WO2000000819A1 - Procede et dispositif d'analyse - Google Patents
Procede et dispositif d'analyse Download PDFInfo
- Publication number
- WO2000000819A1 WO2000000819A1 PCT/US1999/014709 US9914709W WO0000819A1 WO 2000000819 A1 WO2000000819 A1 WO 2000000819A1 US 9914709 W US9914709 W US 9914709W WO 0000819 A1 WO0000819 A1 WO 0000819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- donor
- acceptor
- modulation
- analyte
- sample
- Prior art date
Links
- 238000003556 assay Methods 0.000 title abstract description 9
- 239000000370 acceptor Substances 0.000 claims description 71
- 238000000034 method Methods 0.000 claims description 18
- 239000007793 ph indicator Substances 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 10
- 229920001562 poly(N-(2-hydroxypropyl)methacrylamide) Polymers 0.000 claims description 9
- 239000012491 analyte Substances 0.000 claims description 7
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- ZPLCXHWYPWVJDL-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)methyl]-1,3-oxazolidin-2-one Chemical compound C1=CC(O)=CC=C1CC1NC(=O)OC1 ZPLCXHWYPWVJDL-UHFFFAOYSA-N 0.000 claims description 3
- OLQIKGSZDTXODA-UHFFFAOYSA-N 4-[3-(4-hydroxy-2-methylphenyl)-1,1-dioxo-2,1$l^{6}-benzoxathiol-3-yl]-3-methylphenol Chemical compound CC1=CC(O)=CC=C1C1(C=2C(=CC(O)=CC=2)C)C2=CC=CC=C2S(=O)(=O)O1 OLQIKGSZDTXODA-UHFFFAOYSA-N 0.000 claims description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 3
- 239000007983 Tris buffer Substances 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- WWAABJGNHFGXSJ-UHFFFAOYSA-N chlorophenol red Chemical compound C1=C(Cl)C(O)=CC=C1C1(C=2C=C(Cl)C(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 WWAABJGNHFGXSJ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005558 fluorometry Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical group OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- OBRMNDMBJQTZHV-UHFFFAOYSA-N cresol red Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C=C(C)C(O)=CC=2)=C1 OBRMNDMBJQTZHV-UHFFFAOYSA-N 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 claims 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims 1
- 239000004926 polymethyl methacrylate Substances 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 238000001685 time-resolved fluorescence spectroscopy Methods 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 5
- 239000003446 ligand Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000001856 Ethyl cellulose Substances 0.000 description 18
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 18
- 229920001249 ethyl cellulose Polymers 0.000 description 18
- 235000019325 ethyl cellulose Nutrition 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 230000001419 dependent effect Effects 0.000 description 13
- 230000003595 spectral effect Effects 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 10
- 238000001139 pH measurement Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000000295 emission spectrum Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000006862 quantum yield reaction Methods 0.000 description 5
- QBVXKDJEZKEASM-UHFFFAOYSA-M tetraoctylammonium bromide Chemical compound [Br-].CCCCCCCC[N+](CCCCCCCC)(CCCCCCCC)CCCCCCCC QBVXKDJEZKEASM-UHFFFAOYSA-M 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003283 colorimetric indicator Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- DHCWLIOIJZJFJE-UHFFFAOYSA-L dichlororuthenium Chemical compound Cl[Ru]Cl DHCWLIOIJZJFJE-UHFFFAOYSA-L 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 229910021432 inorganic complex Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6408—Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/80—Indicating pH value
Definitions
- This invention relates generally to the Held of assays and more particularly to fluorescence intensity assays.
- Optical measurements of pH are of wide interest in analytical and clinical chemistry. At present, optical sensing of pH is based on measurements of steady-state fluorescence intensity, as determined by the absorptive and emission properties of a sample. Time-resolved fluorescence has also been demonstrated for pll sensing using a number of lifetime pll sensitive probes. However, most lifetime-pH sensitive probes display relatively short lifetime in the range of several nanoseconds which makes their use difficult in practical inexpensive pH sensing. Though there are several reports about long lifetime luminescent inorganic complexes that show pH-sensitive luminescence characteristics, these Ru(II) based pH- sensitive complexes show pH-dependent emissions, mostly in the low pH range from 0 to 6.
- MCL metal ligand complex
- FRET fluorescence energy transfer
- the sensors contain a fluorescence donor and a pH-sensitive acceptor.
- the fluorescence donor can be selected for its absorption, emission, quantum yield, and decay time characteristics without concern for its sensitivity to pll.
- the acceptor can be fluorescent or non fluorescent, but must display absorption spectral change in response to pll in the wavelength range of the donor emission, and be photostable.
- the donor and acceptor molecules can be covalent ly linked or simply mixed together.
- the rate of the FRET depends on the integral overlap of the donor emission with the acceptor pH-dependent absorption, the distance between donor and acceptor and the relative orientation of the donor and acceptor transition dipoles.
- Metal-ligand probes display attractive spectral properties: are excitable with LED and diode lasers, exhibit large Stokes shift ( ⁇ 200 nm), and have acceptable quantum yields.
- the most attractive property of MLC probes is long luminescence lifetime in the order of several hundreds nanosecond to microseconds. The long lifetime allows of using low modulation frequency in phase-modulation technique. The low modulation frequency in the range of several hundred kHz is desirable in terms of the cost of practical device for sensing.
- the long lifetime of donor allows for significant molecular diffusion of donor and acceptor molecules which enhances the FRET. This may results in using lower acceptor concentrations than calculated based on F ⁇ rster theory. Therefore, the FRET based pH sensors with MLC as donors may require lower acceptor concentrations compared to that with a nanosecond lifetime donors. It is known that for sufficient energy transfer (more than 0.70). the acceptor concentrations need to be in the range of 3 -50 mM for donor-acceptor system with a F ⁇ rster distance Ro from about 50 to 20 I, respectively. Such acceptor concentrations results in high optical densities at the excitation and emission wavelengths making intensity measurements difficult to use in a quantitative manner.
- the present invention provides a FRET arrangement for sensing the concentration of protons supported by the acceptor.
- Energy is generated by subjecting a donor molecule comprising a fluorescent MLC to exciting radiation.
- the resulting energy will result in detectable fluorescence that may be diminished if acceptor molecules in the vicinity of the energy-producing MLC have a modified hydrogen ion status sufficient to cause them to cause them to accept more energy.
- Changes in the fluorescence produced are detected and correlated with the presence or amount of the analyte responsible for the change in the pH or hydrogen ion environment of the acceptor.
- MLC's such as Ru(II) complexes are useful as a donors and pH-sensitive indicators such as phthaleins are useful as acceptors.
- the donors and acceptors may he held in polymeric supports.
- Induced changes in H + within sensing element can be transduced via energy transfer to measure an analyte concentration in the sample. This can be usually achieved by using a proper polymers which are designed for specific analytes.
- FIG. 1 shows absorption spectra of pH indicator Cholophenol Red in pH 4.16 ( ) and pH 8.35
- FIG. 2 shows Intensity decays of [Ru((dpp)(SO3Na 2 ) 3 ] + in the presence of pH indicator. CP at its several concentrations in EC films at pH 8.35. Intensity decays are represented as a frequency- dependent phase angles and modulations.
- FIG. 3 shows pH-dependent intensity decays of [Ru((dpp)(SO 3 Na 2 ) 3 ] 2+ in the presence of 8.8 mM of CPR in EC films. Intensity decays are represented as a frequency-dependent phase angles and modulations.
- FIG 4 shows pH calibration curves for FRET-based sensor [Ru((dpp)(SO 3 Na 2 ) 3 ] 2+ -CPR using time- resoh/ed data, phase angles and modulations at frequency of 363 kHz.
- FIG 5 shows pH calibration curve for FRET-based sensor with two pH indicators as acceptors [Ru((dpp)(SO 3 Na 2 )3] 2+ -(CPR+TBPSP). Arrows indicate the ranges where CPR and TBPSP are sensitive to the pH.
- FIG 7 shows Effect of polymeric support on performance of [Ru((dpp)(SO 3 Na 2 ) 3 ] 2+ -TBPSP FRET pH sensor. PH-dependent phase angles were measured at frequency of 300 kHz. Dashed line shows the pH dependent absorbance of TBPSP in buffer.
- (Ru[dpp)(S ⁇ 3Na2)]3 Q was used as a donor.
- the synthesis and spectral characteristics of (Ru[dpp)(S ⁇ 3Na)2J3 Ck has been recently described.
- the FRET acceptors were chosen from the pH-sensitive phthaleins like m-cresol purple (mCP), bromothymol blue (BTB), chlorophenol red (CPR), 3,4,5,6-tetrabromophenolsulfophthalein CTBPSP), and phenolphthalein (PP) to cover wide range of pH values from 1 to 10 were purchased from Aldrich (Milwaukee, WI). The pH indicators were used without further purification.
- ethyl cellulose EC
- TEOS tetraethyl orthosilicate
- PPMA poly(2-hydroxypropyl methacrylate
- TBP tributyl phosphate TBP
- TOABr tetraoctylammonium bromide
- final coating solution contained 70 mM of TOABr.
- Sensor films were made by applying 4-5 ⁇ l of the given coating solution onto the surface of glass support, and let it be dried at ambient atmosphere for about 10 minutes.
- the precursor solution was then sonicated at room temperature for 2 h, and kept at about 4° C for 12 h.
- the sensor film was then made from the solution by dip-coating.
- Multi-frequency phase and modulation data were collected on the frequency-domain instrumentation ISS K2 (ISS Inc., Urbana Champagne, IL).
- ISS K2 ISS Inc., Urbana Champagne, IL
- blue LED Nathode
- This light source was chosen because it is practical and inexpensive for analytical or clinical sensing.
- Emission light was collected through a long pass filter above 595 nm. The measurements were carried out at room temperature of 22° C.
- phase modulation fluorometry the sample is excited with an intensity-modulated light and the fluorescence is emitted with the same modulation frequency.
- the experimental observables are the
- excitation light source [28]. These quantities may change from 0 to 90 degree and from 1 to 0 and are
- Phase and modulation of the donor emission reflects the changes in an intensity decay due to FRET from donor to the pH-sensitive acceptor.
- a functional sensor for pH does not require measurement of a complete frequency response. Measurement at single-modulation frequency is adequate for quantitative pH sensing [20].
- Fig.l shows the representative absorption and emission spectra of Ru[(dpp)(SO 3 Na 2 )]3 Cl (Donor) and pH indicator, CPR (Acceptor) in EC films.
- D-A system One of the most important variables of D-A system is the degree of spectral overlap between emission spectrum of the donor and absorption spectrum of acceptor. The importance of integrated spectral overlap of pH sensor can be understood by examining Fig.l. Protonation of CPR shifts its absorption maximum from 592 nm (large spectral overlap, indicated by grey area) to 405 nm (very small spectral overlap, not shown). Therefore, as the pH value decreases, the energy transfer efficiency from donor to acceptor will also decrease. In consequence the intensity and the lifetime of the donor should be pH dependent.
- D-A The distance between D and A which allows for FRET to occurs. FRET occurs if the D and A distance is comparable to the critical F ⁇ rster distance, Ro, and not be larger than about 2Ro [24].
- Ro critical F ⁇ rster distance
- In this report we have mixed donor and acceptor molecules in liquid solution and then formed the solid polymers. We anticipated that acceptor molecules are uniformly and randomly distributed around the excited donor molecules. In such case the steady-state intensity and the intensity decay of the donor emission can be described as a functions of acceptor concentration [24]. Valuable information about the acceptor concentration needed is the value of critical acceptor concentration, Co, which can be calculated from the value of Ro.
- acceptor concentration For polymeric matrices it is somewhat difficult to estimate the acceptor concentration because of several factors such as reduced volume during drying of the polymer, expected micro heterogeneity of polymers, and possible molecular diffusion. For optimal pH sensor performance the acceptor concentration need to be determined experimentally. Using time-resolved data the experimental values for Ro can also be determined and compared with those calculated from spectral characteristics of donor and acceptor molecules.
- Figure 2 illustrates intensity decays (phase angles) of [Ru(dpp(S0 3 Na 2 ) 3 ] in the presence of various acceptor concentrations (CPR) in EC films at pH 8.35 (base form of CPR).
- the acceptor concentrations in the EC films were estimated to be approximately 8-fold higher than that in the coating solution due to the reduced volume of EC after drying. It have been found that the experimental values of Ro for [Ru(dpp(SO 3 Na 2 )3]-CPR in EC were comparable to that expected from spectral overlap (Table 1 ). This agreement indicates that the donor and acceptor molecules are distributed randomly and there is no translational motion of molecules.
- Figure 3 shows pH dependent intensity decay of [Ru(dpp(SO 3 Na 2 ) 3 ] - CPR in the pH range from 4.16 to 8.35.
- the estimated concentration of acceptor in EC film was 8.8 mM. It is evident that with increased pH value from 4.16 to 8.35, the FRET also increased, resulting in shorter lifetimes. The increase of FRET is due to increased concentration of the base form of CPR at higher pH values. Phase angles and modulation dependencies on pH, which are shown in Figure 3, allow choosing a modulation frequency at which there are substantial pH sensitivity on phase and modulation. For
- sensing pH range usually will be limited to the 2 pH units and in some cases to the 3 pH units i.e.
- TBPSP TBPSP were used (Figure 5).
- the optical pH sensor allow pH measurement in the extended range from pH 5 to almost 10.
- a multiple pH indicators to cover even wider pH range to be measured.
- a number of pH sensitive donor-acceptor systems have been characterized.
- the FRET between the Ru(II) donor and the pH sensitive acceptors as a transduction mechanism has been used to demonstrate the pH sensing using phase and modulation of donor luminescence.
- Several pH indicators with different pKa values were chosen to design the pH optical sensors using a Ru(LT) complex with a high quantum yield and long lifetime.
- the wide pH range, from 1 to 11 can be measured with the same optical and electronic rearrangement of the instrumentation.
- pH sensor from 3.5 ⁇ s (EC) to 5.2 ⁇ s (PVC) in the absence of oxygen.
- Observed apparent pKa of pH sensor may be shifted of about 1 pH unit by changing the polymeric supports.
- FRET-based pH sensors can be utilized for design an optical sensors for a variety other analytes that induce the pH changes within a sensing element.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU49628/99A AU4962899A (en) | 1998-06-29 | 1999-06-29 | Assay method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9106798P | 1998-06-29 | 1998-06-29 | |
US60/091,067 | 1998-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000000819A1 true WO2000000819A1 (fr) | 2000-01-06 |
Family
ID=22225822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/014709 WO2000000819A1 (fr) | 1998-06-29 | 1999-06-29 | Procede et dispositif d'analyse |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU4962899A (fr) |
WO (1) | WO2000000819A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1271133A1 (fr) * | 2000-02-28 | 2003-01-02 | Daiichi Pure Chemicals Co., Ltd. | Procede de mesure dans lequel on utilise la fluorescence de longue duree du type d'excitation |
US6982431B2 (en) | 1998-08-31 | 2006-01-03 | Molecular Devices Corporation | Sample analysis systems |
US7070921B2 (en) | 2000-04-28 | 2006-07-04 | Molecular Devices Corporation | Molecular modification assays |
US7524974B2 (en) | 2002-07-08 | 2009-04-28 | Tetsuo Nagano | Fluorescent probe |
US7541467B2 (en) | 2004-01-09 | 2009-06-02 | Shigenobu Yano | Fluorescent zinc ion sensor |
US7632651B2 (en) | 1997-09-15 | 2009-12-15 | Mds Analytical Technologies (Us) Inc. | Molecular modification assays |
US7696245B2 (en) | 2003-03-28 | 2010-04-13 | Sekisui Medical Co., Ltd. | Fluorescent probe for zinc |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5628310A (en) * | 1995-05-19 | 1997-05-13 | Joseph R. Lakowicz | Method and apparatus to perform trans-cutaneous analyte monitoring |
US5648269A (en) * | 1991-05-03 | 1997-07-15 | Joseph R. Lakowicz | pH and pCO2 sensing by luminescent lifetimes and energy transfer |
-
1999
- 1999-06-29 WO PCT/US1999/014709 patent/WO2000000819A1/fr active Application Filing
- 1999-06-29 AU AU49628/99A patent/AU4962899A/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5648269A (en) * | 1991-05-03 | 1997-07-15 | Joseph R. Lakowicz | pH and pCO2 sensing by luminescent lifetimes and energy transfer |
US5628310A (en) * | 1995-05-19 | 1997-05-13 | Joseph R. Lakowicz | Method and apparatus to perform trans-cutaneous analyte monitoring |
Non-Patent Citations (1)
Title |
---|
SIPIOR J, ET AL.: "A LIFETIME-BASED OPTICAL CO2 GAS SENSOR WITH BLUE OR RED EXCITATIONAND STOKES OR ANTI-STOKES DETECTION", ANALYTICAL BIOCHEMISTRY., ACADEMIC PRESS INC., NEW YORK., vol. 227, 1 January 1995 (1995-01-01), NEW YORK., pages 309 - 318, XP002919346, ISSN: 0003-2697, DOI: 10.1006/abio.1995.1286 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7632651B2 (en) | 1997-09-15 | 2009-12-15 | Mds Analytical Technologies (Us) Inc. | Molecular modification assays |
US6982431B2 (en) | 1998-08-31 | 2006-01-03 | Molecular Devices Corporation | Sample analysis systems |
EP1271133A1 (fr) * | 2000-02-28 | 2003-01-02 | Daiichi Pure Chemicals Co., Ltd. | Procede de mesure dans lequel on utilise la fluorescence de longue duree du type d'excitation |
EP1271133A4 (fr) * | 2000-02-28 | 2006-02-08 | Daiichi Pure Chemicals Co Ltd | Procede de mesure dans lequel on utilise la fluorescence de longue duree du type d'excitation |
JP4589588B2 (ja) * | 2000-02-28 | 2010-12-01 | 哲雄 長野 | 長寿命励起型蛍光を用いる測定方法 |
US7070921B2 (en) | 2000-04-28 | 2006-07-04 | Molecular Devices Corporation | Molecular modification assays |
US7524974B2 (en) | 2002-07-08 | 2009-04-28 | Tetsuo Nagano | Fluorescent probe |
US7696245B2 (en) | 2003-03-28 | 2010-04-13 | Sekisui Medical Co., Ltd. | Fluorescent probe for zinc |
US7541467B2 (en) | 2004-01-09 | 2009-06-02 | Shigenobu Yano | Fluorescent zinc ion sensor |
Also Published As
Publication number | Publication date |
---|---|
AU4962899A (en) | 2000-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
von Bültzingslöwen et al. | Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology | |
JP4808777B2 (ja) | 非揮発性アナライト濃度の測定方法 | |
JP4272347B2 (ja) | 蛍光強度のシグナルを基準化するための方法および装置 | |
US6589438B2 (en) | Method for making microsensor arrays for detecting analytes | |
Klimant et al. | Dual lifetime referencing (DLR)—a new scheme for converting fluorescence intensity into a frequency-domain or time-domain information | |
EP0716740B1 (fr) | Procede d'activation de colorants fluorescents polyanioniques dans des milieux dielectriques faibles a l'aide de composes onium quaternaires | |
Lakowicz et al. | Anisotropy-based sensing with reference fluorophores | |
US5648269A (en) | pH and pCO2 sensing by luminescent lifetimes and energy transfer | |
US7456023B2 (en) | Reagent for luminescence optical determination of an analyte | |
Chang et al. | A fluorescence lifetime-based solid sensor for water | |
US20080199360A1 (en) | Method and composition for a platinum embedded sol gel optical chemical sensor with improved sensitivity and chemical stability | |
US6241948B1 (en) | Sensing device with sol-gel derived film on the light source | |
Chang et al. | A lifetime-based fluorescence resonance energy transfer sensor for ammonia | |
Borisov et al. | Modified dual lifetime referencing method for simultaneous optical determination and sensing of two analytes | |
WO2000000819A1 (fr) | Procede et dispositif d'analyse | |
Čajlaković et al. | Luminescence lifetime-based carbon dioxide optical sensor for clinical applications | |
Rolinski et al. | A fluorescence lifetime sensor for Cu (I) ions | |
US6395556B1 (en) | Polarization based sensing | |
Andrzejewski et al. | Method for lifetime-based chemical sensing using the demodulation of the luminescence signal | |
Lakowicz et al. | Novel fluorescence sensing methods for high throughput screening | |
WO1999060383A1 (fr) | Amelioration de l'angle de phase et de la modulation en analyse fluorimetrique | |
WO1999001737A9 (fr) | Detection des matieres d'un agent chimique par utilisation d'un polymere sorbant et sonde a fluorescence | |
EP0552107A1 (fr) | Mesure de pH et de pC02 par la durée de vie de la luminescence et transfert de l'énergie | |
Chang et al. | Fluorescence lifetime-based sensing of methanol | |
WO2000028327A1 (fr) | Détection basée sur l'anisotropie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |