and recombinant vectors encoding mutant CKIs and the creation and use of recombinant host cells that express mutant CKIs.
- CKIs have the ability to arrest the cell cycle and are useful in therapies designed to inhibit or otherwise limit cell proliferation.
- Examples of cell proliferation disorders that can be affected by the modified CKIs described herein include restenosis, atherosclerosis, cancer, smooth muscle cell proliferative diseases or disorders of any vessel in the body, and the like.
- Examples of CKI include p16, p21 , p27, p57.
- the present invention includes a DNA segment encoding a CKI modified such that it containing a mutation of one or more serine or threonine residues.
- Such mutants maintain the ability to arrest cells under going proliferation and are no longer able to be phosphorylated/inhibited by a serine/threonine kinase.
- the serine or threonine residue is changed to alanine.
- the serine or threonine may be changed to essentially any other amino acid as long as the change allows the CKI protein to maintain its functional activity and is no longer phosporylatable/inhibited by a serine/threonine kinase.
- Alanine generally is preferred because it tends to have the least amount of effect on the conformation or function of the protein possessing the mutation.
- Other amino acids, such as glycine also can be used to advantage.
- One or more nucleotides of a serine or threonine codon can be modified to create an alanine codon.
- the codons for alanine are listed in table 1.
- One of ordinary skill in the art would be able to create the mutation and test for a decrease in the ability of the CKI to be phosphorylated/inhibited by a serine/threonine kinase and maintain its ability to arrest the cell cycle.
- the serine or threonine residue/codon to be modified occurs within residues 1-20 of the encoded protein. In another embodiment the serine/threonine residue to modified occurs within residues
- p16 is modified at S4 or T10; p21 is modified at S2 or S15; p27 is modified at S2, S7, S10, or S12; p57 is modified at S2, S5, S8, T9, S10 or T11.
- expression vector or construct means any type of genetic construct containing a nucleic acid coding for a gene product in which part or all of the nucleic acid encoding sequence is capable of being transcribed.
- the transcript may be translated into a protein, but it need not be.
- expression includes both transcription of a gene and translation of a RNA into a gene product.
- expression only includes transcription of the nucleic acid, for example, to generate antisense constructs.
- vectors are contemplated to be those vectors in which the coding portion of the DNA segment, whether encoding a full length protein or smaller peptide, is positioned under the transcriptional control of a promoter.
- a “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene.
- the phrases “operatively positioned", “under control” or “under transcriptional control” means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene.
- the promoter may be in the form of the promoter that is naturally associated with the expressed gene, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR technology, in connection with the compositions disclosed herein (PCR technology is disclosed in U.S.
- a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with the gene in its natural environment.
- Such promoters may include promoters normally associated with other genes, and/or promoters isolated from any other bacterial, viral, eukaryotic, or mammalian cell.
- promoters normally associated with other genes, and/or promoters isolated from any other bacterial, viral, eukaryotic, or mammalian cell.
- promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al. (1989), incorporated herein by reference.
- the promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides.
- the particular promoter that is employed to control the expression of a nucleic acid is not believed to be critical, so long as it is capable of expressing the nucleic acid in the targeted cell.
- a human cell it is preferable to position the nucleic acid coding region adjacent to and under the control of a promoter that is capable of being expressed in a human cell.
- a promoter might include a human or viral promoter.
- the human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter and the Rous sarcoma virus long terminal repeat can be used to obtain high-level expression of transgenes.
- CMV human cytomegalovirus
- SV40 early promoter the Rous sarcoma virus long terminal repeat
- the use of other viral or mammalian cellular or bacterial phage promoters which are well-known in the art to achieve expression of a transgene is contemplated as well, provided that the levels of expression are sufficient for a given purpose.
- Tables 3 and 4 below list several elements/promoters which may be employed, in the context of the present invention, to regulate the expression of a heterologous gene. This list is not intended to be exhaustive of all the possible elements involved in the promotion of transgene expression but, merely, to be exemplary thereof. Any promoter/enhancer combination (as per the Eukaryotic Promoter
- Eukaryotic cells can support cytoplasmic transcription from certain bacterial and viral promoters if the appropriate bacterial or viral polymerase is provided, either as part of the delivery complex or as an additional genetic expression construct.
- Tumor Necrosis Factor FMA Hensel ef a/., 1989 Thyroid Stimulating Thyroid Hormone Chatterjee ef al, 1989 Hormone A Gene
- the added sequences may include additional enhancers, promoters or even other genes.
- one may, for example prepare a DNA fragment that contains the native regulatory elements positioned to regulate one or more copies of the native gene and/or another gene or prepare a DNA fragment which contains not one but multiple copies of the promoter region such that transcription levels of the desired gene are relatively increased.
- a transgene to produce a protein once a suitable clone or clones have been obtained, whether they be cDNA based or genomic, one may proceed to prepare an expression system.
- cDNA and genomic sequences are suitable for eukaryotic expression, as the host cell will generally process the genomic transcripts to yield functional mRNA for translation into protein.
- cDNA version will provide advantages in that the size of the gene will generally be much smaller and more readily employed to transfect the targeted cell than will be a genomic gene, which will typically be up to an order of magnitude larger than the cDNA gene.
- the inventors do not exclude the possibility of employing a genomic version of a particular gene where desired.
- polyadenylation signal In expression, one will typically include a polyadenylation signal to effect proper polyadenylation of the transcript.
- the nature of the polyadenylation signal is not believed to be crucial to the successful practice of the invention, and any such sequence may be employed.
- Preferred embodiments include the SV40 polyadenylation signal and the bovine growth hormone polyadenylation signal, convenient and known to function well in various target cells.
- a terminator also contemplated as an element of the expression cassette. These elements can serve to enhance message levels and to minimize read through from the cassette into other sequences.
- a specific initiation signal also may be required for efficient translation of coding sequences. These signals include the ATG initiation codon and adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may need to be provided.
- initiation codon must be "in-frame" with the reading frame of the desired coding sequence to ensure translation of the entire insert.
- the exogenous translational control signals and initiation codons can be either natural or synthetic.
- the efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements. It is proposed that a wild-type, polymorphic or mutant hKIS gene may be co-expressed with wild-type or mutant p27, wherein the proteins may be co-expressed in the same cell or wherein wild-type, polymorphic or mutant hKIS genes may be provided to a cell that already has wild-type or mutant p27.
- Co-expression may be achieved by co-transfecting the cell with two distinct recombinant vectors, each bearing a copy of either the respective DNA.
- a single recombinant vector may be constructed to include the coding regions for both of the proteins, which could then be expressed in cells transfected with the single vector.
- the term "co-expression" herein refers to the expression of both the wild-type, polymorphic or mutant hKIS and wild-type or mutant p27 proteins in the same recombinant cell.
- the wild-type, polymorphic or mutant hKIS gene may be co-expressed with genes encoding other CKI or tumor suppressor proteins or polypeptides.
- Tumor suppressor proteins contemplated for use include, but are not limited to, the retinoblastoma, p53, Wilms tumor (WT-1), DCC, neurofibromatosis type 1 (NF-1), von Hippel-Lindau (VHL) disease tumor suppressor, Maspin, Brush-1 ,
- BRCA-2 BRCA-2
- MTS multiple tumor suppressor
- contemplated is co-expression with a selected wild-type version of a selected oncogene.
- Wild-type oncogenes contemplated for use include, but are not limited to, tyrosine kinases, both membrane-associated and cytoplasmic forms, such as members of the Src family, serine/threonine kinases, such as
- Mos, growth factor and receptors such as platelet derived growth factor (PDDG), SMALL GTPases (G proteins) including the ras family, cyclin- dependent protein kinases (cdk), members of the myc family members including c-myc, N-myc, and L-myc and bcl-2 and family members.
- PDDG platelet derived growth factor
- G proteins G proteins
- cdk cyclin- dependent protein kinases
- members of the myc family members including c-myc, N-myc, and L-myc and bcl-2 and family members.
- engineered cells are intended to refer to a cell into which an exogenous DNA segment or gene, such as a cDNA or gene encoding a hKIS has been introduced. Therefore, engineered cells are distinguishable from naturally occurring cells which do not contain a recombinantly introduced exogenous DNA segment or gene. Engineered cells are thus cells having a gene or genes introduced through the hand of man
- Expression vectors for use in mammalian cells may include an origin of replication (as necessary), a promoter located in front of the gene to be expressed, along with any necessary ribosome binding sites, RNA splice sites, polyadenylation site, and transcriptional terminator sequences.
- the origin of replication may be provided either by construction of the vector to include exogenous origin, such as may be derived from SV40 or other viral (e.g., polyoma, adenovirus, VSV, or BPV) source, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the later is often is sufficient.
- the promoters may be from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., CMV immediate early, the adenovirus late promoter; the vaccinia virus 7.5K promoter). Further, it is also possible, and may be desirable, to utilize promoter or control sequences normally associated with the desired gene sequence, provided such control sequences are compatible with the host cell systems.
- mammalian cells e.g., metallothionein promoter
- mammalian viruses e.g., CMV immediate early, the adenovirus late promoter; the vaccinia virus 7.5K promoter.
- a number of viral based expression systems may be utilized, for example, commonly used promoters are derived from polyoma, Adenovirus 2, and most frequently Simian Virus 40 (SV40).
- the early and late promoters of SV40 virus are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 origin of replication. Smaller or larger SV40 fragments may also be used, providing there is included the approximately 250 bp sequence extending from the Hind ⁇ site toward the Bgl ⁇ site located in the viral origin of replication.
- the coding sequence may be ligated to an adenovirus transcription/ translation control complex, e.g., the late promoter and tripartite leader sequence.
- This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the transgene in infected hosts.
- a non-essential region of the viral genome e.g., region E1 or E3
- one will also typically desire to incorporate into the transcriptional unit an appropriate polyadenylation site (e.g., 5'- AATAAA-3') if one was not contained within the original cloned segment.
- the poly A addition site is placed about 30 to 2000 nucleotides "downstream" of the termination site of the protein at a position prior to transcription termination.
- selection systems including, but not limited, to the herpes simplex virus thymidine kinase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase genes.
- antimetabolite resistance can be used as the basis of selection for dhfr, that confers resistance to methotrexate; gpt, that confers resistance to mycophenolic acid; neo, that confers resistance to the amonoglycoside G- 418; and hygro, that confers resistance to hygromycin.
- a gene of the present invention may be "overexpressed", i.e., expressed in increasing levels of relative to its natural expression in cells.
- overexpression may be assessed by a variety of methods, including semi-quanitative PCR, Northern blotting, RNase protection assays, radio- and Immuno- assays.
- simple and direct methods are preferred, for example, those involving SDS/PAGE and protein staining or western blotting, followed by quantitative analyses, such as densitometric scanning of the resultant gel or blot.
- a specific increase in the level of the mRNA, recombinant protein or peptide in comparison to the level in natural cells is indicative of overexpression.
- Certain embodiments of the present invention may require the introduction of mutations into hKIS or a CKI gene.
- Site-specific mutagenesis provides a ready ability to prepare and test sequence variants, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA.
- Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed.
- a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.
- site-specific mutagenesis is well known in the art and commercial kits are available (ALTERED SITES® ii in vitro Mutagenesis Systems; Promega Corp., Madison, Wis.).
- the technique employs a bacteriophage vector that exists in both a single stranded and double stranded form.
- Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage vectors are commercially available and their use is generally well known to those skilled in the art.
- Double stranded plasmids are also routinely employed in site directed mutagenesis, which eliminates the step of transferring the gene of interest from a phage to a plasmid.
- site-directed mutagenesis is performed by first obtaining a single-stranded vector, or melting of two strands of a double stranded vector which includes within its sequence a DNA sequence encoding the desired protein.
- An oligonucleotide primer bearing the desired mutated sequence is synthetically prepared. This primer is then annealed with the single-stranded DNA preparation, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand.
- a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation.
- This heteroduplex vector is then used to transform appropriate cells, such as E. coli cells, and clones are selected that include recombinant vectors bearing the mutated sequence arrangement.
- appropriate cells such as E. coli cells
- clones are selected that include recombinant vectors bearing the mutated sequence arrangement.
- sequence variants of the selected gene using site- directed mutagenesis is provided as a means of producing potentially useful species and is not meant to be limiting, as there are other ways in which sequence variants of genes may be obtained.
- recombinant vectors encoding the desired gene may be treated with mutagenic agents, such s hydroxylamine, to obtain sequence variants.
- the present invention provides purified, and in preferred embodiments, substantially purified proteins and peptides.
- purified protein or peptide as used herein, is intended to refer to an aqueous composition, isolatable from mammalian cells or recombinant host cells, wherein the protein or peptide is purified to any degree relative to its naturally-obtainable state, i.e., relative to its purity within a cellular extract.
- a purified protein or peptide therefore also refers to a protein or peptide free from the environment in which it naturally occurs.
- the proteins or polypeptides may be full length proteins or may also be less then full length proteins, such as individual domains, regions or even epitopic peptides. Where less than full length proteins are concerned the most preferred will be those containing the functional domains.
- purified will refer to protein or peptide composition that has been subjected to fractionation to remove various other protein or peptide components, and which composition substantially retains the biological activity of the desired protein. For example, a purified wild-type hKIS protein would still maintain biological activity, as may be assessed by binding to p27, forming complexes with p27, or phosphorylating p27.
- substantially purified will refer to a composition in which the protein or peptide forms the major component of the composition, such as constituting about 50% of the proteins in the composition or more.
- a substantially purified protein will constitute more than 60%, 70%, 80%, 90%, 95%, 99% or even more of the proteins in the composition.
- a polypeptide or protein that is "purified to homogeneity," as applied to the present invention means that he polypeptide or protein has a level or purity where the polypeptide or protein is substantially free from other proteins and biological components. For example, a purified polypeptide or protein will often be sufficiently free of other protein components so that degradative sequencing may be performed successfully.
- a natural or recombinant composition comprising at least some proteins or peptides of interest will be subjected to fractionation to remove various other polypeptide or protein components from the composition.
- Various techniques suitable for use in protein purification will be well known to those of skill in the art. These include, for example, precipitation with ammonium sulfate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; chromatography steps such as ion exchange, gel filtration, reverse phase, hydroxylapatite, lectin affinity and other affinity chromatography steps; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques.
- the general approach to the cell proliferation suppression aspect of the present invention is to provide a cell with a transdominant hKIS protein, a CKI mutated such that it is no longer inhibited by a serine/threonine kinase, or both.
- transdominant hKIS it is meant that the mutated hKIS or hKIS polypeptide fragment interferes the ability of endogenous hKIS protein to inhibit p27 mediated G1 arrest. While it is conceivable that a protein may be delivered directly to a cell, a preferred embodiment involves providing a nucleic acid encoding a protein to the cell.
- the polypeptide is synthesized by the transcriptional and translational machinery of the cell, as well as any that may be provided by the expression construct.
- the preferred mode is also to provide a nucleic acid encoding the construct to the cell. All such approaches are herein encompassed within the term "gene therapy”.
- DNA can be directly transferred to somatic target cells by viral vectors, such as retroviruses and adenoviruses, and non-viral methods, such as cationic liposomes, liposome viral conjugates, and polymers.
- viral vectors such as retroviruses and adenoviruses
- non-viral methods such as cationic liposomes, liposome viral conjugates, and polymers.
- Viruses naturally infect mammalian cells and introduce their viral DNA to convert the host biosynthetic pathway to produce viral DNA, RNA, and protein. Molecular biologists have been able to modify these viruses so that they deliver foreign DNA to the target cell but cannot replicate in the host cell nor express viral proteins necessary for encapsulation. In general, early response virai sequences, involved in viral transcription, translocation or capsid synthesis, have been removed from the viral genome and are replaced by the foreign gene of interest. Therefore, these recombinant viruses can only propagate in specific packaging cell lines which express the deleted viral proteins. Replication- deficient retroviruses, adenoviruses, adeno-associated viruses and adenoviral conjugates are now used in gene transfer techniques.
- Retroviruses are RNA viruses that require vector integration into the host genome for expression of the transgene thus limiting their use to dividing cells. As most of the vascular and myocardial cellular components are non-replicating cells, retroviruses are of limited use in cardiovascular gene transfer. In addition, integration at random locations may lead to insertional mutagenesis and transformation. However, there have been no reported short- or long-term toxicity associated with their use in human gene therapy trials. Retrovirus-mediated gene transfer has been used for cell-mediated gene transfer using endothelial cells and for direct gene transfer into porcine arteries. The long-term, high-level expression renders retroviral vectors in particular ideal for ex Vo, cell-mediated gene transfer.
- endothelial cells or vascular smooth muscle cells may be isolated, expanded and transduced in the laboratory and reseeded on to an artery in vivo.
- the technique of ex vivo gene transfer is however fairly cumbersome since it requires cell expansion.
- ex wVo gene transfer of endothelial cells and smooth muscle cells may be useful in seeding stents, grafts or injured arteries during vascular procedures to treat thrombotic disorders or graft hyperplasia.
- Recombinant gutted lentiviruses may represent an attractive alternative to retroviruses.
- Lentiviruses have not been directly implicated in any malignancies and, in contrast to retroviral based vector systems, human, simian and bovine immunodeficiency viral (HIV, BIV, SIV) vector systems have been shown to mediate stable gene transfer in terminally differentiated neurons and macrophages in culture. In vivo, transgene expression is detected for up to 6 months in liver, muscle, retinal tissue, and brain of immune-competent rats in vivo and does not appear to evoke an immune response or local inflammation, permitting repeated viral challenge.
- HIV immunodeficiency viral
- Recombinant adenoviruses efficiently transfect proliferating and non-proliferating cells, but lack mutagenicity since the transgenic genome is not integrated into the host chromosome but remains episomal.
- rAAV Recombinant adeno-associated viruses
- rAAV vectors are described in U.S. Pat. No. 5,139,941.
- rAAV has not been associated with disease in any host and has not been associated with malignancies despite integration of the transgene into the host genome.
- rAAV integrates viral and transgenic DNA preferentially but not exclusively at chromosome 19q locus.
- Adeno-associated viruses are incapable of replication and depend on co-infection with adenovirus or a herpes virus for replication.
- ⁇ -galactosidase and tyrosine hydroxylase have been achieved in non-dividing neurons in the rat CNS by rAAV, and intravenous delivery of rAAV encoding human clotting factor IX resulted intransduction of 3% of all hepatocytes over a 5 month observation period.
- intraluminal and periadventitial vascular delivery of rAAV in atherosclerotic carotid arteries of cynomolgus monkeys results in efficient transgenic expression.
- transgenic expression is predominantly found in adventitial endothelial cells of microvessels.
- Other viral vectors that may be used for gene therapy include herpes simplex virus (U.S. Pat. No. 5,288,641 ) and cytomegalovirus (Miller, 1992).
- Non-viral gene transfer can be performed by microinjection, DEAE-dextran transfection, calcium phosphate precipitation, electroporation, liposomes, and particle-mediated gene transfer (i.e. introducing DNA-coated particles).
- the most common non-viral gene transfer vectors are DNA-liposomes.
- Cationic liposomes condense and entrap the DNA through electrostatic interaction. They are prepared by sonification and remain stable in aqueous solution for months. The positively charged liposome complex fuses with the negatively charged cell surface to release the DNA into the cytoplasm of target cells, bypassing the lysosomal compartment and degradation by serum.
- plasmid DNA is subsequently incorporated in the nucleus as an episome.
- the relatively safe profile of liposomes, the lack of vector size or target cell constraints, as well as the relative ease of liposome-DNA complex preparation favors this gene transfer technique.
- Preclinical studies using different forms of these lipids DOTMA, DC-
- Lipofection-mediated gene transfer results in site-specific expression of foreign recombinant genes in vascular endothelial and smooth muscle cells and alters the biology of the vessel wall.
- Cationic liposomes are well tolerated in vivo and do not induce any biochemical, hemodynamic or cardiac intoxications. Additional advances in lipid chemistry are developing newer generations of cationic liposomes, which permit higher transfection with minimal toxicity.
- the transfection efficacy and specificity of lipofection may be further augmented by coupling of ligands or viral particles (Ad, HVJ, VSVG) to the liposomes.
- Ad, HVJ, VSVG ligands or viral particles
- plasmid DNA or RNA may be injected directly into tissue such as skeletal muscle or myocardium.
- anti-sense oligonucleotides are used for gene therapy (Morishita et al, 1993). Anti-sense oligonucleotides do not require a vector for cell transduction and can be directly injected in the target tissue. Anti-sense oligonucleotides are short DNA sequences complementary to the RNA message of interest, which are chemically modified to resist nuclease degradation. The oligonucleotide may be modified at the 5; end to prevent nuclease degradation or may made up of ribonucleotide bases attached to a peptide backbone (protein nucleic acid).
- anti-sense oligonucleotides are able to efficiently modify intracellular expression of factors involved in smooth muscle cell and endothelial cell migration and proliferation, including by use of anti-sense oligonucleotides against c-myc, c-myb, cdc2, and PCNA.
- the nucleotide sequence hybridizes to target RNA, which prevents translation of RNA, targets the message for degradation by ribonuclease H, and interferes with cytosolic translocation.
- gene therapy is used to treat or prevent cell proliferation.
- vascular cell proliferation such as that associated with restenosis or atherosclerosis is prevented using gene therapy.
- a gene therapy vector or composition of the present invention may be tested in an animal model. Studies in animal models of cardiovascular disease have demonstrated that transgenes can be expressed at high levels at local sites in the vasculature.
- Medical devices that are suitable for use in the present invention include known devices for the localized delivery of therapeutic agents.
- Such devices include, for example, catheters such as injection catheters, balloon catheters, double balloon catheters, microporous balloon catheters, channel balloon catheters, infusion catheters, perfusion catheters, etc., which are, for example, coated with the therapeutic agents or through which the agents are administered; needle injection devices such as hypodermic needles and needle injection catheters; needleless injection devices such as jet injectors; coated stents, bifurcated stents, vascular grafts, stent grafts, etc.; and coated vaso-occlusive devices such as wire coils.
- stents that are commercially available and may be used in the present application include the RADIUSTM (Scimed Life Systems, Inc.), the SYMPHONY® (Boston Scientific Corporation), the Wallstent (Schneider Inc.), the Precedent IITM (Boston Scientific
- Such devices are delivered to and/or implanted at target locations within the body by known techniques.
- the double balloon catheter was an initial catheter employed in animal model studies and was useful to demonstrate the basic principles of gene transfer.
- the catheter consists of two balloons placed about 1.5 cm apart with an inner protected space.
- the genetic vector is instilled into the isolated arterial segment between the balloons.
- Adenoviral-mediated recombinant gene expression is detected in endothelial cells, vascular smooth muscle cells and adventitial cells for several weeks following infection and is not found downstream to the arterial segment or in other tissues by PCR.
- Retroviral-mediated gene expression can be detected for up to 6 months.
- a disadvantage to this catheter is the possibility of distal ischemia due to occlusion of blood flow. Alternate delivery devices permit flow distal to the isolated segment allowing a prolonged instillation time period without compromising distal perfusion.
- Porous and microporous balloons infuse the vector directly into the juxtapositioned arterial wall through small pores in the catheter.
- the depth of delivery is directly related to the perfusion pressure.
- Channel balloon catheters combine two separate inflatable compartments for balloon angioplasty and drug infusion, allowing separate control of balloon inflation pressure for positioning and drug infusion pressure.
- a hydrogel coated balloon catheter has a hydrophilic polyacrylic acid polymer coating of the balloon. This polymer absorbs the DNA suspension and when the balloon is inflated, the DNA coating is pressed against the vessel wall.
- the iontophoretic balloon uses a local current between the balloon and the skin of the subject to drive the negatively charged DNA into the arterial wall.
- Other delivery devices include stents coated with a DNA- impregnated polymer or cells comprising a nucleic acid of the present invention (ex wVo gene transfer) into arterial and venous grafts.
- tissue may be selectively targeted for gene therapy by use of tissue specific promoters and enhancers.
- the method of the present invention can be combined with other methods for treating cell proliferation.
- other genes such as thymidine kinase, cytosine deaminase, wild-type or mutated p21 , p27, and p53 and combinations thereof can be concomitantly transformed into cells and expressed.
- HS-tK herpes simplex-thymidine kinase
- mutant hKIS or CKI gene expression could be used similarly in conjunction with other gene therapy approaches.
- the genes may be encoded on a single nucleic acid but separately transcribed. Alternatively, the genes may be operably linked such that they are contranscribed. In preferred embodiments, the genes are operably linked to encode a fusion protein. In other embodiments the co-transcribed genes are separated by an internal ribosome binding site allowing the proteins to be translated separately. Such combination therapies are described in WO 99/03508 (incorporated herein by reference in its entirety).
- nucleic acid or protein compositions of the present invention may be introduced into the myocardium.
- Myocardial gene transfer requires tranfection of terminally differentiated myocytes.
- Adenoviral gene transfer by intracoronary or intramyocardial delivery results in transient gene expression for several weeks in a limited number of cells.
- Adeno-associated viral vectors have been shown to induce stable transgene expression in up to 50% of murine, rat and porcine cardiomyocytes after ex vivo intracoronary infusion and myocardial injections for at least 6 months. These vectors may be useful for gene delivery to treat human myocardial diseases.
- vascular diseases are characterized by abnormalities of cell proliferation.
- One approach to therapies is to express genes that inhibit cell proliferation within vascular lesions, for example, after angioplasty or in a by-pass graft. Most approaches regulate the cell cycle in vascular smooth muscle, endothelial or macrophage cells.
- CDKs cyclin/cyclin-dependent kinase complexes
- Endogenous inhibitors of the cyclin-CDKs termed the cyclin-dependent kinase inhibitors (CKIs) result in cell cycle arrest and cessation of cell proliferation.
- CKIs cyclin-dependent kinase inhibitors
- Prodrug-enzyme therapies using thymidine kinase or cytosine deaminase, constitute a form of local therapy in which an enzyme is expressed locally that converts a prodrug into an active form.
- Gene transfer of DNA encoding these converting enzymes to the injured arterial wall combined with systemic prodrugs administration produces high levels of growth inhibitory drugs in the target tissue.
- the therapeutic effect of transgene expression can be regulated by administration of the prodrug and can be initiated independently of the gene transfer.
- Herpes simplex virus thymidine kinase converts an inert nucleoside analog, ganciclovir into a phosphorylated, toxic form in transduced cells. Its subsequent incorporation into the host DNA induces chain termination and cell death in dividing cells, while non-dividing cells remain unaffected. Local delivery of recombinant adenovirus encoding for
- HSV-tk at the time of the balloon injury and systemic administration to ganciclovir inhibited smooth muscle cell proliferation in vivo, and decreased intimal formation in balloon-injured porcine and rat arteries and atherosclerotic rabbit arteries.
- a similar reduction of neointimal hyperplasia was observed in arterial interposition grafts which overexpress
- Cytosine deaminase catalyzes the hydrolytic deamination of non-toxic cytosine and 5-fluorocytosine (5-FC) into uracil and 5-fluorouracil, which inhibits thymidilate synthase and hence DNA and RNA synthesis.
- CD/5- FC does not induce significant necrosis or apoptosis but results in cytostatic effects on vascular smooth muscle cells.
- CD gene transfer in the rabbit femoral injury model followed by systemic 5-FC treatment resulted in a decrease of the intima to media area ratio, comparable to the efficacy of HSV-tk/ganciclovir in a rat and pig model of vascular injury.
- the Fas/FasL death-signaling pathway mediates cellular immunocytotoxicity in activated lymphocytes. Binding of the Fas receptor to FasL activates the caspase pathway leading to apoptosis. FasL is expressed in intimal smooth muscle cells and immune competent cells in atherosclerotic plaques.
- FasL may function to protect the vessel from leukocyte extravasation to the subendothelial space during arterial repair by inducing T lymphocyte apoptosis.
- Targeting of cell cycle regulatory proteins promotes inhibition of cell proliferation, and cell differentiation.
- Cell cycle arrest prevents vsmc proliferation and migration and endothelial dysfunction, shown by improved vasoreactivity and NO production, rendering the vessel less susceptible to inflammatory infiltration and free radical formation. Progression through the cell cycle is controlled by the assembly and disassembly of the different cyclin-cyclin dependent kinase complexes. These complexes phosphorylate retinoblastoma protein leading to the release of the sequestered transcription factors, E2F and Elf 1.
- the cyclin dependent kinase inhibitors modulate the enzymatic activity of cyclin/CDK complexes necessary for Gi progression.
- Ad-p21 infection of porcine iliofemoral and rat carotid arteries following balloon injury reduces BrdU incorporation by 35% and l/M area ratio by 37%.
- Gax homeobox gene overexpression, as an upstream regulator of p21 in the rat carotid artery injury model inhibited neointimal formation and luminal narrowing by 59 and 56 percent, respectively.
- Adenovirus-mediated overexpression of p27 in balloon-injured rat and porcine arteries significantly attenuated intimal lesion formation.
- Rb retinoblastoma gene product
- E2F decoy oligodeoxynucleotide reduces not only graft susceptibility to atherosclerosis, and enhances medial hypertrophy, which renders the graft more resistant to increased hemodynamic stress and improves vein graft patency.
- Metalloproteinases degrade the extracellular matrix, promote growth factor release and cell activation and are therefor essential for cell migration.
- Overexpression of tissue inhibitor of metalloproteinases (TIMP) was shown to inhibit invasive and metastatic behavior of tumor cells.
- TIMP protein expression has been evaluated in an organ culture model of neointimal formation, which lends itself for the study of smc migration rather than proliferation.
- Overexpression of TIMPi and 2 reduced neointima formation and neointimal cell numbers by 54-79% and 71 % respectively, but did not alter smc proliferation and viability.
- nucleic acids and proteins or polypeptides of the present invention may be particularly useful in methods of treating cardiovascular disease.
- a nucleic acid encoding a transdominant hKIS or mutated CKI may be introduced locally into an injured artery to prevent restenosis.
- a vector comprising both a trandominant hKIS and a mutated p27 is used to treat restenosis.
- both genes may be introduced together but in separate vectors.
- gene therapy using a nucleic acid of the present invention may be combined with other gene and non-gene therapies to treat a cardiovascular disease.
- Potential molecular targets for cardiovascular disease are shown in Table 5. Table 5 Potential molecular targets for cardiovascular disease
- Aqueous compositions of the present invention comprise an effective amount of a compound dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.
- Aqueous compositions of gene therapy vectors are also contemplated.
- pharmaceutically or pharmacologically acceptable refer to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate.
- pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents isotonic and absorption delaying agents and the like.
- the use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologies standards.
- the biological material should be extensively dialyzed to remove undesired small molecular weight molecules and/or lyophilized for more ready formulation into a desired vehicle, where appropriate.
- the active compounds will then generally be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, subcutaneous, intralesional, or even intraperitoneal routes.
- compositions suitable for local administration of a composition of the present invention include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- a composition of the present invention can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- the carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, an liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the technology of U.S. Patents 4,601 ,903; 4,559,231 ; 4,559,230; 4,596,792; and 4,578,770 each incorporated herein by reference, may be used.
- Kits may comprise compositions comprising various components made using the present invention such as for example, cells, expression vectors, virus stocks, proteins, antibodies, catheters, coated stents, and drugs. These components may be in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.
- kits may include a nucleic acid encoding a CKI serine/threonine mutant and/or a trandominant hKIS mutant.
- Example 1 Identification of hKIS a Serine/Threonine Kinase that interacts with p27 Cyc ⁇ n-Dependent Kinase Inhibitor Using a yeast two-hybrid screen, cDNAs from a human B-cell library
- E/Cdk2 (Polyak et al, 1994; Sheaff et al, 1997; Matsuoka, 1995).
- the COOH-terminal domain is inactive as a CDK inhibitor (CKI), but it has been assumed to play a role in protein-protein interactions (Maucuer, 1997).
- CKI CDK inhibitor
- NCBI Center for Biotechnology Information
- the yeast two-hybrid screen yielded several cDNAs that interacted with the p27 K ⁇ p1 COOH-terminal domain, but not the NH 2 -terminal region of p27 K ⁇ p1 , p57 K ⁇ p2 , or p21 C ⁇ p1 (Fig. I).
- the clones interacted with full-length p27 K ⁇ p1 as well as the COOH-terminal domain of p27 K ⁇ p1 in yeast.
- the entire coding sequence of one clone (SEQ ID NO:1 ), C21 was 99% similar to the rat serine/threonine protein kinase KIS (Zamore et al, 1992).
- hKIS human homologue of rat KIS
- SEQ ID NO:2 The 46.5 kDa hKIS (SEQ ID NO:2) protein consists of an NH 2 -terminal serine/threonine kinase consensus region and a COOH terminal region with 42% sequence similarity to hU2AF65, a 65kDa subunit of the splicing factor U2AF (Zamore, 1992).
- hKIS binding was specific for COOH-terminal p27 K ⁇ p1 , because it failed to interact in the two hybrid assay with NH 2 -terminal p27 K ⁇ p1 , p57 K ⁇ p2 , p21 C ⁇ p1 and several negative controls.
- hKIS The specificity of the interaction between hKIS and p27 K ⁇ p1 was analyzed further biochemically.
- In vitro translated 35 S-methionine-labeled hKIS was incubated with glutathione S-transferase (GST), GST-p16 lnM , GST-p27 K,p1 , GST-p21 C ⁇ p1 , or GST-p57 K ⁇ p2 (Morgan, 1995).
- GST glutathione S-transferase
- GST-p16 lnM GST-p16 lnM
- GST-p27 K,p1 GST-p21 C ⁇ p1
- GST-p57 K ⁇ p2 GST-p57 K ⁇ p2
- hKIS To determine the function of hKIS, epitope-tagged in vitro translated hKIS was immunoprecipitated and incubated with purified recombinant p27 K ⁇ p1 in the presence of 32 P-ATP (Zamore, 1992). In contrast to a negative control extract, hKIS readily phosphorylated bacterial-produced p27 K ⁇ p1 . Under the same conditions, hKIS did not phosphorylate p57 K ⁇ p2 , p21 C ⁇ p1 or p16 lnk4 , documenting the specificity of p27 ⁇ ,p1 phosphorylation by hKIS. In addition, hKIS was also observed to undergo autophosphorylation.
- hKIS was incubated in an in vitro phosphorylation assay with NH 2 -terminal or COOH- terminal GST-p27 K ⁇ p1 .
- hKIS was found to bind the COOH-terminal domain of p27 K ⁇ p1
- phosphorylation of GST- p27 K ⁇ p1 was detected in the NH 2 .terminal region of the protein.
- mutational analyses were performed in this region.
- hKIS-green fluorescent protein (GFP) fusion protein was prepared and transfected into 293 cells. In contrast to GFP alone, which showed characteristic cytoplasmic staining, hKIS-GFP localized predominantly in the nucleus. This localization was confirmed by biochemical analysis of epitope-tagged hKIS in nuclear and cytoplasmic extracts. Endogenous p27 K ⁇ p1 was detected in both compartments, though at higher levels in the nucleus. In contrast, hKIS localized primarily to the nucleus.
- GFP green fluorescent protein
- endogenous p27 K ⁇ p1 and hKIS were found to associate biochemically in vivo in nuclear extracts, as determined by immunoprecipitation with anti- p27 K ⁇ p1 antibody, followed by detection of hKIS by Western blot analysis.
- cell transfection studies were performed. A human melanoma line, UM316, was transfected with hKIS, p27 K ⁇ p1 or p21 C ⁇ p1 , alone or in various combinations. Human CD2 was included as a marker for cell transfection to facilitate cell cycle analysis (Hannon and Beach, 1999; Danthinne et al, 1999).
- NHI 293 cells were transfected with hKIS (K54R), p27 K ⁇ p1 , p27 K ⁇ p1 (S10A) mutant, alone or in various combinations.
- Human CD2 was included as a mark for cell transfection to facilitate cell cycle analysis.
- Transfection of hKIS and hKIS (K54R) alone did not alter cell cycle distribution, but p27 K ⁇ p1 as well as p27 K ⁇ p1 S10A arrested cells at the G1/S checkpoint as expected.
- cotransfection of hKIS and p27 K ⁇ p1 reversed the growth arrest by p27 K ⁇ 1 .
- Example 1 The expression vectors of Example 1 were constructed as follows. pGBT9p27 K ⁇ p1 CR, pGBT9p27 K ⁇ p1 NH 2 and pGBT9p27 K ⁇ p1 COOH were obtained by PCR amplification (p27 K ⁇ p1 CR: p27 K ⁇ p1 CR5'P CGT GAA TTC ATG TCA AAC GTG CGA GTG (SEQ ID NO:7) and p27 K,p1 CR3'P CGT GGA TCC TTA CGT CTG GCG TCG AAG GCC (SEQ ID NO:8); p27 K,p1 NH 2 : p27 K ⁇ p1 CR5'P and p27 K ⁇ p1 NH 2 3'P CTG GGA TCC TGT AGA ACT CGG GCA AGC T (SEQ ID NO: 9); p27 K ⁇ p1 COOH: p27 K ⁇ p1 COOH5'P
- GST glutathione S-transferase
- pGSTp27 Kip1 NH2S10M was cloned by PCR amplification (p27 Kip1 NH 3 S10M5'P GCT GGA TCC ATG TCA AAC GTG AGA GTG TCC AAC GCT CCG AG (SEQ ID NO:15)(Serine10 AGC ⁇ Alanine GCT) and p27 Kip1 NH 2 3'P) and subcloned into BamHI site of pGEX-6P.
- pGST p16 lnk4 was obtained by EcoRI/Xhol digestion of BShpl 6 and subcloned into EcoRI/Xhol digested pGST-6P.
- the 3'end of hKIS cDNA was mapped by rapid amplification of cDNA ends (RACE) with internal primers for hKIS and total RNA from JY-cells by using 3'RACE system (GIBCO, Gaithersburg, MID).
- the hKIS cDNA was cloned into the Xhol site of pcDNA3.1/His (Invitrogen, Carlsbad, CA).
- pVR1012hKIS was obtained by Xhol/Xba digestion of pcDNA3.1 hKIS and subcloned into the Sa1l/Xba site of VCL1012CMV (Vical, San Diego, CA).
- the plasmids pVR1012p2l, pVR1012p27 Kip1 , and pVRCD2 were described elsewhere (Serrano, 1995).
- [ 35 S]-methionine-labeled and unlabeled hKIS were produced by in vitro transcription/translation using the TNT T7-coupled reticulocyte lysate system (Promega, Madison, Wl) with pcDNA3.1 KIS as the template.
- the crude cell lysate of the GST-fused proteins was prepared according to the manufacturer's protocol (Phannacia, Piscataway, NJ).
- the fusion proteins were bound to gluthathione-SepharoseTM-4B beads (Pharmacia Biotech, Uppsala Sweden) in IP buffer containing 250mM KCL, 2.5mM MgCI 2 , 20 mM Hepes pH7.9, 0.1% NP40 and IxCompleteTM protease inhibitor cocktail (Boehringer, Mannheim, Germany). After 1 hour incubation at 4°C, the beads were washed three times.
- Binding assays were performed by incubating GST-fusion protein with 20 ⁇ g [ 35 S]-methionine-labeled hKIS transcription/translation mixture at 4°C for 1 hour in IP buffer and washed 3 times. The bound proteins were analyzed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). To confirm the correct size and amount of GST-fusion proteins, the PAGE was stained with Coomassie Brilliant Blue R250 (GIBCO, Gaithersburg, MD) prior to visualizing the [ 35 S]-methionine labeled hKIS by autoradiography.
- SDS-PAGE SDS-poly acrylamide gel electrophoresis
- the GST-fusion proteins were digested with PreScissionTM protease (Pharmacia, Piscataway, NJ) according to the manufacturer's protocol.
- the in vitro phosphorylation assay was carried out by incubation of CKIs with immunoprecipitated hKIS at 30°C for 30 minutes in 20 ⁇ l phosphorylation buffer (20 mM Tris/HCI pH7.5, 1 mM EGTA, 10 mm MgC1 2 , 1 mM dithiothreitol, Ix CompleteTM protease inhibitor cocktail and 10 ⁇ Ci ⁇ 32 P-ATP. The samples were analyzed by SDS-PAGE.
- 293 cells were maintained in Dulbecco's modified Eagle's medium (GIBCO, Gaithersburg, MD) containing 10% fetal bovine serum (FBS), glutamine (2mM) plus antibiotics.
- UM316 cells, JY-cells and a human transformed B cell line were cultured in RPMI 1640 medium (GIBCO,
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002343099A CA2343099C (fr) | 1998-08-21 | 1999-08-20 | Compositions de hkis et procedes d'utilisation correspondants |
AU55725/99A AU5572599A (en) | 1998-08-21 | 1999-08-20 | Role of human kis (hkis) as an inhibitory kinase of the cyclin-dependent kinase inhibitor p27. compositions, methods and uses thereof to control cell proliferation |
EP99942320A EP1104463A1 (fr) | 1998-08-21 | 1999-08-20 | COMPOSITIONS DE hKIS ET PROCEDES D'UTILISATION CORRESPONDANTS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9771098P | 1998-08-21 | 1998-08-21 | |
US60/097,710 | 1998-08-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000011165A1 true WO2000011165A1 (fr) | 2000-03-02 |
WO2000011165A9 WO2000011165A9 (fr) | 2000-06-22 |
Family
ID=22264764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/018903 WO2000011165A1 (fr) | 1998-08-21 | 1999-08-20 | COMPOSITIONS DE hKIS ET PROCEDES D'UTILISATION CORRESPONDANTS |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1104463A1 (fr) |
AU (1) | AU5572599A (fr) |
CA (1) | CA2343099C (fr) |
WO (1) | WO2000011165A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6841717B2 (en) | 2000-08-07 | 2005-01-11 | Monsanto Technology, L.L.C. | Methyl-D-erythritol phosphate pathway genes |
US6872815B1 (en) | 2000-10-14 | 2005-03-29 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7067647B2 (en) | 1999-04-15 | 2006-06-27 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US7112717B2 (en) | 2002-03-19 | 2006-09-26 | Monsanto Technology Llc | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof |
US7161061B2 (en) | 2001-05-09 | 2007-01-09 | Monsanto Technology Llc | Metabolite transporters |
US7214502B2 (en) | 2000-03-24 | 2007-05-08 | Millennium Pharmaceuticals, Inc. | 3714, 16742, 23546, and 13887 novel protein kinase molecules and uses therefor |
US7230165B2 (en) | 2002-08-05 | 2007-06-12 | Monsanto Technology Llc | Tocopherol biosynthesis related genes and uses thereof |
US7238855B2 (en) | 2001-05-09 | 2007-07-03 | Monsanto Technology Llc | TyrA genes and uses thereof |
US7244877B2 (en) | 2001-08-17 | 2007-07-17 | Monsanto Technology Llc | Methyltransferase from cotton and uses thereof |
US7262339B2 (en) | 2001-10-25 | 2007-08-28 | Monsanto Technology Llc | Tocopherol methyltransferase tMT2 and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995010623A1 (fr) * | 1993-10-13 | 1995-04-20 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Transfert selectif adenoviral de genes vers les cellules neointimales vasculaires |
-
1999
- 1999-08-20 WO PCT/US1999/018903 patent/WO2000011165A1/fr active Application Filing
- 1999-08-20 AU AU55725/99A patent/AU5572599A/en not_active Abandoned
- 1999-08-20 CA CA002343099A patent/CA2343099C/fr not_active Expired - Fee Related
- 1999-08-20 EP EP99942320A patent/EP1104463A1/fr not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995010623A1 (fr) * | 1993-10-13 | 1995-04-20 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Transfert selectif adenoviral de genes vers les cellules neointimales vasculaires |
Non-Patent Citations (7)
Title |
---|
DATABASE GENEMBL 11 June 1997 (1997-06-11), HILLIER ET AL: "Soares total fetus Nb2HF8 9w Homo sapiens cDNA clone", XP002125939 * |
DATABASE GENEMBL 11 June 1997 (1997-06-11), HILLIER ET AL: "Soares total fetus Nb2HF8 9w Homo sapiens cDNA clone", XP002125940 * |
DATABASE GENEMBL 23 June 1998 (1998-06-23), MAHAIRAS ET AL.: "HS_2183_A2_B07_MF CIT approved human genomic sperm library D Homo sapiens genomic clone", XP002125938 * |
MAUCUER A ET AL: "KIS is a protein kinase with an RNA recognition motif.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 37, 12 September 1997 (1997-09-12), pages 23151 - 23156, XP002125937 * |
MUELLER D ET AL: "CDK2-DEPENDENT PHOSPHORYLATION OF P27 FACILITATES ITS MYC-INDUCED RELEASE FROM CYCLIN E/CDK2 COMPLEXES", ONCOGENE,GB,BASINGSTOKE, HANTS, vol. 15, no. 21, 20 November 1997 (1997-11-20), pages 2561 - 2576, XP000857404, ISSN: 0950-9232 * |
POLYAK K ET AL: "Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals.", CELL, (1994 JUL 15) 78 (1) 59-66., XP002916569 * |
SHEAFF R J ET AL: "CYCLIN E-CDK2 IS A REGULATOR OF P27KIP1", GENES AND DEVELOPMENT,US,COLD SPRING HARBOR, NY, vol. 11, no. 11, 1 June 1997 (1997-06-01), pages 1464 - 1478, XP000857402, ISSN: 0890-9369 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7335815B2 (en) | 1999-04-15 | 2008-02-26 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US7265207B2 (en) | 1999-04-15 | 2007-09-04 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7067647B2 (en) | 1999-04-15 | 2006-06-27 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US7141718B2 (en) | 1999-04-15 | 2006-11-28 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7214502B2 (en) | 2000-03-24 | 2007-05-08 | Millennium Pharmaceuticals, Inc. | 3714, 16742, 23546, and 13887 novel protein kinase molecules and uses therefor |
US7405343B2 (en) | 2000-08-07 | 2008-07-29 | Monsanto Technology Llc | Methyl-D-erythritol phosphate pathway genes |
US6841717B2 (en) | 2000-08-07 | 2005-01-11 | Monsanto Technology, L.L.C. | Methyl-D-erythritol phosphate pathway genes |
US8362324B2 (en) | 2000-10-14 | 2013-01-29 | Monsanto Technology Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7420101B2 (en) | 2000-10-14 | 2008-09-02 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US6872815B1 (en) | 2000-10-14 | 2005-03-29 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7161061B2 (en) | 2001-05-09 | 2007-01-09 | Monsanto Technology Llc | Metabolite transporters |
US7238855B2 (en) | 2001-05-09 | 2007-07-03 | Monsanto Technology Llc | TyrA genes and uses thereof |
US7553952B2 (en) | 2001-08-17 | 2009-06-30 | Monsanto Technology Llc | Gamma tocopherol methyltransferase coding sequence identified in Cuphea and uses thereof |
US7595382B2 (en) | 2001-08-17 | 2009-09-29 | Monsanto Technology Llc | Gamma tocopherol methyltransferase coding sequences from Brassica and uses thereof |
US7605244B2 (en) | 2001-08-17 | 2009-10-20 | Monsanto Technology Llc | Gamma tocopherol methyltransferase coding sequence from Brassica and uses thereof |
US7244877B2 (en) | 2001-08-17 | 2007-07-17 | Monsanto Technology Llc | Methyltransferase from cotton and uses thereof |
US7262339B2 (en) | 2001-10-25 | 2007-08-28 | Monsanto Technology Llc | Tocopherol methyltransferase tMT2 and uses thereof |
US7112717B2 (en) | 2002-03-19 | 2006-09-26 | Monsanto Technology Llc | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof |
US7230165B2 (en) | 2002-08-05 | 2007-06-12 | Monsanto Technology Llc | Tocopherol biosynthesis related genes and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2000011165A9 (fr) | 2000-06-22 |
EP1104463A1 (fr) | 2001-06-06 |
AU5572599A (en) | 2000-03-14 |
CA2343099C (fr) | 2006-11-14 |
CA2343099A1 (fr) | 2000-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2343575C (fr) | Inhibition de la migration des cellules des muscles lisses au moyen de l'heme oxygenase (1) | |
EP0998307B1 (fr) | TRAITEMENT DES MALADIES VASCULAIRES PROLIFERATIVES A L'AIDE DE p27 ET DE SES PROTEINES HYBRIDES | |
US5856121A (en) | Growth arrest homebox gene | |
CA2343099C (fr) | Compositions de hkis et procedes d'utilisation correspondants | |
WO1997003635A2 (fr) | PRODUITS DE SYNTHESE A EXPRESSION DE p16 ET LEUR APPLICATION DANS LA THERAPIE ANTICANCEREUSE | |
US7772367B2 (en) | C-terminal p53 palindromic peptide that induces apoptosis of cells with aberrant p53 and uses thereof | |
US7414035B2 (en) | hKIS composition and methods of use | |
US6482803B1 (en) | Modification of mutated P53 gene in tumors by retroviral delivery of ribozyme A | |
WO1996016989A1 (fr) | PROTEINES p53 A DOMAINES DE TETRAMERISATION MODIFIES | |
WO2000018426A1 (fr) | Inducteurs d'apoptose | |
US7163925B1 (en) | p16 expression constructs and their application in cancer therapy | |
EP0806477B1 (fr) | Utilisation, pour la fabrication d'un medicament, d'un adn recombinant comprenant un adn codant pour la proteine isoforme sm1 de la chaine lourde de la myosine de type muscle lisse | |
WO1998019686A9 (fr) | Methodes therapeutiques pour lesion vasculaire | |
WO1998019686A1 (fr) | Methodes therapeutiques pour lesion vasculaire | |
US5847083A (en) | Modified p53 constructs which enhance DNA binding | |
US20050032728A1 (en) | Tumor suppression through bicistronic co-expression of p53 and p14ARF | |
EP1007664B1 (fr) | Utilisations d'un facteur de transcription de choc thermique | |
CA2430745A1 (fr) | Facteur maitre de transcription de formation osseuse: compositions et procedes d'utilisation | |
US20020152486A1 (en) | Vascular specific regulatory elements contained in the desmin 5' flanking region | |
JP3328260B2 (ja) | ミオシン重鎖sm1アイソフォームタンパク質をコードするdnaをベクターdnaに組み込んだ組換え体dna並びに該組換え体dnaを含有する微生物及び動脈硬化治療剤 | |
US20030219421A1 (en) | Calbindin-D28k protection against glucocorticoid induced cell death | |
WO1997010843A1 (fr) | Constructions de p53 modifiees et utilisations leur convenant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: C2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C2 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
COP | Corrected version of pamphlet |
Free format text: PAGE 1/1, DRAWINGS, REPLACED BY A NEW PAGE 1/1; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
ENP | Entry into the national phase |
Ref document number: 2343099 Country of ref document: CA Kind code of ref document: A Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999942320 Country of ref document: EP Ref document number: 55725/99 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 1999942320 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |