+

WO2000074265A1 - Dispositif et procede de communication - Google Patents

Dispositif et procede de communication Download PDF

Info

Publication number
WO2000074265A1
WO2000074265A1 PCT/JP2000/003247 JP0003247W WO0074265A1 WO 2000074265 A1 WO2000074265 A1 WO 2000074265A1 JP 0003247 W JP0003247 W JP 0003247W WO 0074265 A1 WO0074265 A1 WO 0074265A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
amplitude
error
phase
Prior art date
Application number
PCT/JP2000/003247
Other languages
English (en)
French (fr)
Other versions
WO2000074265A8 (fr
Inventor
Keiji Takakusaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US09/744,029 priority Critical patent/US7058425B1/en
Priority to AU46152/00A priority patent/AU4615200A/en
Priority to EP00927826A priority patent/EP1102418A4/en
Publication of WO2000074265A1 publication Critical patent/WO2000074265A1/ja
Publication of WO2000074265A8 publication Critical patent/WO2000074265A8/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to a communication device such as a base station device in a mobile communication system, and more particularly to a communication device equipped with an array antenna.
  • An array antenna is composed of a plurality of antenna elements, and the directivity of transmission can be set freely by adjusting the amplitude and phase of the signal transmitted from each antenna element.
  • FIG. 1 is a block diagram showing a configuration on the transmitting side of a base station device equipped with a conventional array antenna.
  • the base station device 1 shown in FIG. 1 is equipped with an array antenna composed of two antennas 2 and 3, and wireless devices 4 and 5 to which the antennas 2 and 3 are connected, a switching unit 6, and a measurement unit. It comprises a device 7 and a baseband signal processing device 8.
  • the baseband signal processing device 8 includes a baseband signal generation unit 9, phase and amplitude correction units 10 and 11, and an error storage unit 12.
  • Each of the wireless devices 4 and 5 includes quadrature modulators 13 and 14, transmission power amplifiers 15 and 16, and switching units 17 and 18.
  • the base station apparatus 1 usually includes a plurality of baseband signal processing apparatuses for generating transmission signals for a plurality of mobile station apparatuses (not shown). However, in FIG. Shown when only one signal processor 8 is provided. You. Also, means for receiving and demodulating a signal transmitted from the mobile station apparatus is omitted.
  • the baseband signal generation unit 9 generates two systems of baseband signals including an in-phase component (hereinafter, referred to as “Ich”) and a quadrature component (hereinafter, referred to as “Qch”).
  • the signals are output to the wireless devices 4 and 5 via the correction units 10 and 11.
  • the baseband signal generator 9 also outputs gain control signals to the transmission power amplifiers 15 and 16 via the phase and amplitude correctors 10 and 11.
  • the two baseband signals to be output to the two wireless devices 4 and 5 are generated by multiplying the same baseband signal by individual complex coefficients in the base spanned signal generation unit 9.
  • the baseband signals input to the wireless devices 4 and 5 are orthogonally modulated by the orthogonal modulators 13 and 14 and then upconverted to a radio frequency band, and the transmission is controlled in which the amplification gain is controlled according to the gain control signal.
  • the signal is amplified by the power amplifiers 15 and 16 and becomes a transmission signal.
  • This transmission signal is radiated from antennas 2 and 3 via switching units 17 and 18 which are set to connect antenna 2 and transmission power amplifier 15 and to connect antenna 3 and transmission power amplifier 16. You.
  • the radiated electric field intensity can be increased only in the desired direction. This is called “giving transmission directivity”.
  • the reception SIR Signal to Interference Ratio
  • the characteristics of the transmission power amplifiers 15 and 16 differ individually due to the variation of the constituent analog elements.
  • the transmission signals of antennas 2 and 3 Since different unknown amplitude fluctuations and phase rotations are added, a transmission directivity different from the transmission directivity expected to be obtained by multiplying by the complex coefficient in the baseband signal generator 9 is formed. .
  • the transmission power amplifiers 15 and 16 must be adjusted to have the same characteristics. However, it is extremely difficult to accurately and time-invariably adjust the characteristics of the analog elements such as the amplifiers 15 and 16.
  • the characteristics of the transmission power amplifiers 15 and 16 are not adjusted, but the characteristics of the transmission power amplifiers 15 and 16 are measured and stored in advance, and only the error of the characteristics is calculated.
  • a method of correcting the baseband signal at the time of communication in consideration of the change in the amplitude and phase of the transmission signal is adopted.
  • switching section 17 is set to connect transmission power amplifier 15 to switching section 6, and switching section 18 is connected to transmission power amplifier 16 and switching section 6.
  • the switching unit 6 is set so as to connect any one of the switching units 17 or 18 and the measuring device 7.
  • the switching unit 6 is set so that the switching unit 17 and the measuring device 7 are connected.
  • a baseband signal whose information symbol is known (in this case, particularly called a calibration signal) is generated from the baseband signal generator 9. Output to each wireless device 4,5.
  • the baseband signals input to the wireless devices 4 and 5 are amplified by the transmission power amplifiers 15 and 16 via the quadrature modulators 13 and 14, and then are switched via the switches 17 and 6. Output to measuring device 7.
  • the measuring device 7 measures the amplitude and phase of the input signal, finds an error between the measured value and a preset expected value of the amplitude and phase, and stores this error in the error storage unit 12. . Thereafter, the switching unit 6 is switched so that the switching unit 17 and the measuring device 7 are connected, and the same processing as described above is performed.
  • the switching units 17 and 18 are switched to the antennas 2 and 3 to start communication.
  • the phase / amplitude correction units 10 and 11 correct the baseband signal and the gain control signal input from the baseband signal generation unit 9 according to the error stored in the error storage unit 12 .
  • This correction is performed by multiplying the baseband signal and the gain control signal by a complex coefficient that cancels out the characteristic error of the transmission power amplifiers 15 and 16.
  • the complex coefficient multiplied by the baseband signal corrects the phase of the transmission signal output from the transmission power amplifiers 15 and 16, and the complex coefficient multiplied by the gain control signal changes the amplitude of the transmission signal. It will be corrected.
  • the base station device 51 shown in FIG. 2 is equipped with an array antenna composed of two antennas 52 and 53, and the wireless devices 54 and 55 to which the antennas 52 and 53 are connected. And a calibration signal generator 56 and a baseband signal processor 57.
  • Each of the wireless devices 54, 55 includes switching units 58, 59, AGC (Automatic Gain Control) amplifiers 60, 61, and quadrature demodulation units 62, 63.
  • the baseband signal processing device 57 includes phase and amplitude correction units 64 and 65, a baseband signal processing unit 66, and an error detection storage unit 67.
  • the switching unit 58 when receiving a signal transmitted from the mobile station device, the switching unit 58 is set to connect the antenna 52 and the AGC amplifier 60, and the switching unit 59 is connected to the antenna 53. It is set to connect with AGC amplifier 61. First, the signal received by the antenna 52 is output to the AGC amplifier 60 via the switching unit 58, and the AGC amplifier 60 performs automatic gain control so that the amplitude becomes constant.
  • the AGC signal indicating the automatic gain control result is output to the baseband signal processing unit 66 via the phase and amplitude correction unit 64, and the signal after automatic gain control output from the AGC amplifier 60 is
  • the signal is demodulated by the quadrature demodulation unit 62 to become a baseband signal composed of Ich and Qch.
  • the baseband signal is output to the baseband signal processing unit 66 after its amplitude and phase are corrected by the phase and amplitude correction unit 64.
  • the phase and amplitude correction section 64 also corrects the amplitude and phase of the AGC signal.
  • the baseband signal processing unit 66 performs a process such as converting the baseband signal and the AGC signal into a predetermined frequency. The same reception processing as described above is also performed in the system on the wireless device 55 side.
  • the characteristics of the wireless devices 54 and 55 are measured and stored in advance, and only an error between the measured value and the expected amplitude and phase values set in advance is calculated. In consideration of changes in the baseband signal, a method of correcting the baseband signal when receiving is used.
  • switching unit 58 is set to connect calibration signal generator 56 to AGC amplifier 60, and switching unit 59 is connected to calibration signal generator 56 and AGC amplifier 61.
  • a calibration signal with a known information symbol is generated and output to the baseband signal processing unit 66 via each wireless device 54, 55 and the phase and amplitude correction unit 64, 65, and further error detection is performed. Output to storage unit 6 7.
  • the error detection storage unit 67 the amplitude and phase of the baseband signal and the AGC signal based on the calibration signal are detected, and the error between the detected value and the expected value of the preset amplitude and phase is calculated. The error is stored.
  • the switching sections 58 and 59 are switched to the antennas 52 and 53, and reception is started. At the time of this reception, the baseband signal and the AGC signal of each system are corrected in accordance with the error stored in the error detection storage unit 67.
  • This correction is performed by multiplying the baseband signal and the AGC signal by a complex coefficient corresponding to the error that cancels out the characteristic error of the wireless devices 54 and 55.
  • the measurement for determining the characteristic error of the transmission power amplifiers 15 and 16 necessary for correcting the amplitude and phase shift of the transmission signal at the time of transmission is performed with the mobile station apparatus. This cannot be performed during communication, and communication must be interrupted in order to perform the measurement.
  • the conventional device performs measurements to determine the characteristic errors of the wireless devices 54 and 55 necessary to correct the amplitude and phase shift of the baseband signal and AGC signal during reception. This cannot be performed during communication with the mobile station device, and the communication must be interrupted in order to perform the measurement.
  • a first object of the present invention is to provide a communication device capable of correcting the amplitude and phase shift of a transmission signal without interrupting communication with another device, and achieving downsizing and cost reduction of the device. It is to provide an apparatus and a communication method.
  • the purpose is to determine the phase difference and the amplitude difference between the input signal and the output signal of the transmission power amplifier, and to reduce the phase difference and to make the amplitude difference equal to the expected value so that the baseband signal and the gain control signal This is achieved by correcting
  • a second object of the present invention is to correct the amplitude and phase shift of a reception baseband signal and an AGC signal without interrupting communication with another device, and to reduce the size and cost of the device. It is an object of the present invention to provide a communication device and a communication method which can perform the communication.
  • the purpose of this is to determine the amplitude and phase errors between the AGC signal and baseband signal based on the signal received by each antenna and the reference AGC signal and baseband signal, and use automatic gain control to eliminate these errors. This is achieved by correcting the amplitude and phase of the signal and the demodulated signal.
  • FIG. 1 is a block diagram showing a configuration of a transmission side of a conventional base station apparatus
  • FIG. 2 is a block diagram showing a configuration of a receiving side of a conventional base station apparatus.
  • FIG. 3 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a transmitting side of a base station apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 is a diagram showing a configuration of the transmitting side of the base station apparatus according to Embodiment 4 of the present invention. Diagram,
  • FIG. 7 is a block diagram showing a configuration on the transmitting side of a base station apparatus according to Embodiment 5 of the present invention.
  • FIG. 8 is a block diagram showing a configuration on the transmitting side of a base station apparatus according to Embodiment 6 of the present invention.
  • FIG. 9 is a block diagram showing a configuration on the transmitting side of a base station apparatus according to Embodiment 7 of the present invention.
  • FIG. 10 is a diagram showing a relationship between a control value of a transmission power amplifier and amplitude / phase characteristics of a base station apparatus according to Embodiment 8 of the present invention.
  • FIG. 11 is a block diagram showing a configuration on the transmitting side of a base station apparatus according to Embodiment 8 of the present invention.
  • FIG. 12 is a block diagram showing a configuration on the transmitting side of a base station apparatus according to Embodiment 9 of the present invention.
  • FIG. 13 is a block diagram showing a configuration of a receiving side of the base station apparatus according to Embodiment 10 of the present invention.
  • FIG. 14 is a block diagram showing a configuration of a receiving side of the base station apparatus according to Embodiment 11 of the present invention.
  • FIG. 15 is a block diagram showing the configuration of the receiving side of the base station apparatus according to Embodiment 12 of the present invention.
  • FIG. 16 is a block diagram showing the configuration of the receiving side of the base station apparatus according to Embodiment 13 of the present invention.
  • FIG. 17 is a block diagram showing a configuration of a receiving side of the base station apparatus according to Embodiment 14 of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a receiving side of the base station apparatus according to Embodiment 15 of the present invention.
  • FIG. 19 shows a configuration on the receiving side of the base station apparatus according to Embodiment 16 of the present invention. It is a block diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 1 of the present invention.
  • the base station apparatus 101 shown in FIG. 3 is equipped with an array antenna composed of two antennas 102 and 103. Radio apparatuses 104 and 105 to which the antennas 102 and 103 are connected, and a baseband signal processing apparatus 106 It is configured with.
  • the baseband signal processing device 106 includes a baseband signal generation unit 107, and phase and amplitude correction units 108 and 109 having a digital circuit configuration including a DZA conversion circuit (not shown) at signal output terminals to the wireless devices 104 and 105.
  • the signal input terminals from the wireless devices 104 and 105 are provided with amplitude / phase comparators 110 and 111 each having a digitizer circuit configuration having an AZD conversion circuit (not shown).
  • Each of the wireless devices 104 and 105 includes a quadrature modulator 112, 113, a transmission power amplifier 114, 115, an ATT (attenuator) controller 116, 117, ATT 118, 119,
  • Each of the frequency converters includes two frequency converters 120 and 121, 122 and 123, and oscillators (local oscillators) 124 and 125.
  • the frequency conversion unit 120 includes a mixer 126 and an LPF (Low Pass Filter) 1
  • the other frequency converters 121 to 123 also include the mixer 128 and the LPF 129, the mixer 130 and the LPF 131, the mixer 132 and the? 1
  • the normal base station apparatus 101 includes a plurality of systems of baseband signal processing apparatuses for generating transmission signals for a plurality of mobile station apparatuses (not shown). 3 shows a case where only one system of the baseband signal processing device 106 is provided for simplicity. Also, means for receiving and demodulating a signal transmitted from the mobile station apparatus is omitted.
  • the baseband signal generation unit 107 when the base station apparatus 101 having the above configuration communicates with the mobile station apparatus, first, the baseband signal generation unit 107 generates two baseband signals consisting of Ich and Qch, and The signals are output to the quadrature modulators 112, 113 of the wireless devices 104, 105 via the phase and amplitude correctors 108, 109.
  • the baseband signal generation unit 107 also outputs a gain control signal to the transmission power amplifiers 114 and 115 via the phase and amplitude correction units 108 and 109.
  • baseband signal generating section 107 generates two systems of baseband signals to be output to two wireless devices 104 and 105 by multiplying the same baseband signal by individual complex coefficients. Moreover, transmission directivity can be provided by adjusting the complex coefficient.
  • the quadrature modulators 112 and 113 orthogonally modulate the baseband signals input to the wireless devices 104 and 105, and then up-convert them to a radio frequency band.
  • the transmission power amplifiers 114 and 115 amplify the output signals of the quadrature modulators 112 and 113 according to the gain control signal and radiate them from the antennas 102 and 103.
  • a transmitting antenna element and a receiving antenna element are shared by using a duplexer (not shown).
  • a frequency conversion unit 120 is connected to the transmission power amplifier 114 at the subsequent stage via the ATT 118, and a frequency conversion unit 121 is connected to the front stage.
  • the reason why the ATT 118 is interposed is to prevent the frequency conversion unit 120 from being destroyed when the signal power output from the transmission power amplifier 114 is excessive, so as to prevent it.
  • the amount of attenuation of the ATT 118 is controlled in accordance with a gain control signal supplied from the baseband signal processing device 106 via the phase and amplitude correction section 108.
  • the oscillation signals output from the oscillator 124 are commonly supplied to the mixers 126 and 128 of the frequency converters 120 and 121, and the mixer 128 at the subsequent stage transmits the radio frequency (RF) output from the quadrature modulator 112.
  • the amplitude and phase errors of both signals are obtained by comparison.
  • the set amplification gain of the transmission power amplifier 114 and the attenuation factor of the ATT 118 are canceled.
  • the amplitude and phase errors determined in this way correspond to the amplitude and phase fluctuations generated by passing through the transmission power amplifier 114.
  • the signal is supplied to the unit 108 and used for correcting the transmission signal.
  • the phase and amplitude correction unit 108 the baseband signal and the gain control signal input from the baseband signal generation unit 107 are corrected according to the error.
  • This correction is performed by multiplying the baseband signal and the gain control signal by a complex coefficient that cancels out the characteristic error of the transmission power amplifier 114.
  • the complex coefficient multiplied by the baseband signal is the transmission power.
  • the phase of the transmission signal output from the amplifier 114 is corrected, and the complex coefficient multiplied by the gain control signal corrects the amplitude of the transmission signal. Further, the correction is performed similarly in other systems including the wireless device 105.
  • Such correction processing can be performed without interrupting communication, and can be performed intermittently or continuously.
  • the amplitude phase comparator 110 controls the phase of the input signal and the output signal of the transmission power amplifier 114.
  • the difference and the amplitude difference are obtained, and the phase and amplitude correction unit 108 sends the transmission power amplifier from the baseband signal generation unit 107 so that the phase difference disappears and the amplitude difference becomes equal to the expected value.
  • the baseband signal and the gain control signal output to 114 may be corrected. This is the same in other systems.
  • the phase difference and the amplitude difference between the input signal and the output signal of the transmission power amplifier are obtained, and the baseband signal and the gain control signal are set so that the phase difference is eliminated and the amplitude difference is equal to the expected value.
  • the baseband signal and the gain control signal are set so that the phase difference is eliminated and the amplitude difference is equal to the expected value.
  • the phase difference and the amplitude difference between the output signal of the transmission power amplifier and the input signal of the transmission power amplifier attenuated according to the gain control signal are obtained, and the baseband signal and the gain are determined so that the phase difference and the amplitude difference are eliminated.
  • the amplitude of the transmission signal output from the transmission power amplifier can be made equal to the amplitude of the input signal of the transmission power amplifier 114.
  • FIG. 4 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 2 of the present invention.
  • the base station shown in FIG. 4 The same components as those of the station device 101 are denoted by the same reference numerals, and description thereof will be omitted.
  • the base station apparatus 201 shown in FIG. 4 is different from the base station apparatus 101 shown in FIG. 3 in that the quadrature modulation sections 202, 210 instead of the quadrature modulation sections 112, 113 are used. 3 is adopted.
  • the base station apparatus 201 shown in FIG. 4 is different from the base station apparatus 101 shown in FIG. 3 in that the RF modulating sections 204 and 205 and the oscillating sections 206 and 206 are different from each other.
  • the configuration in which is added is adopted.
  • the quadrature modulators 202 and 203 do not directly up-convert to the radio frequency (R F) band, but once up-convert to the intermediate frequency (IF) band.
  • the RF modulators 204 and 205 are provided between the quadrature modulators 202 and 203 and the transmission power amplifiers 114 and 115, and convert the IF signals into RF signals.
  • the oscillating units 206 and 207 convert the signal frequency obtained by down-converting the IF signal by the frequency converting units 121 and 123 into a frequency converting unit 120 that down-converts the RF signal. Oscillate a frequency signal to make the output frequency the same as that of the output frequency of the input device.
  • the IF signal input to the RF modulation section 204 and the RF signal output from the transmission power amplifier 114 are expressed by:
  • the frequency converters 120 and 121 down-convert to the same frequency, and both converted signals are output to the amplitude / phase comparator 110.
  • the amplitude / phase comparison unit 110 the error between the amplitude and the phase of both signals is obtained by comparison. Since the obtained amplitude and phase errors correspond to the amplitude and phase fluctuations caused by passing through the RF modulator 204 and the transmission power amplifier 114, these fluctuations should be canceled. It is an error. Then, in the phase amplitude correction unit 108, the baseband signal and the gain control signal input from the baseband signal generation unit 107 are added to the error obtained by the amplitude / phase comparison unit 110. Corrected accordingly.
  • the frequency conversion units 120 and 121 use two different frequency signals. Is down-converted to the same frequency, it is possible to correct the amplitude and phase errors caused by the combination of the RF modulators 204 and 205 and the transmission power amplifiers 114 and 115.
  • Embodiment 3 describes a case where quadrature modulating sections 302 and 303 are configured by analog elements.
  • FIG. 5 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 3 of the present invention.
  • the base station apparatus 301 shown in FIG. 5 differs from the base station apparatus 101 shown in FIG. 3 in that quadrature modulation sections 302 and 303 each configured by an analog element are provided instead of the quadrature modulation sections 112 and 113. It adopts the configuration to do.
  • the base station apparatus 301 shown in FIG. 5 differs from the base station apparatus 101 shown in FIG. 3 in that the frequency conversion sections 121 and 123 are eliminated, and the amplitude and phase comparison sections 1 10 and 1 11 are replaced by amplitude A configuration in which phase comparison units 304 and 305 are added is adopted.
  • the amplitude / phase comparison units 304 and 305 compare the amplitude and phase of the input signals of the quadrature modulation units 302 and 303 with the output signals of the frequency conversion units 120 and 122.
  • the amplitude and phase comparison unit 304 compares the amplitude and phase errors of both signals by comparison. Required.
  • the obtained amplitude and phase errors correspond to amplitude fluctuations and phase fluctuations caused by passing through the transmission power amplifier 114 from the quadrature modulation section 302, and these fluctuations should be canceled. It is an error.
  • the baseband signal and the gain control signal input from the baseband signal generation unit 107 are converted by the phase amplitude correction unit 108 in accordance with the error output from the amplitude / phase comparison unit 304. Will be corrected.
  • the configuration is such that, inside the baseband signal processing device 106, the input signals of the quadrature modulators 302, 303 are guided to the amplitude / phase comparators 304, 305. However, it may be guided from inside the wireless device 104.
  • the quadrature modulation sections 302 and 303 are constituted by analog elements, the amplitude between the signal output from the transmission power amplifier 114 and the input signal of the quadrature modulation section 302 is obtained. Then, the baseband signal and the gain control signal are corrected so that the amplitude and the phase difference are eliminated, thereby obtaining the amplitude and the phase caused by the components from the quadrature modulation section 302 to the transmission power amplifier 114. The phase error can be corrected.
  • FIG. 6 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 4 of the present invention.
  • the base station device 401 shown in FIG. 6 includes an ATT controller 1 16 provided in the wireless devices 104 and 105 in the base station device 101 shown in FIG. , A frequency conversion unit 120, 122, an oscillation unit 124, and a switching unit 402 for switching the connection to any one of the wireless devices 104, 105.
  • a signal extraction device 405 having 403 and 404.
  • a switching unit 406 is connected between the amplitude / phase comparison unit 110 and each of the phase / amplitude correction units 108 and 109.
  • each of the switching sections 402 to 404 and 406 is connected to the signal extraction apparatus 405 and the amplitude / phase comparison section 111 along the path of the wireless apparatus 104. By switching so that 0 is connected, it is possible to obtain the amplitude and phase errors and correct them, as in the first embodiment.
  • the switching units 402 to 404 and 406 are connected to the signal extraction device 405 and the amplitude / phase comparison unit 111 in the route of the wireless device 105. By switching so that 0 is connected, it is possible to obtain the amplitude and phase errors and correct them, as in the first embodiment.
  • each wireless device 104 and 105 since it is not necessary to provide each wireless device 104 and 105 with a component necessary for obtaining an error in amplitude and phase, when compared with the configuration of the first embodiment, Therefore, the scale of the entire apparatus can be reduced, and the number of steps for making the characteristics of the above components uniform can be reduced.
  • the RF devices 204, 105 are also shown in FIG. 4, as shown in FIG. 4, the RF devices 204, 105
  • the same correction as in Embodiment 2 can be performed by connecting switching section 404 to the input side of RF modulation sections 204 and 205.
  • the signal extraction device 405 is connected to an ATT controller 116 corresponding to the components of the wireless device 104 shown in FIG. 5, an ATT 118, a frequency converter 120, and an oscillator.
  • a switching unit 402 and a switching unit 402 which are connected to the wireless device 10 via the switching units 402 and 4003 in the same manner as in FIG. 4 and 105, and the amplitude and phase comparator connected to the output of each phase and amplitude corrector 108 and 109
  • FIG. 7 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 5 of the present invention.
  • the same components as those of the base station apparatus 101 shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
  • the base station device 501 shown in FIG. 7 is different from the radio devices 104 and 105 in that the frequency conversion units 122 1 and 123 provided in the base station device 101 shown in FIG. Instead, switching units 502 and 503 and switching units 504 and 505 are provided.
  • the switching sections 502 and 503 connect the frequency conversion sections 120 and 122 to the input side of the transmission power amplifiers 114 and 115 or the transmission power amplifiers 114 and 119, respectively.
  • the switching sections 504 and 505 connect the frequency conversion sections 120 and 122 to one of the two input terminals of the amplitude / phase comparison sections 1109 and 110, respectively.
  • the switching unit 502 is connected to the output side of the transmission power amplifier 114 via the ATT 118, and the switching unit 504 is connected to the amplitude / phase comparison unit 111. 0, and then the switching section 502 is connected to the input side of the transmission power amplifier 114, and the switching section 504 is connected to the other of the amplitude phase comparing section 110. To the input terminal side of Thereafter, the first and next connection operations are alternately repeated.
  • the number of components required to determine the amplitude and phase errors for each of the wireless devices 104 and 105 can be reduced as compared with the first embodiment.
  • the size of the entire apparatus can be reduced accordingly, and the number of steps for making the characteristics of the above-described components uniform can be reduced.
  • the switching devices 502 and 503 are connected to the RF devices 204 and 504, respectively. Enter 2 0 5
  • the same correction as in the second embodiment can be performed.
  • switching section 503 to the output side of phase / amplitude correction sections 108 and 109 as shown in FIG. 5, the same correction as in the third embodiment can be performed.
  • FIG. 8 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 6 of the present invention.
  • the base station apparatus 601 shown in FIG. 8 includes a mixer 602 in the radio apparatuses 104 and 105 instead of the frequency conversion sections 120 to 123 and the oscillation sections 124 and 125 provided in the base station apparatus 101 shown in FIG. , 603 and LPFs 604, 605.
  • base station apparatus 601 shown in FIG. 8 is configured by providing baseband signal processing apparatus 106 with error detection units 606 and 607.
  • the mixers 602 and 603 mix the output signals of the transmission power amplifiers 114 and 115 and the input signals of the transmission power amplifiers 114 and 115 via the hatches 118 and 119, respectively.
  • the LPFs 604 and 605 pass only the low-frequency components of the output signals of the mixers 602 and 603.
  • the error detection units 606 and 607 detect amplitude and phase errors from the signals that have passed through the LPFs 604 and 605, and output them to the phase and amplitude correction units 108 and 109.
  • the frequencies of the input and output signals of the transmission power amplifier 114 are equal, the frequency of the signal mixed by the mixer 602 becomes 0, and thus 0 is output to the error detection unit 606 via the LPF 604. .
  • the frequency of the input / output signal of the transmission power amplifier 114 is different, The frequency of the signal mixed by the sub 602 becomes the frequency corresponding to the error, and when the signal indicating this error is output to the error detection unit 606 via the LPF 604, the error detection unit 606 The amplitude and phase errors of the 14 input / output signals are detected and output to the phase / amplitude correction unit 108.
  • the number of components required to determine the amplitude and phase errors of each of the wireless devices 104 and 105 can be reduced as compared with the first embodiment, so that when compared with the configuration of the first embodiment, Therefore, the scale of the entire apparatus can be reduced, and the number of steps for making the characteristics of the above-mentioned components uniform can be reduced.
  • FIG. 9 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 7 of the present invention.
  • the same components as those of the base station apparatus 201 shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • the base station apparatus 701 shown in FIG. 9 is different from the wireless apparatuses 104 and 105 in that a mixer 702 is used instead of the frequency conversion sections 120 to 123 and the oscillation sections 124 and 125 provided in the base station apparatus 201 shown in FIG.
  • base station apparatus 701 shown in FIG. 9 is configured such that baseband signal processing apparatus 106 includes error detection units 606 and 607.
  • error detecting sections 606 and 607 are the same as those described in the sixth embodiment.
  • the mixers 702 and 703 mix the output signals of the transmission power amplifiers 114 and 115 via the hatches 118 and 119 with the input signals of the RF modulators 722 and 723.
  • the BPFs 704 and 705 pass a frequency of a predetermined band of the output signals of the mixers 702 and 703.
  • Mixers 708 and 709 are used when the signals passing through BPFs 704 and 705 have no amplitude and phase errors between the input side of RF modulators 722 and 723 and the output side of transmission power amplifiers 114 and 115.
  • the frequency of the signal is canceled to zero.
  • base station apparatus 701 having the above configuration will be described with one route as a representative.
  • the output signal of the transmission power amplifier 114 via the ATT 118 and the input signal of the RF modulation section 204 are mixed by the mixer 702, and this mixed signal is mixed with the input side of the RF modulation section 204 and the transmission power amplifier 1 If there is no amplitude and phase error with the output side of 14, the mixed frequency is canceled to 0 by being mixed with the oscillating frequency from the oscillating unit 706 by the mixer 708 via the BPF 704. It is. Then, the signal of frequency 0 is output to error detecting section 606 via LPF 710.
  • the number of components required to determine the amplitude and phase errors for each of the wireless devices 104 and 105 can be reduced as compared with the second embodiment, so that when compared with the configuration of the second embodiment, Therefore, the scale of the entire apparatus can be reduced, and the number of steps for making the characteristics of the above-mentioned components uniform can be reduced. (Embodiment 8)
  • the phase / amplitude compensating unit 110, 108 does not consider the fluctuation of the transmission signal amplitude / phase characteristic A ⁇ ⁇ ⁇ due to the change in the transmission power.
  • the phase amplitude correction is performed based only on the error of the amplitude and phase obtained in 111.
  • FIG. 11 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 8 of the present invention. Note that, in the base station device 801 shown in FIG. 11, the same components as those of the base station device 101 shown in FIG. 3 are denoted by the same reference numerals as in FIG. 3, and description thereof is omitted.
  • the amplitude and phase characteristics A ⁇ of the transmission signal with respect to the gain ⁇ ⁇ of the transmission power amplifier 1 15 are stored in the calibration table.
  • the phase and amplitude correction units 108 and 109 correct the gain control signal based on the contents of the calibration tables written in the amplitude and phase characteristic storage units 800 and 803, respectively.
  • the gain PA that has not been measured during the past communication is estimated based on the gain PA measured so far.
  • the transmission signal amplitude and phase characteristics can be determined without stopping communication.
  • the phase and amplitude can be corrected in consideration of this.
  • the power values of the signals transmitted from the antennas 102 and 103 are obtained by increasing the power values of the output signals of the quadrature modulators 112 and 113 and the transmission power amplifiers 114 and 115. It is the product of the width value.
  • FIG. 12 is a block diagram showing a configuration on the transmitting side of the base station apparatus according to Embodiment 9 of the present invention. Note that, in the base station device 901 shown in FIG. 12, the same reference numerals as those in FIG. 11 denote the same components as those in the base station device 801 shown in FIG. 11. The description is omitted here.
  • the base station device 901 in FIG. 12 employs a configuration in which the PA control value forced fluctuation units 902 and 903 are added to the base station device 801 in FIG.
  • the PA control value forced fluctuation section 902 controls the power value of the output signal of the baseband signal generation section 107 to forcibly fluctuate the gain PA of the transmission power amplifier 114, and corrects the phase amplitude.
  • the variation width is instructed to the unit 108.
  • the PA control value forced variation unit 903 controls the power value of the output signal of the baseband signal generation unit 107 in order to forcibly vary the gain PA of the transmission power amplifier 115, The variation width is instructed to the phase / amplitude correction unit 109.
  • phase and amplitude correction units 108 and 109 multiply the corrected transmission power amplifiers 114 and 115 gain PA by the fluctuation range specified by the PA control value forced fluctuation units 902 and 903.
  • a gain control signal indicating the set value is output.
  • the PA control value forced fluctuation units 90 2 and 90 3 indicate a fluctuation width of 1 Z 2
  • the power value of the output signal of the baseband signal generation unit 107 is controlled to double, and the transmission power
  • the gain PA of the amplifiers 114 and 115 becomes 1Z2 by the gain control signals of the phase and amplitude correctors 108 and 109.
  • the gain PA of the transmission power amplifiers 114, 115 can be changed without changing the power value of the signal wirelessly transmitted from the antennas 102, 103, and the amplitude and phase characteristics can be changed.
  • Calibration tables for a wide range of gains PA can be generated in the storage units 802 and 803.
  • FIG. 13 is a block diagram showing a configuration on the receiving side of the base station apparatus according to Embodiment 10 of the present invention.
  • Each of the wireless devices 1004 and 1005 and the calibration device 1006 have the same configuration except that the wireless device 1004 and 1005 and the calibration device 1006 include a switching unit 10014 for connecting the AGC amplifier 10010 to one of the antennas 1002 and 1003. It is configured to include 80 pumps 1008, 1009, and 1010, and quadrature demodulators 1011, 11012, and 1013.
  • each switching unit 10 14, 1 When a signal from the mobile station device is received or during reception, each switching unit 10 14, 1
  • the switching unit 1014 is connected to the radio unit 1004 and the amplitude / phase comparison unit 1020 so that the switching unit 1014 is connected to the antenna 1002 and the AGC amplifier 1010.
  • the switching section 109 is set so that the amplitude / phase comparison section 1202 and the phase / amplitude correction section 1015 are connected.
  • the operation in this case is as follows. First, a signal from the mobile station apparatus is received by each antenna 1002, 1003. The signal received by the antenna 1003 is output to the AGC amplifier 1008 of the wireless device 1004 and output to the AGC amplifier 1010 via the switching unit 1014. The amplitude is kept constant by the automatic gain control amplification in the pumps 1008 and 1010.
  • the AGC signal indicating the result of the automatic gain control is output to the baseband signal processing unit 101 through the phase and amplitude correction unit 101 on the wireless device 1004 side, and the switching unit 101 1
  • the signal is output to the amplitude / phase comparison unit 1020 via 8, and is output to the amplitude / phase comparison unit 1020 on the calibration device 1006 side.
  • the output signal of the AGC amplifier 108 is demodulated into a baseband signal composed of Ich and Qch in a quadrature demodulator 1011, and this baseband signal is passed through a phase and amplitude corrector 1015.
  • the signal is output to the baseband signal processing unit 10 17 and is also output to the amplitude / phase comparison unit 10 20 via the switching unit 10 18.
  • the output signal of the AGC amplifier 11010 is demodulated in the quadrature demodulation unit 1013 into a baseband signal composed of Ich and Qch, and this baseband signal is output to the amplitude / phase comparison unit 10020.
  • the output signals of the wireless device 1004 and the calibrator 1006 are expressed as two types of signals, an AGC signal and a baseband signal. Observe the error in amplitude and phase by observing a combination of both signals.
  • the baseband signal and the AGC signal of the wireless device 104 are corrected according to the error stored in the error storage unit 102. This correction is performed by multiplying the baseband signal and the AGC signal by a complex coefficient corresponding to the error that cancels out the characteristic error of the wireless device 104.
  • This correction is similarly performed in the system on the other wireless device 1005 side.
  • the switching unit 1004 is connected to the antenna 1003 and the AGC amplifier 11010 so that the switching unit 11018 is connected to the wireless device 1005 and the amplitude / phase comparison unit.
  • the switching unit 110 19 is set so that the amplitude and phase comparison unit 102 and the phase and amplitude correction unit 110 16 are connected so that the connection is made to the connection 120.
  • the signal received by antenna 1003 Output to the AGC amplifier 1 0 9 and output to the AGC amplifier 1 0 1 0 via the switching unit 1 0 1 4 and automatic gain control of each AGC amplifier 1 0 9 and 1 10 Amplified so that the amplitude becomes constant.
  • the AGC signal on which the automatic gain control has been performed is output to the baseband signal processing unit 1017 via the phase amplitude correction unit 1016 on the wireless device 1005 side, and switching is performed.
  • the signal is output to the amplitude / phase comparison unit 102 through the unit 11018, and is output to the amplitude / phase comparison unit 102 on the calibration device 1006 side.
  • the output signal of the AGC amplifier 109 is demodulated into a baseband signal composed of Ich and Qch in a quadrature demodulation unit 102, and this baseband signal is passed through a phase and amplitude correction unit 106.
  • the signal is output to the baseband signal processing unit 10 17 and is also output to the amplitude / phase comparison unit 10 20 via the switching unit 10 18.
  • the output signal of the AGC amplifier 110 is demodulated into a baseband signal composed of Ich and Qch in the quadrature demodulation unit 103, and this baseband signal is output to the amplitude / phase comparison unit 102.
  • the amplitude and phase of the output signal of the wireless device 1005 and the output signal of the calibration device 1006 are compared, and the amplitude and phase errors are determined by this comparison. This error is output to and stored in the error storage section 102 via the switching section 109.
  • the phase and amplitude correction unit 11016 corrects the baseband signal and the AGC signal of the wireless device 1005 according to the error stored in the error storage unit 102. This correction is performed by multiplying the baseband signal and the AGC signal by a complex coefficient corresponding to the error that cancels out the characteristic error of the wireless device 1005.
  • the amplitude and phase of the automatic gain control signal and the demodulated signal are corrected.
  • FIG. 14 is a block diagram showing a configuration on the receiving side of the base station apparatus according to Embodiment 11 of the present invention.
  • the same components as those of the base station apparatus 1001 shown in FIG. 13 are denoted by the same reference numerals, and description thereof will be omitted.
  • the base station apparatus 1101 shown in FIG. 14 differs from the base station apparatus 1001 shown in FIG. 13 in the configuration of a calibration apparatus 1006 and a baseband signal processing apparatus 1007.
  • the calibration device 1006 includes an AGC amplifier 1010, switching units 1102, 1103, and 1104, a mixer 1105, and an LPF 1106.
  • the baseband signal processor 1007 replaces the amplitude and phase comparison unit 1020 shown in FIG. 13 with the amplitude and phase of the outputs of the AGC amplifiers 1008 and 1009 and the outputs of the AGC amplifier 1010 of the wireless devices 1004 and 1005.
  • an amplitude / phase comparator 1107 for comparing the amplitude and the phase of the AGC signal.
  • base station apparatus 1101 having the above configuration will be described.
  • the base station apparatus 101 sets each of the switching units 1102, 1103, 1104, and 1019 when or during reception of a signal from the mobile station apparatus.
  • the switching unit 1102 is set so that the antenna 1002 and the AGC amplifier 1010 are connected.
  • the switching unit 1103 is set so that the output side of the AGC amplifier 1008 of the wireless device 1004 and the mixer 1105 are connected.
  • Switching section 1 104 The setting is made so that the AGC signal output side of the AGC amplifier 1008 of the wireless device 1004 and the amplitude / phase comparison unit 1107 are connected.
  • the switching unit 1019 is set so that the amplitude / phase comparison unit 1107 and the phase / amplitude correction unit 1015 are connected.
  • a signal from the mobile station apparatus is received by each of the antennas 1002 and 1003.
  • the signal received by the antenna 1002 is output to the AGC amplifier 1008 of the wireless device 1004 and output to the AGC amplifier 1010 via the switching unit 1102, and the amplitude is controlled by the automatic gain control of the AGC amplifiers 1008 and 1010. It is fixed.
  • the AGC signal indicating the result of the automatic gain control is output to the baseband signal processing unit 1017 via the phase / amplitude correction unit 1015 and the amplitude / phase signal via the switching unit 1104 on the wireless device 1004 side.
  • the signal is output to the comparison unit 1107, and is output to the amplitude / phase comparison unit 1107 on the calibration device 1006 side.
  • the output signal of the AGC amplifier 1008 is demodulated by the quadrature demodulation unit 1011 into a baseband signal composed of Ich and Qch, and this baseband signal is sent to the baseband signal processing unit 1017 via the phase and amplitude correction unit 1015.
  • the signal is output to the mixer 1105 via the switching unit 1103.
  • the mixed signal is output to the amplitude / phase comparison unit 1107 via the LPF 1106, and the amplitude / phase comparison unit 1107 outputs the output signal of both the AGC amplifier 1008 and the AGC amplifier 1010.
  • An error between the amplitude and the phase is obtained, and the error is output to the error storage unit 1021 via the switching unit 1019 and stored.
  • the amplitude and phase comparison unit 1107 The amplitude and phase of the C signal and the AG C signal from the calibration device 1006 are compared, and an error in amplitude and phase is obtained by this comparison.
  • the error is output to the error storage unit 1021 via the switching unit 1019. Is memorized.
  • the baseband signal and the AGC signal of the wireless device 1004 are corrected in the phase and amplitude correction unit 1015 according to the error stored in the error storage unit 1021.
  • This correction is performed by multiplying the baseband signal and the AGC signal by a complex coefficient corresponding to the error that cancels out the characteristic error of the wireless device 1004. This correction is similarly performed in the system on the other wireless device 1005 side.
  • the amplitude and phase of each of the automatic gain control signal and the demodulated signal output from each of the wireless devices 1004 and 1005 are corrected so that the characteristic error between the AGC amplifiers 1008 and 1009 and the AGC amplifier 1010 is eliminated.
  • FIG. 15 is a block diagram showing a configuration on the receiving side of the base station apparatus according to Embodiment 12 of the present invention.
  • the same components as those of the base station apparatus 1001 shown in FIG. 13 are denoted by the same reference numerals as those in FIG.
  • the base station device 1201 in FIG. 15 is different from the base station device 1001 in FIG.
  • the difference storage units 1021 and 1022 are deleted, and the amplitude and phase characteristics storage units 1202 and 1203 are added.
  • the amplitude and phase characteristics A ⁇ of the received signal with respect to the gain AG C of the amplifier 1008 are stored in the calibration table.
  • the amplitude / phase characteristic storage unit 1203 stores the gain control signal output from the AGC amplifier 1009 and the amplitude and phase errors output from the amplitude / phase comparison unit 1202 and passing through the switching unit 11019. Then, the amplitude and phase characteristics A ⁇ of the received signal with respect to the gain AG C of the AG C amplifier 1009 are stored on the calibration table.
  • the amplitude-phase characteristic storage units 1202 and 1203 store the calibration table in the calibration table based on the measured gain AGC. Update the content as needed.
  • the phase / amplitude correction units 101 and 116 correct the gain control signal based on the contents of the calibration tables written in the amplitude / phase characteristic storage units 1202 and 1203, respectively.
  • the gain AGC not measured during the past communication is estimated based on the gains AGC measured so far.
  • phase amplitude correction can be performed in consideration of phase characteristics.
  • FIG. 16 is a block diagram showing a configuration on the receiving side of the base station apparatus according to Embodiment 13 of the present invention. Note that, in the base station apparatus 1301 shown in FIG. 16, the same components as those of the base station apparatus 1201 shown in FIG. 15 are assigned the same reference numerals as in FIG. However, in the base station device 201 shown in FIG. The same components as those of the base station apparatus 101 shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
  • Base station apparatus 1301 in FIG. 16 employs a configuration in which AGC gain forced fluctuation units 1302 and 1303 are added to base station apparatus 1201 in FIG.
  • the AGC gain forced variation unit 1302 forcibly varies the gain AGC of the AGC amplifier 1008 within a predetermined variation range.
  • AGC gain forced variation unit 1303 forcibly varies gain AGC of AGC amplifier 1009 within a predetermined variation range.
  • the AGC gain forced fluctuation units 1302 and 1303 control the fluctuation width of the AGC gain forced fluctuation units 1302 and 1303 to 1 Z2, the power value of the input signal of the baseband signal processing unit 1017 is controlled to double. You.
  • the gain AGC of the pumps 1008 and 1009 can be changed without changing the power value of the signal wirelessly received by the antennas 1002 and 1003.
  • a calibration table can be generated for a wide range of gain AGC.
  • FIG. 17 is a block diagram showing a configuration on the receiving side of the base station apparatus according to Embodiment 14 of the present invention. Note that, in the base station apparatus 1401 shown in FIG. 17, the same components as those of the base station apparatus 1001 shown in FIG. 13 are denoted by the same reference numerals as in FIG. 13, and description thereof will be omitted.
  • Base station apparatus 1401 in FIG. 17 employs a configuration in which despreading sections 1402 and 1403 and symbol correlation sections 1404 and 1405 are added to base station apparatus 1001 in FIG.
  • Switching section 1018 outputs one of the output signals of orthogonal demodulation section 1011 and orthogonal demodulation section 1012 to despreading section 1402.
  • the output signal of calibration radio apparatus 1006 is input to despreading section 1403.
  • Despreading section 1402 performs inverse calculation on the input signal and outputs the result to symbol correlation section 1404.
  • Despreading section 1403 performs inverse calculation on the input signal and outputs the result to symbol correlation section 1405.
  • the symbol correlation section 1404 performs a symbol correlation process for multiplying and averaging the output signal of the despreading section 1402 with symbol information data so as to cancel the information modulation component.
  • Symbol correlation section 1405 performs symbol correlation processing on the output signal of despreading section 1403 by multiplying and averaging the symbol information data so as to cancel the information modulation component.
  • the known data is used. If the symbol information data is unknown in the base station device, the despread output is used instead of the symbol information data. Use the sign judgment value.
  • Amplitude / phase comparison section 1020 compares the amplitude and phase of the output signal of symbol correlation section 1404 with the output signal of symbol correlation section 1405, and obtains an amplitude and phase error by this comparison.
  • the S / N ratio of the signal to be subjected to the amplitude phase comparison can be increased, and the accuracy of calibration can be increased.
  • FIG. 18 is a block diagram showing a configuration on the receiving side of the base station apparatus according to Embodiment 15 of the present invention. Note that, in the base station device 1501 shown in FIG. 18, the same components as those of the base station device 1001 shown in FIG. 13 are denoted by the same reference numerals as in FIG. 13, and description thereof will be omitted.
  • the base station apparatus 1501 in FIG. 18 is different from the base station apparatus 1001 in FIG. 13 in that the switching unit 1018 is deleted and the despreading units 1502, 1503, 1504, 1505, 1506, 1507 and the switching units 1508, 1509, 1510 And 151 1 are added.
  • the output signal of the phase / amplitude correction unit 105 is input to the despreading unit 1502 and the despreading unit 1505.
  • the output signal of the phase / amplitude correction unit 1016 is input to the despreading unit 1503 and the despreading unit 1506.
  • the output signal of the calibration radio apparatus 106 is input to the despreading sections 1504 and 1507.
  • the despreading unit 1502 and the despreading unit 1503 respectively perform an inverse calculation process on the input signal using a spreading code for user 1, and output the signal to the switching unit 1508.
  • Despreading section 1504 performs an inverse calculation process on the input signal with the spreading code for user 1, and outputs the result to switching section 1511.
  • the despreading unit 1505 and the despreading unit 1506 respectively perform an inverse calculation process on the input signal using a spreading code for user 2, and output the signal to the switching unit 1509.
  • Despreading section 1507 performs an inverse calculation process on the input signal with a spreading code for user 2 and outputs the result to switching section 1511.
  • Switching section 1508 outputs one of output signals of despreading section 1502 or despreading section 1503 to switching section 15010.
  • Switching section 1509 outputs one of output signals of despreading section 1505 or despreading section 1506 to switching section 1510.
  • the switching section 15010 outputs the output signal of the switching section 15008 to the phase / amplitude comparison section 10020 when the switching section 109 is connected to the phase / amplitude correction section 105.
  • the output signal of the switching unit 1509 is output to the phase amplitude comparison unit 102.
  • the switching section 1511 sends the output signal of the despreading section 1504 to the phase amplitude comparing section 10020 when the switching section 109 is connected to the phase amplitude correction section 105.
  • the output signal of the despreading section 15007 is output to the phase amplitude comparison section 102.
  • the phase / amplitude comparison unit 1 0 0 0 is output from the despreading unit 1 0 0 4 and passed through the switching unit 1 5 1 1 Sa Then, the amplitude and the phase of the signal passing through the switching unit 1508 and the signal passing through the switching unit 1510 are compared, and the error of the amplitude and the phase is obtained by this comparison.
  • the phase / amplitude comparing section 1 020 includes a signal output from the despreading section 1507 and passed through the switching section 1511, and a despreading section 1505 or a despreading section 1506.
  • the amplitude and the phase of the signal output from the switching unit 1509 and passing through the switching unit 15010 are compared with each other, and the amplitude and phase errors are obtained by this comparison.
  • the phase / amplitude comparison unit 10020 compares the error obtained based on the output signal of the despreading unit 1502 with the error obtained based on the output signal of the despreading unit 1505, The smaller value is output to the error storage unit 1021 via the switching unit 109.
  • phase / amplitude comparison unit 102 compares the error obtained based on the output signal of the despreading unit 1503 with the error obtained based on the output signal of the despreading unit 1506. The smaller value is output to the error storage unit 102 through the switching unit 109.
  • the reliability of the amplitude and phase measurement can be increased by selecting a signal having a good reception state from the reception signals of a plurality of users as a target for performing the amplitude and phase measurement.
  • Embodiment 15 as in Embodiment 14 above, a symbol correlation operation for multiplying and averaging the output of each despreading unit with symbol information data so as to cancel the information modulation component is performed.
  • the signal-to-noise ratio of the signal subjected to the amplitude / phase comparison can be increased, and the accuracy of the calibration can be increased.
  • Embodiment 15 describes a case where the number of users to be selected as a target for performing amplitude / phase measurement is two. However, the present invention is not limited to this, and three or more users may be selected as targets for performing amplitude / phase measurement. You can also choose from.
  • FIG. 19 shows a configuration on the receiving side of the base station apparatus according to Embodiment 16 of the present invention. It is a block diagram.
  • the same components as those of the base station apparatus 1501 shown in FIG. 18 are denoted by the same reference numerals as those in FIG. Omitted.
  • the base station apparatus 1601 in FIG. 19 has switching units 1510, 1511 and an amplitude / phase comparison unit 1020 in addition to the base station apparatus 1501 in FIG. A configuration is adopted in which the phase and amplitude comparison sections 16 02 and 16 03 and the synthesis section 16 04 are added.
  • Receiveding section 1504 performs an inverse calculation process on the input signal with a spreading code for user 1, and outputs the result to phase / amplitude comparing section 1602.
  • Receiveding section 1507 performs an inverse calculation process on the input signal with a spreading code for user 2, and outputs the result to phase / amplitude comparison section 1603.
  • Switching section 1508 outputs one of output signals of despreading section 1502 or despreading section 1503 to phase / amplitude comparing section 1602.
  • Switching section 1509 outputs one of output signals of despreading section 1505 or despreading section 1506 to phase / amplitude comparing section 1603.
  • the phase / amplitude comparing section 1602 includes a signal output from the despreading section 1504 and a switching section 1505 output from the despreading section 1502 or the despreading section 1503. The amplitude and phase of the signal having passed through are compared, and an error in amplitude and phase is determined by this comparison and output to the combining unit 1604.
  • the phase / amplitude comparing section 1603 outputs the signal output from the despreading section 1507 and the switching section 1505 output from the despreading section 1505 or the despreading section 1506.
  • the amplitude and phase of the signal having passed through are compared, and an error in amplitude and phase is determined by this comparison and output to the combining unit 1604.
  • the combining unit 1604 combines the error obtained based on the output signal of the despreading unit 1502 with the error obtained based on the output signal of the despreading unit 1505, and combines them. The result is output to the error storage unit 1021 via the switching unit 109.
  • the combining section 1604 is determined based on the output signal of the despreading section 1503.
  • the error and the error obtained based on the output signal of the inverse diffusion unit 1506 are combined, and the combined value is output to the error storage unit 102 through the switching unit 109.
  • the reliability of the amplitude / phase measurement can be improved by performing the amplitude / phase measurement on the reception signals of a plurality of users and synthesizing the measurement results.
  • Embodiment 16 as in Embodiment 14 above, a symbol correlation operation for multiplying and averaging the output of each despreading unit with symbol information data so as to cancel the information modulation component is performed.
  • the signal-to-noise ratio of the signal subjected to the amplitude / phase comparison can be increased, and the accuracy of the calibration can be increased.
  • Embodiment 16 describes a case where the number of users to be combined with the amplitude / phase measurement results is two, but the present invention is not limited to this, and the amplitude / phase measurement results of three or more users are Can also be synthesized.
  • the present invention it is possible to correct the amplitude and the phase shift of the transmission signal or the reception signal without interrupting the communication with another device, and to reduce the size and the size of the device. Cost reduction can be achieved.
  • the present invention is suitable for use in a base station apparatus equipped with an array antenna of a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Amplifiers (AREA)

Description

明 細 書 通信装置及び通信方法 技術分野
本発明は、 移動体通信システムにおける基地局装置等の通信装置に関し、 特 にアレーアンテナを搭載した通信装置に関する。 背景技術
アレーアンテナを搭載した通信装置及び通信方法として、 既に特開平 1 0—
3 3 6 1 4 9号公報に記載されているものがある。
アレーアンテナとは、 複数のアンテナ素子で構成され、 各アンテナ素子より 送信する信号の振幅と位相をそれぞれ調整することにより、 送信の指向性を自 由に設定することができるものである。
図 1は、 従来のアレーアンテナを搭載した基地局装置の送信側の構成を示す ブロック図である。
この図 1に示す基地局装置 1は、 2本のアンテナ 2、 3によるアレーアンテ ナを装備するものであり、 各アンテナ 2、 3が接続された無線装置 4、 5と、 切換部 6と、 測定装置 7と、 ベースバンド信号処理装置 8とを備えて構成され ている。 ベースバンド信号処理装置 8は、 ベースバンド信号生成部 9と、 位相 振幅補正部 1 0、 1 1と、 誤差記憶部 1 2とを備えて構成されている。 各無線 装置 4、 5は、 直交変調部 1 3、 1 4と、 送信パワーアンプ 1 5、 1 6と、 切 換部 1 7、 1 8とを備えて構成されている。
但し、 通常基地局装置 1には、 図示せぬ複数の移動局装置に対する送信信号 を生成するために複数系統のベースバンド信号処理装置を具備するが、 図 1に おいては簡単のためベースバンド信号処理装置 8を 1系統のみ設けた場合を示 す。 また、 移動局装置から送信された信号を受信して復調するための手段は、 省略してある。
以下、 上記構成の基地局装置 1力 移動局装置と通信を行う場合の動作を説 明する。
まず、 ベースバンド信号生成部 9が、 同相成分 (以下、 「 I ch」 という) 及 び直交成分 (以下、 「Qch」 という) から成る 2系統のベースバンド信号を生 成し、 これを位相振幅補正部 1 0、 1 1を介して各無線装置 4、 5へ出力する。 また、 ベースバンド信号生成部 9は、 位相振幅補正部 1 0、 1 1を介して送信 パワーアンプ 1 5、 1 6へ利得制御信号も出力する。
ここで、 2台の無線装置 4、 5へ出力する 2系統のベースバンド信号は、 ベ 一スパンド信号生成部 9において同一のベースバンド信号に個別の複素係数を 乗算することにより生成される。
各無線装置 4、 5に入力されたベースバンド信号は、 直交変調部 1 3、 1 4 により直交変調されたのち無線周波数帯域にアップコンバートされ、 利得制御 信号に応じて増幅利得が制御された送信パワーアンプ 1 5、 1 6により増幅さ れることにより送信信号となる。
この送信信号は、 アンテナ 2と送信パワーアンプ 1 5を接続し、 アンテナ 3 と送信パワーアンプ 1 6を接続するように設定された切換部 1 7、 1 8を介し てアンテナ 2、 3から放射される。
ここで、 ベースバンド信号生成部 9において乗算される複素係数を調節する ことにより、 希望方向に対してのみ放射電界強度を高くすることができる。 こ れを、 「送信指向性を持たせる」 という。 送信指向性を持たせることにより、 他の通信機の受信 S I R (Signal to Interference Ratio )を高く保つことができ る。
しかし、 送信パワーアンプ 1 5、 1 6の持つ特性は、 構成アナログ素子のば らつきにより個々に異なる。 これにより、 各アンテナ 2、 3の送信信号に各々 異なる未知の振幅変動や位相回転が加わるため、 ベースバンド信号生成部 9に おいて複素係数を乗算して得ることができると期待される送信指向性とは異な つた送信指向性が形成されてしまう。
このような現象を防止するためには、 送信パワーアンプ 1 5、 1 6が持つ特 性を同一になるように調整しなければならない。 しかし、 それらアンプ 1 5、 1 6などのアナログ素子の特性を正確に且つ時不変に調整することは、 極めて 困難である。
そこで、 送信パワーアンプ 1 5、 1 6が持つ特性を調整することは行わず、 予め送信パワーアンプ 1 5、 1 6が持つ特性を各々測定して記憶しておき、 そ の特性の誤差分だけ送信信号振幅及び位相が変化する事を考慮して、通信時に、 ベースバンド信号を補正する方法をとる。
送信パワーアンプ 1 5、 1 6が持つ特性は、 通信を開始する前に予め測定さ れる。 この場合、 まず、 切換部 1 7を、 送信パワーアンプ 1 5と切換部 6とを 接続するように設定し、 切換部 1 8を、 送信パワーアンプ 1 6と切換部 6とを 接続するように設定する。 更に、 切換部 6を、 何れかの切換部 1 7又は 1 8と、 測定装置 7とを接続するように設定する。 ここでは、 最初に、 切換部 1 7と測 定装置 7とが接続されるように切換部 6を設定する。
次に、 送信パワーアンプ 1 5、 1 6の特性を測定するために、 ベースバンド 信号生成部 9から、 情報シンポルが既知であるベースバンド信号 (この場合特 に校正信号と呼ぶ) を発生させ、 各無線装置 4、 5へ出力する。
各無線装置 4、 5に入力されたベースバンド信号は、 直交変調部 1 3、 1 4 を介して送信パワーアンプ 1 5、 1 6で増幅された後、 切換部 1 7及び 6を介 して測定装置 7へ出力される。
そして、 測定装置 7において、 入力信号の振幅及び位相が測定され、 この測 定値と予め設定された振幅及び位相の期待値との誤差が求められ、 この誤差が 誤差記憶部 1 2に記憶される。 この後、 切換部 6を、 切換部 1 7と測定装置 7とが接続されるように切り換 え、 上記同様の処理を行う。
この処理が終了した後、 切換部 1 7、 1 8をアンテナ 2、 3側に切り換え、 通信を開始する。 この通信時には、 位相振幅補正部 1 0、 1 1が、 ベースバン ド信号生成部 9から入力されたベースバンド信号及び利得制御信号を、 誤差記 憶部 1 2に記憶された誤差に応じて補正する。
この補正は、 送信パワーアンプ 1 5、 1 6の特性誤差を相殺する複素係数を ベースバンド信号及び利得制御信号に乗算することによって行われる。この時、 ベースバンド信号に乗算される複素係数は、 送信パワーアンプ 1 5、 1 6から 出力される送信信号の位相を補正し、 利得制御信号に乗算される複素係数は、 送信信号の振幅を補正するものとなる。
次に、 図 2のブロック図を用いて、 従来のアレーアンテナを搭載した基地局 装置の受信側の構成について説明する。
この図 2に示す基地局装置 5 1は、 2本のアンテナ 5 2、 5 3によるアレー アンテナを装備するものであり、 各アンテナ 5 2、 5 3が接続された無線装置 5 4、 5 5と、 校正信号発生装置 5 6と、 ベースバンド信号処理装置 5 7とを 備えて構成されている。
各無線装置 5 4、 5 5は、 切換部 5 8、 5 9と、 A G C (Automatic Gain Control)アンプ 6 0、 6 1と、 直交復調部 6 2、 6 3とを備えて構成されてい る。 ベースバンド信号処理装置 5 7は、 位相振幅補正部 6 4、 6 5と、 ベース バンド信号処理部 6 6と、 誤差検出記憶部 6 7とを備えて構成されている。 以下、 上記構成の基地局装置 5 1力 移動局装置からの信号を受信する場合 の動作を説明する。
但し、 移動局装置から送信された信号を受信する場合、 切換部 5 8は、 アン テナ 5 2と A G Cアンプ 6 0とを接続するように設定され、 切換部 5 9は、 ァ ンテナ 5 3と A G Cアンプ 6 1とを接続するように設定されている。 まず、 アンテナ 5 2に受信された信号は、 切換部 5 8を介して A G Cアンプ 6 0へ出力され、 A G Cアンプ 6 0にて、 振幅が一定となるように自動利得制 御が行われる。
この際、 自動利得制御結果を示す A G C信号が位相振幅補正部 6 4を介して ベースバンド信号処理部 6 6へ出力され、 また、 A G Cアンプ 6 0から出力さ れた自動利得制御後の信号は、 直交復調部 6 2にて復調されることにより I ch 及び Qchから成るベースバンド信号となる。 このベースバンド信号が位相振幅 補正部 6 4にて、 その振幅及び位相が補正された後、 ベースバンド信号処理部 6 6へ出力される。 また、 位相振幅補正部 6 4においては、 A G C信号の振幅 及び位相も補正される。
ベースバンド信号処理部 6 6では、 ベースバンド信号及び A G C信号に対し て、 所定周波数に変換する等の処理が行われる。 以上と同様な受信処理が無線 装置 5 5側の系統においても行われる。
このような受信処理が行われる際、 前述の送信側で説明したように、 無線装 置 5 4、 5 5を構成する A G Cアンプ 6 0、 6 1等がアナログ素子であるため、 その特性にバラツキがあり、 このバラツキを正確に且つ時不変に調整すること は、 極めて困難である。
そこで、 受信処理を行う前に、 予め無線装置 5 4、 5 5が持つ特性を各々測 定して記憶しておき、 この測定値と予め設定された振幅及び位相の期待値との 誤差分だけベースバンド信号が変化する事を考慮して、 受信時に、 ベースバン ド信号を補正する方法をとる。
無線装置 5 4、 5 5が持つ特性の測定方法について述べる。
この測定に当たって、 切換部 5 8を、 校正信号発生装置 5 6と A G Cアンプ 6 0とを接続するように設定し、 切換部 5 9を、 校正信号発生装置 5 6と A G Cアンプ 6 1とを接続するように設定する。
次に、 無線装置 5 4、 5 5の特性測定のために、 校正信号発生装置 5 6から、 情報シンボルが既知である校正信号を発生させ、 これを、 各無線装置 5 4、 5 5及び位相振幅補正部 6 4、 6 5を介してベースバンド信号処理部 6 6へ出力 し、 更に誤差検出記憶部 6 7へ出力する。
誤差検出記憶部 6 7においては、 校正信号に基づくベースバンド信号及び A G C信号の振幅及び位相が検出され、 この検出値と、 予め設定された振幅及び 位相の期待値との誤差が求められ、 この誤差が記憶される。
この後、 各切換部 5 8、 5 9を、 アンテナ 5 2、 5 3側に切り換え、 受信を 開始する。 この受信時には、 位相振幅補正部 6 4、 6 5力 各系統のベ一スバ ンド信号及び A G C信号を、 誤差検出記憶部 6 7に記憶された誤差に応じて補 正する。
この補正は、 無線装置 5 4、 5 5の特性誤差を相殺する前記誤差に応じた複 素係数を、ベースバンド信号及び A G C信号に乗算することによって行われる。 しかしながら、 従来の装置には、 送信時に、 送信信号の振幅及び位相ずれの 補正を行うために必要な、 送信パワーアンプ 1 5、 1 6の特性誤差を求めるた めの測定を、 移動局装置との通信中に行うことができず、 その測定を行うため には通信を中断しなければならいという問題がある。
同様に、 従来の装置には、 受信時に、 ベースバンド信号及び A G C信号の振 幅及び位相ずれの補正を行うために必要な、 無線装置 5 4、 5 5の特性誤差を 求めるための測定を、 移動局装置との通信中に行うことができず、 その測定を 行うためには通信を中断しなければならいという問題がある。
また、 上記の測定を行うために、 送信側に、 情報シンポルが既知である校正 信号を発生する発振回路を設けなければならないので、 その分、 装置の規模が 大きくなり、 コストが高くなるという問題がある。 同様に、 受信側に、 校正信 号を発生する発振回路を設けなければならないので、 その分、 装置の規模が大 きくなり、 コストが高くなるという問題がある。 発明の開示
本発明の第 1の目的は、 他装置との通信を中断することなしに送信信号の振 幅及び位相ずれを補正することができ、 装置の小型化かつ低コスト化を図るこ とができる通信装置及び通信方法を提供することである。
この目的は、 送信パワーアンプの入力信号と出力信号の位相差及び振幅差を 求め、 位相差が無くなるように、 また、 振幅差と期待値とが等しくなるように、 ベースバンド信号及び利得制御信号を補正することにより達成される。
本発明の第 2の目的は、 他装置との通信を中断することなしに受信ベースバ ンド信号及び A G C信号の振幅及び位相ずれを補正することができ、 装置の小 型化かつ低コスト化を図ることができる通信装置及び通信方法を提供すること である。
この目的は、 各アンテナに受信された信号に基づく A G C信号及びベースバ ンド信号と、 基準となる A G C信号及びベースバンド信号との振幅及び位相の 誤差を求め、 この誤差が無くなるように、 自動利得制御信号及び復調信号の振 幅及び位相を補正することにより達成される。 図面の簡単な説明
図 1は、 従来の基地局装置の送信側の構成を示すプロック図、
図 2は、 従来の基地局装置の受信側の構成を示すプロック図、
図 3は、 本発明の実施の形態 1に係る基地局装置の送信側の構成を示すプロ ック図、
図 4は、 本発明の実施の形態 2に係る基地局装置の送信側の構成を示すプロ ック図、
図 5は、 本発明の実施の形態 3に係る基地局装置の送信側の構成を示すプロ ック図、
図 6は、 本発明の実施の形態 4に係る基地局装置の送信側の構成を示すプロ ック図、
図 7は、 本発明の実施の形態 5に係る基地局装置の送信側の構成を示すプロ ック図、
図 8は、 本発明の実施の形態 6に係る基地局装置の送信側の構成を示すプロ ック図、
図 9は、 本発明の実施の形態 7に係る基地局装置の送信側の構成を示すプロ ック図、
図 1 0は、 本発明の実施の形態 8に係る基地局装置の送信パワーアンプの制 御値と振幅位相特性との関係を示す図、
図 1 1は、 本発明の実施の形態 8に係る基地局装置の送信側の構成を示すブ ロック図、
図 1 2は、 本発明の実施の形態 9に係る基地局装置の送信側の構成を示すブ ロック図、
図 1 3は、 本発明の実施の形態 1 0に係る基地局装置の受信側の構成を示す ブロック図、
図 1 4は、 本発明の実施の形態 1 1に係る基地局装置の受信側の構成を示す ブロック図、
図 1 5は、 本発明の実施の形態 1 2に係る基地局装置の受信側の構成を示す ブロック図、
図 1 6は、 本発明の実施の形態 1 3に係る基地局装置の受信側の構成を示す ブロック図、
図 1 7は、 本発明の実施の形態 1 4に係る基地局装置の受信側の構成を示す ブロック図、
図 1 8は、 本発明の実施の形態 1 5に係る基地局装置の受信側の構成を示す ブロック図、 及び、
図 1 9は、 本発明の実施の形態 1 6に係る基地局装置の受信側の構成を示す ブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。
(実施の形態 1 )
図 3は、 本発明の実施の形態 1に係る基地局装置の送信側の構成を示すプロ ック図である。
この図 3に示す基地局装置 101は、 2本のアンテナ 102、 103による アレーアンテナを装備するものであり、 各アンテナ 102、 103が接続され た無線装置 104、 105と、 ベースバンド信号処理装置 106とを備えて構 成されている。
また、 ベースバンド信号処理装置 106は、 ベースバンド信号生成部 107 と、 無線装置 104、 105への信号出力端に図示せぬ DZA変換回路を備え たディジタル回路構成の位相振幅補正部 108、 109と、 無線装置 104、 105からの信号入力端に図示せぬ AZD変換回路を備えたディジ夕ル回路構 成の振幅位相比較部 1 10、 1 1 1とを備えて構成されている。
各無線装置 104、 105は、 直交変調部 1 12、 1 13と、 送信パワーァ ンプ 1 14、 1 15と、 ATT (減衰器) 制御部 1 16、 1 17と、 ATT 1 18、 1 19と、 各々 2つの周波数変換部 120及び 121と、 122及び 1 23と、 発振部 (局部発振器) 124、 125とを備えて構成されている。 また、 周波数変換部 120は、 ミキサ 126及び L P F(Low Pass Filter) 1
27を備え、 他の周波数変換部 121〜123も同様に、 ミキサ 128及び L PF 129と、 ミキサ 130及び L P F 131と、 ミキサ 132及び ? 1
33とを備えて構成されている。
但し、 通常基地局装置 101には、 図示せぬ複数の移動局装置に対する送信 信号を生成するために複数系統のベースバンド信号処理装置を具備するが、 図 3においては簡単のためベースバンド信号処理装置 106を 1系統のみ設けた 場合を示す。 また、 移動局装置から送信された信号を受信して復調するための 手段は、 省略してある。
以下、 上記構成の基地局装置 1 0 1が移動局装置と通信を行う場合、 まず、 ベースバンド信号生成部 1 07が、 I ch及び Qchから成る 2系統のベースバ ンド信号を生成し、 これを位相振幅補正部 108、 109を介して各無線装置 104、 1 05の直交変調部 1 1 2、 1 13へ出力する。 また、 ベースバンド 信号生成部 1 07は、 位相振幅補正部 1 08、 109を介して送信パワーアン プ 1 14、 1 1 5へ利得制御信号も出力する。
ここで、 ベースバンド信号生成部 1 07は、 同一のベースバンド信号に個別 の複素係数を乗算することにより 2台の無線装置 1 04、 1 05へ出力する 2 系統のベースバンド信号を生成する。 また、 複素係数を調節することにより送 信指向性を持たせることができる。
直交変調部 1 12、 1 1 3は、 各無線装置 1 04、 105に入力されたべ一 スバンド信号を直交変調したのち、 無線周波数帯域にアップコンバートする。 送信パワーアンプ 1 14、 1 1 5は、利得制御信号に応じて直交変調部 1 12、 1 1 3の出力信号を増幅し、 アンテナ 102、 103から放射する。 但し、 図 示せぬ共用器を用いて送信用のアンテナ素子と受信用のアンテナ素子を共用す る場合もある。
送信パワーアンプ 1 14の後段には ATT 1 18を介して周波数変換部 1 2 0が接続され、 前段には周波数変換部 12 1が接続されている。 ATT 1 18 が介在されているのは、 送信パワーアンプ 1 14から出力される信号電力が過 大な場合に、 周波数変換部 1 20を破壊する恐れがあるので、 それを防止する ためである。 また、 ATT 1 18の減衰量は、 ベースバンド信号処理装置 1 0 6から位相振幅補正部 1 08を介して供給される利得制御信号に応じて制御さ れる。 各周波数変換部 120、 121のミキサ 126、 128には、 発振部 124 から出力される発振信号が共通に供給され、 後段のミキサ 128では、 直交変 調部 1 12から出力された無線周波数 (RF) の直交変調信号と発振信号とが 混合されることによってダウンコンパ一卜が行われ、前段のミキサ 126では、 送信パワーアンプ 1 14から出力された無線周波数の送信信号と発振信号とが 混合されることによってダウンコンバー卜が行われ、 双方のダウゥンコンバー 卜後の信号が振幅位相比較部 1 10へ出力される。
振幅位相比較部 1 10では、 双方の信号の振幅及び位相の誤差が比較によつ て求められる。 なお、 その誤差を求める計算においては、 送信パワーアンプ 1 14の設定増幅利得と ATT 1 18の減衰率とは相殺される。
このようにして求められた振幅及び位相の誤差は、 送信パワーアンプ 1 14 を通過することによって発生する振幅変動及び位相変動に対応しているので、 それら変動を相殺すべき誤差として、 位相振幅補正部 108に供給され、 送信 信号の補正に使用される。
位相振幅補正部 108では、 ベースバンド信号生成部 107から入力された ベースバンド信号及び利得制御信号が、 その誤差に応じて補正される。
この補正は、 送信パワーアンプ 1 14の特性誤差を相殺する複素係数をべ一 スバンド信号及び利得制御信号に乗算することによって行われ、 この時、 ベー スバンド信号に乗算される複素係数は、 送信パワーアンプ 1 14から出力され る送信信号の位相を補正し、 利得制御信号に乗算される複素係数は、 送信信号 の振幅を補正するものとなる。 また、 無線装置 105を備える他の系統におい ても、 これと同様に補正が行われる。
このような補正処理は、通信を中断することなく実行することが可能であり、 間欠的に行うことも連続で行うことも可能である。
また、 ATT制御部 1 16及び ATT 1 18が接続されていない場合は、 振 幅位相比較部 1 10が、 送信パワーアンプ 1 14の入力信号と出力信号の位相 差及び振幅差を求め、位相振幅補正部 1 0 8が、 その位相差が無くなるように、 また、 振幅差が期待値と等しくなるように、 ベースバンド信号生成部 1 0 7か ら送信パワーアンプ 1 1 4へ出力されるベースバンド信号及び利得制御信号を 補正するようにしてもよい。 これは他系統においても同様である。
このように、 送信パワーアンプの入力信号と出力信号の位相差及び振幅差を 求め、 位相差が無くなるように、 また、 振幅差と期待値とが等しくなるように、 ベースバンド信号及び利得制御信号を補正することにより、 移動局装置との通 信中に送信パワーアンプから出力される送信信号の振幅及び位相ずれの補正を 行うことができる。 また、 従来のように、 補正に必要な情報シンボルが既知で ある校正信号を発生する発振回路を設ける必要がないので、 その分、 装置の小 型かつ低コスト化を図ることができる。
また、 利得制御信号に応じて減衰された送信パワーアンプの出力信号と送信 パワーアンプの入力信号との位相差及び振幅差を求め、 その位相差及び振幅差 が無くなるように、ベースバンド信号及び利得制御信号を補正することにより、 送信パワーアンプから出力される送信信号の振幅が送信パワーアンプ 1 1 4の 入力信号の振幅と等しくすることができる。
また、 送信パワーアンプの減衰後の出力信号と送信パワーアンプの入力信号 とを同一の低周波数にダウンコンパ一卜することにより、 ディジ夕ル値への変 換を簡易回路で実現することができ、 このことから、 振幅及び位相の誤差を求 めるための比較を行う際の処理構成を簡易な回路で実現することができる。
(実施の形態 2 )
実施の形態 2では、 一旦中間周波数 ( I F ) 帯域までのアップコンバートを 行い、 その後、 無線周波数 (R F ) 帯域までのアップコンバートを行う場合に ついて説明する。
図 4は、 本発明の実施の形態 2に係る基地局装置の送信側の構成を示すプロ ック図である。 但し、 図 4に示す基地局装置 2 0 1において図 3に示した基地 局装置 1 0 1と共通する構成部分には同一符号を付し、 その説明を省略する。 図 4に示す基地局装置 2 0 1は、図 3に示した基地局装置 1 0 1と比較して、 直交変調部 1 1 2、 1 1 3の代わりに直交変調部 2 0 2、 2 0 3を具備する構 成を採る。 また、 図 4に示す基地局装置 2 0 1は、 図 3に示した基地局装置 1 0 1と比較して、 R F変調部 2 0 4、 2 0 5及び発振部 2 0 6、 2 0 7を追加 した構成を採る。
直交変調部 2 0 2、 2 0 3は、 直接無線周波数 (R F ) 帯域までのアップコ ンバートを行わなず、 一旦中間周波数 ( I F ) 帯域までのアップコンバートを 行う。
R F変調部 2 0 4、 2 0 5は、 直交変調部 2 0 2、 2 0 3と送信パワーアン プ 1 1 4、 1 1 5との間に設けられ、 I F信号を R F信号に変換する。
発振部 2 0 6、 2 0 7は、 I F信号を周波数変換部 1 2 1、 1 2 3でダウン コンバートして得られる信号周波数を、 R F信号をダウンコンパ一卜する周波 数変換部 1 2 0、 1 2 2の出力周波数と同一とするための周波数信号を発振す る。
以下、 上記構成の基地局装置 2 0 1において、 一方の系統のみを説明すると、 R F変調部 2 0 4に入力される I F信号と、 送信パワーアンプ 1 1 4から出力 される R F信号とが、 周波数変換部 1 2 0、 1 2 1で各々同一の周波数にダウ ンコンバートされ、 双方のコンバートされた信号が振幅位相比較部 1 1 0へ出 力される。
振幅位相比較部 1 1 0では、 双方の信号の振幅及び位相の誤差が比較によつ て求められる。 この求められた振幅及び位相の誤差は、 R F変調部 2 0 4及び 送信パワーアンプ 1 1 4を通過することによって発生する振幅変動及び位相変 動に対応しているので、 それら変動を相殺すべき誤差である。 そして、 位相振 幅補正部 1 0 8において、 ベースバンド信号生成部 1 0 7から入力されたべ一 スバンド信号及び利得制御信号が、 振幅位相比較部 1 1 0で求められた誤差に 応じて補正される。
このように、 一旦中間周波数 ( I F) 帯域までのアップコンバートを行い、 その後、 無線周波数 (RF) 帯域までのアップコンバートを行う場合に、 周波 数変換部 120、 121にて 2つの異なる周波数の信号を同一周波数にダウン コンバートすることにより、 RF変調部 204、 205及び送信パワーアンプ 1 14、 1 1 5を合わせた部分に起因する振幅及び位相の誤差を補正すること ができる。
(実施の形態 3)
実施の形態 3では、 直交変調部 302、 303がアナログ素子で構成されて いる場合について説明する。
図 5は、 本発明の実施の形態 3に係る基地局装置の送信側の構成を示すプロ ック図である。 但し、 図 5に示す基地局装置 301において図 3に示した基地 局装置 101と共通する構成部分には同一符号を付し、 その説明を省略する。 図 5に示す基地局装置 301は、図 3に示した基地局装置 101と比較して、 直交変調部 1 12、 1 13の代わりにアナログ素子で構成されている直交変調 部 302、 303を具備する構成を採る。 また、 図 5に示す基地局装置 301 は、 図 3に示した基地局装置 101と比較して、 周波数変換部 121、 123 を削除し、 振幅位相比較部 1 10、 1 1 1の代わりに振幅位相比較部 304、 305を追加した構成を採る。
振幅位相比較部 304、 305は、 直交変調部 302, 303の入力信号と、 周波数変換部 120、 122の出力信号との振幅及び位相を比較する。
以下、 上記構成の基地局装置 301において、一方の系統のみを説明すると、 直交変調部 302の入力信号と、 ATT 1 18及び周波数変換部 120を介し て送信パワーアンプ 1 14から出力される信号とが振幅位相比較部 304へ出 力される。
振幅位相比較部 304では、 双方の信号の振幅及び位相の誤差が比較によつ て求められる。 この求められた振幅及び位相の誤差は、 直交変調部 3 0 2から 送信パワーアンプ 1 1 4を通過することによって発生する振幅変動及び位相変 動に対応しているので、 それら変動を相殺すべき誤差である。 そして、 位相振 幅補正部 1 0 8にて、 ベースバンド信号生成部 1 0 7から入力されたベースバ ンド信号及び利得制御信号が、 振幅位相比較部 3 0 4から出力された誤差に応 じて補正される。
なお、 図 5では、 ベースバンド信号処理装置 1 0 6の内部において、 直交変 調部 3 0 2、 3 0 3の入力信号を振幅位相比較部 3 0 4、 3 0 5へ導くように 構成されているが、 無線装置 1 0 4の内部から導くようにしても良い。
このように、 直交変調部 3 0 2、 3 0 3がアナログ素子で構成されている場 合、 送信パワーアンプ 1 1 4から出力された信号と直交変調部 3 0 2の入力信 号との振幅及び位相差を求め、 その振幅及び位相差が無くなるようにベースバ ンド信号及び利得制御信号を補正することにより、 直交変調部 3 0 2から送信 パワーアンプ 1 1 4までの構成部分に起因する振幅及び位相の誤差を補正する ことができる。
(実施の形態 4 )
図 6は、 本発明の実施の形態 4に係る基地局装置の送信側の構成を示すプロ ック図である。 但し、 図 6に示す基地局装置 4 0 1において図 3に示した基地 局装置 1 0 1と共通する構成部分には同一符号を付し、 その説明を省略する。 図 6に示す基地局装置 4 0 1は、 図 3に示した基地局装置 1 0 1で無線装置 1 0 4、 1 0 5に備えられていた A T T制御部 1 1 6と、 A T T 1 1 8と、 周 波数変換部 1 2 0、 1 2 1と、 発振部 1 2 4と、 この他に、 各無線装置 1 0 4、 1 0 5の何れかと接続を切り換えるための切換部 4 0 2、 4 0 3、 4 0 4とを 有する信号抽出装置 4 0 5とを備えて構成されている。 また、 振幅位相比較部 1 1 0と各位相振幅補正部 1 0 8、 1 0 9との間には切換部 4 0 6が接続され ている。 以下、 上記構成の基地局装置 4 0 1において、 各切換部 4 0 2〜 4 0 4と 4 0 6を、 無線装置 1 0 4の経路に信号抽出装置 4 0 5と振幅位相比較部 1 1 0 とが接続されるように切り換えることにより、 実施の形態 1と同様に振幅及び 位相の誤差を求めてそれを補正することができる。 また、 無線装置 1 0 5の経 路も同様に各切換部 4 0 2〜 4 0 4と 4 0 6を、 無線装置 1 0 5の経路に信号 抽出装置 4 0 5と振幅位相比較部 1 1 0とが接続されるように切り換えること により、 実施の形態 1と同様に振幅及び位相の誤差を求めてそれを補正するこ とができる。
しかも、 各無線装置 1 0 4、 1 0 5毎に、 振幅及び位相の誤差を求めるため に必要な構成要素を備えなくてもよいので、 実施の形態 1の構成と比較した場 合、 その分、 装置全体の規模を削減することができ、 また、 上記構成要素の特 性を揃えるための工数を削減することができる。
また、 無線装置 1 0 4、 1 0 5力 図 4に示したように R F変調部 2 0 4、
2 0 5を備える場合は、 切換部 4 0 4を R F変調部 2 0 4、 2 0 5の入力側に 接続することによって、 実施の形態 2と同様な補正を行うことができる。 更に、 信号抽出装置 4 0 5を、 図 5に示した無線装置 1 0 4の構成要素に対 応する A T T制御部 1 1 6と、 A T T 1 1 8と、 周波数変換部 1 2 0と、 発振 部 1 2 4と、 この他に、 切換部 4 0 2、 4 0 3とを備えて構成し、 これを、 切 換部 4 0 2、 4 0 3を介して図 6同様に無線装置 1 0 4、 1 0 5に接続し、 ま た、 各々の位相振幅補正部 1 0 8、 1 0 9の出力側に接続した振幅位相比較部
3 0 4を、 切換部 4 0 6を介して位相振幅補正部 1 0 8、 1 0 9に接続するこ とによって、 実施の形態 3と同様な補正を行うことができる。
(実施の形態 5 )
図 7は、 本発明の実施の形態 5に係る基地局装置の送信側の構成を示すプロ ック図である。 但し、 図 7に示す基地局装置 5 0 1において図 3に示した基地 局装置 1 0 1と共通する構成部分には同一符号を付し、 その説明を省略する。 図 7に示す基地局装置 5 0 1は、 無線装置 1 0 4、 1 0 5において、 図 3に 示した基地局装置 1 0 1に備えられていた周波数変換部 1 2 1 、 1 2 3の代わ りに、 切換部 5 0 2、 5 0 3と、 切換部 5 0 4、 5 0 5とを備えて構成されて いる。
切換部 5 0 2、 5 0 3は、 周波数変換部 1 2 0、 1 2 2を八丁丁 1 1 8、 1 1 9又は送信パワーアンプ 1 1 4、 1 1 5の入力側に接続する。切換部 5 0 4、 5 0 5は、 周波数変換部 1 2 0、 1 2 2を振幅位相比較部 1 0 9、 1 1 0にお ける 2つの入力端子の何れかに接続する。
以下、 上記構成の基地局装置 5 0 1の動作について、 一方の経路を代表して 説明する。 例えば無線装置 1 0 4において、 最初に、 切換部 5 0 2を A T T 1 1 8を介して送信パワーアンプ 1 1 4の出力側に接続すると共に、 切換部 5 0 4を振幅位相比較部 1 1 0の一方の入力端子側に接続し、 次に、 切換部 5 0 2 を送信パワーアンプ 1 1 4の入力側に接続すると共に、 切換部 5 0 4を振幅位 相比較部 1 1 0の他方の入力端子側に接続する。 以降、 最初と次の接続動作を 交互に繰り返す。
これによつて、 実施の形態 1で説明したと同様に振幅及び位相の誤差を求め てそれを補正することができる。
しかも、 各無線装置 1 0 4、 1 0 5毎の振幅及び位相の誤差を求めるために 必要な構成要素を実施の形態 1よりも削減することができるので、 実施の形態 1の構成と比較した場合、 その分、 装置全体の規模を削減することができ、 ま た、 上記構成要素の特性を揃えるための工数を削減することができる。
但し、 この構成では、 送信パワーアンプ 1 1 4の出力及び入力側で同時に測 定ができないため、 送信信号にある程度既知の周期性が存在する場合に行う必 要がある。
また、 無線装置 1 0 4、 1 0 5力 図 4に示すように R F変調部 2 0 4、 2 0 5を備える場合は、 切換部 5 0 2、 5 0 3を R F変調部 2 0 4、 2 0 5の入 力側に接続することによって、実施の形態 2と同様な補正を行うことができる。 更に、 切換部 503を、 図 5に示すように位相振幅補正部 108、 109の 出力側に接続することによって、 実施の形態 3と同様な補正を行うことができ る。
(実施の形態 6)
図 8は、 本発明の実施の形態 6に係る基地局装置の送信側の構成を示すプロ ック図である。 但し、 図 8に示す基地局装置 601において図 3に示した基地 局装置 101と共通する構成部分には同一符号を付し、 その説明を省略する。 図 8に示す基地局装置 601は、 無線装置 104、 105において、 図 3に 示した基地局装置 101に備えられていた周波数変換部 120〜123及び発 振部 124、 125の代わりに、 ミキサ 602、 603と、 LPF 604、 6 05とを備えて構成されている。 また、 図 8に示す基地局装置 601は、 ベー スバンド信号処理装置 106に、 誤差検出部 606, 607を備えて構成され ている。
ミキサ 602、 603は、 八丁丁 1 18、 1 19を介した送信パワーアンプ 1 14、 1 15の出力信号と、 送信パワーアンプ 1 14、 1 15の入力信号と を混合する。 LPF 604、 605は、 ミキサ 602、 603の出力信号の低 域周波数のみを通過させる。 誤差検出部 606、 607は、 LPF 604、 6 05を通過した信号から振幅及び位相の誤差を検出して位相振幅補正部 108、 109へ出力する。
以下、 上記構成の基地局装置 601の動作について、 一方の経路を代表して 説明する。
送信パワーアンプ 1 14の入出力信号の周波数が等しい場合には、 ミキサ 6 02で混合された信号の周波数は 0となるので、 LPF 604を介して誤差検 出部 606へは 0が出力される。
一方、 送信パワーアンプ 1 14の入出力信号の周波数が異なる場合は、 ミキ サ 602で混合された信号の周波数がその誤差に応じたものとなり、 この誤差 を示す信号が LPF 604を介して誤差検出部 606へ出力されると、 誤差検 出部 606は、 送信パワーアンプ 1 14の入出力信号の振幅及び位相の誤差を 検出して位相振幅補正部 108へ出力する。
これによつて、 実施の形態 1で説明したと同様に振幅及び位相の誤差を求め てそれを補正することができる。
しかも、 各無線装置 104、 105毎の振幅及び位相の誤差を求めるために 必要な構成要素を実施の形態 1よりも削減することができるので、 実施の形態 1の構成と比較した場合、 その分、 装置全体の規模を削減することができ、 ま た、 上記構成要素の特性を揃えるための工数を削減することができる。
(実施の形態 7)
図 9は、 本発明の実施の形態 7に係る基地局装置の送信側の構成を示すプロ ック図である。 但し、 図 9に示す基地局装置 701において図 4に示した基地 局装置 201と共通する構成部分には同一符号を付し、 その説明を省略する。 図 9に示す基地局装置 701は、 無線装置 104、 105において、 図 4に 示した基地局装置 201に備えられていた周波数変換部 120〜123及び発 振部 124、 125の代わりに、 ミキサ 702、 703と、 BPF(BandPass Filter) 704、 705と、 発信部 706、 707と、 ミキサ 708、 709と、 LPF 710、 71 1とを備えて構成されている。 また、 図 9に示す基地局装 置 70 1は、 ベースバンド信号処理装置 106に、 誤差検出部 606、 607 を備えて構成されている。 但し、 誤差検出部 606、 607は、 実施の形態 6 で説明したものと同様である。
ミキサ 702、 703は、 八丁丁 1 18、 1 19を介した送信パワーアンプ 1 14、 1 15の出力信号と、 RF変調部 722、 723の入力信号とを混合 する。 BPF 704、 705は、 ミキサ 702、 703の出力信号の所定帯域 の周波数を通過させる。 ミキサ 708、 709は、 BPF 704、 705を通過した信号が、 RF変 調部 722、 723の入力側と送信パワーアンプ 1 14、 1 15の出力側との 間に振幅及び位相誤差が無い場合に、 発振部 706、 707からの発振周波数 と混合することにより、 その信号の周波数を 0に打ち消す。
以下、 上記構成の基地局装置 701の動作について、 一方の経路を代表して 説明する。
ATT 1 18を介した送信パワーアンプ 1 14の出力信号と、 RF変調部 2 04の入力信号とがミキサ 702で混合され、 この混合信号が、 RF変調部 2 04の入力側と送信パワーアンプ 1 14の出力側との間に振幅及び位相誤差が 無い場合のものである場合、 その混合周波数は B P F 704を介してミキサ 7 08で発振部 706からの発振周波数と混合されることにより 0に打ち消され る。 そして、 その周波数 0の信号が LPF 710を介して誤差検出部 606へ 出力される。
一方、 RF変調部 204の入力側と送信パワーアンプ 1 14の出力側との間 に振幅及び位相誤差が有る場合、 ミキサ 708で混合された信号の周波数がそ の誤差に応じたものとなり、 この誤差を示す信号が L P F 7 10を介して誤差 検出部 606へ出力されると、 誤差検出部 606は、 送信パワーアンプ 1 14 の入出力信号の振幅及び位相の誤差を検出して位相振幅補正部 108へ出力す る。 これによつて、 位相振幅補正部 108は、 実施の形態 2で説明したと同様 に振幅及び位相誤差の補正を行う。
これによつて、 実施の形態 2で説明したと同様に振幅及び位相の誤差を求め てそれを補正することができる。
しかも、 各無線装置 104、 105毎の振幅及び位相の誤差を求めるために 必要な構成要素を実施の形態 2よりも削減することができるので、 実施の形態 2の構成と比較した場合、 その分、 装置全体の規模を削減することができ、 ま た、 上記構成要素の特性を揃えるための工数を削減することができる。 (実施の形態 8 )
ここで、 図 1 0に示すように、 送信信号の振幅位相特性 A 0は、 送信パワー アンプの利得 P Aによって異なる。 また、 送信パワーアンプの利得 P Aは、 通 信中にある程度変化させることがある。
これに対し、 実施の形態 1では、 位相振幅補正部 1 0 8、 1 0 9力 送信電 力の変化による送信信号振幅位相特性 A Θの変動を考慮せず、 振幅位相比較部 1 1 0、 1 1 1にて求めた振幅及び位相の誤差のみに基づいて位相振幅補正を 行っている。
このため、 通信時に送信電力を変化させる場合に、 精度よく位相振幅補正を 行うことができない。
また、 単に、 各送信パワーアンプの利得 P Aに対する振幅位相特性 A Θを測 定して、 各送信パワーアンプの利得 P Aと振幅位相特性 との関係を示す校 正表を作成すると、 この校正表が完成するまでの間、 通信を停止しなければな らない。
実施の形態 8は、 この問題を解決すべく、 通信を停止することなく、 送信電 力の変化による送信信号振幅位相特性 A Θの変動を考慮して振幅位相特性を測 定することにより、 位相振幅補正の精度の向上を図る場合について説明する。 図 1 1は、 本発明の実施の形態 8に係る基地局装置の送信側の構成を示すブ ロック図である。 なお、 図 1 1に示す基地局装置 8 0 1において、 図 3に示し た基地局装置 1 0 1と共通する構成部分に関しては、 図 3と同一の符号を付し て説明を省略する。
図 1 1の基地局装置 8 0 1は、 図 3の基地局装置 1 0 1に対して、 振幅位相 特性記憶部 8 0 2、 8 0 3を追加した構成を採る。
振幅位相特性記憶部 8 0 2は、 位相振幅補正部 1 0 8から出力された利得制 御信号と振幅位相比較部 1 1 0から出力された振幅及び位相の誤差に基づいて、 上記図 1 0に示したように、 送信パワーアンプ 1 1 4の利得 P Aに対する送信 信号の振幅位相特性 A Θを校正テーブルに記憶する。
同様に、 振幅位相特性記憶部 8 0 3は、 位相振幅補正部 1 0 9から出力され た利得制御信号と振幅位相比較部 1 1 1から出力された振幅及び位相の誤差に 基づいて、 上記図 1 0に示したように、 送信パワーアンプ 1 1 5の利得 Ρ Αに 対する送信信号の振幅位相特性 A Θを校正テーブルに記憶する。
なお、 送信パワーアンプ 1 1 4、 1 1 5の利得 P Aは、 通信中に多少変動す るため、 振幅位相特性記憶部 8 0 2、 8 0 3は、 測定された利得 P Aに基づい て校正テーブルの内容を随時更新する。
位相振幅補正部 1 0 8、 1 0 9は、 それぞれ振幅位相特性記憶部 8 0 2、 8 0 3に書込まれた校正テーブルの内容に基づいて利得制御信号を補正する。 な お、 過去の通信中において測定されていない利得 P Aに関しては、 これまで測 定された利得 P Aに基づいて推定する。
このように、 各利得 P Aに対する送信信号の振幅位相特性 A Θの関係を示す 校正テーブルを生成し、 利得制御信号の補正に用いることにより、 通信を停止 することなく、 送信信号の振幅位相特性を考慮して位相振幅補正を行うことが できる。
(実施の形態 9 )
ここで、 アンテナ 1 0 2、 1 0 3から送信される信号の電力値は、 直交変調 器 1 1 2、 1 1 3の出力信号の電力値と送信パワーアンプ 1 1 4、 1 1 5の増 幅値との積である。
すなわち、 送信パワーアンプ 1 1 4、 1 1 5の増幅値を強制的に変動させて も、 直交変調器 1 1 2、 1 1 3の出力信号の電力値を連動させれば、 アンテナ 1 0 2、 1 0 3から送信される信号の電力値を一定にすることができる。 図 1 2は、 本発明の実施の形態 9に係る基地局装置の送信側の構成を示すブ ロック図である。 なお、 図 1 2に示す基地局装置 9 0 1において、 図 1 1に示 した基地局装置 8 0 1と共通する構成部分に関しては、 図 1 1と同一の符号を 付して説明を省略する。
図 1 2の基地局装置 9 0 1は、 図 1 1の基地局装置 8 0 1に対して、 P A制 御値強制変動部 9 0 2、 9 0 3を追加した構成を採る。
P A制御値強制変動部 9 0 2は、 送信パワーアンプ 1 1 4の利得 P Aを強制 的に変動させるため、 ベースバンド信号生成部 1 0 7の出力信号の電力値を制 御し、 位相振幅補正部 1 0 8に対して変動幅を指示する。
同様に、 P A制御値強制変動部 9 0 3は、 送信パワーアンプ 1 1 5の利得 P Aを強制的に変動させるため、 ベースバンド信号生成部 1 0 7の出力信号の電 力値を制御し、 位相振幅補正部 1 0 9に対して変動幅を指示する。
位相振幅補正部 1 0 8、 1 0 9は、 補正した送信パワーアンプ 1 1 4、 1 1 5の利得 P Aに P A制御値強制変動部 9 0 2 , 9 0 3から指示された変動幅を 乗算した値を示す利得制御信号を出力する。
例えば、 P A制御値強制変動部 9 0 2、 9 0 3が、 変動幅 1 Z 2を指示した 場合、 ベースバンド信号生成部 1 0 7の出力信号の電力値は 2倍に制御され、 送信パワーアンプ 1 1 4、 1 1 5の利得 P Aは、 位相振幅補正部 1 0 8、 1 0 9の利得制御信号により 1 Z 2となる。
この結果、 アンテナ 1 0 2、 1 0 3から無線送信される信号の電力値を変化 させずに、 送信パワーアンプ 1 1 4、 1 1 5の利得 P Aを変化させることがで き、 振幅位相特性記憶部 8 0 2、 8 0 3にて、 広範囲の利得 P Aに対する校正 テーブルを生成できる。
(実施の形態 1 0 )
図 1 3は、 本発明の実施の形態 1 0に係る基地局装置の受信側の構成を示す ブロック図である。
この図 1 3に示す基地局装置 1 0 0 1は、 2本のアンテナ 1 0 0 2、 1 0 0 3によるアレーアンテナを装備するものであり、 各アンテナ 1 0 0 2、 1 0 0 3が接続された無線装置 1 0 0 4、 1 0 0 5と、 校正装置 1 0 0 6と、 ベース バンド信号処理装置 1 007とを備えて構成されている。
各無線装置 1004、 1 005及び校正装置 1 006は、 AG Cアンプ 1 0 1 0を何れかのアンテナ 1 002、 1 003に接続するための切換部 1 0 14 を備える以外は、 各々同一に構成されており、 八0 ァンプ1 008、 1 00 9、 1 0 1 0と、 直交復調部 1 0 1 1、 1 0 1 2、 10 1 3とを備えて構成さ れている。
ベースバンド信号処理装置 1 007は、 位相振幅補正部 1 0 1 5、 10 16 と、 ベースバンド信号処理部 10 1 7と、 切換部 1 0 18、 1 0 1 9と、 振幅 位相比較部 1 020と、 誤差記憶部 1 02 1、 1 022とを備えて構成されて いる。
以下、 上記構成の基地局装置 1 00 1の動作を説明する。
移動局装置からの信号を受信する場合又は受信中に、 各切換部 10 14、 1
0 18、 1 0 1 9を設定する。 最初に、 切換部 1 0 14を、 アンテナ 1 002 と AGCアンプ 10 1 0とが接続されるように、 切換部 10 1 8を、 無線装置 1 004と振幅位相比較部 1 020とが接続されるように、切換部 1 0 1 9を、 振幅位相比較部 1 020と位相振幅補正部 10 1 5とが接続されるように設定 する。
この場合の動作は、 まず、 移動局装置からの信号が各アンテナ 1 002、 1 003で受信される。 アンテナ 1 003での受信信号は、 無線装置 1 004の AGCアンプ 1 008へ出力されると共に、 切換部 10 14を介して AGCァ ンプ 1 0 10へ出力され、 八。〇ァンプ1008、 10 10での自動利得制御 増幅により、 振幅が一定とされる。
この際、 自動利得制御結果を示す AGC信号が、 無線装置 1 004側では、 位相振幅補正部 1 0 1 5を介してベースバンド信号処理部 1 0 1 7へ出力され ると共に、 切換部 10 1 8を介して振幅位相比較部 1020へ出力され、 校正 装置 1 006側では、 振幅位相比較部 1 020へ出力される。 また、 A G Cアンプ 1 0 0 8の出力信号は、 直交復調部 1 0 1 1において I ch 及び Qch から成るベースバンド信号に復調され、 このベースバンド信号が 位相振幅補正部 1 0 1 5を介してベースバンド信号処理部 1 0 1 7へ出力され ると共に、 切換部 1 0 1 8を介して振幅位相比較部 1 0 2 0へ出力される。 一方、 A G Cアンプ 1 0 1 0の出力信号は、 直交復調部 1 0 1 3において I ch 及び Qchから成るベースバンド信号に復調され、 このベースバンド信号が 振幅位相比較部 1 0 2 0へ出力される。
振幅位相比較部 1 0 2 0では、 無線装置 1 0 0 4の出力信号と校正装置 1 0 0 6の出力信号との振幅及び位相が比較され、 この比較によって振幅及び位相 の誤差が求められ、 この誤差が、 切換部 1 0 1 9を介して誤差記憶部 1 0 2 1 へ出力されて記憶される。
なお、 無線装置 1 0 0 4及び校正装置 1 0 0 6の出力信号は、 A G C信号と ベースバンド信号の 2種類の信号に表現され、 振幅位相比較部 1 0 2 0は、 A G C信号とベースバンド信号の両方を組み合わせて観測することにより振幅及 び位相の誤差を求める。
この記憶後、 位相振幅補正部 1 0 1 5では、 無線装置 1 0 0 4のベースバン ド信号及び A G C信号が、 誤差記憶部 1 0 2 1に記憶された誤差に応じて補正 される。 この補正は、 無線装置 1 0 0 4の特性誤差を相殺する前記誤差に応じ た複素係数を、 ベースバンド信号及び A G C信号に乗算することによって行わ れる。
この補正は、 他方の無線装置 1 0 0 5側の系統においても同様に行われる。 この場合、 切換部 1 0 1 4を、 アンテナ 1 0 0 3と A G Cアンプ 1 0 1 0とが 接続されるように、 切換部 1 0 1 8を、 無線装置 1 0 0 5と振幅位相比較部 1 0 2 0とが接続されるように、 切換部 1 0 1 9を、 振幅位相比較部 1 0 2 0と 位相振幅補正部 1 0 1 6とが接続されるように設定する。
この設定によって、 アンテナ 1 0 0 3での受信信号が、 無線装置 1 0 0 5の A G Cアンプ 1 0 0 9へ出力されると共に、 切換部 1 0 1 4を介して A G Cァ ンプ 1 0 1 0へ出力され、 各々の A G Cアンプ 1 0 0 9、 1 0 1 0の自動利得 制御により、 振幅が一定となるように増幅される。
この際、 自動利得制御を行った A G C信号が、 無線装置 1 0 0 5側では、 位 相振幅補正部 1 0 1 6を介してベースバンド信号処理部 1 0 1 7へ出力される と共に、 切換部 1 0 1 8を介して振幅位相比較部 1 0 2 0へ出力され、 校正装 置 1 0 0 6側では、 振幅位相比較部 1 0 2 0へ出力される。
また、 A G Cアンプ 1 0 0 9の出力信号は、 直交復調部 1 0 1 2において I ch 及び Qch から成るベースバンド信号に復調され、 このベースバンド信号が 位相振幅補正部 1 0 1 6を介してベースバンド信号処理部 1 0 1 7へ出力され ると共に、 切換部 1 0 1 8を介して振幅位相比較部 1 0 2 0へ出力される。 一方、 A G Cアンプ 1 0 1 0の出力信号は、 直交復調部 1 0 1 3において I ch 及び Qch から成るベースバンド信号に復調され、 このベースバンド信号が 振幅位相比較部 1 0 2 0へ出力される。
振幅位相比較部 1 0 2 0では、 無線装置 1 0 0 5の出力信号と校正装置 1 0 0 6の出力信号との振幅及び位相が比較され、 この比較によって振幅及び位相 の誤差が求められ、 この誤差が、 切換部 1 0 1 9を介して誤差記憶部 1 0 2 2 へ出力されて記憶される。
この記憶後、 位相振幅補正部 1 0 1 6では、 無線装置 1 0 0 5のベースバン ド信号及び A G C信号が、 誤差記憶部 1 0 2 2に記憶された誤差に応じて補正 される。 この補正は、 無線装置 1 0 0 5の特性誤差を相殺する前記誤差に応じ た複素係数を、 ベースバンド信号及び A G C信号に乗算することによって行わ れる。
このように、 各無線装置 1 0 0 4、 1 0 0 5から出力される各々の A G C信 号及びベースバンド信号と、 校正装置 1 0 0 6から出力される A G C信号及び ベースバンド信号との振幅及び位相の誤差を求める。 そして、 この誤差が無く ム
なるように、 自動利得制御信号及び復調信号の振幅及び位相を補正する。 これ により、 各無線装置 1004、 1005から出力される AGC信号及びベース バンド信号の振幅及び位相ずれの補正を、 移動局装置との通信中に行うことが できる。 また、 従来のように、 補正に必要な情報シンボルが既知である校正信 号を発生する発振回路を設けなくともよいので、 その分、 装置の小型かつ低コ スト化を図ることができる。
(実施の形態 1 1)
図 14は、 本発明の実施の形態 1 1に係る基地局装置の受信側の構成を示す ブロック図である。 但し、 図 14に示す基地局装置 1 101において図 13に 示した基地局装置 1001と共通する構成部分には同一符号を付し、 その説明 を省略する。
図 14に示す基地局装置 1 101が、 図 13に示した基地局装置 1001と 異なる部分は、 校正装置 1006とベースバンド信号処理装置 1007の構成 である。 校正装置 1006は、 AG Cアンプ 1010と、 切換部 1 102、 1 103、 1 104と、 ミキサ 1 105と、 L P F 1 106とを備えて構成され ている。 また、 ベースバンド信号処理装置 1007は、 図 13に示した振幅位 相比較部 1020に代え、 各無線装置 1004、 1005の AGCアンプ 10 08、 1009の出力と AG Cアンプ 1010の出力の振幅及び位相を比較す ると共に、 A GC信号の振幅及び位相を比較する振幅位相比較部 1 107を備 えて構成されている。
以下、 上記構成の基地局装置 1 101の動作について説明する。
基地局装置 1 101は、移動局装置からの信号を受信する場合又は受信中に、 各切換部 1 102、 1 103、 1 104、 1019を設定する。 最初に、 切換 部 1 102を、 アンテナ 1002と AGCアンプ 1010とが接続されるよう に設定する。 切換部 1 103を、 無線装置 1004の A GCアンプ 1008の 出力側とミキサ 1 105とが接続されるように設定する。 切換部 1 104を、 無線装置 1004の AGCアンプ 1008の AGC信号出力側と振幅位相比較 部 1 107とが接続されるように設定する。 切換部 1019を、 振幅位相比較 部 1 107と位相振幅補正部 1015とが接続されるように設定する。
まず、移動局装置からの信号が各アンテナ 1002、 1003で受信される。 アンテナ 1002での受信信号は、 無線装置 1004の AGCアンプ 1008 へ出力されると共に、 切換部 1 102を介して AGCアンプ 1010へ出力さ れ、 AG Cアンプ 1008、 1010の自動利得制御により、 振幅が一定とさ れる。
この際、 自動利得制御の結果を示す AGC信号が、無線装置 1004側では、 位相振幅補正部 1015を介してベースバンド信号処理部 101 7へ出力され ると共に、 切換部 1 104を介して振幅位相比較部 1 107へ出力され、 校正 装置 1006側では、 振幅位相比較部 1 107へ出力される。
また、 AG Cアンプ 1008の出力信号は、 直交復調部 101 1において I ch及び Qchから成るベースバンド信号に復調され、 このベースバンド信号が 位相振幅補正部 1015を介してベースバンド信号処理部 1017へ出力され ると共に、 切換部 1 103を介してミキサ 1 105へ出力される。
一方、 AGCアンプ 10 10の出力信号は、 ミキサ 1 105へ出力されるの で、 ミキサ 1 105において、 双方の AGCアンプ 1008と 1010との出 力信号が混合される。 つまり、 その混合によって、 双方の AGCアンプ 100 8と 1010との出力信号の振幅及び位相の差が求められることになる。
従って、 その混合信号が LP F 1 106を介して振幅位相比較部 1 107へ 出力されることによって、 振幅位相比較部 1 107で、 双方の AG Cアンプ 1 008と AGCアンプ 1010との出力信号の振幅及び位相の誤差が求められ、 この誤差が、 切換部 10 19を介して誤差記憶部 1021へ出力されて記憶さ れる。
これと同時に、 振幅位相比較部 1 107では、 無線装置 1004からの AG C信号と校正装置 1006からの AG C信号との振幅及び位相が比較され、 こ の比較によって振幅及び位相の誤差が求められ、 この誤差が、 切換部 1019 を介して誤差記憶部 1021へ出力されて記憶される。
この記憶後、 位相振幅補正部 1015においては、 無線装置 1004のべ一 スバンド信号及び AGC信号が、 誤差記憶部 102 1に記憶された誤差に応じ て補正される。 この補正は、 無線装置 1004の特性誤差を相殺する前記誤差 に応じた複素係数を、 ベースバンド信号及び AG C信号に乗算することによつ て行われる。 この補正は、 他方の無線装置 1005側の系統においても同様に 行われる。
このように、 AGCアンプ 1008、 1009の出力信号と AGCアンプ 1 010の出力信号との振幅及び位相の誤差を検出すると共に、 双方の自動利得 制御信号の振幅及び位相の誤差を求める。 そして、 これらの誤差に対応する各
AGCアンプ 1008、 1009と AGCアンプ 1010との特性誤差が無く なるように、 各無線装置 1004、 1005から出力される各々の自動利得制 御信号及び復調信号の振幅及び位相を補正する。
これによつて、 各無線装置 1004、 1005から出力される AGC信号及 びベースバンド信号の振幅及び位相ずれの補正を、 移動局装置との通信中に行 うことができる。 また、 従来のように、 補正に必要な情報シンボルが既知であ る校正信号を発生する発振回路を設けなくともよいので、 その分、 装置の小型 かつ低コスト化を図ることができる。
(実施の形態 12)
図 1 5は、 本発明の実施の形態 12に係る基地局装置の受信側の構成を示す ブロック図である。 なお、 図 15に示す基地局装置 1201において、 図 13 に示した基地局装置 1001と共通する構成部分に関しては、 図 13と同一の 符号を付して説明を省略する。
図 1 5の基地局装置 1201は、 図 13の基地局装置 1001に対して、 誤 差記憶部 1 02 1、 1022を削除し、 振幅位相特性記憶部 1 202、 1 20 3を追加した構成を採る。
振幅位相特性記憶部 1 202は、 AGCアンプ 1 008から出力された利得 制御信号と振幅位相比較部 1 020から出力されて切換部 10 1 9を通過した 振幅及び位相の誤差に基づいて、 AG Cアンプ 1 008の利得 AG Cに対する 受信信号の振幅位相特性 A Θを校正テーブル上に記憶する。
同様に、 振幅位相特性記憶部 1203は、 AG Cアンプ 1009から出力さ れた利得制御信号と振幅位相比較部 1 020から出力されて切換部 1 0 1 9を 通過した振幅及び位相の誤差に基づいて、 AG Cアンプ 1 009の利得 AG C に対する受信信号の振幅位相特性 A Θを校正テーブル上に記憶する。
なお、 八0(:ァンプ1 008、 1009の利得八〇(:は、 通信中に多少変動 するため、 振幅位相特性記憶部 1202、 1 203は、 測定された利得 AG C に基づいて校正テーブルの内容を随時更新する。
位相振幅補正部 1 0 1 5、 1 0 16は、 それぞれ振幅位相特性記憶部 120 2、 1 203に書込まれた校正テーブルの内容に基づいて利得制御信号を補正 する。 なお、 過去の通信中において測定されていない利得 AG Cに関しては、 これまで測定された利得 A G Cに基づいて推定する。
このように、 各利得 AG Cに対する受信信号の振幅位相特性 A Θの関係を示 す校正テーブルを生成し、 利得制御信号の補正に用いることにより、 通信を停 止することなく、 受信信号の振幅位相特性を考慮して位相振幅補正を行うこと ができる。
(実施の形態 1 3)
図 1 6は、 本発明の実施の形態 1 3に係る基地局装置の受信側の構成を示す ブロック図である。 なお、 図 1 6に示す基地局装置 130 1において、 図 1 5 に示した基地局装置 120 1と共通する構成部分に関しては、 図 1 5と同一の 符号を付して説明を省略する。 但し、 図 4に示す基地局装置 20 1において図 3に示した基地局装置 10 1と共通する構成部分には同一符号を付し、 その説 明を省略する。
図 16の基地局装置 1301は、 図 15の基地局装置 1201に対して、 A G Cゲイン強制変動部 1302、 1303を追加した構成を採る。
AG Cゲイン強制変動部 1302は、 所定の変動幅に AG Cアンプ 1008 の利得 A G Cを強制的に変動させる。
同様に、 AGCゲイン強制変動部 1303は、 所定の変動幅に AGCアンプ 1009の利得 AG Cを強制的に変動させる。
例えば、 A G Cゲイン強制変動部 1302、 1303が、 A G Cゲイン強制 変動部 1302、 1303の変動幅を 1 Z2に制御した場合、 ベースバンド信 号処理部 1017の入力信号の電力値は 2倍に制御される。
この結果、 アンテナ 1002、 1003に無線受信される信号の電力値を変 化させずに、 八0(:ァンプ1008、 1009の利得 AGCを変化させること ができ、 振幅位相特性記憶部 1202、 1203にて、 広範囲の利得 AGCに 対する校正テーブルを生成できる。
(実施の形態 14)
図 1 7は、 本発明の実施の形態 14に係る基地局装置の受信側の構成を示す ブロック図である。 なお、 図 17に示す基地局装置 1401において、 図 13 に示した基地局装置 1001と共通する構成部分に関しては、 図 13と同一の 符号を付して説明を省略する。
図 17の基地局装置 1401は、 図 13の基地局装置 1001に対して、 逆 拡散部 1402、 1403及びシンボル相関部 1404、 1405を追加した 構成を採る。
切換部 1018は、 直交復調部 101 1又は直交復調部 1012の出力信号 のどちらか一方を逆拡散部 1402に出力する。 校正無線装置 1006の出力 信号は、 逆拡散部 1403に入力される。 逆拡散部 1402は、 入力した信号に対して逆算処理を行ってシンボル相関 部 1404に出力する。 逆拡散部 1403は、 入力した信号に対して逆算処理 を行ってシンボル相関部 1405に出力する。
シンボル相関部 1404は、 逆拡散部 1402の出力信号に対し、 情報変調 成分を打ち消すようにシンボル情報データを乗算して平均化するシンボル相関 処理を行う。 シンボル相関部 1405は、逆拡散部 1403の出力信号に対し、 情報変調成分を打ち消すようにシンボル情報データを乗算して平均化するシン ボル相関処理を行う。
ここで、 シンボル情報データが基地局装置において既知の場合には、 その既 知のデータを使用し、 シンボル情報データが基地局装置において未知の場合に は、 シンボル情報データの代りに逆拡散出力の符号判定値を使用する。
振幅位相比較部 1020は、 シンボル相関部 1404の出力信号とシンボル 相関部 1405の出力信号との振幅及び位相を比較し、 この比較によって振幅 及び位相の誤差を求める。
このように、 受信信号に対してシンボル相関演算を施すことにより、 振幅位 相比較の対象となる信号の SN比を高めることができ、 校正の精度を高めるこ とができる。
(実施の形態 15)
図 18は、 本発明の実施の形態 15に係る基地局装置の受信側の構成を示す ブロック図である。 なお、 図 18に示す基地局装置 1501において、 図 13 に示した基地局装置 1001と共通する構成部分に関しては、 図 13と同一の 符号を付して説明を省略する。
図 18の基地局装置 1501は、 図 13の基地局装置 1001に対して、 切 換部 1018を削除し、 逆拡散部 1502、 1503、 1504、 1505、 1506, 1507及び切換部 1508、 1509、 1510、 151 1を追 加した構成を採る。 位相振幅補正部 1 0 1 5の出力信号は、 逆拡散部 1 5 0 2及び逆拡散部 1 5 0 5に入力される。 位相振幅補正部 1 0 1 6の出力信号は、 逆拡散部 1 5 0 3 及び逆拡散部 1 5 0 6に入力される。 校正無線装置 1 0 0 6の出力信号は、 逆 拡散部 1 5 0 4及び 1 5 0 7に入力される。
逆拡散部 1 5 0 2及び逆拡散部 1 5 0 3は、 それぞれ、 入力した信号に対し てユーザ 1用の拡散符号で逆算処理を行って切換部 1 5 0 8に出力する。 逆拡 散部 1 5 0 4は、 入力した信号に対してユーザ 1用の拡散符号で逆算処理を行 つて切換部 1 5 1 1に出力する。
逆拡散部 1 5 0 5及び逆拡散部 1 5 0 6は、 それぞれ、 入力した信号に対し てユーザ 2用の拡散符号で逆算処理を行って切換部 1 5 0 9に出力する。 逆拡 散部 1 5 0 7は、 入力した信号に対してユーザ 2用の拡散符号で逆算処理を行 つて切換部 1 5 1 1に出力する。
切換部 1 5 0 8は、 逆拡散部 1 5 0 2又は逆拡散部 1 5 0 3の出力信号のど ちらか一方を切換部 1 5 1 0に出力する。 切換部 1 5 0 9は、 逆拡散部 1 5 0 5又は逆拡散部 1 5 0 6の出力信号のどちらか一方を切換部 1 5 1 0に出力す る。
切換部 1 5 1 0は、 切換部 1 0 1 9が位相振幅補正部 1 0 1 5と接続してい る場合に切換部 1 5 0 8の出力信号を位相振幅比較部 1 0 2 0に出力し、 切換 部 1 0 1 9が位相振幅補正部 1 0 1 6と接続している場合に切換部 1 5 0 9の 出力信号を位相振幅比較部 1 0 2 0に出力する。
切換部 1 5 1 1は、 切換部 1 0 1 9が位相振幅補正部 1 0 1 5と接続してい る場合に逆拡散部 1 5 0 4の出力信号を位相振幅比較部 1 0 2 0に出力し、 切 換部 1 0 1 9が位相振幅補正部 1 0 1 6と接続している場合に逆拡散部 1 5 0 7の出力信号を位相振幅比較部 1 0 2 0に出力する。
位相振幅比較部 1 0 2 0は、 逆拡散部 1 5 0 4から出力されて切換部 1 5 1 1を通過した信号と、 逆拡散部 1 5 0 2あるいは逆拡散部 1 5 0 3から出力さ れて切換部 1 5 0 8及び切換部 1 5 1 0を通過した信号との振幅及び位相を比 較し、 この比較によって振幅及び位相の誤差を求める。
また、 位相振幅比較部 1 0 2 0は、 逆拡散部 1 5 0 7から出力されて切換部 1 5 1 1を通過した信号と、 逆拡散部 1 5 0 5あるいは逆拡散部 1 5 0 6から 出力されて切換部 1 5 0 9及び切換部 1 5 1 0を通過した信号との振幅及び位 相を比較し、 この比較によつて振幅及び位相の誤差を求める。
そして、 位相振幅比較部 1 0 2 0は、 逆拡散部 1 5 0 2の出力信号に基づい て求めた誤差と逆拡散部 1 5 0 5の出力信号に基づいて求めた誤差とを比較し、 その値が小さいものを、 切換部 1 0 1 9を介して誤差記憶部 1 0 2 1に出力す る。
同様に、 位相振幅比較部 1 0 2 0は、 逆拡散部 1 5 0 3の出力信号に基づい て求めた誤差と逆拡散部 1 5 0 6の出力信号に基づいて求めた誤差とを比較し、 その値が小さいものを、 切換部 1 0 1 9を介して誤差記憶部 1 0 2 2に出力す る。
このように、 振幅位相測定を行う対象として、 複数のユーザの受信信号の中 から受信状態の良いものを選択することにより、 振幅位相測定の信頼度を高め ることができる。
なお、 実施の形態 1 5において、 上記実施の形態 1 4のように、 各逆拡散部 の出力に対して情報変調成分を打ち消すようにシンボル情報データを乗算して 平均化するシンボル相関演算を施すことにより、 振幅位相比較の対象となる信 号の S N比を高めて、 校正の精度を高めることができる。
また、 実施の形態 1 5では、 振幅位相測定を行う対象として選択するユーザ 数が 2である場合について説明したが、 本発明はこれに限られず、 振幅位相測 定を行う対象として 3以上のユーザの中から選択することもできる。
(実施の形態 1 6 )
図 1 9は、 本発明の実施の形態 1 6に係る基地局装置の受信側の構成を示す ブロック図である。 なお、 図 1 9に示す基地局装置 1 6 0 1において、 図 1 8 に示した基地局装置 1 5 0 1と共通する構成部分に関しては、 図 1 8と同一の 符号を付して説明を省略する。
図 1 9の基地局装置 1 6 0 1は、 図 1 8の基地局装置 1 5 0 1に対して、 切 換部 1 5 1 0、 1 5 1 1及び振幅位相比較部 1 0 2 0を削除し、 位相振幅比較 部 1 6 0 2、 1 6 0 3及び合成部 1 6 0 4を追加した構成を採る。
逆拡散部 1 5 0 4は、 入力した信号に対してユーザ 1用の拡散符号で逆算処 理を行って位相振幅比較部 1 6 0 2に出力する。 逆拡散部 1 5 0 7は、 入力し た信号に対してユーザ 2用の拡散符号で逆算処理を行って位相振幅比較部 1 6 0 3に出力する。
切換部 1 5 0 8は、 逆拡散部 1 5 0 2又は逆拡散部 1 5 0 3の出力信号のど ちらか一方を位相振幅比較部 1 6 0 2に出力する。 切換部 1 5 0 9は、 逆拡散 部 1 5 0 5又は逆拡散部 1 5 0 6の出力信号のどちらか一方を位相振幅比較部 1 6 0 3に出力する。
位相振幅比較部 1 6 0 2は、 逆拡散部 1 5 0 4から出力された信号と、 逆拡 散部 1 5 0 2あるいは逆拡散部 1 5 0 3から出力されて切換部 1 5 0 8を通過 した信号との振幅及び位相を比較し、 この比較によって振幅及び位相の誤差を 求めて合成部 1 6 0 4に出力する。
位相振幅比較部 1 6 0 3は、 逆拡散部 1 5 0 7から出力された信号と、 逆拡 散部 1 5 0 5あるいは逆拡散部 1 5 0 6から出力されて切換部 1 5 0 9を通過 した信号との振幅及び位相を比較し、 この比較によって振幅及び位相の誤差を 求めて合成部 1 6 0 4に出力する。
合成部 1 6 0 4は、 逆拡散部 1 5 0 2の出力信号に基づいて求められた誤差 と逆拡散部 1 5 0 5の出力信号に基づいて求められた誤差とを合成し、 その合 成値を、 切換部 1 0 1 9を介して誤差記憶部 1 0 2 1に出力する。
また、 合成部 1 6 0 4は、 逆拡散部 1 5 0 3の出力信号に基づいて求められ た誤差と逆拡散部 1 5 0 6の出力信号に基づいて求められた誤差とを合成し、 その合成値を、 切換部 1 0 1 9を介して誤差記憶部 1 0 2 2に出力する。 このように、 複数のユーザの受信信号に対して振幅位相測定を行い、 測定結 果を合成することにより、 振幅位相測定の信頼度を高めることができる。 なお、 実施の形態 1 6において、 上記実施の形態 1 4のように、 各逆拡散部 の出力に対して情報変調成分を打ち消すようにシンボル情報データを乗算して 平均化するシンボル相関演算を施すことにより、 振幅位相比較の対象となる信 号の S N比を高めて、 校正の精度を高めることができる。
また、 実施の形態 1 6では、 振幅位相測定結果を合成する対象となるユーザ 数が 2である場合について説明したが、 本発明はこれに限られず、 3以上のュ 一ザの振幅位相測定結果を合成することもできる。
なお、 上記各実施の形態では、 2本のアンテナによりアレーアンテナを構成 する場合について説明したが、 本発明は、 アレーアンテナを構成するアンテナ の数に関して制限がない。
以上の説明から明らかなように、 本発明によれば、 送信信号又は受信信号の 振幅及び位相ずれの補正を他装置との通信を中断することなしに行うことがで き、 装置の小型化かつ低コスト化を図ることができる。
本明細書は、 1 9 9 9年 5月 2 8日出願の特願平 1 1— 1 4 9 2 5 2号及び 1 9 9 9年 1 2月 2 8日出願の特願平 1 1— 3 7 5 2 5 9号に基づくものであ る。 この内容をここに含めておく。 産業上の利用可能性
本発明は、 移動体通信システムのアレーアンテナを搭載した基地局装置に使 用するのに好適である。

Claims

請 求 の 範 囲
1 . 送信信号及び利得制御信号を生成する生成手段と、 前記利得制御信号に応 じた利得で前記送信信号を増幅する増幅手段と、 この増幅手段の入出力誤差を 求める誤差検出手段と、 前記誤差が無くなるように前記生成手段にて生成され た送信信号及び利得制御信号を補正する補正手段と、 を具備する通信装置。
2 . 誤差検出手段は、 増幅手段の入力信号と出力信号との位相差、 及び、 前記 増幅手段の入力信号と出力信号との振幅差と期待値との差を前記増幅手段の入 出力誤差として求める請求の範囲 1記載の通信装置。
3 . 生成手段にて生成された送信信号を無線周波数に変調して増幅手段へ出力 する無線周波数変調手段を具備し、 誤差検出手段は、 前記無線周波数変調手段 の入力信号と前記増幅手段の出力信号との位相差、 及び、 前記無線周波数変調 手段の入力信号と前記増幅手段の出力信号との振幅差と期待値との差を前記増 幅手段の入出力誤差として求める請求の範囲 1記載の通信装置。
4 . 生成手段にて生成された送信信号を直交変調するアナログ素子構造の直交 変調手段を具備し、 誤差検出手段が、 前記直交変調手段の入力信号と増幅手段 の出力信号との位相差、 及び、 前記直交変調手段の入力信号と増幅手段の出力 信号との振幅差と期待値との差を前記増幅手段の入出力誤差として求める請求 の範囲 1記載の通信装置。
5 . 増幅手段の入出力誤差を求めるために用いる各信号を同一低周波数に変換 する第 1周波数変換手段を具備し、 誤差検出手段は、 前記第 1周波数変換手段 の出力信号から前記増幅手段の入出力誤差を求める請求の範囲 1記載の通信装 置。
6 . 信号を低周波数に変換する第 2周波数変換手段と、 増幅手段の入出力誤差 を求めるために用いる各信号を順次前記第 2周波数変換手段に出力する第 1切 替え手段を具備し、 誤差検出手段は、 前記第 2周波数変換手段の出力信号から 前記増幅手段の入出力誤差を求める請求の範囲 1記載の通信装置。
7 . 増幅手段の出力信号と入力信号とを混合する第 1ミキサ手段を具備し、 誤 差検出手段は、 前記第 1ミキサ手段の出力信号から前記増幅手段の入出力誤差 を検出する請求の範囲 1記載の通信装置。
8 . 生成手段にて生成された送信信号を無線周波数に変調して増幅手段へ出力 する無線周波数変調手段と、 前記無線周波数変調手段の入力信号と前記増幅手 段の出力信号とを混合する第 2ミキサ手段と、 前記第 2ミキサ手段の出力信号 の周波数を 0に変換する第 3周波数変換手段とを具備し、 誤差検出手段は、 前 記第 3周波数変換手段の出力信号から前記増幅手段の入出力誤差を検出する請 求の範囲 1記載の通信装置。
9 . 利得制御信号に応じて増幅手段の出力信号を減衰する減衰手段を具備し、 誤差検出手段は、 前記第 1減衰手段にて減衰した信号を用いて前記増幅手段の 入出力誤差を求める請求の範囲 1記載の通信装置。
1 0 . 増幅手段及びこの増幅手段の出力信号を放射するアンテナを複数備え、 生成手段が、 前記各増幅手段に対応する送信信号及び利得制御信号を生成する 際に、 前記各送信信号及び利得制御信号に、 前記複数のアンテナにて指向性を 形成するための係数を乗算する請求の範囲 1記載の通信装置。
1 1 . 各増幅手段の入出力誤差を求めるために用いる信号を順次誤差検出手段 に出力する切換手段を具備する請求の範囲 1 0記載の通信装置。
1 2 . 補正手段は、 補正した送信信号及び利得制御信号をアナログ信号に変換 し、 誤差検出手段は、 入力信号をディジタル信号に変換する請求の範囲 1記載 の通信装置。
1 3 . 誤差検出手段の出力信号と利得制御信号に基づいて増幅手段の利得に対 する送信信号の振幅位相特性を校正テーブルに記憶する振幅位相特性記憶手段 を具備し、 補正手段は、 前記校正テーブルの内容に基づいて送信信号及び利得 制御信号を補正する請求の範囲 1記載の通信装置。
1 4 . 生成手段にて生成された送信信号の電力値と増幅手段の増幅値との積が 所定値となるように、 前記電力値及び増幅値を強制的に変動させる強制変動手 段を具備する請求の範囲 1 3記載の通信装置。
1 5 . 自動利得制御によって受信信号の振幅を一定に増幅し、 前記増幅された 信号を直交復調する複数の無線装置と、 これらの無線装置と同一構成の校正装 置と、 前記各無線装置から出力される自動利得制御信号及び復調信号と前記校 正装置から出力される自動利得制御信号及び復調信号との振幅及び位相の誤差 を求める誤差検出手段と、 前記誤差が無くなるように、 前記各無線装置から出 力された自動利得制御信号及び復調信号の振幅及び位相を補正する補正手段と、 を具備する通信装置。
1 6 . 自動利得制御によって受信信号の振幅を一定に増幅し、 前記増幅された 信号を直交復調する複数の無線装置と、 自動利得制御によって前記受信信号の 振幅を一定に増幅し、 この増幅された信号と前記いずれかの無線装置にて増巾; された信号とを混合する校正装置と、 前記混合された信号に基づいて前記各無 線装置にて増幅された信号と前記校正装置にて増幅された信号との振幅及び位 相の誤差を求め、 前記各無線装置から出力される自動利得制御信号と前記校正 装置から出力される自動利得制御信号との振幅及び位相の誤差を求める誤差検 出手段と、 前記誤差が無くなるように、 前記各無線装置から出力された自動利 得制御信号及び復調信号の振幅及び位相を補正する補正手段と、 を具備する通 信装置。
1 7 . 誤差検出手段の出力信号と自動利得制御信号に基づいて増幅手段の利得 に対する受信信号の振幅位相特性を校正テーブルに記憶する振幅位相特性記憶 手段を具備し、 補正手段は、 前記校正テーブルの内容に基づいて復調信号及び 自動利得制御信号を補正する請求の範囲 1 5記載の通信装置。
1 8 . 補正手段にて補正された復調信号の電力値と増幅手段の増幅値との積が 所定値となるように、 前記電力値及び増幅値を強制的に変動させる強制変動手 段を具備する請求の範囲 1 7記載の通信装置。
1 9 . 複数の無線装置から出力された各々の自動利得制御信号及び復調信号に 対して逆拡散処理を行う第 1逆拡散手段と、 校正装置から出力された自動利得 制御信号及び復調信号に対して逆拡散処理を行う第 2逆拡散手段と、 前記第 1 逆拡散手段の出力信号のシンボル相関値をとる第 1シンボル相関手段と、 前記 第 2逆拡散手段の出力信号のシンボル相関値をとる第 2シンボル相関手段とを 具備し、 誤差検出手段は、 前記第 1シンボル相関手段の出力信号と前記第 2シ ンポル相関手段の出力信号との振幅及び位相の誤差を求める請求の範囲 1 5記 載の通信装置。
2 0 . 複数の無線装置から出力された各々の自動利得制御信号及び復調信号に 対してユーザ毎に逆拡散処理を行う第 3逆拡散手段と、 校正装置から出力され た自動利得制御信号及び復調信号に対してユーザ毎に逆拡散処理を行う第 4逆 拡散手段とを具備し、 誤差検出手段は、 各無線装置についてユーザ毎に、 前記 第 3逆拡散手段の出力信号と前記第 4逆拡散手段の出力信号との振幅及び位相 の誤差を求め、 各無線装置毎に最も状態の良いユーザの誤差を選択する請求の 範囲 1 5記載の通信装置。
2 1 . 複数の無線装置から出力された各々の自動利得制御信号及び復調信号に 対してユーザ毎に逆拡散処理を行う第 3逆拡散手段と、 校正装置から出力され た自動利得制御信号及び復調信号に対してユーザ毎に逆拡散処理を行う第 4逆 拡散手段とを具備し、 誤差検出手段は、 各無線装置についてユーザ毎に、 前記 第 3逆拡散手段の出力信号と前記第 4逆拡散手段の出力信号との振幅及び位相 の誤差を求め、 各無線装置毎に全ユーザの誤差を合成する請求の範囲 1 5記載 の通信装置。
2 2 . 第 3逆拡散手段の出力信号のシンポル相関値をとる前記第 3シンボル相 関手段と、 第 4逆拡散手段の出力信号のシンボル相関値をとる第 4シンボル相 関手段とを具備し、 誤差検出手段は、 前記第 3シンボル相関手段の出力信号と 前記第 4シンボル相関手段の出力信号との振幅及び位相の誤差を求める請求の 範囲 2 0記載の通信装置。
2 3 . 通信装置を具備する基地局装置であって、 前記通信装置は、 送信信号及 び利得制御信号を生成する生成手段と、 前記利得制御信号に応じた利得で前記 送信信号を増幅する増幅手段と、 この増幅手段の入出力誤差を求める誤差検出 手段と、 前記誤差が無くなるように前記生成手段にて生成された送信信号及び 利得制御信号を補正する補正手段と、 を具備する。
2 4 . 通信装置を具備する基地局装置であって、 前記通信装置は、 自動利得制 御によって受信信号の振幅を一定に増幅し、 前記増幅された信号を直交復調す る無線装置と、 これらの無線装置と同一構成の校正装置と、 前記各無線装置か ら出力される自動利得制御信号及び復調信号と前記校正装置から出力される自 動利得制御信号及び復調信号との振幅及び位相の誤差を求める誤差検出手段と、 前記誤差が無くなるように、 前記各無線装置から出力された自動利得制御信号 及び復調信号の振幅及び位相を補正する補正手段と、 を具備する。
2 5 . 送信信号及び利得制御信号を生成する工程と、 前記利得制御信号に応じ た利得で前記送信信号を増幅する工程と、 増幅前後の位相差及び振幅差と期待 値との差を誤差として求める工程と、 前記誤差が無くなるように前記生成され た送信信号及び利得制御信号を補正する工程と、 を具備する通信方法。
PCT/JP2000/003247 1999-05-28 2000-05-22 Dispositif et procede de communication WO2000074265A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/744,029 US7058425B1 (en) 1999-05-28 2000-05-22 Communication apparatus and communication method
AU46152/00A AU4615200A (en) 1999-05-28 2000-05-22 Communication device and communication method
EP00927826A EP1102418A4 (en) 1999-05-28 2000-05-22 TRANSMISSION METHOD AND DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/149252 1999-05-28
JP14925299 1999-05-28
JP37525999A JP3709316B2 (ja) 1999-05-28 1999-12-28 通信装置及び通信方法
JP11/375259 1999-12-28

Publications (2)

Publication Number Publication Date
WO2000074265A1 true WO2000074265A1 (fr) 2000-12-07
WO2000074265A8 WO2000074265A8 (fr) 2002-01-03

Family

ID=41003660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003247 WO2000074265A1 (fr) 1999-05-28 2000-05-22 Dispositif et procede de communication

Country Status (7)

Country Link
US (1) US7058425B1 (ja)
EP (1) EP1102418A4 (ja)
JP (2) JP3709316B2 (ja)
KR (1) KR100425610B1 (ja)
CN (2) CN1249932C (ja)
AU (1) AU4615200A (ja)
WO (1) WO2000074265A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60045852D1 (de) * 1999-12-15 2011-05-26 Nippon Telegraph & Telephone Adaptive Gruppenantenne-Sende-Empfangsvorrichtung
JP2001196834A (ja) * 2000-01-13 2001-07-19 Matsushita Electric Ind Co Ltd アレーアンテナ無線通信装置およびキャリブレーション方法
JP2001196984A (ja) * 2000-01-17 2001-07-19 Matsushita Electric Ind Co Ltd 間欠型キャリブレーション装置
JP2004015655A (ja) * 2002-06-10 2004-01-15 Sony Corp 通信装置
JP4098027B2 (ja) * 2002-08-01 2008-06-11 松下電器産業株式会社 無線基地局装置
CN1781266A (zh) * 2003-04-21 2006-05-31 三洋电机株式会社 接收装置
JP3844352B2 (ja) * 2003-08-07 2006-11-08 松下電器産業株式会社 送信装置
US7719376B2 (en) * 2003-12-04 2010-05-18 St-Ericsson Sa Avoidance of discontinuities when switching between modulation schemes
WO2006013487A1 (en) * 2004-07-29 2006-02-09 Koninklijke Philips Electronics N.V. Complex signal scaling for phase and/or amplitude modulated signals
JP2006086894A (ja) * 2004-09-16 2006-03-30 Matsushita Electric Ind Co Ltd 無線送信回路、無線受信回路及びアレーアンテナ方式の無線装置
CN101053173B (zh) * 2004-11-02 2011-09-07 株式会社Ntt都科摩 基站、无线线路控制站以及无线通信方法
US7515877B2 (en) * 2004-11-04 2009-04-07 Magnolia Broadband Inc. Communicating signals according to a quality indicator and a time boundary indicator
KR100668657B1 (ko) * 2004-11-26 2007-01-12 한국전자통신연구원 배열 안테나 송신 시스템 및 그의 신호 처리 방법
US7102430B2 (en) * 2005-01-18 2006-09-05 Northrop Grumman Corporation Efficient method and means for integration of power control and predistortion in a transmitter
JP4523472B2 (ja) * 2005-03-31 2010-08-11 Kddi株式会社 アレーアンテナ用rf回路伝送特性調整装置およびその方法
JP2007189438A (ja) * 2006-01-12 2007-07-26 Fujitsu Ltd タイミング調整装置及びタイミング調整方法
WO2007099621A1 (ja) * 2006-03-01 2007-09-07 Fujitsu Limited 通信装置
US20070276540A1 (en) * 2006-05-16 2007-11-29 Akinobu Okuda Robot, radio detection system, radio detection method and recording medium storing radio detection processing program
CN100492921C (zh) * 2006-05-30 2009-05-27 华为技术有限公司 一种接收机及接收无线信号的方法
JP4716185B2 (ja) * 2006-06-21 2011-07-06 ブラザー工業株式会社 無線通信装置
KR100774363B1 (ko) * 2006-11-16 2007-11-08 한국전자통신연구원 이동통신시스템에서의 자동이득 제어 장치 및 그 방법
EP2120347A4 (en) * 2007-02-14 2014-01-15 Nec Corp PHASE NOISE CORRECTION DEVICE AND METHOD THEREOF
JP5126224B2 (ja) * 2007-05-16 2013-01-23 富士通株式会社 無線通信装置および無線通信方法
KR100826377B1 (ko) * 2007-05-29 2008-05-06 삼성전기주식회사 수신기능을 갖는 폴러 송신 장치
US7783269B2 (en) * 2007-09-20 2010-08-24 Quantance, Inc. Power amplifier controller with polar transmitter
JP5170739B2 (ja) * 2007-11-05 2013-03-27 日本無線株式会社 補正手段付時分割2重送受信装置
US9673917B2 (en) * 2008-05-30 2017-06-06 Qualcomm Incorporated Calibration using noise power
WO2010131423A1 (ja) * 2009-05-12 2010-11-18 パナソニック株式会社 アンテナ評価装置及びアンテナ評価方法
JP5267389B2 (ja) * 2009-09-01 2013-08-21 富士通株式会社 送信装置及び送信方法
US8781634B2 (en) 2010-03-15 2014-07-15 Lg Electronics Inc. Air conditioning system and communication method thereof
EP2372836B1 (en) * 2010-03-18 2017-05-03 Alcatel Lucent Antenna array calibration
WO2012167111A2 (en) * 2011-06-02 2012-12-06 Parkervision, Inc. Antenna control
US9291658B2 (en) * 2013-02-22 2016-03-22 Tektronix, Inc. Minimum-time signal leakage detector
JP2015231149A (ja) * 2014-06-05 2015-12-21 三菱電機株式会社 アンテナ装置
JP6475039B2 (ja) * 2015-02-24 2019-02-27 株式会社Nttドコモ 無線送信局
CN104697113B (zh) * 2015-03-05 2017-11-10 美的集团股份有限公司 空调器及其控制方法
US9762266B2 (en) 2015-03-25 2017-09-12 Qualcomm Incorporated Signal correction for carrier aggregation transceiver
JP6833318B2 (ja) * 2016-02-01 2021-02-24 株式会社東芝 制御システム、通信方法、通信装置及び端末装置
EP3422572B1 (en) * 2016-03-02 2020-04-22 Mitsubishi Electric Corporation Vector synthesis phase shifter
CN105791055A (zh) * 2016-04-22 2016-07-20 青岛海尔空调电子有限公司 多联机内外机通信连接装置及其通信方法
JP2017224886A (ja) * 2016-06-13 2017-12-21 住友電気工業株式会社 位相制御装置及びアレーアンテナシステム
CN106524391A (zh) * 2016-09-12 2017-03-22 珠海格力电器股份有限公司 通讯中继装置、通讯系统及通讯方法
KR102594658B1 (ko) 2016-12-23 2023-10-26 삼성전자주식회사 무선 송신을 제어하는 장치 및 방법
US10326539B2 (en) * 2017-04-12 2019-06-18 Rohde & Schwarz Gmbh & Co. Kg Test system and test method
EP3671258B1 (en) * 2017-08-18 2024-02-28 Furuno Electric Company Limited Radar device and method for changing reception gain of radar device
EP3860005B1 (en) 2020-01-28 2023-02-22 Rohde & Schwarz GmbH & Co. KG System and method for calibrating a multi-channel radio frequency signal generation system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900823A (en) 1973-03-28 1975-08-19 Nathan O Sokal Amplifying and processing apparatus for modulated carrier signals
JPH05235648A (ja) 1992-02-24 1993-09-10 Hitachi Denshi Ltd 電力増幅器の位相補償回路
JPH0584884U (ja) * 1992-04-17 1993-11-16 三菱電機株式会社 アンテナ装置
JPH07264082A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd 無線送信装置における歪み補償装置
JPH08242263A (ja) * 1995-03-06 1996-09-17 Nec Corp 送信装置
WO1997000543A1 (en) 1995-06-16 1997-01-03 Watkins-Johnson Company Method and apparatus for adaptive transmission beam forming in a wireless communication system
JPH0923125A (ja) * 1995-07-10 1997-01-21 Oki Electric Ind Co Ltd リニア変調波自動利得制御回路
JPH1041769A (ja) * 1996-07-26 1998-02-13 Kokusai Electric Co Ltd 送信機用自動利得制御回路
US5768694A (en) 1995-03-20 1998-06-16 Fujitsu Limited Automatic gain control circuit with input and output signal detectors operating in equalized conditions
WO1998042093A1 (fr) 1997-03-18 1998-09-24 Matsushita Electric Industrial Co., Ltd. Dispositif d'etalonnage pour recepteur sans fil d'antenne reseau
EP0881704A2 (en) 1997-05-28 1998-12-02 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus in CDMA communication system with calibration
JP2000078072A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd 送受信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001675A (en) 1989-09-13 1991-03-19 Teleco Oilfield Services Inc. Phase and amplitude calibration system for electromagnetic propagation based earth formation evaluation instruments
JP3019569B2 (ja) 1991-12-30 2000-03-13 日本電気株式会社 自動利得制御回路
JPH08204587A (ja) * 1995-01-23 1996-08-09 Fujitsu Ltd 携帯電話機
JP2812319B2 (ja) 1996-12-13 1998-10-22 日本電気株式会社 アクティブ・フェイズト・アレイ・レーダの位相校正装置
US20030186725A1 (en) 1997-03-18 2003-10-02 Matsushita Electric Industrial Co., Ltd. Calibration apparatus for array antenna radio receiving apparatus
JP3369466B2 (ja) 1997-03-18 2003-01-20 松下電器産業株式会社 アレーアンテナ無線受信装置のキャリブレーション装置
JP3585701B2 (ja) * 1997-06-12 2004-11-04 富士通株式会社 セルラ移動通信システム無線基地局
US6275685B1 (en) * 1998-12-10 2001-08-14 Nortel Networks Limited Linear amplifier arrangement

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900823A (en) 1973-03-28 1975-08-19 Nathan O Sokal Amplifying and processing apparatus for modulated carrier signals
JPH05235648A (ja) 1992-02-24 1993-09-10 Hitachi Denshi Ltd 電力増幅器の位相補償回路
JPH0584884U (ja) * 1992-04-17 1993-11-16 三菱電機株式会社 アンテナ装置
JPH07264082A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd 無線送信装置における歪み補償装置
JPH08242263A (ja) * 1995-03-06 1996-09-17 Nec Corp 送信装置
US5768694A (en) 1995-03-20 1998-06-16 Fujitsu Limited Automatic gain control circuit with input and output signal detectors operating in equalized conditions
WO1997000543A1 (en) 1995-06-16 1997-01-03 Watkins-Johnson Company Method and apparatus for adaptive transmission beam forming in a wireless communication system
JPH0923125A (ja) * 1995-07-10 1997-01-21 Oki Electric Ind Co Ltd リニア変調波自動利得制御回路
JPH1041769A (ja) * 1996-07-26 1998-02-13 Kokusai Electric Co Ltd 送信機用自動利得制御回路
WO1998042093A1 (fr) 1997-03-18 1998-09-24 Matsushita Electric Industrial Co., Ltd. Dispositif d'etalonnage pour recepteur sans fil d'antenne reseau
EP0881704A2 (en) 1997-05-28 1998-12-02 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus in CDMA communication system with calibration
JPH10336149A (ja) 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd アレーアンテナ無線cdma通信装置
JP2000078072A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd 送受信装置

Also Published As

Publication number Publication date
AU4615200A (en) 2000-12-18
WO2000074265A8 (fr) 2002-01-03
CN1767412D (en) 2006-05-03
KR20010074768A (ko) 2001-08-09
JP3709316B2 (ja) 2005-10-26
CN100531004C (zh) 2009-08-19
CN1304588A (zh) 2001-07-18
JP2001053527A (ja) 2001-02-23
JP2005237038A (ja) 2005-09-02
KR100425610B1 (ko) 2004-04-01
CN1249932C (zh) 2006-04-05
EP1102418A1 (en) 2001-05-23
US7058425B1 (en) 2006-06-06
EP1102418A4 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
WO2000074265A1 (fr) Dispositif et procede de communication
US7346325B2 (en) Receiver, receiving method and portable wireless apparatus
US7496063B2 (en) Time division multiplexing radio system for controlling transmission power
US8571149B2 (en) Direct conversion RF transceiver for wireless communication
US7995645B2 (en) Apparatus for measuring in-phase and quadrature (IQ) imbalance
US20090131006A1 (en) Apparatus, integrated circuit, and method of compensating iq phase mismatch
JP2002261668A (ja) 通信機
JP4159780B2 (ja) 無線トランシーバの応答試験
KR100801871B1 (ko) 송신 반송파 누설 보상 방법 및 이를 이용하는 송수신 회로
JPH11312917A (ja) アレーアンテナ無線通信装置
JP2005341579A (ja) 妨害信号抑制のための制御を行う送受信装置
US7012968B2 (en) Apparatus for detecting and adjusting transmission power of CDMA system
JPH10224138A (ja) アダプティブアレーアンテナの指向性制御回路
US20130106398A1 (en) Gain measurement circuit, gain measurement method, and communication apparatus
KR20230127115A (ko) I/q 불일치를 보상하는 전자 장치 및 그 동작방법
JP2005130203A (ja) 受信装置
KR100251586B1 (ko) 디지탈 이동 통신 시스템에서의 수신 신호의 이득 자동 제어장치
JP3441311B2 (ja) 受信機
KR100223365B1 (ko) 이동통신 시스템의 송신전력 추적장치 및 방법
JP2005184367A (ja) 移動体端末試験装置
JP4436217B2 (ja) リップル特性補正回路及びリップル特性補正方法
JP2003043084A (ja) 校正機能付き測定器およびそれを用いた校正方法
JP2008205564A (ja) 無線中継方法及び無線装置並びに無線中継システム
JP2004228836A (ja) 信号レベル検出装置
WO2003013012A1 (fr) Recepteur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800900.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09744029

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000927826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017001128

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000927826

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WRT Later publication of a revised version of an international search report translation
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载