+

WO2000008167A1 - Trimere du produit d'expression du gene env de hiv - Google Patents

Trimere du produit d'expression du gene env de hiv Download PDF

Info

Publication number
WO2000008167A1
WO2000008167A1 PCT/FR1999/001871 FR9901871W WO0008167A1 WO 2000008167 A1 WO2000008167 A1 WO 2000008167A1 FR 9901871 W FR9901871 W FR 9901871W WO 0008167 A1 WO0008167 A1 WO 0008167A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycoprotein
purified
hiv
gpl
affinity
Prior art date
Application number
PCT/FR1999/001871
Other languages
English (en)
Inventor
Michel Chevalier
Original Assignee
Aventis Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Pasteur filed Critical Aventis Pasteur
Priority to EP99934806A priority Critical patent/EP1100926A1/fr
Priority to AU50459/99A priority patent/AU5045999A/en
Priority to US09/744,659 priority patent/US6737067B1/en
Priority to CA002338020A priority patent/CA2338020A1/fr
Publication of WO2000008167A1 publication Critical patent/WO2000008167A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a process for obtaining recombinant proteins, originating from the membrane of the HIN virus responsible for the acquired immunodeficiency syndrome (AIDS), allowing the restoration of their native trimeric form, as well as the use of these proteins for vaccination or diagnostic purposes.
  • AIDS acquired immunodeficiency syndrome
  • the glycoprotein of the HIV envelope is coded by the "env" gene, and the translation of the corresponding AR glycin gives a glycosylated protein, gpl 60, in the form of a precursor whose molecular mass is 160 kDa.
  • the gp l 60 is cleaved inside the cell to give, on the level of the cytoplasmic membrane during the budding of the virus in the course of formation, on the one hand the gp l 20 which one finds outside of the cell and the virus, and, on the other hand, gp41, the transmembrane part of the glycoprotein, which corresponds to the carboxy-terminal end of the precursor.
  • gp41 the only transmembrane protein, will present its carboxy-terminal end turned towards the inside of the virus and its amino-terminal end protruding outside, maintaining its non-covalent association with the gp l 20. By its amino-terminal end, it is attached in a non-covalent manner to gp41 while the rest of the protein is involved in the recognition of the CD4 receptor and of the CCR5 or CXCR4 (lymphocyte-specific) receptors. T4 auxiliaries, macrophages; Trkola et al, J. Virol., 72, 1876-85, 1998; Schols et al, J.
  • the RSV envelope protein has also been shown to form oligomers found in infected cells and viral particles (Einfeld et al, Proc. Natl. Acad. Sci. USA, 85, 8688-8692, 1988).
  • the influenza virus also expresses hemagglutinin on its surface in trimeric form. In the latter case, the multimeric form is necessary for the intracellular transport of the protein (Copeland et al, J. Cell. Biol., 103, 1179-1 191, 1986).
  • Influenza also expresses on its surface a neuraminidase in the form of a tetramer (Varghese et al., Nature, 303, 35-40, 1983).
  • glycoprotein gp 160 has indeed been described for a long time as being capable of assembling into dimers or tetramers (Pinter et al, J. Virol., 63, 2674-2679, 1989; WO94 / 00557 of the CNRS; Schawaller et al, Virology, 172, 367-369, 1989; Earl et al, Proc. Natl. Acad. Sci., 87, 648-652, 1990; Earl et al, J. Virology, 68, 3015-3026, 1994).
  • gp l 60 could in fact naturally associate, through its gp41 part, in the form of trimeres (Min Lu et al, Nature Structural Biology, 2, 1075-1082, 1995; Weisshorn et al, EMBO J., ⁇ 5, 1507-1514, 1996; Weisshorn et al, Nature, 387, 426-430, 1997), dimeric or tetrameric forms resulting in fact from aberrant inter-chain disulfide bridges, or from transient oligomeric forms (see below).
  • the glycoprotein of the HIV envelope can be produced and purified, either by culturing the HIV virus on cell lines and by purifying the glycoprotein from the culture medium (CNRS WO94 / 00557), or by expressing a recombinant of this protein by a vector different from HIV, and by purifying it from the culture medium (WO91 / 13906, Chiron).
  • gpl 60 The purification of gpl 60 from cells infected with HIV only makes it possible to obtain tetramers, probably a transient oligomeric form, that is to say a form which does not correspond to that taken by its gp41 part on the surface of the virus. (WO94 / 00557 of the CNRS).
  • tetramers probably a transient oligomeric form, that is to say a form which does not correspond to that taken by its gp41 part on the surface of the virus. (WO94 / 00557 of the CNRS).
  • Parren et al have demonstrated a correlation between obtaining antibodies capable of neutralizing m vitro infection of cells by HIV and the oligomeric nature of gpl 20 (J. of Virology, 72, 3512-3519, 1998 ).
  • Parren et al used a gpl 20 expressed by HIV in infected cells, probably to circumvent the problems linked to the structural differences between a native gp l 20, expressed on the surface of HIV, and those produced by vector vectors. expression, such as vaccinia.
  • antibodies specific for the oligomeric structure of gp l 60 can be generated (Earl et al, supra), and in fact participate in a neutralizing effect against in vitro infection of cells by HIV.
  • the present invention aims to provide a product obtaining method of expression of the env recombinant gene for restoring their trimeric form, this shape being usable in the context of a vaccine or in the implementation of a diagnosis of HIV infection.
  • clinical trials conducted on recombinant gp l 60 pose the problem of the spectrum of inhibition which remains limited to a few viral strains only (Pialoux et al, Aids Res. Hum. Retr., ⁇ , 373-381, 1995; Salmon-Céron et al, Aids Res. Hum. Retr., J 2, 1479-1486, 1995).
  • the invention relates to any purified recombinant glycoprotein corresponding to the following properties:
  • a second object of the present invention relates to a vaccine comprising the purified glycoprotein according to the invention, and an adjuvant.
  • a third object of the present invention relates to the use of the glycoprotein according to the invention in the implementation of any method of in vitro diagnosis of infections caused by HIV.
  • a final object of the present invention relates to a process for obtaining a glycoprotein according to the invention, in which a glycoprotein corresponding to properties a), b) and c) is expressed by means of genetic recombination techniques.
  • he invention is purified and subjected to steps involving at least one reducing agent, an ionic detergent and / or a neutral detergent under conditions such that a glycoprotein corresponding to the conditions according to the invention is obtained.
  • the capacity to adhere to CD4 can be determined by radioimmune precipitation, by ELISA or by surface plasmon resonance, the details of these methods being explained in the following description. These methods are likely to be modified within the limits of current knowledge, the objective being to simply ensure that the glycoprotein according to the invention clearly forms a complex with CD4.
  • CD4 molecules can be prepared in a variety of ways, including purification from a natural source, or the use of genetic recombination techniques. In this context, one can use the CD4 described in WO8903222, WO8902922, Smith et al (Science, 238, 1704-1707, 1987) and Littman et al (Nature, 325, 453-455, 1987), for example. ERC BioServices Corporation, 649A Lofstrand Lane, Rockeville, MD 20850, USA, also markets a CD4 produced by CHO ST4.2 cells (In: Aids Research and Reference Reagent Program Catalog, the Nat. Inst. Helath USDHHS), by example.
  • the adhesion capacity is at least identical to that of a gp l 20 of a strain of infectious HIV, e.g. gp120 from the SF2 isolates, HXB2, BRU, MN, SC, NY5, CDC4 , WMJ2, RF, MAL, ELI, Z96, Z3, Z321 and JY l 5 (Myers et al., Human Retroviruses and Aids, Los Alamos, New Mexico, 1990), or other isolates described by Tersmette et al (J. Virol., 62, 2026-2032, 1988), Popovic et al. (Science, 24, 497-500, 1984), and EP541,753 (Transgene SA), for example.
  • a strain of infectious HIV e.g. gp120 from the SF2 isolates, HXB2, BRU, MN, SC, NY5, CDC4 , WMJ2, RF, MAL, ELI, Z96, Z3, Z321 and JY l 5 (My
  • the measured affinity by surface plasmon resonance can also be of the order of 10 ' 4 to 10 " 12 M, preferably 10 ⁇ 9 to 10-" M, which is in accordance with the affinities already measured for gpl 20 (Smith et al. , Science, 238: 1704, 1987; Lasky et al, Cell, 50: 975, 1987), for example.
  • the recombinant glycoprotein according to the invention also has an affinity with an anti-gpl antibody 20 capable of neutralizing infection of cells by HIV in vitro.
  • antibody includes all the immunoglobulins or fragments thereof, of original polyclonal, monoclonal or chimeric (see US4816397), for example. All known antibodies, or antibodies capable of being prepared, capable of recognizing an epitope of gpl 20 and of neutralizing in vitro infection of cells by HIV, can be taken into account in the context of the present invention. It suffices that an HIV glycoprotein has an affinity with an antibody of this type for it to be considered as meeting the needs of the present invention. Without wishing to be limited by the techniques and antibodies which can be used for the purposes of the invention, for information, mention may be made of the articles by VanCott et al. (1995, supra), and Earl et al. (1994, supra), for example.
  • the measurement of the affinity of the glycoprotein in trimeric form with the anti-gp41 and anti-gp1 antibodies can be carried out by a direct immunological reaction with the antibody, or by ELIS A, for example.
  • the operating conditions may vary within the limits of current knowledge, the variations and / or adaptations with respect to known techniques do not in fact represent a difficult obstacle for those skilled in the art.
  • the trimeric form of the glycoprotein according to the invention can be observed on SDS PAGE gel in reducing condition or not (see Example 1).
  • a person skilled in the art can however resort to all kinds of other analyzes, such as analytical centrifugation or analysis by light scattering.
  • the objective is simply to highlight the association of three molecules of gp l 60 not linked by inter-chain bridges.
  • the glycoprotein according to the invention by responding to the properties set out above, can therefore be composed of all or part of the gp41 protein, and of all or part of the gpl 20 protein. Therefore, this glycoprotein can be coded by all or part of an env gene. native (from a HIV isolate) or not, said glycoprotein being either purified at a stage where cleavage is not yet carried out in situ, or said cleavage being rendered inoperative or because of the nature of the host cell that is not provided with the necessary enzymes or because of inhibitors of these enzymes, or even the fact that the cleavage site has been genetically modified, for example.
  • Cloning can advantageously be carried out by the PCR technique, followed by insertion of the DNA fragment into an appropriate vector.
  • the cleavage site (s) can then be removed by site-directed mutagenesis as described by Kieny et al. (1988, supra), or in Example 1 below.
  • the preparation of the vectors, and all the other technical procedures can be carried out according to the protocols described in the works of Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, USA, 1989).
  • the most suitable host cells due to a glycosylation close or even identical to that desired, are higher eukaryotic cells, which may include, for example, immortalized cell lines originating from the monkey (Cos-7, ATCC CRL 1651; Vero76, ATCC CRL 1587), hamster (BHK, ATCC CRL 10; CHO, PNAS USA, 77: 4216, 1980), mouse (TM4, Mather, Biol. Reprod., 23, 243-251, 1980), l man (Hela, ATTC CCL2; W138, ATCC CCL75; Hep G2; HB 8065), dogs (MDCK, ATCC CCL34), etc.
  • immortalized cell lines originating from the monkey (Cos-7, ATCC CRL 1651; Vero76, ATCC CRL 1587), hamster (BHK, ATCC CRL 10; CHO, PNAS USA, 77: 4216, 1980), mouse (TM4, Mather, Biol. Reprod., 23, 243-251, 1980), l man (Hela, AT
  • the most suitable expression vectors are those reproducing in eukaryotes, in particular the vaccinia virus which is well known in the prior art (WO86 / 07593), for example.
  • gpl 60 it is possible in particular to produce gpl 60 according to the teaching described in EP541753 (supra), or gpl 40 according to the method of Earl et al. (1990, supra), or even any other variant of glycoprotein in which one or more parts of gp41 and / or gp l 20 would be eliminated, the objective being that the part gp41 is sufficient for the formation of trimeres to take place, and that the gp 120 part is sufficient to be recognized by neutralizing anti-gpl 20 antibodies and by CD4.
  • modified genes env meeting the needs of the present invention, the skilled person is at even to proceed by stage or by chance, and then to choose among all the sequences which do not meet our needs, those which satisfy them.
  • glycoprotein After producing glycoprotein by genetic recombinant techniques, or cells infected with HIV, purified using techniques known to the skilled person, including those involving lens lectins (Pialoux et al, 1995, supra; Salmon-Céron and / ,, 1995, supra), that described in WO91 / 13906 (supra) can possibly be further adapted to the needs of the present invention, or even that described in Example 1 (immuno-affinity), for example.
  • glycoproteins thus purified have inter-chain disulfide bridges, whatever the nature of the host or of the vector used.
  • the glycoproteins actually associate in dimers (part being covalent) visible on SDS PAGE gel after fixing by a bridging agent.
  • the purified glycoproteins of cells infected with HIV these also occur in the form of tetramers (WO94 / 00557, 5.//?ra).
  • the glycoproteins are therefore dissociated, and then they are subjected to conditions promoting their natural reassembly, that is to say in the form of trimeres.
  • the glycoprotein is subjected to steps involving at least one reducing agent, an ionic detergent and / or a neutral detergent under conditions such that a glycoprotein satisfying the needs of the present invention is obtained.
  • One or more reducing agent (s) can be chosen from the molecules of dithiothreitol, ⁇ -mercaptoethanol, reduced glutathione or sodium borohydride, for example.
  • One or more ionic detergent (s) can be chosen from dodecyl sulfate salts, in particular sodium dodecyl sulfate (SDS) or lithium, dioctyl sulfosuccinate salts (sodium, for example), cetryltrimethylammoniurn (for example from bromine), cetylpyridinium salts (from chlorine, for example), N-dodecyls- or N-tetradecyl-sulfobetaine, zwittergents 3- 14, and 3 - [(3-cholamidopropyl) - dimethylamino] - l -propane sulfonate (CHAPS), for example.
  • dodecyl sulfate salts in particular sodium dodecyl sulfate (SDS) or lithium
  • dioctyl sulfosuccinate salts sodium, for example
  • cetryltrimethylammoniurn for example from bromine
  • one or more neutral detergent (s) can be chosen from among tween20®, tween ⁇ O®, octylglucoside, lauryl-maltoside, hecameg®, lauryl-dimethylamine, decanoyl-N- methyl-glucamide, polyethylene glycol-lauryl-ether, newt XI 00®, Lubrol PX®, for example.
  • the operating conditions must be sufficient to dissociate the glycoproteins, and reassemble them into trimeres.
  • ionic detergent s
  • a neutral detergent for example by dialysis.
  • the purified glycoproteins are subjected to a reducing agent during the treatment, so as to release the covalent dimers, where appropriate free sulfhydryl functions are blocked by means of molecules.
  • suitable such as alkylating agents such as N-ethyl-maleimide or iodo-acetamide, then the remaining sulfhydryl functions are gently re-oxidized in the presence of an oxidizing agent such as oxidized glutathione, for example.
  • the purified glycoprotein can be subjected successively to a reducing agent, to an alkylating agent, to an oxidizing agent, to an ionic detergent and to dialysis against a neutral detergent, for example
  • the purified glycoprotein can be subjected successively to an ionic detergent, to a reducing agent, to an oxidizing agent and to dialysis against a neutral detergent.
  • the neutral detergent can be replaced by an appropriate buffer, for example by means of dialysis.
  • Another object of the present invention relates to a vaccine comprising the glycoprotein according to the present invention and an adjuvant.
  • This vaccine may contain as a surface antigen of HIV only the glycoprotein according to the present invention, dimeric or monomeric forms of gp l 60 or gpl 20 being specifically excluded, for example, for reasons of reduced immunogénéicity. It is also possible to add to this vaccine other valencies relating to other diseases, the quantities of antigens and / or the formulation of each valence having nevertheless to be probably optimized (s) so as to ensure an effective immune response, for example.
  • the valences of other pathogens can come from bacteria, viruses or parasites, for example those causing hepatitis (A to G), measles, mumps, polio, tuberculosis, diphtheria, malaria, etc.
  • adjuvants which can be used, one can count all the aluminum salts, such as aluminum phosphates and hydroxides: Freund's adjuvant; N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-alanine-2- [1.2-dipalmitoyl-sn-glycero- 3- (hydroxyphosphoryloxy)] (see Sanchez-Pescador et al. J.
  • the vaccine compositions according to the invention can be used for the prevention of infections by HIV-1, the dosage and the route and the frequency of administration, however, probably having to be optimized so as to obtain an effective immune response.
  • the Biacore ⁇ is a device for the analysis of biospecific interactions in real time and without labeling which uses the principle of surface plasmon resonance.
  • one of the interactants (the ligand) is coupled to a hydrophilic (dextran) or hydrophobic matrix (HPA surface).
  • the other interactant (analyte) passes into contact with the surface via a microfluidic transfer cartridge.
  • the increase in mass near the surface due to the interaction between the molecules is represented as a function of time on a sensorgram.
  • Different coupling chemistries allow the fixation of practically all biomolecules on the matrix. The user therefore creates a tailor-made biospecific surface for each type of application.
  • the glycoprotein according to the invention is coupled to the matrix and different concentrations of CD4 are sent by the device in contact with this matrix. Each time the mass of CD4 fixed on the glycoprotein is recorded.
  • the Biaeval3® software automatically calculates the dissociation constant of CD4 on gpl 20.
  • Figure 1 Representation of the SDS PAGE analysis under reducing conditions obtained with the gpl 60 produced by VVTG9150, purified, processed to make trimers and fixed by a coupling agent (col 3 and 4.); with regard to that obtained in reducing condition with the gp l 60 produced by VVTG9150, purified and directly fixed (col. 2); with regard to that obtained in reducing condition with monomers of gp l 60 (cols 5 and 6); and with regard to that obtained in non-reducing condition with the gp l 60 produced by VVTG9150 and purified (col. 7).
  • a recombinant vector based on the vaccinia virus, VVTG9150 is used for the production of gp l 60.
  • the construction of the transfer plasmid of the gene coding for the hybrid env protein HIV-1 (M LAI in the genome of the virus of the vaccine VVTG9150 is described below.
  • the Pstl-Pstl fragment of pTG 1163, containing the entire gene coding for a gp ⁇ O / HIV- 1 LAi soluble is introduced into the PstI restriction site of M 13mp70, generating M 13TG4137.
  • the bacteriophage M 13TG4137 DNA is then cut with Bg I II, digested with polymerase I (Klenow fragment) in order to generate a blunt end, then cut with EcoRl, in order to be inserted at the EcoRV and EcoRl sites of bacteriophage M 13TG4147, generating M 13TG4158.
  • a deletion on M 13TG4158 is then carried out with an oligonucleotide, which allows the introduction of a Sphl site and a Sw ⁇ l site.
  • the bacteriophage M 13TG4168 is obtained.
  • the gene coding for is then amplified from DNA of SupT 1 cells infected with the HIV-1 MN virus by the PCR technique with oligonucleotides which respectively introduce Spl ⁇ and SmaI sites.
  • the amplified DNA fragment is then digested with SphI and SmaI and inserted at the corresponding sites of 13TG4168, generating M 13TG4174.
  • a mutagenesis directed on M 13TG4174 is carried out with an oligonucleotide making it possible to mutate a potential transcription stop site (TTTTTNT) recognized by the vaccinia virus in the early genes and to introduce an EcoR1 restriction site, thus generating M 13TG8120.
  • TTTTNT potential transcription stop site
  • the Pstl-Pstl fragment of M 13TG8120 is then cloned into the Pst site of the plasmid pTG9148 generating pTG9150 (the VVTG9150 virus after transfection).
  • pG9148 is moreover generated in the following manner: the sequence corresponding to the H5R promoter of the vaccinia virus is amplified by the PCR technique with oligonucleotides introducing respectively BamHI and BglII sites. The amplified DNA fragment is then digested with BglII and BamHI and inserted at the sites correspondent of M 13TG6131 (Gene, 26, 91 -99, 1983) generating M13TG8124. The BamHI-Bg II fragment of M 13TG8124 containing the HSR promoter sequence is introduced into the BamHI restriction site of pTG9133 generating pTG9145.
  • VVTG9150 therefore codes for a hybrid and soluble gpl 60 in which the gp l 20 part is derived from HIV-1 MN, and the transmembrane part gp41 comes from an LA I isolate.
  • a Sphl restriction site is created immediately downstream of the sequence encoding the signal peptide, without altering the amino acid sequence.
  • a Smal restriction site is created immediately above the cleavage sequence between gp 120 and gp41, without altering the amino acid sequence.
  • the two cleavage sites in position 507-516 are mutated (original sequence KRR .. .REKR transferred to QNH ... QEHN).
  • the sequence encoding the transmembrane hydrophobic peptide IFIMIVGGLVGLRIVFAVLSIV (mined acids 689-710 from Myers et al.) Is deleted.
  • a stop codon has been substituted for the second codon E encoding PEGIEE (amino acids 735-740 from Myers et al.), That is to say the 29 th amino acid of the intracytoplasmic domain.
  • the gpl 60 hybrid glycoprotein is then purified successively by ion exchange chromatography, immunoaffinity chromatography, gel filtration, and concentration.
  • the culture medium containing the gpl 60 is passed successively through two DEAE Trisacryl LS supports.
  • Toyopearl® (Tosoh Corp, JP) on which the IAM5F3 antibody was grafted
  • the elution is concentrated in an Amicon® cell equipped with a YM30 membrane. Then inactivating the elution or the concentrate in a water bath at 60 ° C for 1 h, and filtered (0,22 ⁇ m) in a Nalgene® container. It is thus possible to obtain approximately 1.34 mg / ml of gp l 60 pure at 91% (visualized on SDS PAGE).
  • the sample is placed in a dialysis cassette with a capacity of 3 ml against 3 l of PBS buffer with the OmM of octylglucoside.
  • the diaK is carried out overnight at room temperature with gentle stirring.
  • the detergent is removed by one or more new dialyses against PBS buffer.
  • the gp l 60 thus treated are found in the form of trimeres only.
  • FIG. 1 represents the SDS PAGE analysis in reducing condition (DTT) obtained with the gp l 60 produced by VVTG9150, purified, treated to make trimeres and fixed by the bi-functional bridging agent ethylene-glycol-bis-succinimidyl -succinate (EGS) (cols. 3 and 4); with regard to that obtained in reducing condition with the gpl 60 produced by VVTG9150, purified and directly fixed by LEGS (col. 2: dimers); with regard to that obtained in reducing condition with monomers of gpl 60 (col. 5 and 6); and with regard to that obtained in non-reducing condition with the gpl 60 produced by VVTG9150 and purified (col. 7: in the absence of reducing agent, the inter-chain bonds lead to the formation of dimers, trimeres and tetramers).
  • DTT SDS PAGE analysis in reducing condition
  • Example 2 The vaccinia virus expresses a prolonged gp1 of the first 129 amino acids of the N-terminal part of gp41, as described by Earl et a, Proc. Natl. Acad. Sci. USA, 87, 648-652, 1990. Insofar as the gp41 part is limited to its first 129 amino acids, this part does not contain a transmembrane region.
  • This glycoprotein present on SDS PAGE gel has a molecular weight of the order of 140 kD and is commonly called gp 140.
  • This gp 140 is purified successively by ion exchange chromatography, affinity chromatography with lens lectins, and by gel filtration, as described by Pialoux et al. (1995, supra) and Salmon-Céron et al. (1 995, supra).
  • this method makes it possible to eliminate all the inter-chain disulfide bridges without having to block the sulfhydryl groups with an alkylating agent.
  • the gpl 40 thus treated are found in the form of trimeres exclusively.
  • the vaccinia virus expresses a gp l 60 as described by Kieny et al. (Protein Engineering, 2, 219-225, 1988). It is purified as described in Example 1, then it is treated with SDS, and it is dialyzed against a PBS buffer containing the OmM of octylglucoside. After treatment, a mixture of non-covalent trimeres and covalent dimers of gpl 60 is obtained, the predominant form consisting of trimeres.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Glycoprotéine recombinante purifiée répondant aux propriétés suivantes: a) une capacité d'adhésion au CD4; b) une affinité avec un anticorps anti-gp120 capable de neutraliser in vitro l'infection de cellules par HIV; c) une affinité avec un anticorps anti-gp41; d) une forme trimérique dépourvue de ponts disulfures inter-chaînes. Vaccin comprenant la glycoprotéine purifiée selon l'invention et un adjuvant. Procédé d'obtention d'une glycoprotéine selon la revendication 1, dans lequel on exprime, au moyen de techniques de recombinaison génétique, une glycoprotéine répondant aux propriétés a), b) et c) énoncées à la revendication 1, on la purifie, et on la soumet à des étapes impliquant au moins un agent réducteur, un détergent ionique et/ou un détergent neutre dans des conditions telles que l'on obtient une glycoprotéine besoins de l'invention.

Description

Trimère du produit d'expression du gène env de HIV
La présente invention se rapporte à un procédé d'obtention de protéines recombinantes, ayant pour origine la membrane du virus HIN responsable du syndrome d'immunodéficience acquise (SIDA), permettant la restauration de leur forme trimérique native, ainsi que l'utilisation de ces protéines dans un but de vaccination ou de diagnostique.
Etat de la technique
La glycoprotéine de l'enveloppe de HIV est codée par le gène "env", et la traduction de l'ARΝin correspondant donne une protéine glycosylée, gpl 60, sous forme d'un précurseur dont la masse moléculaire est de 160 kDa. La gp l 60 est clivée à l'intérieur de la cellule pour donner, au niveau de la membrane cytoplasmique lors du bourgeonnement du virus en cours de formation, d'une part la gp l 20 que l'on retrouve à l'extérieur de la cellule et du virus, et, d'autre part, la gp41 , partie trans- membranaire de la glycoprotéine, qui correspond à l'extrémité carboxy-terminale du précurseur. Une fois la particule virale libérée, la gp41 seule protéine trans- membranaire, présentera son extrémité carboxy-terminale tournée vers l'intérieur du virus et son extrémité amino-terminale faisant saillie à l'extérieur, se maintenant associée de façon non covalente à la gp l 20. Par son extrémité amino-terminale, elle est fixée d'une manière non covalente à la gp41 alors que le reste de la protéine est impliqué dans la reconnaissance du récepteur CD4 et des co-récepteurs CCR5 ou CXCR4 (spécifique des lymphocytes T4 auxiliaires, macrophages ; Trkola et al, J. Virol., 72, 1876-85, 1998 ; Schols et al, J. Virol., 72, 4032- 4037, 1998 ; Rubbert et al, J. Immunology, 160, 3933-3941 , 1998). La liaison de la gpl 20 au CD4 permet d'exposer la membrane de la cellule cible à la partie hydrophobe amino-terminale de la gp41 , ce qui induit le mécanisme de fusion des membranes du virus et des cellules, cette fusion étant à l'origine de la pénétration du virion dans la cellule cible lors de l'infection (Wong-Staal et al, In Molecular Genetic Médecine, 2, Friedman éd., 189- 219, 1992 ; Berger et al. Nature, 391: 240, 1998).
Ce processus de reconnaissance du récepteur viral, suivi de la fusion des membranes grâce à l'interaction de l'extrémité amino-terminale de la protéine de fusion avec la membrane de la cellule cible, n'est pas un mécanisme propre au HIV. Il est rendu possible grâce à la présence, sous forme oligomérique, des glycoprotéines transmembranaires du virus. Des pontages par agents chimiques ont permis de mettre en évidence des trimeres au niveau des glycoprotéines de l'enveloppe de MuLV (Pinter et a , J. Virol., 30, 157-165, 1979), de MuMTV (Racevskis et al, J. Virol., 35, 937-948, 1980). Il a aussi été montré que la protéine de l'enveloppe de RSV forme des oligomères retrouvés dans les cellules infectées et les particules virales (Einfeld et al, Proc. Natl. Acad. Sci. USA, 85, 8688-8692, 1988). Le virus de l'influenza exprime également à sa surface une hémagglutinine sous forme trimérique. Dans ce dernier cas, la forme multimérique est nécessaire au transport intracellulaire de la protéine (Copeland et al, J. Cell. Biol., 103, 1 179- 1 191 , 1986). L'influenza exprime aussi à sa surface une neuraminidase sous forme de tétramère (Varghese et al., Nature, 303, 35-40, 1983).
Bien que la nature oligomérique des différentes protéines codées par le gène env ne fait aucun doute, le nombre de monomère est resté quant à lui sujet à controverse pendant longtemps. La glycoprotéine gp l 60 a en effet été décrite longtemps comme pouvant s'assembler en dimères ou tétramères (Pinter et al , J. Virol., 63, 2674-2679, 1989; WO94/00557 du CNRS; Schawaller et al , Virology, 172, 367-369, 1989; Earl ét al , Proc. Natl. Acad. Sci., 87, 648-652, 1990; Earl ét al, J. Virology, 68, 3015-3026, 1994). D'autres rapports plus récent ont toutefois démontré que la gp l 60 pourrait s'associer en fait naturellement, par sa partie gp41 , sous la forme de trimeres (Min Lu et al , Nature Structural Biology, 2, 1075- 1082, 1995; Weisshorn et al , EMBO J., \ 5, 1507-1514, 1996; Weisshorn et al, Nature, 387, 426-430, 1997), les formes dimériques ou tétramériques résultant en fait de ponts disulfures inter-chaînes abbérrants, ou de formes oligomériques transitoires (voir ci- dessous).
Dans un but vaccinal, on peut produire et purifier la glycoprotéine de l'enveloppe de HIV, soit en cultivant le virus HIV sur des lignées cellulaires et en purifiant la glycoprotéine du milieu de culture (WO94/00557 du CNRS), soit en exprimant un recombinant de cette protéine par un vecteur différent de l'HIV, et en la purifiant du milieu de culture (W091 /13906, Chiron).
La purification de gpl 60 à partir de cellules infectées par HIV ne permet que d'obtenir des tétramères, probablement une forme oligomérique transitoire, c'est à dire une forme qui ne correspond pas à celle prise par sa partie gp41 à la surface du virus (WO94/00557 du CNRS). L'espression d'un recombinant de la gp l 60 par un vecteur différent de l'HIV, bien que présentant l'avantage de se soustraire aux dangers liés à l'agent infectieux HIV, ne permet pas aussi de retrouver la structure oligomérique " native " de la gp l 60. En effet, VanCott et al ont montré que la gp l 60 recombinante exprimée par la vaccine, bien que présentant un pouvoir d'adhésion au CD4, comporte des différences structurelles (J. Imm. Meth., 183, p. 1 14, col. 1 , li. 19-22, 1995). Randall et al ont également montré que la gpl 60 recombinante exprimée par la vaccine comporte des ponts disulfures inter-chaînes abbérants (Virology, 179, 827-833, 1990).
Récemment, Parren et al ont mis en évidence une corrélation entre l'obtention d'anticorps pouvant neutraliser m vitro l'infection de cellules par HIV et la nature oligomérique de la gpl 20 (J. of Virology, 72, 3512-3519, 1998). Pour cela, Parren et al ont utilisé une gpl 20 exprimée par HIV dans des cellules infectées, probablement pour contourner les problèmes liés aux différences structurales entre une gp l 20 native, exprimée à la surface du HIV, et celles produites par des \ ecteurs d'expression, telle que la vaccine.
Par ailleurs, on sait que des anticorps spécifiques de la structure oligomérique de la gp l 60 peuvent être générées (Earl et al, supra), et participent de fait à un effet neutralisant contre l'infection in vitro de cellules par le HIV.
La présente invention vise à fournir un procédé d'obtention de produits d'expression du gène env recombinant permettant la restauration de leur forme trimérique, cette forme étant utilisable dans le cadre d'une vaccination ou dans la mise en œuvre d'un diagnostic d'infection par HIV. En effet, les essais cliniques conduits sur des gp l 60 recombinantes posent le problème du spectre d'inhibition qui reste limité à quelques souches virales uniquement (Pialoux et al, Aids Res. Hum. Retr., ϋ, 373-381 , 1995 ; Salmon-Céron et al, Aids Res. Hum. Retr., J 2, 1479- 1486, 1995).
A ce jour, bien que la forme trimérique d'une gpl 60 a été plusieurs fois identifiée dans un mélange d'autres formes polymériques, personne n'a purifié, ni suggéré de purifier, la forme trimérique de la gpl 60. La présente vise à pallier ce h bpesςmoinn.
Résumé de l'invention A cet effet, l'invention concerne toute glycoprotéine recombinante purifiée répondant aux propriétés suivantes :
a) une capacité d'adhésion au CD4 ; b) une affinité avec un anticorps anti-gpl 20 capable de neutraliser in vitro l'infection de cellules par HIV ; c) une affinité avec un anticorps anti-gp41 ; d) une forme trimérique dépourvue de ponts disulfures inter-chaînes
Un deuxième objet de la présente invention concerne un vaccin comprenant la glycoprotéine purifiée selon l'invention, et un adjuvant.
Un troisième objet de la présente invention concerne l'utilisation de la glycoprotéine selon l'invention dans la mise en œuvre de toute méthode de diagnostic in vitro d'infections causées par HIV.
Un dernier objet de la présente invention concerne un procédé d'obtention d'une glycoprotéine selon l'invention, dans lequel on exprime, aux moyen de techniques de recombinaison génétique, une glycoprotéine répondant aux propriétés a), b) et c) selon l'invention, on la purifie, et on la soumet à des étapes impliquant au moins un agent réducteur, un détergent ionique et/ou un détergent neutre dans des conditions telles que l'on obtient une glycoprotéine répondant aux conditions selon l'invention.
Description détaillée de l'invention
Dans le cadre de la présente invention, la capacité d'adhésion au CD4 peut être déterminée par une précipitation radio-immune, par ELISA ou par résonance plasmonique de surface, le détail des ces méthodes étant exposé dans la suite de la description. Ces méthodes sont susceptibles d'être modifiées dans la limite des connaissances actuelles, l'objectif étant de s'assurer simplement que la glycoprotéine selon l'invention forme bien un complexe avec le CD4.
Les molécules de CD4 peuvent être préparées de toutes sortes de manières différentes, incluant une purification depuis une source naturelle, ou le recours à des techniques de recombinaison génétique. Dans ce cadre, on peut utiliser les CD4 décrits dans WO8903222, WO8902922, Smith ét al (Science, 238, 1704-1707, 1987) et Littman et al (Nature, 325, 453-455, 1987), par exemple. La société ERC BioServices Corporation, 649A Lofstrand Lane, Rockeville, MD 20850, USA, commercialise également un CD4 produit par les cellules CHO ST4.2 (In : Aids Research and Référence Reagent Program Catalog, the Nat. Inst. Helath U. S. D. H. H. S.), par exemple.
De préférence, la capacité d'adhésion est au moins identique à celle d'une gp l 20 d'une souche d'HIV infectieux, par exemple une gp 120 provenant des isolats SF2, HXB2, BRU, MN, SC, NY5, CDC4, WMJ2, RF, MAL, ELI, Z96, Z3, Z321 et JY l 5 (Myers et al., Human Retroviruses and Aids, Los Alamos, New Mexico, 1990), ou des autres isolats décrits par Tersmette et al (J. Virol., 62, 2026-2032, 1988), Popovic et al. (Science, 2 4, 497-500, 1984), et EP541 753 (Transgène S.A.), par exemple.
L'affinité mesurée
Figure imgf000007_0001
par résonance plasmonique de surface peut être aussi de l'ordre de 10'4 à 10"12 M, de préférence 10~9 à 10-" M, ce qui est conforme aux affinités déjà mesurées pour des gpl 20 (Smith et al., Science, 238: 1704, 1987 ; Lasky et al, Cell, 50: 975, 1987), par exemple.
La glycoprotéine recombinante selon l'invention présente aussi une affinité avec un anticorps anti-gpl 20 capable de neutraliser in vitro l'infection de cellules par HIV. Le terme " anticorps " regroupe toutes les immunoglobulines ou fragments de celles-ci, d'original polyclonale, monoclonale ou chimérique (voir US4816397), par exemple. Tous les anticorps connus, ou susceptibles d'être préparés, capables de reconnaître un épitope de la gpl 20 et de neutraliser in vitro l' infection de cellules par un HIV, peuvent être pris en compte dans le cadre de la présente invention. Il suffit qu'une glycoprotéine du HIV présente une affinité avec un anticorps de ce type pour qu'on la considère comme répondant aux besoins de la présente invention. Sans vouloir être limité par les techniques et anticorps utilisables pour les besoins de l'invention, à titre d'information, on peut citer les articles de VanCott et al. ( 1995, supra), et Earl et al. ( 1994, supra), par exemple.
En ce qui concerne les tests de mesure de l'efficacité neutralisante d'un anticorps in vitro, on peut citer les articles de Pialoux et al. ( 1995, supra) et Salmon- Céron et al ( 1995, supra), par exemple. Il suffit d'observer une neutralisation in vitro de l'infection de cellules par HIV, quelque soit le seuil de neutralisation, pour considérer que l'anticorps satisfait aux besoins de la présente invention. Par ailleurs, la glycoprotéine recombinante selon l' invention présente aussi une affinité avec un anticorps anti-gp41. Les remarques exposées ci-dessus s'applique mutatis mutandis à la gp41 , à la différence près que l'effet neutralisant d'un anticorps anti-gp41 n'est pas important, tout en pouvant être un critère préférentiel à ne pas négliger.
La mesure de l'affinité de la glycoprotéine sous forme trimérique avec les anticorps anti-gp41 et anti-gp l 20 peut être effectuée par une réaction immunologique direct avec l'anticorps, ou par ELIS A, par exemple. Les conditions opératoires peuvent varier dans les limites des connaissances actuelles, les variations et/ou adaptations par rapports aux techniques connues ne représentant pas en fait un obstacle difficile pour l'homme du métier.
La forme trimérique de la glycoprotéine selon l'invention peut être observée sur gel SDS PAGE en condition réductrice ou non (voir l'exemple 1 ). L'homme du métier peut cependant recourir à toutes sortes d'autres analyses, comme la centrifugation analytique ou l'analyse par diffusion de la lumière. L'objectif est simplement de mettre en évidence l'association de trois molécules de gp l 60 non-liées par des ponts inter-chaînes.
La glycoprotéine selon l'invention, en répondant aux propriétés exposées ci- dessus, peut donc être composée de tout ou partie de la protéine gp41 , et de tout ou partie de la protéine gpl 20. De ce fait, cette glycoprotéine peut être codée par tout ou partie d'un gène env. natif (provenant d'un isolât d'HIV) ou non, ladite glycoprotéine étant soit purifiée à un stade où le clivage n'est pas encore effectuée in situ, ou ledit clivage étant rendu inopérant soit à cause de la nature de l'hôte cellulaire qui ne serait pas pourvu des enzymes nécessaires, soit à cause d'inhibiteurs de ces enzymes, soit encore du fait que le site de clivage a été génétiquement modifié, par exemple.
La modification génétique du site de clivage est bien connu de l'homme du métier, et permet d'obtenir des protéines entières, de tailles variables, renfermant tout ou partie de la gp41 et tout ou partie de la gp41. A titre d'information, non limitative, on peut citer les glycoprotéines gp l 60 et gp l 40 décrites par EP541753 (supra), EP679187 (supra), Earl et al. ( 1994, supra), Kieny et al ( 1988, supra), l'enseignement technique de cette littérature étant incorporé par référence dans la description de la présente invention. Plus particulièrement, on peut utiliser comme source de gène env, tous les isolats de HIV connus, notamment ceux décrits ci-dessus. Le clonage peut être avantageusement effectué par la technique PCR, suivie d'une insertion du fragment d'ADN dans un vecteur approprié. On peut ensuite supprimer le(s) site(s) de clivage par mutagenèse dirigée comme décrit par Kieny et al. ( 1988, supra), ou dans l'exemple 1 ci-après. La préparation des vecteurs, et toutes les autres procédures techniques peuvent être effectuées selon les protocoles décrits dans les ouvrages de Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, U. S.A., 1989).
Le vecteur d'expression dans lequel on clone finalement le fragment d'ADN codant pour une glycoprotéine selon l'invention, peut être un plasmide. un pliage, un ADN entier de virus, un cosmide, un ADN destiné à s'intégrer dans une cellule, etc. Ce vecteur comprend de préférence des séquences régulant l'expression du gène env. et le cas échéant d'autres séquences régulant la translocation de la glycoprotéine vers la membrane de la cellule hôte productrice. Les cellules hôtes les plus adaptées, en raison d'un glycosylation proche voire identique à celle désirée, sont des cellules eucaryotes supérieures, pouvant inclure, par exemple, des lignées cellulaires immortalisées provenant du singe (Cos-7, ATCC CRL 1651 ; Vero76, ATCC CRL 1587), du hamster (BHK, ATCC CRL 10 ; CHO, PNAS USA, 77 :4216, 1980), de la souris (TM4, Mather, Biol. Reprod., 23, 243-251 , 1980), de l'homme (Hela, ATTC CCL2 ; W138, ATCC CCL75 ; Hep G2 ; HB 8065), du chien (MDCK, ATCC CCL34), etc.
Les vecteurs d'expression les plus appropriés sont ceux se reproduisant dans des eucaryotes, notamment le virus de la vaccine qui est bien connu dans l'art antérieur (WO86/07593), par exemple.
Dans un mode de réalisation particulier de la présente invention, on peut produire notamment des gpl 60 selon l'enseignement décrit dans EP541753 (supra), ou des gpl 40 selon la méthode de Earl et al. ( 1990, supra), voire tout autre variant de glycoprotéine dans laquelle une ou plusieurs parties de gp41 et/ou gp l 20 seraient éliminées, l'objectif étant que la partie gp41 soit suffisante pour que la formation de trimeres s'effectue, et que la partie gp l 20 soit suffisante pour être reconnue par des anticorps anti-gpl 20 neutralisants et par le CD4. Pour faire le choix de gênes env modifiés répondant aux besoins de la présente invention, l'homme du métier, est à même de procéder par étape ou par hasard, et de choisir ensuite parmi toutes les séquences ne répondant pas à nos besoins, celles qui y satisfont.
Après avoir produit la glycoprotéine par des techniques de recombinaison génétique, ou par infection de cellules avec HIV, on la purifie au moyen de techniques connues de l'homme du métier, notamment celles faisant intervenir des lectines de lentille (Pialoux et al, 1995, supra ; Salmon-Céron et /,, 1995, supra), celle décrite dans W091/13906 (supra) pouvant être éventuellement encore adaptée aux besoins de la présente invention, ou même celle décrite à l'exemple 1 (immuno-affinité), par exemple.
Rn ce qui concerne les protéines recombinantes, on peut noter qu'une partie des glycoprotéines ainsi purifiées présentent des ponts disulfures inter-chaînes, quelque soit la nature de l'hôte ou du vecteur utilisé. Les glycoprotéines s'associent en fait en dimères (une partie étant covalents) visibles sur gel SDS PAGE après fixation par un agent de pontage. En ce qui concerne les glycoprotéines purifiées de cellules infectées par HIV, celles-si se présentent aussi sous forme de tétramères (WO94/00557, 5.//?ra).
Afin de répondre aux besoins de la présente invention, on dissocie donc les glycoprotéines, puis on les soumet à des conditions favorisant leur ré-assemblage naturel, c'est à dire sous forme de trimeres. Pour cela, on soumet la glycoprotéine à des étapes impliquant au moins un agent réducteur, un détergent ionique et/ou un détergent neutre dans des conditions telles que l'on obtient une glycoprotéine satisfaisant aux besoins de la présente invention.
On peut choisir un ou plusieurs agent(s) réducteur(s) parmi les molécules de dithiothréitol, β-mercaptoéthanol, glutathion réduit ou le borohydrure de sodium, par exemple.
On peut choisir un ou plusieurs détergent(s) ionique(s) parmi les sels de dodécyl sulfate, notamment le dodécyl sulfate de sodium (SDS) ou de lithium, les sels de dioctyl sulfosuccinate (de sodium, par exemple), les sels de cétryltriméthylammoniurn (de brome, par exemple), les sels de cétylpyridinium (de chlore, par exemple), les N-dodécyls- ou N-tétradécyl-sulfobétaïne, les zwittergents 3- 14, et le 3-[(3-cholamidopropyl)-diméthylamino]- l -propane sulfonate (CHAPS), par exemple. De même, on peut choisir un ou plusieurs détergent(s) neutre(s) parmi le tween20®, le tweenδO®, l'octylglucoside, le lauryl-maltoside, l'hecameg®, le lauryl- diméthylamine, le décanoyl-N-méthyl-glucamide, le polyéthylène-glycol-lauryl-éther, le triton X I 00®, le Lubrol PX®, par exemple.
Les conditions opératoires doivent être suffisantes pour dissocier les glycoprotéines, et les ré-assembler en trimeres. Pour cela, généralement on peut dissocier les glycoprotéines à l'aide d'un ou plusieurs détergent(s) ionique(s), en présence d'agent réducteur ou non, puis on peut favoriser le réassemblage des monomères en substituant le détergent ionique par un détergent neutre, par exemple au moyen d'une dialyse. De cette manière, on est assuré d'obtenir une glycoprotéine selon l'invention comprenant moins de 50% d'autres contaminants protéiques (constitués principalement par des dimères covalents)
De préférence, pour obtenir exclusivement des trimeres de glycoprotéines selon l'invention, on soumet au cours du traitement les glycoprotéines purifiées à un agent réducteur, de sorte à libérer les dimères covalents, le cas échéant on bloque des fonctions sulfhydryls libres au moyen de molécules appropriées, telles que des agents d'alkylation comme le N-éthyl-maléimide ou l'iodo-acétamide, puis on ré-oxyde doucement les fonctions sulfhydryls restantes en présence d'un agent oxydant tel que du glutathion oxydé, par exemple.
Dans un mode de réalisation particulier de la présente invention, on peut soumettre la glycoprotéine purifiée successivement à un agent réducteur, à un agent d'alkylation, à un agent oxydant, à un détergent ionique et à une dialyse contre un détergent neutre, par exemple
Dans un autre mode de réalisation particulier de la présente invention, on peut soumettre la glycoprotéine purifiée successivement à un détergent ionique, à un agent réducteur, à un agent oxydant et à une dialyse contre un détergent neutre.
A la fin du procédé, on peut substituer le détergent neutre par un tampon approprié, par exemple au moyen d'une dialyse.
Un autre objet de la présente invention concerne un vaccin comprenant la glycoprotéine selon la présente invention et un adjuvant. Ce vaccin peut contenir comme antigène de surface du HIV uniquement la glycoprotéine selon la présente invention, les formes dimériques ou monomériques d'une gp l 60 ou gpl 20 étant spécifiquement exclues, par exemple, pour des raisons d'immunogénéicités réduites. On peut également adjoindre à ce vaccin d'autres valences concernant d'autres maladies, les quantités d'antigènes et/ou la formulation de chaque valence devant néanmoins être probablement optimisée(s) de sorte à assurer une réponse immunitaire efficace, par exemple. Les valences d'autres pathogènes peuvent provenir de bactéries, de virus ou de parasites, par exemple ceux provoquant des hépatites (A à G), la rougeole, les oreillons, la polio, la tuberculose, la diphtérie, la malaria, etc.
Parmi les adjuvants utilisables, on peut dénombrer tous les sels d'aluminium, comme les phosphates et hydroxydes d'aluminium : l'adjuvant de Freund ; le N-acétylmuramyl-L-alanyl-D-isoglutamyl-L-alanine-2-[ 1.2-dipalmitoyl-sn-glycéro- 3-(hydroxyphosphoryloxy)] (voir Sanchez-Pescador et al. J. Immu., 141 , 1720- 1727, 1988) ; les molécules dérivées de Ouillaja saponaria, comme le Stimulon® (Aquila, US) ; lTscoms® (CSL ltd, US) ; toutes molécules à base cholestérol et analogues, comme le DC Chol® (Targeted Genetics) ; le glycolipide Bay R I 005® (Bayers, DE) ; les antigènes de Leishmania brasiliensis comme le LeIF (nom technique) disponible auprès de Corixa Corp. (US), les polymères de la famille de polyphosphazènes, comme l'Adjumer (nom technique) disponible auprès du "Virus Research Institute "
(US).
Les compositions vaccinales selon l'invention peuvent être utilisées pour la prévention d'infections par le HIV- 1 , le dosage et la voie et la fréquence d'administration devant cependant être probablement optimisé de sorte à obtenir une réponse immunitaire efficace.
Un dernier objet de la présente invention concerne l'utilisation de la glycoprotéine selon l'invention dans la mise en œuvre de toute méthode de diagnostic in vitro d'infections causées par HIV.
D'autres caractéristiques de la présente invention apparaîtront au cours des descriptions suivantes d'exemples de formes de réalisation qui sont fournis à des fins d'illustration de la présente invention et qui ne sont pas destinés à être limitatifs. La manipulation des cellules, la préparation des vecteurs, la transformation de cellules, et toutes les autres procédures techniques sont, en l'absence de précisions contraires, effectués selon les protocoles décrits dans l'ouvrage de Sambrook et al. (1989, supra). Ces exemples sont précédés d'une brève description de la figure 1 , et des méthodes mesurant l'affinité de la gpl 60 au CD4.
Mise en évidence d'une affinité au CD4 par précipitation radio-immune : on utilise un CD4 recombinant marqué au soufre 35 produit par des cellules CHO (Genentech, USA ; VanCott et al , 1995, supra). On effectue ensuite des expériences de co- précipitation, au cours desquelles le CD4 est ajouté en quantité croissante à une quantitée fixe de gp l 60 purifiée sous forme trimérique pour déterminer le point de saturation, puis on les coprécipite avec un antisérum anti-gpl 60. Pour cela, on mélange le CD4 et la gpl 60 pendant 1 h à 4°C, on ajoute l'anticorps (OKT4, Ortho Diagnostics, US), on lave les complexes, et on les sépare par électrophorèse.
Mise en évidence d'une affinité au CD4 par ELISA : la mesure des constantes d'affinité du CD4 pour la glycoprotéine selon l'invention est mesurée en utilisant la technique de Friguet ét al. (J. of immunological methods, 77, 305-3 19, 1985).
Mesure de l'affinité de la gpl 20 sur le CD4 par résonance plasmonique de surface : le Biacore© est un appareil pour l'analyse des interactions biospécifiques en temps réel et sans marquage qui utilise le principe de résonance plasmonique de surface. Lors de l'analyse, un des interactants (le ligand) est couplé à une matrice hydrophile (dextran) ou hydrophobe (surface HPA). L'autre interactant (analyte) passe au contact de la surface par l'intermédiaire d'une cartouche de transfert microfluidique. L'augmentation de masse au voisinage de la surface due à l'interaction entre les molécules, est représentée en fonction du temps sur un sensorgramme. Différentes chimies de couplage permettent la fixation de pratiquement toutes les biomolecules sur la matrice. L'utilisateur crée donc une surface biospécifique sur mesure, pour chaque type d'application. En pratique la glycoprotéine selon l'invention est couplée sur la matrice et différentes concentration de CD4 sont envoyées par l'appareil au contact de cette matrice. A chaque fois la masse de CD4 fixée sur la glycoprotéine est enregistrée. Le logiciel Biaeval3® calcule automatiquement la constante de dissociation du CD4 sur la gpl 20.
Figure 1 : représentation de l'analyse SDS PAGE en condition réductrice obtenue avec la gpl 60 produite par VVTG9150, purifiée, traitée pour faire des trimeres et fixée par un agent de pontage (col. 3 et 4) ; au regard de celle obtenue en condition réductrice avec la gp l 60 produite par VVTG9150, purifiée et directement fixée (col. 2) ; au regard de celle obtenue en condition réductrice avec des monomères de gp l 60 (col. 5 et 6) ; et au regard de celle obtenue en condition non-réductrice avec la gp l 60 produite par VVTG9150 et purifiée (col. 7).
Exemple 1
Un vecteur recombinant basé sur le virus de la vaccine, VVTG9150, est utilisé pour la production de gp l 60. La construction du plasmide de transfert du gène codant pour la protéine env hybride HIV- 1 (M LAI dans le génome du virus de la vaccine VVTG9150 est décrite ci-après.
Le fragment d'ADN Pstl-Kpnï de pTG 1 163, réf. Kieny et al. (Prot. Eng., 2, 219-225, 1998) qui contient la séquence codant pour le peptide signal et les premiers acides aminés de la gp l 20 du virus HIV- 1 LΛI, est inséré aux sites Pst\ et Kpiû du bactériophage M 13TG 130, réf. Kieny et al (Gène, 26, 91 -99, 1983 ) générant M 13TG4147. Le fragment Pstl-Pstl de pTG l 163, contenant la totalité du gène codant pour une gpl όO/soluble de HIV- 1 LAi est introduit dans le site de restriction PstI de M 13mp70, générant M 13TG4137. L'ADN du bactériophage M 13TG4137 est ensuite coupé par Bg I II, digéré par la polymérase I (fragment de Klenow) afin de générer une extrémité franche, puis coupé par EcoRl, afin d'être inséré aux sites EcoRV et EcoRl du bactériophage M 13TG4147, générant M 13TG4158. Une délétion sur M 13TG4158 est ensuite réalisée avec un oligonucléotide, qui permet l'introduction d'un site Sphl et d'un site Swαl. On obtient le bactériophage M 13TG4168. Le gène codant pour la est ensuite amplifié à partir d'ADN de cellules SupT l infectées avec le virus HIV- 1 MN par la technique de PCR avec des oligonucléotides qui introduisent respectivement des sites Splή et Smal. Le fragment d'ADN amplifié est ensuite digéré par Sphl et Smal et inséré aux sites correspondant de 13TG4168, générant M 13TG4174. Une mutagénèse dirigée sur M 13TG4174 est réalisée avec un oligonucléotide permettant de muter un site potentiel d'arrêt de transcription (TTTTTNT) reconnu par le virus de vaccine dans les gènes précoces et d'introduire un site de restriction EcoRl, générant ainsi M 13TG8120. Le fragment Pstl-Pstl de M 13TG8120 est ensuite clone dans le site Pst du plasmide pTG9148 générant pTG9150 (le virus VVTG9150 après transfection).
pG9148 est d'ailleurs généré de la façon suivante : la séquence correspondant au promoteur H5R du virus de la vaccine est amplifiée par la technique de PCR avec des oligonucléotides introduisant respectivement des sites BamHl et Bglll. Le fragment d'ADN amplifié est ensuite digéré par Bglll et BamHl et inséré aux sites correspondant de M 13TG6131 (Gène, 26, 91 -99, 1983) générant M13TG8124. Le fragment BamHI-Bg l II de M 13TG8124 contenant la séquence promotrice HSR est introduit dans le site de restriction BamHl de pTG9133 générant pTG9145. Le plasmide pTG9133 a été construit par introduction d'un site BamHl entre les sites Cl al et EcoRl de pTG l H-TK (Nature, 3 2, 5990, 163- 166, 8 Nov. 1984) par ligation d'un adaptateur OTG4451/OTG4452. Un site de clonage multiple issu de M 13TG 131 digéré par Bglll et EcoRl est introduit dans les sites BamHl et EcoRl de pTG9145 générant pTG9148.
En conclusion, VVTG9150 code donc pour une gpl 60 hybride et soluble dans laquelle la partie gp l 20 dérive du HIV-1 MN, et la partie transmembranaire gp41 provient d'un isolât LA I . Plusieurs modifications sont en outre introduites dans cette séquence codante. Premièrement, un site de restriction Sphl est créé immédiatement en aval de la séquence codant pour le peptide signal, sans altérer la séquence en acides aminés. Deuxièmement, un site de restriction Smal est créé immédiatement au-dessus de la séquence de clivage entre la gp l 20 et la gp41 , sans altération de la séquence en acides aminés. Troisièmement, les deux sites de clivage en position 507-516 (numérotation des acides aminés conforme à Myers et al., in : Human retroviruses and AIDS, Los Alamos Nat. Lab., USA, 1994) sont mutés (séquence originale KRR...REKR muté en QNH...QEHN). Quatrièmement, la séquence codant pour le peptide hydrophobique transmembranaire IFIMIVGGLVGLRIVFAVLSIV (acides minés 689-710 de Myers et al.) est supprimée. Cinquièmement, un codon stop a été substitué pour le second codon E codant PEGIEE (acides aminés 735-740 de Myers et al.), c'est-à-dire le 29ιemê acide aminé du domaine intracytoplasmique.
VVTG9150 est ensuite propagé pour produire la gpl 60 hybride sur des cellules BHK21 , dans des conditions conventionnelles (Nature, 312, 163- 166, 1984).
La glycoprotéine hybride gpl 60 est alors purifiée successivement par chromatographies echangeuse d'ions, une chromatographie d'immunoaffinité, une gel filtration, et une concentration. En résumé, on fait passer le milieu de culture contenant la gpl 60 successivement au travers de deux supports DEAE Trisacryl LS
Plus®, mis en équilibre dans des colonnes BPG200® et BPG 100® (Pharmacia) avec un tampon pH 8,3 contenant 2,42 g/1 de Tris et 1 ml/1 de triton X I 00. Puis on fait passer les fractions d'élution contenant la gp l 60 au travers d'un support AF-Tresy!
Toyopearl® (Tosoh Corp, JP) sur lequel a été greffé l'anticorps IAM5F3
(publication ?) et qui a été mis à l'équilibre dans un tampon composé de 29,22 g/1 de NaCl, 2,42 g/1 de Tris et 1 ml/1 de triton X I 00. On collecte l'élution dès l'augmentation de DO visible sur l'écran et ce, jusqu'à la ligne de base. On neutralise ensuite le pH de l'élution avec 4% (v:v) de tampon Tris HC1 2M. On soumet l'élution neutralisée à une filtration surgel dans une colonne XK 50/100® contenant le support sephacryl HR S300 mis à l'équilibre dans un tampon PBS. Si la concentration en protéines est alors inférieure à 0,44 mg/ml, on concentre l'élution dans une cellules Amicon® équipée d'une membrane YM30. Puis, on inactive l'élution ou le concentrât dans un bain marie à 60°C pendant 1 h, et on le filtre (0,22μm) dans un flacon Nalgène®. On peut ainsi obtenir environ 1 ,34 mg/ml de gp l 60 pure à 91 % (visualisée sur SDS PAGE).
A partir de 560 μl de gpl 60 purifiée ( 1 mg/ml), on ajoute 65 μl de tampon 1 M phosphate de sodium pH7,8 ; 5,5 μl d'eau distillée et 19,5 μl de dithiothréitol 250 mM
(DTT), et on agite au vortex pendant 15 s. On ajoute 51 ,5 μl de phosphate de sodium 1 M (NaH2P04), puis on bloque les groupes sulfhydryls par addition de 95 μl de N- ethyl-maléimide l OOmM, on incube pendant 15 min, on réoxyde les groupes sulfhydryls par addition de 32,5 μl de glutathion réduit à 150 mM, et 484 μl de glutathion oxydé à 100 mM, on incube pendant 30 min. On dissocie ensuite les dimères de gpl 60 par addition de 13,2 μl de dodécyl sulfate de sodium (SDS) à 10%. On place l'échantillon dans une cassette de dialyse d'une capacité de 3 ml contre 3 1 de tampon PBS avec l OmM d'octylglucoside. On effectue la diaK se pendant la nuit à température ambiante sous agitation douce. On élimine enfin le détergent par une ou plusieurs nouvelles dialyses contre du tampon PBS. Les gp l 60 ainsi traitées se retrouvent sous forme de trimeres exclusi\ ement.
La figure 1 représente l'analyse SDS PAGE en condition réductrice (DTT) obtenue avec la gp l 60 produite par VVTG9150, purifiée, traitée pour faire des trimeres et fixée par l'agent de pontage bi-fonctionnnel éthylène-glycol-bis- succinimidyl-succinate (EGS) (col. 3 et 4) ; au regard de celle obtenue en condition réductrice avec la gpl 60 produite par VVTG9150, purifiée et directement fixée par LEGS (col. 2 : des dimères) ; au regard de celle obtenue en condition réductrice avec des monomères de gpl 60 (col. 5 et 6) ; et au regard de celle obtenue en condition non- réductrice avec la gpl 60 produite par VVTG9150 et purifiée (col. 7 : en absence d'agent réducteur, les liaisons inter-chaînes conduisent à la formation de dimères, trimeres et tétramères).
Exemple 2 On exprime par le virus de la vaccine une gp l 20 prolongée des 129 premiers acides aminés de la partie N-terminale de la gp41 , comme décrit par Earl et a , Proc. Natl. Acad. Sci. USA, 87, 648-652, 1990. Dans la mesure où la partie gp41 est limité à ses 129 premiers acides aminés, celle-ci ne comporte pas de région transmembranaire. Cette glycoprotéine présente sur gel SDS PAGE un poids moléculaire de l'ordre de 140 kD et est communément appelée gp l 40.
On purifie cette gp l 40 successivement par chromatographie d'échange d'ions, chromatographie d'affinité avec des lectines de lentilles, et par gel filtration, comme décrit par Pialoux et al. ( 1995, supra) et Salmon-Céron et al. ( 1 995, supra).
A partir de 100 μl de gp l 40 purifiée ( 1 mg/ml). on ajoute 2 μl de dithiothréitol 250 mM (DTT), et 10 μl de SDS ( 10%), on incube le mélange pendant 15 min, on lui ajoute 20 μl de glutathion oxydé (250mM), on l'incube une nuit à 4°C, puis on place l'échantillon dans une cassette de dialyse d'une capacité de 3 ml contre 3 1 de tampon PBS contenant l OmM d'octylglucoside. On effectue la dialyse pendant la nuit à température ambiante sous agitation douce. On élimine enfin le détergent par une ou plusieurs nouvelles dialyses contre du tampon PBS. Contre toute attente, cette méthode permet d'éliminer tous les ponts disulfures inter-chaînes sans que l'on ait à bloquer les groupes sulfhydryls avec un agent alkylant. Les gpl 40 ainsi traitées se retrouvent sous forme de trimeres exclusivement.
Exemple 3
On exprime par le virus de la vaccine une gp l 60 telle que décrite par Kieny et al. (Protein Engineering, 2, 219-225, 1988). On la purifie comme décrit à l'exemple 1 , puis on la traite avec du SDS, et on la dialyse contre un tampon PBS contenant l OmM d'octylglucoside. On obtient après traitement un mélange de trimeres non-covalents et de dimères covalents de la gpl 60, la forme prédominante étant constituée de trimeres.

Claims

Revendications
1. Glycoprotéine recombinante purifiée répondant aux propriétés suivantes :
a) une capacité d'adhésion au CD4 ; b) une affinité avec un anticorps anti-gpl 20 capable de neutraliser in vitro l'infection de cellules par HIV; c) une affinité avec un anticorps anti-gp41 ; d) une forme trimérique dépourvue de ponts disulfures inter-chaînes.
2. Glycoprotéine selon la revendication 1 , caractérisée en ce que la glycoprotéine est composée de tout ou partie de la gp l 60.
3. Glycoprotéine selon la revendication 1 , caractérisée en ce qu'elle comprend moins de 50%o d'autres contaminants protéiques.
4. Glycoprotéine selon la revendication 1 , caractérisée en ce que la capacité d'adhésion au CD4 est au moins identique à celle d'une gp l 20 d'un HIV infectieux.
5. Vaccin comprenant la glycoprotéine purifiée selon la revendication 1 , et un adjuvant.
6. Vaccin selon la revendication 4, caractérisé en ce qu'il contient comme antigène de surface du HIV uniquement la glycoprotéine selon la revendication 1.
7. Procédé d'obtention d'une glycoprotéine selon la revendication 1 , dans lequel on exprime, aux moyen de techniques de recombinaison génétique, une glycoprotéine répondant aux propriétés a), b) et c) énoncées à la revendication 1 , on la purifie, et on la soumet à des étapes impliquant au moins un agent réducteur, un détergent ionique et/ou un détergent neutre dans des conditions telles que l'on obtient une glycoprotéine répondant aux conditions énoncées à la revendication 1.
8. Procédé selon la revendication 6, caractérisé en ce qu'on soumet la glycoprotéine purifiée successivement à un agent réducteur, à un agent d'alkylation, à un agent oxydant, à un détergent ionique, et à une dialyse contre un détergent neutre.
. Procédé selon la revendication 6, caractérisé en ce qu'on soumet la glycoprotéine purifiée successivement à un détergent ionique, à un agent réducteur, à un agent oxydant, et à une dialyse contre un détergent neutre.
10. Utilisation de la glycoprotéine selon la revendication 1 dans la mise en œuvre d'une méthode de diagnostic in vitro d'infections causées par HIV.
PCT/FR1999/001871 1998-07-31 1999-07-29 Trimere du produit d'expression du gene env de hiv WO2000008167A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99934806A EP1100926A1 (fr) 1998-07-31 1999-07-29 TRIMERE DU PRODUIT D'EXPRESSION DU GENE $i(ENV) DE HIV
AU50459/99A AU5045999A (en) 1998-07-31 1999-07-29 Trimer of HIV (ENV) gene expression product
US09/744,659 US6737067B1 (en) 1998-07-31 1999-07-29 Trimer of HIV env gene expression product
CA002338020A CA2338020A1 (fr) 1998-07-31 1999-07-29 Trimere du produit d'expression du gene env de hiv

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9810027A FR2781676B1 (fr) 1998-07-31 1998-07-31 Trimere du produit d'expression du gene env de hiv
FR98/10027 1998-07-31

Publications (1)

Publication Number Publication Date
WO2000008167A1 true WO2000008167A1 (fr) 2000-02-17

Family

ID=9529397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001871 WO2000008167A1 (fr) 1998-07-31 1999-07-29 Trimere du produit d'expression du gene env de hiv

Country Status (6)

Country Link
US (1) US6737067B1 (fr)
EP (1) EP1100926A1 (fr)
AU (1) AU5045999A (fr)
CA (1) CA2338020A1 (fr)
FR (1) FR2781676B1 (fr)
WO (1) WO2000008167A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830534A1 (fr) * 2001-10-05 2003-04-11 Aventis Pasteur Antigene polypeptidique formant une structure mimant l'etat intermediaire de gp41.
WO2003042388A1 (fr) * 2001-10-05 2003-05-22 Aventis Pasteur ANTIGENE POLYPEPTIDIQUE FORMANT UNE STRUCTURE MIMANT L'ETAT INTERMEDIAIRE DE gp41
US6861253B2 (en) 2001-01-05 2005-03-01 Aventis Pasteur S.A. Polypeptide inducing antibodies neutralizing HIV
US7056519B2 (en) 2002-05-17 2006-06-06 Aventis Pasteur S.A. Methods for inducing HIV-neutralizing antibodies

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0422439D0 (en) * 2004-10-08 2004-11-10 European Molecular Biology Lab Embl Inhibitors of infection
US20080248063A1 (en) * 2004-12-29 2008-10-09 Seattle Biomedical Research Institute Hetero-Oligomeric Hiv Envelope Proteins
EP2040746A4 (fr) * 2006-06-19 2009-12-16 Progenics Pharm Inc Procedes de recuperation de formules stabilisees de trimeres de proteines d'enveloppe (env) retrovirale
US20110076298A1 (en) * 2006-06-19 2011-03-31 Olson William C Soluble stabilized trimeric hiv env proteins and uses thereof
CA2667358A1 (fr) * 2006-10-23 2008-05-29 Progenics Pharmaceuticals, Inc. Polypeptides d'enveloppe gp140 modifies en provenance d'isolats du vih-1, compositions, complexes trimeriques et utilisations de ceux-ci
CA2793959C (fr) 2010-03-25 2019-06-04 Oregon Health & Science University Glycoproteines du cmv et vecteurs recombines
ES2667425T3 (es) 2011-06-10 2018-05-10 Oregon Health & Science University Glucoproteínas y vectores recombinantes de CMV
AU2012216792A1 (en) 2011-09-12 2013-03-28 International Aids Vaccine Initiative Immunoselection of recombinant vesicular stomatitis virus expressing HIV-1 proteins by broadly neutralizing antibodies
US20150190501A1 (en) * 2011-09-12 2015-07-09 Imperial Innovations Limited Methods and compositions for raising an immune response to hiv
US9402894B2 (en) 2011-10-27 2016-08-02 International Aids Vaccine Initiative Viral particles derived from an enveloped virus
EP2679596B1 (fr) 2012-06-27 2017-04-12 International Aids Vaccine Initiative Variante de la protéine env du VIH-1
US20150065381A1 (en) 2013-09-05 2015-03-05 International Aids Vaccine Initiative Methods of identifying novel hiv-1 immunogens
US10058604B2 (en) 2013-10-07 2018-08-28 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
US10174292B2 (en) 2015-03-20 2019-01-08 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
US9931394B2 (en) 2015-03-23 2018-04-03 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000557A1 (fr) * 1992-06-30 1994-01-06 Centre Nat Rech Scient Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination
WO1999016883A2 (fr) * 1997-10-01 1999-04-08 Dana-Farber Cancer Institute Stabilisation des glycoproteines trimeres d'enveloppe au moyen de liaisons bisulfure introduites dans un ectodomaine de la glycoproteine gp41

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122468A (en) * 1988-08-16 1992-06-16 Akzo N.V. Hut-78 cell lines infected with HTLV-III which secrete gp160
ATE153380T1 (de) * 1993-01-16 1997-06-15 Manfred Schawaller Verfahren zur gewinnung nativer, oligomerer, glykosylierter ektodomänen viraler membranproteine, deren verwendung, insbesondere als impfstoff gegen hiv

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000557A1 (fr) * 1992-06-30 1994-01-06 Centre Nat Rech Scient Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination
WO1999016883A2 (fr) * 1997-10-01 1999-04-08 Dana-Farber Cancer Institute Stabilisation des glycoproteines trimeres d'enveloppe au moyen de liaisons bisulfure introduites dans un ectodomaine de la glycoproteine gp41

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.P. MOORE AND J. BINLEY: "Envelope's letters boxed into shape", NATURE, vol. 393, no. 6686, 18 June 1998 (1998-06-18), LONDON GB, pages 630 - 631, XP002101351 *
LU M ET AL: "A trimeric structural domain of the HIV-1 transmembrane glycoprotein.", NATURE STRUCTURAL BIOLOGY, (1995 DEC) 2 (12) 1075-82. JOURNAL CODE: B98. ISSN: 1072-8368., United States, XP002101352 *
WYATT R ET AL: "The antigenic structure of the HIV gp120 envelope glycoprotein [see comments].", NATURE, (1998 JUN 18) 393 (6686) 705-11. JOURNAL CODE: NSC. ISSN: 0028-0836., ENGLAND: United Kingdom, XP002101350 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861253B2 (en) 2001-01-05 2005-03-01 Aventis Pasteur S.A. Polypeptide inducing antibodies neutralizing HIV
FR2830534A1 (fr) * 2001-10-05 2003-04-11 Aventis Pasteur Antigene polypeptidique formant une structure mimant l'etat intermediaire de gp41.
WO2003042388A1 (fr) * 2001-10-05 2003-05-22 Aventis Pasteur ANTIGENE POLYPEPTIDIQUE FORMANT UNE STRUCTURE MIMANT L'ETAT INTERMEDIAIRE DE gp41
US6821723B2 (en) 2001-10-05 2004-11-23 Aventis Pasteur S.A. GP41 antigen
US7056519B2 (en) 2002-05-17 2006-06-06 Aventis Pasteur S.A. Methods for inducing HIV-neutralizing antibodies

Also Published As

Publication number Publication date
US6737067B1 (en) 2004-05-18
CA2338020A1 (fr) 2000-02-17
AU5045999A (en) 2000-02-28
EP1100926A1 (fr) 2001-05-23
FR2781676B1 (fr) 2004-04-02
FR2781676A1 (fr) 2000-02-04

Similar Documents

Publication Publication Date Title
WO2000008167A1 (fr) Trimere du produit d'expression du gene env de hiv
JP3658690B2 (ja) ウイルスの膜蛋白質の天然ドメインの獲得方法、特にhivに対するワクチンとしてのそれらの使用
EP1461079B1 (fr) Mutants de glycoproteines d'enveloppe du vih et leurs utilisations
US5614612A (en) Purified gp120 compositions retaining natural conformation
FR2773156A1 (fr) Nouveaux immunogenes anti-retroviraux (toxoides), nouveaux procedes de preparation et application a la prevention et au traitement du sida
AU2002335709A1 (en) Human Immunodeficiency Virus Envelope Clycoprotein Mutants and Uses Thereof
Berzofsky Development of artificial vaccines against HIV using defined epitopes
EP1169057B1 (fr) Vaccin anti-vih-1 comprenant tout ou partie de la proteine tat de vih-1
EP1466924B1 (fr) Vaccins de peptide synthétiques pour HIV: l'épitope de CBD comme immunogen efficace pour obtenir des anticorps neutralisants contre VIH
EP0519001B1 (fr) COMPOSITION DE gp120 PURIFIEE PRESERVANT SA CONFORMATION NATURELLE
Jones et al. Efficient purification and rigorous characterisation of a recombinant gp120 for HIV vaccine studies
US5696238A (en) Purified GP120 composition retaining natural conformation
US20130142779A1 (en) Treatment of Hi-Virus infections with oxidised blood proteins
EP1368478B1 (fr) Polypeptide induisant des anticorps neutralisant le vih
ES2553597T3 (es) Un anticuerpo monoclonal anti-Tat del VIH-1
FR2692898A1 (fr) Procédé d'obtention de protéines membranaires, et utilisation de ces protéines dans un but de diagnostic ou de vaccination.
Martin et al. A simple one-step method for the preparation of HIV-1 envelope glycoprotein immunogens based on a CD4 mimic peptide
WO2001030814A1 (fr) Complexe deglycosyle env/cd4 et son utilisation pour la vaccination contre le vih
Binley et al. Enhancing the proteolytic maturation of the HIV-1 envelope glycoproteins
FR2829150A1 (fr) Gene env mute codant pour une glypoproteine du vih-1 et applications
Sanders12 et al. of the envelope glycoprotein complex of HIV-1
Sanders et al. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of HIV-1
Sanders¹ et al. glycoprotein can be stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits
FR2819256A1 (fr) Polypeptide induisant des anticorps neutralisant le vih
Strasz Vaccination studies with the mper of HIV-1 gp41 grafted into transmembrane protein of a gammaretrovirus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999934806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2338020

Country of ref document: CA

Ref country code: CA

Ref document number: 2338020

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09744659

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999934806

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999934806

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载