+

WO2000067267A1 - Condensateur electrolytique solide et son procede de fabrication - Google Patents

Condensateur electrolytique solide et son procede de fabrication Download PDF

Info

Publication number
WO2000067267A1
WO2000067267A1 PCT/JP2000/002822 JP0002822W WO0067267A1 WO 2000067267 A1 WO2000067267 A1 WO 2000067267A1 JP 0002822 W JP0002822 W JP 0002822W WO 0067267 A1 WO0067267 A1 WO 0067267A1
Authority
WO
WIPO (PCT)
Prior art keywords
masking
solid electrolytic
electrolytic capacitor
masking material
solution
Prior art date
Application number
PCT/JP2000/002822
Other languages
English (en)
French (fr)
Inventor
Atsushi Sakai
Ryuji Monden
Hiroshi Nitoh
Toshihiro Okabe
Yuji Furuta
Hideki Ohata
Koro Shirane
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to KR10-2001-7013646A priority Critical patent/KR100450885B1/ko
Priority to JP2000616028A priority patent/JP4623404B2/ja
Priority to EP00921093.1A priority patent/EP1193727B1/en
Priority to AU41451/00A priority patent/AU4145100A/en
Publication of WO2000067267A1 publication Critical patent/WO2000067267A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon

Definitions

  • provisional application Nos. 60/135, 843 filed May 24, 1999, pursuant to the provisions of 35 U.S.C. ⁇ 11.11 (b).
  • the date of filing of provisional application No. 60/135, 844 is an application based on Article 11 (1) (a) asserting pursuant to the provisions of Article 119 (e) (1). is there.
  • the present invention relates to a solid electrolytic capacitor and a method for manufacturing the same. More specifically, when a solid electrolyte layer is formed on a valve metal substrate having a dielectric film, the metal substrate portion (anode portion) where the solid electrolyte layer is not provided and the solid electrolyte layer or a conductive layer on the solid electrolyte layer
  • the present invention relates to a solid electrolytic capacitor having a masking structure capable of reliably insulating a conductive layer (cathode portion) formed by a paste or the like, a method of manufacturing the same, and a method and apparatus for applying a masking material to a substrate of the solid electrolytic capacitor.
  • a solid electrolytic capacitor using a conductive polymer forms a dielectric oxide film on the surface of a valve metal such as aluminum, tantalum, or titanium that has been etched in advance, and forms a conductive polymer film on the dielectric oxide film.
  • a valve metal such as aluminum, tantalum, or titanium that has been etched in advance
  • a conductive polymer film on the dielectric oxide film.
  • To form a solid electrolyte and connect the anode lead to the anode terminal of the valve metal (the metal surface part without the solid electrolyte) and the cathode lead to the conductor layer containing the conductive polymer. It has a structure and is entirely sealed with an insulating resin such as epoxy resin.
  • a solid electrolytic capacitor using a conductive polymer as such a solid electrolyte can reduce the equivalent series resistance and leakage current as compared with a solid electrolytic capacitor using manganese dioxide or the like as a solid electrolyte. It is useful as a capacitor that can be miniaturized, and many manufacturing methods have been proposed.
  • Masking means to insulate the anode and cathode of a solid electrolytic capacitor include, for example, a method of applying epoxy, phenolic resin, etc. to an unformed part, printing or potting and then curing it to prevent conduction (Japanese Unexamined Patent Publication No. 3-95910). Publication), a polyamic acid film is formed by electrodepositing a solution containing a polyamic acid salt on at least a part of the valve metal where no solid electrolyte is formed, and then the polyimide film is formed by dehydration and curing by heating. A method of forming the tape (Japanese Patent Application Laid-Open No.
  • the method of forming a polyimide film by the electrodeposition method can form a film up to the fine pores as compared with the ordinary coating method, but requires an electrodeposition step, which increases production cost. In addition, a high-temperature dehydration step is required to form a polyimide film.
  • a method using an insulating resin tape or a coated film is to securely attach the end of the base material with a tape (film). Therefore, there is a risk that the solid polymer electrolyte may penetrate into the anode.
  • the method of removing the insulating resin layer in portions other than the capacitor to expose the metal substrate is essentially a method of removing the insulating resin layer once formed. Requires a useless process.
  • An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor in which a solid electrolyte layer is formed on a valve metal substrate having a dielectric film, wherein a metal substrate portion (anode portion) having no solid electrolyte layer and a solid electrolyte layer or
  • An object of the present invention is to provide a solid electrolytic capacitor having a masking structure capable of reliably insulating a conductive layer (cathode portion) provided with a conductive paste or the like thereon and a method of manufacturing the same.
  • a masking material coating liquid for example, a solution containing a heat-resistant resin or a precursor thereof, or insulation and heat resistance after solidification.
  • a masking material coating liquid for example, a solution containing a heat-resistant resin or a precursor thereof, or insulation and heat resistance after solidification.
  • Good solution of low molecular weight polyimide or its precursor (2)
  • the cut portion generated when cutting to the desired dimensions becomes unformed and causes an increase in leakage current.Therefore, the conversion treatment must be performed after cutting the metal material.
  • a conductive polymer containing, as a repeating unit, at least one divalent group of pyrrole, thiophene, aniline, or furan, or at least one of their substituted derivatives.
  • the present inventors have studied the problem that during the chemical conversion treatment, the chemical conversion liquid oozes on the substrate and the leakage current at the time of chemical formation increases to short-circuit with the electrode.
  • the masking process is divided into two steps, a temporary masking (first masking layer) is applied before the chemical conversion treatment, the chemical conversion treatment is performed based on the temporary masking position, and the masking process is performed at a different part of the base material.
  • the second masking layer the chemical conversion solution does not bleed out beyond the temporary masking layer during the chemical conversion treatment, and the necessary parts (excluding the anode part of the solid electrolytic capacitor) are reliably and easily formed. It was confirmed that the chemical conversion treatment was possible.
  • the present inventors have proposed a valve-etching method having a metal oxide layer on the surface, and masking a desired portion (all around) of a metal substrate with a heat-resistant resin such as polyimide having good insulation and heat resistance by a coating method.
  • the method of applying the material to the substrate was studied.
  • the present inventors attached a plurality of substrates in a strip shape to the guide plate, and completed the entire predetermined portion of the substrate.
  • a metal guide plate moving device that fixes the substrate, a disk-shaped rotating roll with the circumferential part as the application surface, a masking material tank in which a part of the rotating roll is immersed.
  • a scraper was installed to clean off the deposits remaining on the rolls, and a prototype of a device for applying the masking material by bringing the circumferential portion of the masking material attached into contact with the lower surface of the aluminum conversion foil attached to the metal guide plate was studied. did.
  • the masking material was successfully applied to the entire circumference of a desired portion of the substrate in a uniform linear shape.
  • the present invention provides the following method for producing a solid electrolytic capacitor, a solid electrolytic capacitor obtained by the method, and a method and an apparatus for applying a masking material solution.
  • Manufacturing method of a solid electrolytic capacitor for preventing the occurrence of the above.
  • a plurality of solid electrolytic capacitor substrates are fixed in a strip shape at one end of the metal guide, and while rotating the metal guide, a disk-shaped rotating roll is pressed at a desired position on the substrate with a predetermined pressing force.
  • the masking material solution supplied from the masking material solution supply means to the rotating roll application surface is applied to both and both sides of a desired portion of the solid electrolytic capacitor substrate to form a masking layer.
  • a method for manufacturing a solid electrolytic capacitor comprising a dielectric film, a solid electrolyte formed at a desired position on a metal material having a valve action and cut into a predetermined shape
  • Forming a first masking layer by applying a masking material solution linearly over the entire periphery of a region to be subjected to the chemical conversion treatment on the metal material, and heating; Forming a region forming a solid electrolyte separated by a region having a first masking layer of the metal material;
  • Forming a second masking layer by applying a masking material solution linearly over the entire periphery of the area on the chemical conversion-treated metal material at a predetermined interval from the first masking layer and heating the solution;
  • a masking material solution permeates into the dielectric film and the penetrating portion A masking layer is formed on the dielectric layer, the solid electrolyte does not penetrate into the dielectric film permeated by the masking material solution, and is masked by the masking layer formed on the permeated portion.
  • the concentration of the solid electrolyte in the dielectric film into which the masking material solution has penetrated is equal to or less than a detection limit value by an electron beam microanalyzer.
  • a plurality of substrates for solid electrolytic capacitors are fixed to one end of a metal guide in a strip shape, and while rotating the metal guide, a disc-shaped rotating roll is pressed at a desired position on the substrate by a predetermined pressure. Contacting with a pressure, and applying the masking material solution supplied from the masking material solution supplying means to the rotating roll application surface on both sides and both side surfaces of a desired portion of the solid electrolytic capacitor substrate.
  • (13) means for supplying a solution containing a masking material to the application surface of the rotating roll (14), and a scraper for cleaning the application surface of the rotating roll (13)
  • a masking material applying apparatus comprising (15) and applying a masking material to both and both sides of a desired portion of a substrate for a solid electrolytic capacitor (12).
  • Fig. 1A is a plan view of a metal material (1) having a porous oxide film (dielectric film), which is the base material of a solid electrolytic capacitor, cut into a predetermined size
  • Fig. 1B is a masking layer (2 )
  • Fig. 1C is a plan view of a state where a chemical conversion treatment layer (3) has been prepared to reliably form a porous oxide film at the cut part during cutting
  • Fig. 1D is a solid electrolyte layer. It is a top view in the state where (4) was formed.
  • FIG. 2 is a schematic diagram showing an enlarged structure around a masking portion of the AA ′ cut surface in FIG. 1D.
  • the masking layer (2) penetrates into the dielectric film (lb) and is formed on the penetrated portion, and the solid layer penetrates into the dielectric film (lb).
  • the electrolyte cannot penetrate into the dielectric film (1b) in which the masking material has penetrated, and has a structure completely masked by a masking layer formed on the penetrated portion.
  • the actual solid electrolytic capacitor element (9) has a lead wire (6) joined to the anode terminal (5) on the cut surface, and the solid electrolyte layer (4) or further A lead wire (7) is joined to a cathode on which a conductive layer (not shown) such as a conductive paste is formed, and the whole is sealed with an insulating resin (8) such as epoxy resin.
  • the solid electrolytic capacitor can be manufactured according to the steps shown in FIGS. 4A to 4F.
  • Fig. 4A is a plan view of a metal material having a porous oxide film (1), which is the base material of a solid electrolytic capacitor, cut into a predetermined size
  • Fig. 4B is the first masking layer (2a).
  • Fig. 4C is a plan view of a state in which a chemical conversion treatment layer (3) has been prepared in order to surely form a porous oxide film at the cut part during cutting.
  • D is a plan view with the second masking layer (2b) applied
  • FIG. 4E is a plan view with the solid electrolyte (4) formed
  • FIG. 4F is the first masking layer (2a) with the second masking layer (2a). It is a top view of the solid electrolytic capacitor element (9) obtained by cutting
  • FIG. 1A to FIG. 1D are schematic diagrams of the manufacturing process of the solid electrolytic capacitor of the present invention.
  • FIG. 2 is a schematic view showing the structure of the masking layer of the solid electrolytic capacitor obtained by the method of the present invention.
  • FIG. 3 is a cross-sectional view of an example of a solid electrolytic capacitor element.
  • FIG. 4A to FIG. 4F are schematic diagrams of a manufacturing process of the solid electrolytic capacitor of the present invention when performing a two-stage masking process.
  • FIG. 5 is a plan view (FIG. 5A) and a side view (FIG. 5B) showing an outline of an example of an apparatus for applying a masking material.
  • FIG. 6 is an explanatory view of the side surface coating of the substrate.
  • FIG. 7 is a cross-sectional view of the solid electrolytic capacitor element prepared in the example.
  • FIG. 8 is an enlarged photograph showing a cross section around a masking portion of a capacitor coated with a masking material. Detailed description of the invention
  • the base material of a solid electrolytic capacitor is a valve metal having a dielectric oxide film on the surface.
  • the valve metal is aluminum, tantalum, niobium, titanium, zirconium, or an alloy-based metal foil or rod using these as a substrate. Or a sintered body containing these as a main component.
  • the surface of these metals is oxidized by oxygen in the air and has a dielectric oxide film, but is roughened by etching or the like by a known method in advance. Next, it is preferable to form a dielectric oxide film by performing a chemical conversion treatment according to a conventional method.
  • As the valve metal an aluminum foil having an oxidized alumina layer is preferably used.
  • valve action metal that has been roughened and cut in advance to a size corresponding to the shape of the solid electrolytic capacitor.
  • the thickness of the metal foil having a valve action varies depending on the purpose of use, but generally a foil with a thickness of about 40 to 150 m is used.
  • the size and shape of the metal foil having a valve action varies depending on the application, but a rectangular element having a width of about 1 to 50 mm and a length of about 1 to 50 mm is preferable, and more preferably a width of about 2 to 50 mm.
  • the length is about 2 to 20 mm, more preferably about 2 to 5 mm in width and about 2 to 6 mm in length.
  • the chemical conversion treatment of the valve metal cut into a predetermined shape can be performed by various methods. By performing the chemical treatment in advance, even if a defect occurs in the masking layer, an increase in leakage current is prevented.
  • the conditions for the chemical conversion treatment are not particularly limited.
  • an electrolytic solution containing at least one of oxalic acid, adipic acid, boric acid, phosphoric acid and the like is used, and the concentration of the electrolytic solution is 0.05% by mass to 20% by mass. %, Temperature is 0 ° C to 90 ° (:, current density is O.lm AZcm 2 to 200mAZcm 2 , voltage is a value corresponding to the formation voltage of the already formed film of the conversion foil to be processed, formation time is 60% More preferably, the electrolyte concentration is 0.1% by mass to 15% by mass, and the temperature is 20 ° C to 70 ° (:, the current density is ImA / cm 2 to: L00mAZcm).
  • the conditions of the above chemical conversion treatment are suitable as industrial methods, but as long as the dielectric oxide film already formed on the valve metal surface is not destroyed or deteriorated, the type of electrolyte, electrolyte concentration, Various conditions such as temperature, current density, and formation time can be arbitrarily selected.
  • phosphoric acid immersion treatment for improving water resistance
  • heat treatment for strengthening the film or immersion treatment in boiling water can be performed.
  • the masking layer is used to prevent the chemical conversion solution from seeping out into the portion serving as the anode of the solid electrolytic capacitor during the chemical conversion treatment, and to ensure insulation with the solid electrolyte (negative electrode portion) formed in a later step. It is provided.
  • a general heat-resistant resin preferably a heat-soluble resin soluble or swellable in a solvent or a precursor thereof, or a composition comprising an inorganic fine powder and a cellulose resin (JP-A-11-80596)
  • PPS polyphenylsulfone
  • PET polyestersulfone
  • cyanate ester resin cyanate ester resin
  • fluororesin tetrafluoroethylene, tetrafluoroethylene / perfluoroalkylvinyl ether copolymer, etc.
  • low Examples include molecular weight polyimides and derivatives thereof. Particularly preferred are low molecular weight polyimide, polyether sulfone, fluorine resin and precursors thereof.
  • the first masking layer is provided in order to prevent the chemical conversion liquid from seeping into the anode portion of the solid electrolytic capacitor during the chemical conversion treatment. Therefore, the first masking material is not particularly limited, and the above-mentioned general heat-resistant resin can be used.
  • the second masking layer the same material as that of the first masking material can be used. Polyimide is preferred, which has high strength and filling properties, and has excellent insulation properties to withstand heat treatment up to about 45.
  • polyimide is a solution in which the precursor polyamic acid is dissolved in a solvent, and after coating, it is heated to a high temperature and then imidized, but heat treatment at 250 to 350 ° C is required.
  • heat treatment at 250 to 350 ° C is required.
  • the dielectric layer on the surface of the anode foil was damaged by heat.
  • curing can be sufficiently performed by heat treatment at a low temperature of 200 ° C. or less, preferably 100 ° C. to 200 ° C., and the dielectric layer on the surface of the anode foil is broken by heat.
  • a low temperature 200 ° C. or less, preferably 100 ° C. to 200 ° C.
  • the dielectric layer on the surface of the anode foil is broken by heat.
  • Polyimide is a compound containing an imide structure in the main chain.
  • polyimide is a compound represented by the following formulas (1) to (4) having a flexible structure in which intramolecular rotation easily occurs in the skeleton of the diamine component.
  • a polyimide represented by the following formula (5) obtained by a polycondensation reaction of a lacarboxylic dianhydride with an aromatic diamine can be preferably used.
  • the preferred average molecular weight is about 1,000 to 1,000,000, and more preferably about 2,000 to 200,000.
  • VESPEI_ 'SP E. du Pont de Nemours & Co.
  • DSDA polyimide These can be dissolved or dispersed in an organic solvent, and a solution or dispersion having an arbitrary solid content concentration (and thus viscosity) suitable for a coating operation can be easily prepared.
  • the preferred concentration is about 10 to 60% by mass, and the more preferred concentration is about 15 to 40% by mass.
  • the preferred viscosity is about 50-30,000 cP, and the more preferred viscosity is about 500-15,000 cP.
  • the masking line blurs, and on the high concentration and high viscosity side stringing occurs and the line width becomes unstable.
  • the masking layer formed by the masking material solution may be subjected to processing such as drying, heating, and light irradiation as needed.
  • the polyimide solution include a solution obtained by dissolving a low molecular weight polyimide, which is cured by heat treatment after coating, in a solvent having low hygroscopicity such as 2-methoxyethyl ether or triethylene dalicol dimethyl ether (for example, Ube Industries Co., Ltd. sells the resin as “UPICO-1 TM FS-100LJ”.)
  • NMP N_methyl-2-pyrrolidone
  • DMAc dimethylacetamide
  • the former provides a film that is thermally denatured, polymerized and cured by heat treatment at 160 to 180 ° C after coating, and has flexibility, high heat resistance and insulating properties.
  • This polyimide film has a tensile strength of 2.0 kg gZmm 2 , a cured film elongation of 65%, an initial elastic modulus of 40.6 kg gZmm 2 , retains rubber-like properties, and has a high heat resistance with a thermal decomposition temperature of 461 ° C.
  • the volume resistance is as high as 10 1 ⁇ ⁇ ⁇ cm even under humidified conditions, and the dielectric constant is as low as 3.2, maintaining excellent electrical properties as an insulating coating.
  • the latter can provide a film having excellent heat resistance, mechanical properties, electrical properties, and chemical resistance simply by removing the solvent at a temperature of 20 O: or less.
  • This film has a tensile strength of about 11.8 kg gZmm 2 , a cured film elongation of 14.2%, an initial elastic modulus of 274 kg / mm 2 or more, a 5% mass reduction temperature of 515 ° C, and a heat resistance of 1 0 16 ⁇ ⁇ cm, permittivity of 3.1 (at 25 ° C) and 2.8 (at 200), maintaining excellent electrical properties.
  • an antifoaming agent lower alcohol type, mineral oil type, silicone resin type, oleic acid, polypropylene glycol, etc.
  • a thixotropic agent sica fine powder, My power, talc, calcium carbonate, etc.
  • a silicone agent for resin modification silane coupling agent, silicone oil, silicone surfactant, silicone synthetic lubricating oil, etc.
  • silicone oil polysiloxane
  • a silane coupling agent for example, by adding silicone oil (polysiloxane) and a silane coupling agent, defoaming properties (suppress foaming during curing), mold release properties (prevention of conductive polymer adhesion), and lubricating properties (pores) ), Electrical insulation (prevention of leakage current), water repellency (prevention of solution penetration (drip) during polymerization of conductive polymer) Stopping), braking (vibration-proof) (opposed to pressure when stacking capacitor elements), heat resistance of resin
  • silicone oil polysiloxane
  • silane coupling agent for example, by adding silicone oil (polysiloxane) and a silane coupling agent, defoaming properties (suppress foaming during curing), mold release properties (prevention of conductive polymer adhesion), and lubricating properties (pores) ), Electrical insulation (prevention of leakage current), water repellency (prevention of solution penetration (drip
  • FIG. 5A a plan view (FIG. 5A) and a side view (FIG. 5B) showing an outline of one embodiment are shown. It will be described with reference to FIG.
  • the apparatus shown in Fig. 5 supplies the solution containing the masking material to the roll application surface, applies the masking material to the substrate, and masks the mask remaining on the roll surface during one rotation of the disk-shaped rotating roll (13). It is configured so that one cycle of material cleaning can be performed.
  • reference numeral 11 denotes a metal guide for fixing one end of a plurality of substrates for solid electrolytic capacitors (12a, 12b, 12c ...) in a strip shape.
  • the substrate can be fixed to the metal guide (11) by electrical or mechanical bonding.
  • the joining method include soldering, joining with a conductive paste, ultrasonic welding, spot welding, and electron beam welding.
  • the metal guide (11) linearly moves on the rotating roll (13) in the direction of the arrow.
  • conventional means such as a motor, a belt, a cylinder, etc. can be used.
  • the side surface of the substrate (1 2) can also be applied. That is, as shown in FIG.
  • the traveling speed of the guide (VI) is higher than the rotation speed (V2), the side of the tip of the board can be applied.
  • the traveling speed (VI) of the metal guide is lower than the rotation speed (V2), The side surface of the rear end of the substrate in the traveling direction can be applied (FIG. 6B).
  • the apparatus of the present invention is provided with a mechanism capable of reversing the relative positional relationship between the metal guide and the rotating roll to apply both sides and both sides of the substrate fixed to the metal guide.
  • a metal guide reversing mechanism is a metal guide reversing mechanism.
  • the reversal can be performed by using a motor or a cylinder, or by providing a holding portion for the metal guide rotatably in the longitudinal direction and rotating the holding portion half a turn.
  • two rotating rolls may be prepared, and the uncoated surface of the substrate fixed to the inverted metal guide may be applied by a dedicated rotating roll.
  • two rotating rolls can be installed with the substrate sandwiched between them, and both sides and both sides of the substrate fixed to a metal guide can be masked simultaneously.
  • the rotating orifice (13) is a disk-shaped rotating roll having a smooth coating surface that contacts a desired portion of the substrate with a predetermined pressing force.
  • the rotating roll (13) a metal (stainless steel or the like) or ceramic material made of a hard material resistant to a solution containing a masking material is used.
  • the size may be such that the masking material does not deteriorate during one rotation (one cycle of application of the masking material), and usually has a diameter of about 2 mm to about 500 mm.
  • the coating surface width of the roll is a width capable of applying the masking material to a desired width, and is preferably 0.2 to It is about 3.0mm.
  • a scraper (15) for cleaning the application surface of the rotating roll and a wiping member (16) are arranged in front of the hopper.
  • the means (14) for supplying a solution containing a masking material is, in this example, a fixed-quantity coating liquid supply machine equipped with a closed fixed-quantity continuous discharge dispenser with little pulsation.
  • a predetermined amount of the solution containing the masking material is continuously supplied to the roll application surface by a discharge needle through a resin tube resistant to the solution containing the masking material from the fixed amount coating solution supply device.
  • a fine adjustment mechanism is provided to stabilize the distance between the tip of the needle and the roll surface in order to stably supply the solution containing the masking material to the application surface of the roll (13).
  • a fine adjustment mechanism is to finely adjust the vertical position using a micro-mechanical head (screw mechanism).
  • the application surface of the rotating roll (13) supplied with the solution containing the masking material comes into contact with the substrate with a certain pressing force at the position of contact with the substrate.
  • the pressing force at the time of this contact is within the elastic limit of the substrate, and preferably the amount of deflection at the smooth apex (coating surface) of the rotating roll is in the range of about 0.03 to 0.3 mm.
  • the specific pressing force varies depending on the type and thickness of the substrate and cannot be specified unconditionally, but for example, it is about 0.002 to 0.02 gZ substrate (width 3 mm x thickness O.lmm).
  • the roll application surface is cleaned.
  • the cleaning means for example, a mechanical scraper (15) and a wiping material (16) are used.
  • the scraper (15) is a blade (resin, steel, etc.) made of a material that is the same or softer than a roll of stainless steel, ceramics, etc., and is arranged so that at least the tip is in close contact with the coating surface of the roll. Then, the masking material remaining on the coating surface of the roll after coating the substrate is scraped off.
  • Sucre An organic solvent and Z or water (such as the same solvent used for the masking material solution) are impregnated into the resin fibers disposed in front of the par (15) (in front of the rotation direction).
  • the wiping material (16) is used to scrape off any deposits on the roll application surface, and is ready for the next application cycle.
  • the solution containing the masking material can be supplied stably to the coating surface of the rotating roll by adopting a non-pulsating drive system from a closed container.
  • a conductive polymer having at least one of a divalent group of any one of pyrrole, thiophene, furan and aniline structures, or a substituted derivative thereof as a repeating unit is preferably used.
  • materials conventionally known as materials can be used without particular limitation.
  • a method of applying a 3,4-ethylenedioxythiophene monomer and an oxidizing agent, preferably in the form of a solution, separately or together before or after to an oxide film layer of a metal foil Japanese Unexamined Patent Publication No. JP-15611 (U.S. Pat. No. 4,910,645) and JP-A-10-32145 (European Patent Publication No. 820076 (A2)) can be used.
  • aryl sulfonate-based dopants are used for the conductive polymer.
  • salts such as benzenesulfonic acid, toluenesulfonic acid, naphthenic sulfonic acid, anthracenesulfonic acid, and anthraquinonesulfonic acid can be used.
  • Example 1 the present invention will be described by way of examples, but the present invention is not limited by the following examples.
  • Example 1 the present invention will be described by way of examples, but the present invention is not limited by the following examples.
  • a 100-meter-thick chemically formed aluminum foil cut (slit) to a width of 3 mm is cut into lengths of 13 mm, and one short side of this foil piece is fixed to a metal guide by welding.
  • a polyimide resin solution (upe coat FS-100L, manufactured by Ube Industries, Ltd.) adjusted to a viscosity of 800 cP at a point 7 mm from the end where it is not fixed is applied in a disc shape with a coating surface width of 0.4 mm.
  • the coating surface of the coating device is brought into contact with the entire surface of the aluminum conversion foil and pressed to draw a line with a width of 0.8 mm, dried at approximately 180 ° C, and dried at a masking layer (polyimide). Film) was formed.
  • the part from the tip of the aluminum foil fixed to the metal guide removed from the coating device to the masking line is immersed in an aqueous solution of ammonium adipic acid, and a voltage of 13 V is applied to form an unformed part of the cut part. A dielectric film was formed.
  • a solid electrolyte was formed in the chemical conversion treatment layer region as follows.
  • the portion (3 mm x 4 mm) opposite to the masking layer with the 4 mm masking layer from the end of the aluminum foil as the border is an isopropanol solution containing 20% by mass of 3,4-ethylenedioxythiophene. (Solution 1), pulled up, and left at 25 ° C for 5 minutes.
  • the aluminum foil portion treated with the monomer solution was immersed in an aqueous solution (solution 2) containing 30% by mass of ammonium persulfate, and dried at 60 ° C. for 10 minutes to perform oxidative polymerization.
  • the operation of immersing in solution 1 and then immersing in solution 2 to carry out oxidative polymerization was repeated 25 times to form a solid electrolyte layer.
  • FIG. 7 shows a cross-sectional view of the manufactured chip-type solid electrolytic capacitor.
  • Example 1 In the solid electrolyte forming step of Example 1, aluminum foil was used as the metal material, and the solid electrolyte layer was formed of a sulfur-containing polymer (a polymer of 3,4-ethylenedioxythiophene) as the solid electrolyte.
  • a sulfur-containing polymer a polymer of 3,4-ethylenedioxythiophene
  • Figure 8 shows a photograph (magnification: 500x) of the area around the masking section cut at the location corresponding to A '. Cutting is micro about A—A '!
  • the aluminum core (la), the dielectric layer (lb), the solid electrolyte (sulfur-containing polymer layer) (4), and the masking layer (2) can be observed.
  • a chip-type solid electrolytic capacitor was prepared in the same manner as in Example 1, except that a polyimide resin solution (manufactured by Shin Nihon Rika Co., Ltd .; Jamaicacoat TM ) was used as the masking material, and the leakage current was measured and reflowed. The test was performed. The results are shown in Table 1.
  • Example 3 a polyimide resin solution (manufactured by Shin Nihon Rika Co., Ltd .; Jamaicacoat TM ) was used as the masking material, and the leakage current was measured and reflowed. The test was performed. The results are shown in Table 1.
  • Example 3 Example 3:
  • Example 4 The oxidative polymerization was carried out by dipping in the solution 2 in the solid electrolyte forming step in Example 1 with an aqueous solution prepared so that the strength of sodium 2-antraquinone sulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was 0.07% by mass. In the same way, make a chip-type solid electrolytic capacitor in the same way, Was performed. The results are shown in Table 1.
  • Example 1 solution 2 in the solid electrolyte formation step was further immersed in an aqueous solution prepared so that sodium 2-naphthalenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was 0.06% by mass, and oxidative polymerization was performed.
  • a chip-type solid electrolytic capacitor in the same manner, and measured the leakage current and performed a reflow test in the same manner. The results are shown in Table 1.
  • Example 5 Example 5:
  • Example 3 A chip-type solid electrolytic capacitor was prepared in the same manner as in Example 3 except that N-methylbilol was used instead of 3,4-ethylenedioxythiophene, and a leakage current measurement and a reflow test were performed in the same manner. Was performed. The results are shown in Table 1. Comparative Example 1:
  • a chip-type solid electrolytic capacitor was produced in the same manner as in Example 1, except that a tape made of a heat-resistant base material and a heat-resistant adhesive was adhered to the front and back of the aluminum foil with a width of l mm instead of forming a masking layer. Similarly, a leakage current measurement and a reflow test were performed. The results are shown in Table 1. Also, as in Example 1, the analysis of the sulfur element by EPMA showed that the area where the solid electrolyte layer (4) was distributed was not clearly divided in the dielectric layer (lb), and the masking layer was not separated. The solid electrolyte had penetrated into the. Comparative Example 2:
  • a phenol resin was used instead of forming the polymer insulating film in Example 1. Apply and cure and draw a 0.8mm wide line on both sides of the foil.
  • a solid electrolytic capacitor was fabricated, and leakage current was measured and a reflow test was performed. The results are shown in Table 1.
  • the solid electrolyte was found to have penetrated the masking layer from the EPM analysis.
  • a 100-meter-thick chemically formed aluminum foil cut (slit) to a width of 3 mm is cut into lengths of 13 mm, and one short side of this foil piece is fixed to a metal guide by welding.
  • a 7 mm from the unfixed end A polyimide resin solution (manufactured by Shin Nippon Rika Co., Ltd .; Rikakoto 1 "adjusted to a viscosity of 800 cp, a disc-shaped coating device with a coating surface width of 0.4 mm
  • the coating surface of the coating device is brought into contact with the entire surface of the aluminum conversion foil and pressed to draw a line with a width of 0.8 mm, dried at about 180 ° C and dried at the first masking layer (polyimide film). ) was formed.
  • a solid electrolyte was formed in the chemical conversion treatment layer region except between the first masking layer and the second masking layer as follows.
  • the part (3 mm X 4 mm) opposite to the first masking layer which is 4 mm from the second masking layer 4 mm from the tip of the aluminum foil, is 3,4-ethylenedioxythiophene 20 mass % Of an isopropanol solution (solution 1), pulled up, and left at 25 ° C for 5 minutes.
  • solution 1 an isopropanol solution
  • solution 2 an aqueous solution containing 30% by mass of an aqueous solution of ammonium persulfate, dried at 60 ° C. for 10 minutes, and subjected to oxidative polymerization.
  • the operation of immersion in solution 1 and then immersion in solution 2 for oxidative polymerization was repeated 25 times to form a solid electrolyte layer.
  • Example 7 For this capacitor element, a reflow test was performed by passing through a temperature range of 230 ° C for 30 seconds, and the leakage current one minute after the rated voltage was applied was measured.The measured value was 1 CV or less. The average value was determined for the samples, and 0.04 CV or more was determined to be defective. Table 2 shows the results.
  • Example 7
  • a chip-type solid electrolytic capacitor was prepared in the same manner as in Example 6 except that a polyimide resin solution (Ube Industries, Ltd .; Upicoat FS-100 L) was used as the first masking material. The leakage current was measured and a reflow test was performed. The results are shown in Table 2.
  • Example 8 a polyimide resin solution (Ube Industries, Ltd .; Upicoat FS-100 L) was used as the first masking material. The leakage current was measured and a reflow test was performed. The results are shown in Table 2.
  • Example 8 Example 8:
  • Example 9 In the same manner as in Example 6, except that the first masking material and the second masking material were applied using a polyimide resin solution (manufactured by Ube Industries, Ltd .; Upico- TM FS-100 L), a chip-shaped solid An electrolytic capacitor was fabricated, and the leakage current was measured and the riff opening test was performed in the same manner. The results are shown in Table 2.
  • Example 9 Example 9:
  • Oxidative polymerization was carried out by dipping in the solution 2 in the solid electrolyte forming step in Example 8 with an aqueous solution prepared so that the force of 2-sodium anthraquinone sulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was 0.07% by mass. Others made a chip-type solid electrolytic capacitor in the same way, measured leakage current and performed a reflow test in the same way. Was performed. The results are shown in Table 2.
  • Example 10 Example 10:
  • Oxidative polymerization was carried out by dipping in the solution 2 in the solid electrolyte forming step in Example 8 with an aqueous solution prepared so that 2-naphthylene sodium sulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was 0.06% by mass. Others produced chip-type solid electrolytic capacitors in the same manner, and measured leakage current and performed reflow tests in the same manner. The results are shown in Table 2. Comparative Example 3:
  • a chip-type solid electrolytic capacitor was fabricated in the same manner as in Example 6, except that the masking was performed once. That is, a polymer (polyimide) film is formed by performing only the second masking step (at a position 4 mm from the end of the aluminum foil), and then a chemical conversion step, a solid electrolyte forming step, and a cutting step are performed. A chip-type solid electrolytic capacitor was fabricated, and leakage current was measured and a reflow test was performed. The results are shown in Table 2. Comparative Example 4:
  • a chip-type solid electrolytic capacitor was produced in the same manner as in Comparative Example 3, except that a tape made of a heat-resistant base material and a heat-resistant adhesive was adhered to the front and back of the aluminum foil with a width of l mm instead of forming the second masking layer. A leak current was measured and a riff opening test was performed in the same manner. The results are shown in Table 2. Comparative Example 5:
  • the chemical conversion foil cutting portion By completely forming the chemical conversion foil cutting portion, it is possible to prevent an increase in leakage current due to penetration of the conductive polymer or conductive paste into the cut portion.
  • the masking layer allows the chemical conversion treatment to be performed reliably and easily without causing the chemical conversion liquid to bleed up beyond the masking layer in the next chemical conversion treatment. Further, since the masking material penetrates into the dielectric film and is formed on the penetrated portion, the solid electrolyte cannot penetrate into the dielectric film penetrated by the masking material, and Since it has a structure masked by the formed masking material, the cathode part and the anode part can be reliably insulated.
  • the polyimide film used as the masking material is resistant to the aqueous solvent or organic solvent such as alcohol used during the polymerization of the conductive polymer, penetrates into the dielectric film, and provides insulation between the anode and cathode. Can be reliably held.
  • the first masking layer prevents the chemical conversion liquid from bleeding over the masking layer during the next chemical conversion treatment, so that it can be used at necessary locations.
  • the positive electrode part of the solid electrolytic capacitor can be chemically and reliably treated. That is, if there is no temporary masking layer, the chemical conversion liquid may seep up on the substrate, and the leakage current during chemical formation may increase, resulting in a short circuit with the electrode. If a long substrate (metal foil) is used and the distance between the chemical solution and the electrode position is increased, the possibility of a short circuit can be reduced, but the economics and productivity will decrease. If a temporary masking layer is not provided, it is difficult to control the amount of chemical conversion liquid seeping out, and the formation state cannot be controlled. However, such a problem can be solved by performing the masking twice.
  • a masking material for a solid electrolytic capacitor to a substrate
  • a masking material polyimide
  • Resin, etc. can be applied linearly and continuously with a stable line width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Chemically Coating (AREA)

Description

W
明 細 書 固体電解コンデンサ及びその製造方法 : 関連出願の関係
本出願は、 合衆国法典第 3 5巻第 1 1 1条 (b ) 項の規定に従い、 1 9 9 9年 5月 2 4日提出の仮出願第 6 0 / 1 3 5, 8 4 3号及び仮出願第 6 0 / 1 3 5, 8 4 4号の出願日を同第 1 1 9条 (e ) 項 (1 ) の規定により主張 する同第 1 1 1条 (a ) 項に基づく出願である。 技術分野
本発明は、 固体電解コンデンサ及びその製造方法に関する。 さらに詳しく いえば、 誘電体皮膜を有する弁作用金属基板上に固体電解質層を形成する際 に、 固体電解質層を設けない金属基板部分 (陽極部) と固体電解質層あるい はさらにその上に導電ペーストなどにより形成された導電体層 (陰極部) と を確実に絶縁できるマスキング構造を有する固体電解コンデンサとその製造 方法、 及び固体電解コンデンサの基板にマスキング材を塗布する方法と装置 に関する。 背景技術
導電性重合体を用いる固体電解コンデンサは、 予めエッチング処理したァ ルミ二ゥム、 タンタル、 チタン等の弁作用金属表面に誘電体酸化皮膜を形成 し、 その誘電体酸化皮膜上に導電性重合体を形成して固体電解質とし、 弁作 用金属の陽極端子 (固体電解質のない金属表面部分) に陽極リード線を、 導 電性重合体を含む導電体層に陰極リード線を接続してなる基本構造を有し、 さらに全体をェポキシ樹脂等の絶縁性樹脂で封止して作製される。 このような固体電解質として導電性重合体を用いた固体電解コンデンサは、 二酸化マンガンなどを固体電解質とする固体電解コンデンサに比べて等価直 列抵抗及び漏れ電流を小さくでき、 電子機器の高性能化、 小型化に対応でき るコンデンサとして有用であり、 多くの製造方法が提案されている。
導電性重合体を用いて高性能の固体電解コンデンサを製造するためには、 陽極端子となる陽極部と導電性重合体を含む導電体層からなる陰極部とを電 気的に確実に絶縁することが不可欠である。
固体電解コンデンサの陽極部と陰極部を絶縁するマスキング手段としては、 例えば、 エポキシ、 フエノール樹脂等を未化成部分に塗布、 印刷あるいはポ ッティングした後硬化させて導通を防ぐ方法 (特開平 3-95910号公報) 、 弁 作用金属の固体電解質を形成しない部分の少なくとも一部に、 ポリアミック 酸塩を含む溶液を電着してポリアミック酸の膜を形成した後、 加熱により脱 水硬化させてポリイミド膜を形成する方法 (特開平 5-47611号公報) 、 固体 電解質の這い上がり防止のためにポリプロピレン、 ポリエステル、 シリコン 系樹脂またはフッ素系樹脂製のテープもしくは樹脂コートフィルム部を形成 する方法 (特開平 5-166681 号公報) 、 金属基体の陽極端子となる部分とコ ンデンザが形成される部分との境界部表面に絶縁樹脂層を形成した後に、 コ ンデンサ以外の部分の絶縁樹脂層を除去して金属基体を露出させる方法 (特 開平 9-36003号公報) などが提案されている。
マスキング材料としてフエノール樹脂、 エポキシ樹脂を使用する方法 (特 開平 3-95910号公報) は、 樹脂の弾性係数が高く、 ひずみに対する応力が高 くなるためコンデンサ素子が外力を受けた時のダメージが大きい。
電着法でポリイミド膜を形成する方法 (特開平 5-47611号公報) は、 通常 の塗布法に比べて細孔部まで膜を形成できるが、 電着工程を必要とするため 生産コストが嵩み、 またポリイミド膜を形成させるために高温の脱水工程を 必要とする。 作製時における固体電解質の這い上がり防止のため絶縁樹脂製のテープも しくはコートフィルムを利用する方法 (特開平 5-166681 号公報) は、 基材 の端部をテープ (フィルム) で確実に貼付することが困難であり、 固体電解 質の高分子固体電解質が陽極側に侵入する危険がある。
また、 絶縁樹脂層を形成した後に、 コンデンサ以外の部分の絶縁樹脂層を 除去して金属基体を露出させる方法 (特開平 9-36003号公報) は、 一旦形成 した絶縁樹脂層を除去するという本質的に無駄な工程を要する。
以上のように、 従来のマスキング手段はいずれも十分満足できるものでは なく、 固体電解コンデンサの陽極部と陰極部とを確実に絶縁できるマスキン グの形態 (構造) とはいかなるものかについても明確ではないのが実情であ る。 発明の目的
本発明の課題は、 誘電体皮膜を有する弁作用金属基板上に固体電解質層を 形成する固体電解コンデンサの製造方法において、 固体電解質層を設けない 金属基板部分 (陽極部) と固体電解質層あるいはその上に導電ペーストなど を設けた導電体層 (陰極部) とを確実に絶縁できるマスキング構造を有する 固体電解コンデンサ及びその製造方法を提供することにある。
さらに、 本発明の課題は、 固体電解コンデンサの陽極部と陰極部とを確実 に絶縁できるマスキングを効率よく行うことができるマスキング材塗布方法 及びその装置を提供することにある。 発明の概要
本発明者らは、 (1) マスキング材を形成する材料 (以下、 マスキング材塗 布液という。 ) として、 例えば耐熱性樹脂またはその前駆体を含む溶液や固 化後の絶縁性及び耐熱性の良好な低分子量ポリイミドまたはその前駆体の溶 液を使用すること、 (2) 従来の金属化成材料の箔では所望の寸法に切断する 際に生ずる切断部が未化成となり、 漏れ電流増加の原因になるので、 金属材 料切断後に化成処理を行なうこと、 (3) 固体電解質として、 ピロ一ル、 チォ フェン、 ァニリン、 フランのいずれか 1つの二価基、 またはそれらの置換誘 導体の少なくとも 1つを繰り返し単位として含む導電性重合体を採用するこ となどの事項について鋭意検討した。 その結果、 マスキング材が誘電体皮膜 上に十分付着し、 かつ誘電体皮膜中を芯金まで十分浸透したマスキング構造 を形成し得ることを見出し、 本発明に至った。
また、 本発明者らは、 化成処理の際に化成液が基板上を滲み上がり化成時 の漏れ電流が大きくなつて電極と短絡してしまう問題について検討した。 そ の結果、 マスキング工程を 2つの工程として、 化成処理前に仮マスキング (第一のマスキング層) を施し、 仮マスキングの位置を基準にして化成処理 した後、 基材の異なる箇所に本マスキング (第二のマスキング層) を施すこ とにより化成処理の際に化成液が仮マスキング層を超えて滲み上がることが なく、 必要な箇所 (固体電解コンデンサの陽極部を除く箇所) を確実にかつ 容易に化成処理出来ることを確認した。
さらに、 本発明者らは、 表面に金属酸化物の層を有する弁作用エッチング 金属基板の所望の箇所 (全周) に絶縁性及び耐熱性の良好なポリイミドなど の耐熱性樹脂を塗布法によりマスキング材として基板に施す方法について検 討した。
まず
(1)マスキング材をひも状に細い状態で、 例えば、 デイスペンザ等で直接マ スキング材を基板 (アルミ化成箔) 表面に垂らして塗布する方法、
(2)はけ、 竹串等の細い棒でアルミ化成箔表面へ塗布する方法、
(3)アルミ化成箔にマスキング材をスクリーン印刷する方法について検討し た。 (1) 及び (2) の方法では、 竹串等の部分固化により、 短時間での塗布は可 能であるが長時間での作業は困難であり安定性に欠ける。 また、 典型的な多 孔質のアルミ化成箔表面は、 マスキング材をはじく性質があり、 直線上に塗 布することが困難でありムラになりやすい。 また、 (3) のスクリーン印刷法 では表面に均一に塗布することは可能であるが、 所定の厚さ (約 1 0〜3 0 i m,片面) に塗布すること及びィヒ成箔側面塗布を確実に行なうことが困難 である。
このように、 いずれの方法もマスキング材を均一な線状で基板の全周に塗 布することは困難であった。
次に、 本発明者らは、 マスキング材を多数枚の基板 (アルミ化成箔) に効 率的に塗布するために、 複数の基板を短冊状にガイド板へ取り付けて、 基板 の所定部分の全周にマスキング材を施す方式が有望と考えて、 基板を固定し た金属ガイド板移動装置、 円周部を塗布面とする円盤状の回転ロール、 回転 ロールの一部が浸漬するマスキング材槽、 及びロールに残留する付着物を清 掃するスクレーパーを設け、 金属ガイド板に取り付けたアルミ化成箔の下面 に、 マスキング材の付着した円周部を接触させてマスキング材を施す装置を 試作して検討した。
しかし、 試作装置では、 マスキング材を含む溶液を開放系 (空気にさらさ れた状態) で塗布するため、 スクレ一パ付近でマスキング材が固化し、 また、 槽内にあるマスキング材の粘度が変化し塗布が安定しないこと、 そのため短 時間でマスキング材を含む溶液を交換する必要性があることなどの改善すベ き問題があることが判明した。
そこで、 (1) 直線運動を行なう台上 (金属製ガイド) に複数の化成箔 (基 板) の一端を短冊状に固定すること、
(2) 上記金属製ガイドに固定された基板の裏面 (下側) に、 回転運動をする 円盤状ロールの平滑な頂面 (塗布面) が一定の力で接触するように配置する こと、
(3) ロールの塗布面へのマスキング材の供給は、 マスキング材を含む溶液を 密閉容器に保管し、 脈動の少ない定量連続吐出ディスペンザ等の定量塗布液 供給機を用い、 樹脂チューブ、 ニードル等を介して密閉系で行なうこと、 (4) 塗布面の円周部へ均一にマスキング材を含む溶液が塗布されたロールを 化成箔に押圧し、 金属板ガイドの走行速度と回転ロールの回転速度を調整す ることにより化成箔基板の下面及び側面へのマスキング材の塗布を行なうこ と、
(5) マスキング材を含む溶液が塗布されたロールが化成箔基板に接触した後、 新たな塗布液が塗布されるまでの間にロールの塗布面に残留するマスキング 材を除去清掃する手段を設けること、
によって基板の所望の箇所の全周にマスキング材を均一な線状に塗布するこ とに成功した。
すなわち、 本発明は以下の固体電解コンデンサの製造方法、 その方法によ り得られた固体電解コンデンサ、 及びマスキング材溶液の塗布方法及び塗布 装置を提供する。
[ 1 ] 誘電体皮膜を有し、 弁作用を有する金属材料上の所望の位置に固 体電解質を形成してなる固体電解コンデンサの製造方法において、 前記誘 電体皮膜中に浸透しかつ前記浸透部の上にマスキング層を形成するマスキ ング材溶液を塗布する工程を有することを特徴とする固体電解コンデンサ の製造方法。
[ 2 ] 誘電体皮膜を有し、 弁作用を有する金属材料上の所望の位置に固 体電解質を形成してなる固体電解コンデンサの製造方法において、 前記誘 電体皮膜中に浸透しかつ前記浸透部の上にマスキング層を形成するマスキ ング材溶液を塗布する工程を有し、 前記塗布工程において誘電体皮膜中に 浸透し固化したマスキング樹脂が、 後工程で形成される固体電解質の浸入 を阻止する固体電解コンデンサの製造方法。
[3] 前記マスキング材溶液塗布工程による誘電体皮膜のマスキング樹 脂浸透部における固体電解質濃度が、 電子線マイクロアナライザ一による 検出限界値以下である前記 [2] に記載の固体電解コンデンサの製造方法。
[4] 金属製ガイドの一端に複数の固体電解コンデンサ用基板を短冊状 に固定し、 前記金属製ガイドを移動しつつ、 前記基板の所望の箇所に円盤 状の回転ロールを所定の押圧力で接触させ、 マスキング材溶液供給手段か ら回転ロール塗布面に供給されたマスキング材溶液を前記固体電解コンデ ンサ用基板の所望箇所の両面及び両側面に塗布してマスキング層を形成す る前記 [1] 乃至 [3] のいずれかに記載の固体電解コンデンサの製造方 法。
[5] 金属製ガイドと回転ロールとの相対的な位置関係を反転させ金属 製ガイドに固定した基板の両面及び両側面にマスキング材溶液を塗布する 前記 [4] に記載の固体電解コンデンサの製造方法。
[6] 誘電体皮膜を有し、 所定の形状に裁断された弁作用を有する金属 材料上の所望の位置に固体電解質を形成してなる固体電解コンデンサの製 造方法において、 前記金属材料上にマスキング材溶液を塗布して第一のマ スキング層を形成する工程と第二のマスキング層を形成する工程を有し、 少なくとも第二のマスキング層形成工程により前記誘電体皮膜中に浸透し かつ前記浸透部の上にマスキング層が形成される前記 [1] に記載の固体 電解コンデンサの製造方法。
[7] 誘電体皮膜を有し、 所定の形状に裁断された弁作用を有する金属 材料上の所望の位置に固体電解質を形成してなる固体電解コンデンサの製 造方法において、
前記金属材料上に化成処理を施す境界となる領域の全周にマスキング材 溶液を線状に塗布、 加熱して第一のマスキング層を形成する工程、 前記金属材料の第一のマスキング層を有する領域で区切られた固体電解 質を形成する領域を化成処理する工程、
前記第一のマスキング層と所定の間隔をおいて、 前記化成処理した金属 材料上の領域の全周にさらにマスキング材溶液を線状に塗布、 加熱して第 二のマスキング層を形成する工程、
前記化成処理した領域のうち、 前記第一のマスキング層と第二のマスキ ング層との間を除く領域に固体電解質を形成する工程、 及び
前記第一のマスキング層と第二のマスキング層との間の領域で前記金属 材料を切断する工程を含む前記 [6] に記載の固体電解コンデンサの製造 方法。
[8] マスキング材溶液として、 耐熱性樹脂またはその前駆体の溶液を 使用する前記 [1] 乃至 [7] のいずれかに記載の固体電解コンデンサの 製造方法。
[9] 前記耐熱性樹脂またはその前駆体の溶液が、 加熱によって固化す る低分子量のポリイミ ドの溶液またはポリアミック酸溶液である前記 [8] に記載の固体電解コンデンサの製造方法。
[1 0] 前記マスキング材溶液がさらにシリコーンオイル、 シランカツ プリング剤またはポリイミ ドシロキサンを含有する前記 [ 8] または [9] に記載の固体電解コンデンサの製造方法。
[1 1] 前記弁作用を有する金属材料が、 アルミニウム、 タンタル、 二 ォブ、 チタン、 ジルコニウム及びそれらの合金から選ばれる材料である前 記 [1] 乃至 [7] のいずれかに記載の固体電解コンデンサの製造方法。
[1 2] 前記固体電解質が、 ピロ一ル、 チォフェン、 ァニリン、 フラン の二価基のいずれか 1つ、 またはそれらの置換誘導体の少なくとも 1つを 繰り返し単位として含む高分子固体電解質である前記 [1] 乃至 [7] の いずれかに記載の固体電解コンデンザの製造方法。 [ 1 3] 高分子固体電解質が、 3, 4一エチレンジォキシチォフェンの 重合体を含む前記 [12] に記載の固体電解コンデンサの製造方法。
[ 14] 前記固体電解質がさらにァリ一ルスルホン酸塩系ドーパントを 含む前記 [12] または [13] に記載の固体電解コンデンサの製造方法。
[ 1 5] 誘電体皮膜を有し、 弁作用を有する金属材料上の所望の位置に 固体電解質が形成された固体電解コンデンサにおいて、 マスキング材溶液 が前記誘電体皮膜中に浸透しかつ前記浸透部の上にマスキング層が形成さ れ、 前記固体電解質が前記マスキング材溶液の浸透した誘電体皮膜中に浸 透せずかつ前記浸透部の上に形成されたマスキング層によりマスキングさ れた構造を有する固体電解コンデンサ。
[ 1 6] 耐熱性樹脂またはその前駆体のマスキング材溶液を用いて、 前 記マスキング層が形成される前記 [15] に記載の固体電解コンデンサ。
[1 7] 前記マスキング材溶液が浸透した誘電体皮膜中の前記固体電解 質濃度が、 電子線マイクロアナライザ一による検出限界値以下である前記
[15] に記載の固体電解コンデンサ。
[1 8] 金属製ガイドの一端に複数の固体電解コンデンサ用基板を短冊 状に固定し、 前記金属製ガイドを移動しつつ、 前記基板の所望の箇所に円 盤状の回転ロールを所定の押圧力で接触させ、 マスキング材溶液供給手段 から回転ロール塗布面に供給されたマスキング材溶液を前記固体電解コン デンサ用基板の所望箇所の両面及び両側面に塗布することを特徴とするマ スキング材塗布方法。
[1 9] 金属製ガイドと回転ロールとの相対的な位置関係を反転させ金 属製ガイドに固定した基板の両面及び両側面にマスキング材溶液を塗布す る前記 [18] に記載のマスキング材塗布方法。
[20] 複数の固体電解コンデンサ用基板 (1 2) の一端を短冊状に固 定する金属製ガイド (1 1) 、 前記金属製ガイドを移動する手段、 前記基 板 ( 1 2) の所望の箇所に所定の押圧力で接触する円盤状の回転ロール
(1 3) 、 前記回転ロールの塗布面にマスキング材を含む溶液を供給する 手段 (14) 、 及び回転ロール (13) の塗布面を清掃するスクレーパー
(1 5) を備え、 固体電解コンデンサ用基板 (12) の所望箇所の両面及 び両側面にマスキング材を塗布するマスキング材塗布装置。
[2 1] 金属製ガイドと回転ロールとの相対的な位置関係を反転させ金 属製ガイドに固定した基板の両面及び両側面を塗布する前記 [20] に記 載のマスキング材塗布装置。
[22] 2台の回転ロールを備え、 反転した金属ガイドに固定された基 板の反対面を専用の回転ロールにて塗布する前記 [20] に記載の装置。
[23] 基板を挟む状態に配置した 2台の回転ロールを設け、 移動する 金属製ガイドに固定した基板の両面及び両側面に同時にマスキング材を塗 布する前記 [20] に記載のマスキング材塗布装置。
[24] 基板が弁作用金属材料からなり、 回転ロールの塗布面が前記基 板にその弾性限度内の押圧力で接触する前記 [20] 乃至 [23] のいず れかに記載のマスキング材塗布装置。
[2 5] 回転ロールが鋼製材料またはセラミック材料である前記 [2 0] 乃至 [23] のいずれかに記載のマスキング材塗布装置。
[26] スクレーパーが回転ロール塗布面に線接触する樹脂製もしくは 回転ロール材より柔らかい鋼製ブレードである前記 [20] 乃至 [25] のいずれかに記載のマスキング材塗布装置。
[27] スクレーパーの前方に樹脂繊維に有機溶剤及び/または水をし み込ませた拭き取り材 (1 6) を配設した前記 [20] 乃至 [26] のい ずれかに記載のマスキング材塗布装置。
[28] マスキング材供給手段 (4) が定量連続吐出機と管状部材で構 成されている前記 [20] 乃至 [27] のいずれかに記載のマスキング材 本発明の固体電解コンデンサの製造工程の概要を図 1 A〜図 1 Dに示し、 得られる固体電解コンデンサのマスキング層の構造を顕す模式図を図 2に示 す。
図 1 Aは固体電解コンデンサの基材となる多孔質酸化膜 (誘電体膜) を有 する金属材料 (1) を所定の大きさに切断したものの平面図、 図 1 Bはマス キング層 (2) を施した状態の平面図、 図 1 Cは切断に伴う切口部分に確実 に多孔質酸化膜を形成するために化成処理層 (3) を作製した状態の平面図、 図 1Dは固体電解質層 (4) を形成した状態の平面図である。
図 2は、 図 1Dの A— A' 切断面のマスキング部分周辺の拡大構造を示す 模式図である。 図 2に示す通り、 本発明ではマスキング層 (2) は前記誘電 体皮膜 (l b) 中に浸透しかつ前記浸透部の上に形成されており、 前記誘電 体皮膜 (l b) 中に浸透する固体電解質は、 前記マスキング材の浸透した前 記誘電体皮膜 (1 b) 中には浸透できずかつ前記浸透部の上に形成されたマ スキング層により完全にマスキングされた構造を有する。
実際の固体電解コンデンサ素子 (9) は、 図 3に断面図を示す通り、 切断 面の陽極端子 (5) にリード線 (6) を接合し、 固体電解質層 (4) あるい はさらにその上に導電ペーストなどの導電体層 (図示せず) を形成した陰極 にリード線 (7) を接合し、 さらに全体をエポキシ樹脂等の絶縁性樹脂 (8) で封止して作製される。
また、 マスキング工程を 2回実施する場合には、 固体電解コンデンサは図 4 A〜図 4 Fに示す工程に従い製造することができる。
図 4 Aは固体電解コンデンサの基材となる多孔質酸化膜を有する金属材料 (1) を所定の大きさに切断したものの平面図、 図 4 Bは第一マスキング層 (2 a) を施した状態の平面図、 図 4 Cは切断に伴う切口部分に確実に多孔 質酸化膜を形成するために化成処理層 (3) を作製した状態の平面図、 図 4 Dは第二マスキング層 (2 b ) を施した状態の平面図、 図 4 Eは固体電解質 ( 4 ) を形成した状態の平面図、 図 4 Fは第一マスキング層 (2 a ) と第二 マスキング層 (2 b ) との間で切断して得られた固体電解コンデンサ素子 ( 9 ) の平面図である。 図面の簡単な説明
図 1 A〜図 1 Dは、 本発明の固体電解コンデンサの製造工程の概要図であ る。
図 2は、 本発明の方法で得られる固体電解コンデンサのマスキング層の構 造を顕す模式図である。
図 3は、 固体電解コンデンサ素子例の断面図である。
図 4 A〜図 4 Fは、 二段マスキング処理を行なう場合の本発明の固体電解 コンデンサの製造工程の概要図である。
図 5は、 マスキング材の塗布を行なう装置例の概要を示す平面図 (図 5 A) 及び側面図 (図 5 B ) である。
図 6は、 基板の側面塗布の説明図である。
図 7は、 実施例で作成した固体電解コンデンサ素子の断面図である。
図 8は、 マスキング材を塗布したコンデンサのマスキング部分周辺の断面 を示す拡大写真である。 発明の詳細な説明
以下、 本発明を詳しく説明する。
[弁作用金属]
固体電解コンデンサの基材は表面に誘電体酸化皮膜を有する弁作用金属で ある。 弁作用金属は、 アルミニウム、 タンタル、 ニオブ、 チタン、 ジルコ二 ゥムあるいはこれらを基質とする合金系の弁作用を有する金属箔、 棒、 ある いはこれらを主成分とする焼結体等から選ばれる。 これらの金属は空気中の 酸素により表面が酸化され誘電体酸化皮膜を有しているが、 予め公知の方法 によりエッチング処理等をして粗面化する。 次に常法に従い化成処理し確実 に誘電体酸化皮膜を形成しておくことが好ましい。 弁作用金属としては、 酸 化アルミナ層を有するアルミニウム箔が好ましく用いられる。
弁作用金属は粗面化後、 予め、 固体電解コンデンサの形状に合わせた寸法 に裁断したものを使用するのが好ましい。
弁作用を有する金属箔としては、 使用目的によって厚さが変わるが、 一般 に厚みが約 40〜 150 mの箔が使用される。 また、 弁作用を有する金属 箔の大きさ及び形状は用途により異なるが、 平板形素子単位として幅約 1〜 50mm, 長さ約 1〜50mmの矩形のものが好ましく、 より好ましくは幅 約 2〜20mm、 長さ約 2〜20mm、 さらに好ましくは幅約 2〜 5 mm、 長さ約 2〜6mmである。 [化成処理]
所定の形状に裁断された弁作用金属の化成処理は種々の方法によって行な うことができる。 予め化成処理しておくことにより、 仮にマスキング層に欠 陥が生じた場合にも、 漏れ電流の増加が防止される。
化成処理の条件は特に限定されるものではないが、 例えばシユウ酸、 アジ ピン酸、 ホウ酸、 リン酸等の少なくとも 1種を含む電解液を用い、 その電解 液濃度が 0.05質量%〜20質量%、 温度が 0°C〜90° (:、 電流密度が O.lm AZcm2〜200mAZcm2、 電圧は処理する化成箔の既に形成されてい る皮膜の化成電圧に応じた数値、 化成時間が 60分以内の条件で化成を行な う。 さらに好ましくは前記電解液濃度が 0.1 質量%〜15質量%、 温度が 2 0°C〜70° (:、 電流密度が ImA/cm2〜: L 00mAZcm2、 化成時間が 30分以内の範囲内で条件を選定する。 前記の化成処理の条件は工業的方法として好適なものではあるが、 弁作用 金属材料表面にすでに形成されている誘電体酸化皮膜を破壊または劣化させ ない限り、 電解液の種類、 電解液濃度、 温度、 電流密度、 化成時間等の諸条 件は任意に選定することができる。
化成処理の前後に、 必要により、 例えば耐水性の向上のためのリン酸浸漬 処理、 皮膜強化のための熱処理または沸騰水への浸漬処理等を行なうことが できる。
[マスキング材]
マスキング層は、 前記化成処理時に化成液が固体電解コンデンサの陽極と なる部分に滲み上がるのを防止し、 かつ後工程で形成される固体電解質 (陰 極部分) との絶縁を確実とするために設けられるものである。
マスキング材としては一般的な耐熱性樹脂、 好ましくは溶剤に可溶あるい は膨潤しうる耐熱性樹脂またはその前駆体、 無機質微粉とセルロース系樹脂 からなる組成物 (特開平 11-80596号公報) などが使用できるが、 材料には 制限されない。 具体例としてはポリフエニルスルホン (P P S ) 、 ポリエ一 テルスルホン (P E S ) 、 シアン酸エステル樹脂、 フッ素樹脂 (テトラフル ォロエチレン、 テトラフルォロエチレン ·パーフルォロアルキルビニルエー テル共重合体等) 、 低分子量ポリイミド及びそれらの誘導体などが挙げられ る。 特に好ましくは低分子量ポリイミド、 ポリエーテルスルホン、 フッ素樹 脂及びそれらの前駆体が挙げられる。
マスキング工程を 2回実施する場合、 第一のマスキング層は、 前記化成処 理時における化成液の固体電解コンデンサ陽極部分への滲み上がりを防止す るために設けられる。 従って第一のマスキング材は特に制限されず前記した 一般的な耐熱性樹脂が使用できる。 第二のマスキング層としては、 前記第一 のマスキング材と同様の材料を使用できるが、 特に弁作用金属に充分な密着 力、 充填性を有し、 約 4 5 までの熱処理に耐えられる絶縁性に優れたポ リイミドが好ましい。
ポリイミドとしては、 従来、 前駆体のポリアミック酸を溶剤に溶した溶液 を使用し、 塗布後に高温に加熱処理してイミド化するものがあるが、 2 5 0 〜3 5 0 °Cの熱処理が必要であり、 陽極箔の表面上の誘電体層の熱による破 損などの問題があった。
本発明では、 2 0 0 °C以下、 好ましくは 1 0 0〜2 0 0 °Cの低温度での熱 処理により硬化が十分可能であり、 陽極箔の表面上の誘電体層の熱による破 損 ·破壊などの外的衝撃が少ないポリイミドを使用する。
ポリイミドは主鎖にイミド構造を含む化合物であり、 本発明においてはジ ァミン成分の骨格内に分子内回転が起こりやすいフレキシブルな構造を有す る下記式 (1 ) 〜 (4 ) で示されるもの、 及び 3 , 3 ' , 4 , 4 ' —ジフエ ニルスルホンテ下ラカルボン酸二無水物と芳香族ジァミン類との重縮合反応 によって得られる下記式 (5 ) で示されるポリイミド等が好ましく使用でき る。 好ましい平均分子量としては約 1,000〜; 1,000,000であり、 より好ましく は約 2,000〜200,000である。
Figure imgf000017_0001
(ULTEM™; General Electric Co.製)
Figure imgf000017_0002
(VESPEI_' SP; E.に du Pont de Nemours & Co.社製)
Figure imgf000018_0001
(ュピモ-リ l7M R 宇部興産社製)
Figure imgf000018_0002
)
Figure imgf000018_0003
( D S D Aポリイミド) これらは、 有機溶剤に溶解あるいは分散可能であり、 塗布操作に適した任 意の固形分濃度 (したがって粘度) の溶液あるいは分散液を容易に調製する ことができる。 好ましい濃度としては約 1 0〜6 0質量%、 より好ましい濃 度としては約 1 5〜4 0質量%である。 また、 好ましい粘度としては約 5 0 〜30,000 c P、 より好ましい粘度としては約 5 0 0〜15,000 c Pである。 低 濃度、 低粘度側では、 マスキング線がにじみ、 高濃度、 高粘度側では糸引き 等が起こり線幅が不安定になる。
マスキング材溶液によって形成されるマスキング層は、 マスキング材溶液 の塗布後、 必要に応じて乾燥、 加熱、 光照射などの処理を行なってもよい。 ポリイミド溶液の具体例としては、 塗布後の加熱処理により硬化する低分 子ポリイミドを 2 _メトキシェチルエーテルやトリエチレンダリコールジメ チルエーテルなどの吸湿性の少ない溶剤に溶した溶液 (例えば、 宇部興産 (株) から 「ュピコ一 TM FS-100LJ として販売されている。 ) 、 あるいは 前記式 (5) で示されるポリイミド樹脂を NMP (N_メチル—2—ピロリ ドン) や DMAc (ジメチルァセトアミド) に溶解した溶液 (例えば、 新日 本理化 (株) から 「リカコート TM」 として販売されている。 ) が好ましく使 用できる。
前者は、 塗布後 160〜180°Cの加熱処理により熱変性し高分子化して 硬化し、 柔軟性を有し、 高い耐熱性と絶縁性を示す膜を与える。 このポリィ ミド膜は、 引っ張り強度 2.0k gZmm2、 硬化膜の伸び率が 65%、 初期弾 性率 40.6k gZmm2で、 ゴム状の性質を保持し熱分解温度 461°Cの高い 耐熱性を有している。 体積抵抗は加湿下でも 10Ω · cmと高く、 誘電率 は 3.2と低く、 絶縁塗膜として優れた電気特性を保持している。
また、 後者は 20 O :以下の温度で溶剤を除去するだけで、 優れた耐熱性、 機械特性、 電気特性、 及び耐薬品性を有する膜を与える。 この膜は引っ張り 強度約 11.8k gZmm2、 硬化膜の伸び率が 14.2%、 初期弾性率が 274 k g/mm2以上、 5%質量減少温度 515°Cの耐熱性を有し、 体積抵抗は 1 016Ω · cm、 誘電率は 3.1 (25°C) 、 2.8 (200で) であり優れた電気 特性を保持している。
本発明では、 上記マスキング材溶液に消泡剤 (低級アルコール系、 鉱物油 系、 シリコーン樹脂系、 ォレイン酸、 ポリプロピレングリコールなど) 、 チ キソトロピー付与剤 (シリカ微粉末、 マイ力、 タルク、 炭酸カルシウムな ど) 、 樹脂改質用シリコン剤 (シランカップリング剤、 シリコーンオイル、 シリコン系界面活性剤、 シリコーン系合成潤滑油など) などを添加すること ができる。 例えばシリコーンオイル (ポリシロキサン) 、 シランカップリン グ剤を添加することにより、 消泡性 (硬化時の発泡を抑える) 、 離型性 (導 電性重合体の付着防止) 、 潤滑姓 (細孔部内への浸透性) 、 電気絶縁姓 (漏 れ電流防止) 、 撥水性 (導電性重合体の重合時に溶液の侵入 (液上がり) 防 止) 、 制動 '防振性 (コンデンサ素子の積層時の圧力に対向) 、 樹脂の耐熱 性 *耐候性 (架橋機構の導入) の改善が期待できる。
また、 本発明では、 可溶性ポリイミドシロキサンとエポキシ樹脂からなる 組成物 (特開平 8-253677号公報 (米国特許第 5643986号) ) を用いること によって、 上記シリコーンオイル (ポリシロキサン) の添加と同様の効果を 得ることができる。
[マスキング材の塗布方法]
本発明に係る固体電解コンデンサ用基板 (以下、 単に基板という。 ) にマ スキング材を塗布する装置について、 一実施例の概要を示す平面図 (図 5 A) および側面図 (図 5 B ) を参照しながら説明する。
図 5の装置は、 円盤状の回転ロール (1 3 ) を 1回転させる間に、 ロール 塗布面へのマスキング材を含む溶液の供給、 基板へのマスキング材の塗布、 およびロール表面に残留するマスキング材の清掃の 1サイクルを実施できる ように構成されている。
図中、 1 1は複数の固体電解コンデンサ用基板 (1 2 a, 1 2 b , 1 2 c ……) の一端を短冊状に固定する金属製ガイドである。
金属製ガイド (1 1 ) への基板の固定は電気的あるいは機械的に接合する ことにより行なうことができる。 接合方法としては、 例えば半田付け、 導電 ペーストによる接合、 超音波溶接、 スポット溶接、 電子ビーム溶接などが挙 けられる。
金属製ガイド (1 1 ) は回転ロール (1 3 ) 上を矢印方向に直線運動する。 金属製ガイド (1 1 ) を移動する手段 (図示せず) としてモー夕一、 ベルト、 シリンダー等慣用の手段が利用できる。 金属製ガイドの進行速度 (VI) と 回転ロールの回転速度 (V2) の関係を調整することにより基板 (1 2 ) の 側面をも塗布することができる。 すなわち、 図 6 Aに示すように、 金属製ガ イドの進行速度 (VI) が回転速度 (V2) より大きい時は、 基板の進行方向 先端部の側面を塗布でき、 金属製ガイドの進行速度 (VI) が回転速度 (V 2) より小さいときは、 基板の進行方向後端部の側面部を塗布できる (図 6 B ) 。
また、 本発明の装置では、 金属ガイドと回転ロールとの相対的な位置関係 を反転させ金属ガイドに固定した基板の両面および両側面を塗布できる機構 を設けている。
このような機構の一例は金属ガイドの反転機構である。 反転はモーター、 シリンダーを利用するか、 あるいは金属製ガイドの保持部を長手方向に対し て回動自在に設け保持部を半回転させることなどにより行なうことができる。 反転した金属ガイドに固定された基板の反対面を塗布するためには、 回転 ロールの塗布面と基板の塗布位置との関係を調整する必要があるが、 慣用の 手段により金属ガイドを移動するか、 回転ロールの位置を移動するか、 ある いは両者を移動することにより行なうことができる。
また、 2台の回転ロールを用意し、 反転した金属ガイドに固定された基板 の未塗布面を専用の回転ロールにて塗布してもよい。
さらに、 基板を挟み配置に 2台の回転ロールを設置し、 金属製ガイドに固 定した基板の両面及び両側面を同時にマスキングすることもできる。
回転口一ル (1 3 ) は、 前記基板の所望の箇所に所定の押圧力で接触する 平滑な塗布面を有する円盤状の回転ロールである。
回転ロール (1 3 ) としては、 マスキング材を含む溶液に耐性のある硬質 の材料からなる金属製 (ステンレス鋼等) あるいはセラミック材料製のもの が使用される。 その大きさは、 1回転する間 (マスキング材の塗布の 1サイ クル) にマスキング材が変質しない大きさであればよく、 通常直径約 2 mm 〜約 5 0 0 mmであり、 本発明においては限定されない。 また、 ロールの塗 布面幅は、 所望幅にマスキング材が塗布できる幅であり、 好ましくは、 0.2〜 3.0mm程度である。
前記回転ロール (13) の周囲には、 前記基板との接触位置の後方 (回転 方向の後方) に塗布面にマスキング材を含む溶液を供給する手段 (14) 、 基板 (12) との接触位置の前方に回転ロールの塗布面を清掃するスクレー パ一 (15) 及び拭き取り材 (16) が配設されている。
マスキング材を含む溶液を供給する手段 (14) は、 本例では脈動の少な い密閉された定量連続吐出ディスペンザを備えた定量塗布液供給機である。 定量塗布液供給機から、 マスキング材を含む溶液に耐性のある樹脂製のチュ ーブを通して吐出ニードルにより所定量連続的にロール塗布面にマスキング 材を含む溶液を供給する。
また、 マスキング材を含む溶液をロール (13) の塗布面に安定して供給 するためにニードル先端部とロール面との距離を安定させる微調整機構が設 けられている。 このような機構の一例は、 マイクロメ一夕ヘッド (ネジ機 構) を使って上下の位置を微調整するものである。
マスキング材を含む溶液を供給された回転ロール (13) の塗布面は、 基 板との接触位置にて一定の押圧力で基板と接触する。 この接触時の押圧力は、 基板の弾性限度内であり、 好ましくは回転運動をするロールの平滑な頂点 (塗布面) における撓み量が約 0.03〜0.3mmの範囲となるようにする。 具体 的な押圧力は、 基板の種類や厚みによって異なるため一概に言えないが、 例 えば 0.002〜0.02gZ基板 (幅 3mmX厚さ O.lmm) 程度とする。
次いで、 ロール塗布面を清掃する。 清掃手段としては、 例えば、 機械式ス クレーバ (15) と拭き取り材 (16) を使用する。
スクレーパー (15) はステンレス鋼、 セラミックス材料などのロールと 同質あるいはそれよりは柔らかい材質からなる材料製 (樹脂、 鋼材等) のブ レードであり、 少なくとも先端がロールの塗布面と密接するように配置され、 基板塗布後のロールの塗布面に残留するマスキング材をかき落とす。 スクレ —パー (1 5 ) の前方 (回転方向の前方) に配設された、 樹脂繊維に有機溶 剤及び Zまたは水 (マスキング材溶液に使用しているのと同一の溶剤など) をしみ込ませた拭き取り材 (1 6 ) にてロール塗布面の付着物をこすり落と し、 次の塗布サイクルに備えられる。
本装置ではマスキング材を含む溶液を密閉容器から無脈動式の駆動方式を 採用することにより回転ロールの塗布面に安定して供給できる。
[固体電解質]
本発明において、 固体電解質としては、 ピロール、 チォフェン、 フランあ るいはァニリン構造のいずれか 1つの二価基、 またはそれらの置換誘導体の 少なくとも 1つを繰り返し単位として有する導電性重合体が好ましく使用で きるが、 材料として従来知られているものを特に制限なく使用できる。
例えば、 3, 4 _エチレンジォキシチォフェンモノマー及び酸化剤を好ま しくは溶液の形態において、 前後して別々にまたは一緒に金属箔の酸化皮膜 層に塗布して形成する方法 (特開平 2-15611 号公報 (米国特許第 4,910,645 号) ゃ特開平 10-32145 号公報 (欧州特許公開第 820076(A2)号) ) 等が利用 できる。
一般に導電性重合体には、 ァリールスルホン酸塩系ドーパントが使用され る。 例えば、 ベンゼンスルホン酸、 トルエンスルホン酸、 ナフ夕レンスルホ ン酸、 アントラセンスルホン酸、 アントラキノンスルホン酸などの塩を用い ることができる。 発明を実施するための最良の形態
以下に実施例を挙げて説明するが、 下記の例によって本発明は何ら限定 されるものではない。 実施例 1 :
マスキング工程
厚み 1 0 0 mの化成アルミ箔を 3 mm幅に切断 (スリット) したもの を 1 3 mmずつの長さに切り取り、 この箔片の一方の短辺部を金属製ガイ ドに溶接により固定し、 固定していない端から 7 mmの箇所に粘度 8 0 0 c Pに調整したポリイミド樹脂溶液 (宇部興産 (株) 製;ュピコート F S - 1 0 0 L ) を、 塗布面幅 0.4mmの円盤状の塗布装置に供給して、 塗布装 置の塗布面をアルミ化成箔の全周に当接 ·押圧して 0.8mm幅に線状に描き、 約 1 8 0 °Cで乾燥させマスキング層 (ポリイミド膜) を形成した。
化成処理工程
塗布装置から外した金属製ガイドに固定されたアルミ箔の先端からマス キング線までの部分をアジピン酸アンモニゥム水溶液中に浸して 1 3 Vの 電圧を印加して切口部の未化成部を化成し、 誘電体皮膜を形成した。
固体電解質形成工程
化成処理層領域に以下のようにして固体電解質を形成した。
すなわち、 アルミ箔の先端から 4 mmのマスキング層を境にしてマスキ ング層と逆側の部分 (3 mm X 4 mm) を 3, 4 _エチレンジォキシチォ フェン 2 0質量%を含むイソプロパノール溶液 (溶液 1 ) に浸漬し、 引き 上げて 2 5 °Cで 5分間放置した。 次にモノマー溶液処理したアルミ箔部分 を過硫酸アンモニゥム 3 0質量%を含む水溶液 (溶液 2 ) に浸漬し、 これ を 6 0 °Cで 1 0分間乾燥し、 酸化重合を行なった。 溶液 1に浸漬してから 溶液 2に浸漬し酸化重合を行なう操作を 2 5回繰返して固体電解質層を形 成した。
チップ型固体電解コンデンサ素子の構築と試験
マスキング層を含む部分をリードフレーム上に銀ペーストで接合しなが ら 3枚重ね、 導電性重合体のついていない部分に陽極リード端子を溶接に より接続し、 全体をエポキシ樹脂で封止し、 1 2 0°Cで定格電圧を印加し て 2時間エージングして合計 3 0個のチップ型固体電解コンデンサを作製 した。 作製したチップ型固体電解コンデンサの断面図を図 7に示す。
このコンデンサ素子について、 23 0°Cの温度領域を 30秒通過させる ことによりリフロー試験を行ない、 定格電圧印加後 1分後の漏れ電流を測 定し、 測定値が 1 CV以下のものについて平均値を求め、 0.04CV以上を不 良品とした。 これらの結果を表 1に示す。
コンデンサマスキング部分の構造分析
実施例 1の固体電解質形成工程にて金属材料としてアルミニウム箔を使 用し、 固体電解質として含硫黄高分子 (3, 4—エチレンジォキシチオフ ェンの重合体) 層による固体電解質層の形成されたコンデンサ材料 (試 料) をエポキシ樹脂 (商品名: Quetol-812) 中に入れ、 30〜60°C、 20〜 30時間熱硬化させて試料を固定した後、 図 1 Dの A— A' に相当する箇 所で切断したマスキング部分周辺の写真 (倍率 500倍) を図 8に示す。 切断は A— A' についてミクロ! ムで行ない、 その切断面について微 小体積 (1 zm3程度) に含まれる元素の組成を分析する装置である電子線 マイクロアナライザ一 ( E P M A electron probe microanalyser) を使用して特 定の元素の二次元的な分布状態をマッピング法で観察した。 上記の電子線 マイクロアナライザ一によれば単位体積 1 /zm3に対して、 1〜数% (質 量) までの元素の定量分析が可能である。
拡大写真中に、 アルミニウム芯金 (l a) 、 誘電体層 (l b) 、 固体電 解質 (含硫黄高分子層) (4) 及びマスキング層 (2) が観察できる。
(l a) 及び (l b) にはアルミニウム元素が含まれ、 (4) には硫黄 元素が含まれ、 (4) 及び (2) には炭素元素が含まれている。 従って、 炭素、 硫黄、 アルミニウム等の元素分析を調べることにより、 (l a) 、 (l b) 、 (4) 、 (2) の各部位について、 マスキング材及び重合体の 分布が明確になった。 その様子を図 2に模式図として示す。
硫黄元素 (S ) の検出分布の観察から、 誘電体層 (l b ) において固体 電解質 (4 ) が分布している領域が明確に別れ、 マスキング材が固体電解 質の浸入をプロックしていることが判明した。 ここで浸入をプロックする とは、 マスキング材の浸透部に固体電解質材料が 5質量%以上存在しない ことをいう。 この値は、 例えば前記電子線マイクロアナライザ一による識 別用元素の検出限界値および固体電解質中の識別用元素の含有率より求め ることが出来る。
以上の結果から、 本発明による固体電解コンデンサによりコンデンサ素 子を形成した場合、 漏れ電流、 容量などが改善されたコンデンサ特性が得 られるのは、 マスキング材が誘電体皮膜中に浸透しかつ前記浸透部の上に 形成されるが、 固体電解質は前記マスキング材の浸透した誘電体皮膜中に 浸透できずかつ前記浸透部の上に形成されたマスキング材により完全にブ ロックされる構造によるものと考えられる。 実施例 2 :
実施例 1においてマスキング材としてポリイミド樹脂溶液 (新日本理化 (株) 製; リカコート T M) を用いて塗布したほかは、 同様にしてチップ型 固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験を行 なった。 その結果を表 1に示す。 実施例 3 :
実施例 1において固体電解質形成工程での溶液 2に、 さらに 2—アント ラキノンスルホン酸ナトリウム (東京化成社製) 力 0.07質量%となるよう に調製した水溶液で浸漬し、 酸化重合を行なったほかは、 同様にしてチッ プ型固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験 を行なった。 その結果を表 1に示す。 実施例 4 :
実施例 1において固体電解質形成工程での溶液 2に、 さらに 2—ナフタ レンスルホン酸ナトリウム (東京化成社製) が 0.06質量%となるように調 製した水溶液で浸潰し、 酸化重合を行なったほかは、 同様にしてチップ型 固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験を行 なった。 その結果を表 1に示す。 実施例 5 :
実施例 3において、 3, 4一エチレンジォキシチォフェンの代わりに N ーメチルビロールを用いた以外は実施例 3と同様にしてチップ型固体電解 コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験を行なった。 その結果を表 1に示す。 比較例 1 :
実施例 1においてマスキング層を形成する代わりに耐熱性基材と耐熱性 粘着剤よりなるテープをアルミ箔の表裏に幅 l mmで、 張り付けたほかは、 同様にしてチップ型固体電解コンデンサを作製し、 同様に漏れ電流の測定 とリフロー試験を行なった。 その結果を表 1に示す。 また、 実施例 1と同 様に、 E P MAによる硫黄元素の分析から、 誘電体層 (l b ) において、 固体電解質層 (4 ) が分布している領域が明確に分かれておらず、 マスキ ング層に固体電解質が浸入していた。 比較例 2 :
実施例 1において高分子絶縁化膜を形成する代わりにフエノール樹脂を 塗布硬化させ箔の表裏に幅 0.8mmの線を描いたほかは、 同様に
型固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験を 行なった。 その結果を表 1に示す。 また、 比較例 1と同様に E P MA分析 から、 マスキング層に固体電解質が浸入していた。
Figure imgf000028_0001
実施例 6 :
第一マスキング工程
厚み 1 0 0 mの化成アルミ箔を 3 mm幅に切断 (スリット) したもの を 1 3 mmずつの長さに切り取り、 この箔片の一方の短辺部を金属製ガイ ドに溶接により固定し、 固定していない端から 7 mmの箇所に粘度 8 0 0 c pに調整したポリイミド樹脂溶液 (新日本理化 (株) 製; リカコ一ト1" を、 塗布面幅 0.4mmの円盤状の塗布装置に供給して、 塗布装置の塗布 面をアルミ化成箔の全周に当接 ·押圧して 0.8mm幅に線状に描き、 約 1 8 0 °Cで乾燥させ第一のマスキング層 (ポリイミド膜) を形成した。
化成処理工程 塗布装置から外した金属製ガイドに固定されたアルミ箔の先端から第 1 のマスキング線までの部分をアジピン酸アンモニゥム水溶液中に浸して 1 3 Vの電圧を印加して切口部の未化成部を化成し、 誘電体皮膜を形成した。 第二マスキング工程
次に金属製ガイドに固定されたアルミ箔を再び塗布装置に装着して、 固 定していない先端から 4 mmの箇所に上記と同様にしてポリイミド樹脂溶 液 (新日本理化 (株) 製; リカコート1 " を 0.8mm幅に線状に描き、 約 1 8 0 °Cで乾燥させ第二のマスキング層 (ポリイミド膜) を形成した。
固体電解質形成工程
前記第一のマスキング層と第二のマスキング層との間を除く化成処理層 領域に以下のようにして固体電解質を形成した。
すなわち、 アルミ箔の先端から 4 mmの第二のマスキング層を境にして 第一のマスキング層と逆側の部分 (3 mm X 4 mm) を 3, 4一エチレン ジォキシチォフェン 2 0質量%を含むイソプロパノール溶液 (溶液 1 ) に 浸漬し、 引き上げて 2 5 °Cで 5分間放置した。 次にモノマー溶液処理した アルミ箔部分を過硫酸アンモニゥム水溶液 3 0質量%を含む水溶液 (溶液 2 ) に浸漬し、 これを 6 0 °Cで 1 0分間乾燥し、 酸化重合を行なった。 溶 液 1に浸漬してから溶液 2に浸漬し酸化重合を行なう操作を 2 5回繰返し て固体電解質層を形成した。
切断工程
上記の固体電解質層を形成したアルミ箔素子の導電性重合体層を形成し た部分にカーボンペーストと銀ペーストを付けた後、 前記第一のマスキン グ層と第二のマスキング層との間でアルミ箔を切断した。
チップ型固体電解コンデンサ素子の構築と試験
第二のマスキング層を含む切断部分をリードフレーム上に銀ペーストで 接合しながら 3枚重ね、 導電性重合体のついていない部分に陽極リード端 子を溶接により接続し、 全体をエポキシ樹脂で封止し、 1 2 0 °Cで定格電 圧を印加して 2時間エージングして合計 3 0個のチップ型固体電解コンデ ンサを作製した。 作製したチップ型固体電解コンデンサの断面図を図 7に 示す。
このコンデンサ素子について、 2 3 0 °Cの温度領域を 3 0秒通過させる ことによりリフロ一試験を行ない、 定格電圧印加後 1分後の漏れ電流を測 定し、 測定値が 1 C V以下のものについて平均値を求め、 0.04C V以上を不 良品とした。 これらの結果を表 2に示す。 実施例 7 :
実施例 6において第一マスキング材としてポリイミド樹脂溶液 (宇部興 産 (株) 製;ュピコート F S— 1 0 0 L ) を用いて塗布したほかは、 同様 にしてチップ型固体電解コンデンサを作製し、 同様に漏れ電流の測定とリ フロー試験を行なった。 その結果を表 2に示す。 実施例 8 :
実施例 6において第一マスキング材及び第二マスキング材としてポリイ ミド樹脂溶液 (宇部興産 (株) 製;ュピコ一 TM F S— 1 0 0 L ) を用い て塗布したほかは、 同様にしてチップ型固体電解コンデンサを作製し、 同 様に漏れ電流の測定とリフ口一試験を行なった。 その結果を表 2に示す。 実施例 9 :
実施例 8において固体電解質形成工程での溶液 2に、 さらに 2 —アント ラキノンスルホン酸ナトリウム (東京化成社製) 力 S 0.07質量%となるよう に調製した水溶液で浸漬し、 酸化重合を行なったほかは、 同様にしてチッ プ型固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験 を行なった。 その結果を表 2に示す。 実施例 1 0 :
実施例 8において固体電解質形成工程での溶液 2に、 さらに 2 —ナフ夕 レンスルホン酸ナトリウム (東京化成社製) が 0.06質量%となるように調 製した水溶液で浸漬し、 酸化重合を行なったほかは、 同様にしてチップ型 固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフロー試験を行 なった。 その結果を表 2に示す。 比較例 3 :
マスキングを一度行なった他は実施例 6と同様にしてチップ型固体電解 コンデンサを作製した。 すなわち、 第 2のマスキング工程 (アルミ箔の先 端から 4 mmの位置) のみを実施して高分子 (ポリイミド) 膜を形成し、 次いで化成処理工程、 固体電解質形成工程、 及び切断工程を行ない、 チッ プ型固体電解コンデンサを作製し、 漏れ電流の測定とリフロー試験を行な つた。 その結果を表 2に示す。 比較例 4 :
比較例 3において第二のマスキング層を形成する代わりに耐熱性基材と 耐熱性粘着剤よりなるテープをアルミ箔の表裏に幅 l mmで、 張り付けた ほかは、 同様にしてチップ型固体電解コンデンサを作製し、 同様に漏れ電 流の測定とリフ口一試験を行なった。 その結果を表 2に示す。 比較例 5 :
比較例 3において高分子絶縁化膜を形成する代わりにフエノール樹脂を 塗布硬化させ箔の表裏に幅 0.8mmの線を描いたほかは、 同様に 型固体電解コンデンサを作製し、 同様に漏れ電流の測定とリフ口一試験を 行なった。 その結果を表 2に示す。 表 2
Figure imgf000032_0001
産業上の利用可能性
本発明に係る固体電解コンデンサの製造方法の従来技術に比べた長所は 以下の通りである。
(a) マスキング材として、 従来のテープやエポキシ系、 フエノール系樹脂に 代えて、 ポリイミド樹脂を使用したことにより、 誘電体皮膜の表面が十分 に被覆され、 さらに芯金までの誘電体皮膜中に十分にマスキング材が浸透 する構造となる結果、 導電性高分子含浸部と陽極部が完全に分離され、 漏 れ電流が低減し、 コンデンサ素子形成時及び素子化した後、 リフロー処理 時等に発生する応力を緩和することができる。
(b)化成箔切ロ部を完全に化成することにより、 導電性重合体や導電ペース トの切口部への浸入による漏れ電流の増加が防止できる。 (c) マスキング層により、 次工程の化成処理の際に化成液がマスキング層を 超えて滲み上がることがなく確実にかつ容易に化成処理出来る。 またマス キング材が前記誘電体皮膜中に浸透して、 かつ前記浸透部の上に形成され るため固体電解質が前記マスキング材が浸透した誘電体皮膜中に浸透でき ず、 前記浸透部の上に形成されたマスキング材によりマスキングされた構 造を有するため、 陰極部と陽極部とが確実に絶縁できる。
(d) マスキング材として使用するポリイミド膜は導電性重合体の重合時に使 用する水系またはアルコール等の有機溶媒に耐性があり誘電体皮膜中に浸 透し、 陽極部と陰極部との絶縁性を確実に保持できる。
また、 マスキングを 2回実施する方法によれば、 第一のマスキング層 (仮マスキング層) により、 次工程の化成処理の際に化成液がマスキング 層を超えて滲み上がることがなく、 必要な箇所 (固体電解コンデンサの陽 極部を除く箇所) を確実にかつ容易に化成処理出来る。 すなわち、 仮マス キング層がないと化成液が基板上を滲み上り、 化成時の漏れ電流が大きく なり電極と短絡することがある。 長い基板 (金属箔) を用いて化成液と電 極位置の間隔をとれば短絡の可能性は低減できるが、 経済性や生産性が低 下する。 仮マスキング層を設けない場合、 化成液の滲み上がり量を規制す るのが困難であり、 化成状態を管理できないが、 マスキングを 2回実施す る方法によればこのような問題が解決できる。
さらに、 本発明のマスキング材塗布方法及び装置によれば、 固体電解コ ンデンサ用のマスキング材を基板に塗布するに際して、 ロールを 1回転さ せる毎に溶剤に均一に溶解または分散したマスキング材 (ポリイミド樹脂 等) を直線状で、 かつ安定した線幅で連続的に塗布することができる。

Claims

請求の範囲
1 . 誘電体皮膜を有し、 弁作用を有する金属材料上の所望の位置に固体 電解質を形成してなる固体電解コンデンザの製造方法において、 前記誘電 体皮膜中に浸透しかつ前記浸透部の上にマスキング層を形成するマスキン グ材溶液を塗布する工程を有することを特徴とする固体電解コンデンサの 製造方法。
2 . 誘電体皮膜を有し、 弁作用を有する金属材料上の所望の位置に固体 電解質を形成してなる固体電解コンデンサの製造方法において、 前記誘電 体皮膜中に浸透しかつ前記浸透部の上にマスキング層を形成するマスキン グ材溶液を塗布する工程を有し、 前記塗布工程において誘電体皮膜中に浸 透し固化したマスキング樹脂が、 後工程で形成される固体電解質の浸入を 阻止する固体電解コンデンザの製造方法。
3 . 前記マスキング材溶液塗布工程による誘電体皮膜のマスキング樹脂 浸透部における固体電解質濃度が、 電子線マイクロアナライザ一による検 出限界値以下である請求の範囲 2に記載の固体電解コンデンザの製造方法。
4 . 金属製ガイドの一端に複数の固体電解コンデンサ用基板を短冊状に 固定し、 前記金属製ガイドを移動しつつ、 前記基板の所望の箇所に円盤状 の回転ロールを所定の押圧力で接触させ、 マスキング材溶液供給手段から 回転ロール塗布面に供給されたマスキング材溶液を前記固体電解コンデン サ用基板の所望箇所の両面及び両側面に塗布してマスキング層を形成する 請求の範囲 1乃至 3のいずれかに記載の固体電解コンデンザの製造方法。
5 . 金属製ガイドと回転ロールとの相対的な位置関係を反転させ金属製 ガイドに固定した基板の両面及び両側面にマスキング材溶液を塗布する請 求の範囲 4に記載の固体電解コンデンザの製造方法。
6 . 誘電体皮膜を有し、 所定の形状に裁断された弁作用を有する金属材 料上の所望の位置に固体電解質を形成してなる固体電解コンデンサの製造 方法において、 前記金属材料上にマスキング材溶液を塗布して第一のマス キング層を形成する工程と第二のマスキング層を形成する工程を有し、 少 なくとも第二のマスキング層形成工程により前記誘電体皮膜中に浸透しか つ前記浸透部の上にマスキング層が形成される請求の範囲 1に記載の固体 電解コンデンサの製造方法。
7 . 誘電体皮膜を有し、 所定の形状に裁断された弁作用を有する金属材 料上の所望の位置に固体電解質を形成してなる固体電解コンデンサの製造 方法において、
前記金属材料上に化成処理を施す境界となる領域の全周にマスキング材 溶液を線状に塗布、 加熱して第一のマスキング層を形成する工程、
前記金属材料の第一のマスキング層を有する領域で区切られた固体電解 質を形成する領域を化成処理する工程、
前記第一のマスキング層と所定の間隔をおいて、 前記化成処理した金属 材料上の領域の全周にさらにマスキング材溶液を線状に塗布、 加熱して第 二のマスキング層を形成する工程、
前記化成処理した領域のうち、 前記第一のマスキング層と第二のマスキ ング層との間を除く領域に固体電解質を形成する工程、 及び
前記第一のマスキング層と第二のマスキング層との間の領域で前記金属 材料を切断する工程を含む請求の範囲 6に記載の固体電解コンデンザの製 造方法。
8 . マスキング材溶液として、 耐熱性樹脂またはその前駆体の溶液を使 用する請求の範囲 1乃至 7のいずれかに記載の固体電解コンデンサの製造 方法。
9 . 前記耐熱性樹脂またはその前駆体の溶液が、 加熱によって固化する 低分子量のポリイミドの溶液またはポリアミック酸溶液である請求の範囲 8に記載の固体電解コンデンザの製造方法。
1 0 . 前記マスキング材溶液がさらにシリコーンオイル、 シランカップ リング剤またはポリイミドシロキサンを含有する請求の範囲 8または 9に 記載の固体電解コンデンザの製造方法。
1 1 . 前記弁作用を有する金属材料が、 アルミニウム、 タンタル、 ニォ ブ、 チタン、 ジルコニウム及びそれらの合金から選ばれる材料である請求 の範囲 1乃至 7のいずれかに記載の固体電解コンデンザの製造方法。
1 2 . 前記固体電解質が、 ピロ一ル、 チォフェン、 ァニリン、 フランの 二価基のいずれか 1つ、 またはそれらの置換誘導体の少なくとも 1つを繰 り返し単位として含む高分子固体電解質である請求の範囲 1乃至 7のいず れかに記載の固体電解コンデンザの製造方法。
1 3 . 高分子固体電解質が、 3, 4 _エチレンジォキシチォフェンの重 合体を含む請求の範囲 1 2に記載の固体電解コンデンザの製造方法。
1 4 . 前記固体電解質がさらにァリールスルホン酸塩系ドーパントを含 む請求の範囲 1 2または 1 3に記載の固体電解コンデンサの製造方法。
1 5 . 誘電体皮膜を有し、 弁作用を有する金属材料上の所望の位置に固 ; 体電解質が形成された固体電解コンデンサにおいて、 マスキング材溶液が 前記誘電体皮膜中に浸透しかつ前記浸透部の上にマスキング層が形成され、 前記固体電解質が前記マスキング材溶液の浸透した誘電体皮膜中に浸透せ ずかつ前記浸透部の上に形成されたマスキング層によりマスキングされた 構造を有する固体電解コンデンサ。
1 6 . 耐熱性樹脂またはその前駆体のマスキング材溶液を用いて、 前記 マスキング層が形成される請求の範囲 1 5に記載の固体電解コンデンサ。
1 7 . 前記マスキング材溶液が浸透した誘電体皮膜中の前記固体電解質 濃度が、 電子線マイクロアナライザ一による検出限界値以下である請求の 範囲 1 5に記載の固体電解コンデンサ。
1 8 . 金属製ガイドの一端に複数の固体電解コンデンサ用基板を短冊状 に固定し、 前記金属製ガイドを移動しつつ、 前記基板の所望の箇所に円盤 状の回転ロールを所定の押圧力で接触させ、 マスキング材溶液供給手段か ら回転ロール塗布面に供給されたマスキング材溶液を前記固体電解コンデ ンサ用基板の所望箇所の両面及び両側面に塗布することを特徴とするマス キング材塗布方法。
1 9 . 金属製ガイドと回転ロールとの相対的な位置関係を反転させ金属 製ガイドに固定した基板の両面及び両側面にマスキング材溶液を塗布する 請求の範囲 18に記載のマスキング材塗布方法。
20. 複数の固体電解コンデンサ用基板 (12) の一端を短冊状に固定 する金属製ガイド (1 1) 、 前記金属製ガイドを移動する手段、 前記基板
(12) の所望の箇所に所定の押圧力で接触する円盤状の回転ロール (1 3) 、 前記回転ロールの塗布面にマスキング材を含む溶液を供給する手段
(14) 、 及び回転ロール (1 3) の塗布面を清掃するスクレーパー (1 5) を備え、 固体電解コンデンサ用基板 (12) の所望箇所の両面及び両 側面にマスキング材を塗布するマスキング材塗布装置。
21. 金属製ガイドと回転ロールとの相対的な位置関係を反転させ金属 製ガイドに固定した基板の両面及び両側面を塗布する請求の範囲 20に記 載のマスキング材塗布装置。
22. 2台の回転ロールを備え、 反転した金属ガイドに固定された基板 の反対面を専用の回転ロールにて塗布する請求の範囲 20に記載の装置。
23. 基板を挟む状態に配置した 2台の回転ロールを設け、 移動する金 属製ガイドに固定した基板の両面及び両側面に同時にマスキング材を塗布 する請求の範囲 20に記載のマスキング材塗布装置。
24. 基板が弁作用金属材料からなり、 回転ロールの塗布面が前記基板 にその弾性限度内の押圧力で接触する請求の範囲 20乃至 23のいずれか に記載のマスキング材塗布装置。
25. 回転ロールが鋼製材料またはセラミック材料である請求の範囲 2 0乃至 2 3のいずれかに記載のマスキング材塗布装置。
2 6 . スクレーパーが回転ロール塗布面に線接触する樹脂製もしくは回 転ロール材より柔らかい鋼製ブレードである請求の範囲 2 0乃至 2 5のい ずれかに記載のマスキング材塗布装置。
2 7 . スクレーパーの前方に樹脂繊維に有機溶剤及び または水をしみ 込ませた拭き取り材 (1 6 ) を配設した請求の範囲 2 0乃至 2 6のいずれ かに記載のマスキング材塗布装置。
2 8 . マスキング材供給手段 (4 ) が定量連続吐出機と管状部材で構成 されている請求の範囲 2 0乃至 2 7のいずれかに記載のマスキング材塗布
PCT/JP2000/002822 1999-04-30 2000-04-28 Condensateur electrolytique solide et son procede de fabrication WO2000067267A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2001-7013646A KR100450885B1 (ko) 1999-04-30 2000-04-28 고체전해콘덴서 및 그 제조방법
JP2000616028A JP4623404B2 (ja) 1999-04-30 2000-04-28 固体電解コンデンサ及びその製造方法
EP00921093.1A EP1193727B1 (en) 1999-04-30 2000-04-28 Solid electrolytic capacitor and method for producing the same
AU41451/00A AU4145100A (en) 1999-04-30 2000-04-28 Solid electrolytic capacitor and method for producing the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP12359899 1999-04-30
JP11/123598 1999-04-30
JP12359999 1999-04-30
JP11/123599 1999-04-30
US13584399P 1999-05-24 1999-05-24
US13584499P 1999-05-24 1999-05-24
US60/135,843 1999-05-24
US60/135,844 1999-05-24
JP2000/39185 2000-02-17
JP2000039185 2000-02-17

Publications (1)

Publication Number Publication Date
WO2000067267A1 true WO2000067267A1 (fr) 2000-11-09

Family

ID=27526997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002822 WO2000067267A1 (fr) 1999-04-30 2000-04-28 Condensateur electrolytique solide et son procede de fabrication

Country Status (4)

Country Link
EP (2) EP2264727B1 (ja)
KR (1) KR100450885B1 (ja)
AU (1) AU4145100A (ja)
WO (1) WO2000067267A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059776A (ja) * 2001-08-10 2003-02-28 Nippon Chemicon Corp 固体電解コンデンサ
JP2005216929A (ja) * 2004-01-27 2005-08-11 Nec Tokin Corp 表面実装薄型コンデンサ及びその製造方法
JP2006303310A (ja) * 2005-04-22 2006-11-02 Showa Denko Kk 小片の一括処理方法及びその方法に用いる装置
WO2006118174A1 (ja) * 2005-04-28 2006-11-09 Showa Denko K. K. 支持部材の再生方法及びその方法に用いる装置
JP2007109722A (ja) * 2005-10-11 2007-04-26 Showa Denko Kk 固体電解コンデンサ素子の製造方法
JP2007123733A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk 固体電解コンデンサ素子の製造方法
WO2007061005A1 (ja) * 2005-11-22 2007-05-31 Showa Denko K.K. 固体電解コンデンサ、その製法、および固体電解コンデンサ用基材
EP1437750A4 (en) * 2001-10-18 2007-10-10 Matsushita Electric Ind Co Ltd FIXED ELECTROLYTE CONDENSER AND METHOD FOR PRODUCING THE CONDENSER
WO2008001630A1 (en) * 2006-06-27 2008-01-03 Showa Denko K.K. Solid electrolytic capacitor
WO2008038584A1 (fr) * 2006-09-25 2008-04-03 Showa Denko K. K. Matière de base pour condensateur électrolytique solide, condensateur utilisant une telle matière, et procédé de fabrication dudit condensateur
JPWO2006118174A1 (ja) * 2005-04-28 2008-12-18 昭和電工株式会社 支持部材の再生方法及びその方法に用いる装置
JP2009088277A (ja) * 2007-09-28 2009-04-23 Nippon Chemicon Corp 電解コンデンサ
JP2010267866A (ja) * 2009-05-15 2010-11-25 Murata Mfg Co Ltd 固体電解コンデンサ
CN102005300A (zh) * 2010-10-26 2011-04-06 福建国光电子科技股份有限公司 一种固体电解电容器的制备工艺
USD653981S1 (en) 2010-08-06 2012-02-14 Life Technologies Corporation Fluorometer
WO2017056623A1 (ja) * 2015-09-29 2017-04-06 日本ライフライン株式会社 バルーンカテーテルおよびケミカルアブレーション装置
US9964490B2 (en) 2006-01-24 2018-05-08 Life Technologies Corporation Device and methods for quantifying analytes
WO2023162904A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 固体電解コンデンサ素子および固体電解コンデンサ、固体電解コンデンサ素子の製造方法
US11862406B2 (en) 2019-01-24 2024-01-02 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US12198869B2 (en) 2019-10-31 2025-01-14 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740116B2 (ja) * 2002-11-11 2006-02-01 三菱電機株式会社 モールド樹脂封止型パワー半導体装置及びその製造方法
US7848083B2 (en) 2005-06-23 2010-12-07 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US9011627B2 (en) 2007-10-05 2015-04-21 Carver Scientific, Inc. Method of manufacturing high permittivity low leakage capacitor and energy storing device
JP5358839B2 (ja) 2007-10-05 2013-12-04 カーバー サイエンティフィック,インコーポレイテッド 高誘電率低漏洩キャパシタおよびエネルギー蓄積デバイス、ならびにそれらを作製するための方法
US8940850B2 (en) 2012-08-30 2015-01-27 Carver Scientific, Inc. Energy storage device
CN104854669B (zh) * 2012-11-07 2018-05-18 卡弗科学有限公司 高能量密度静电电容器
US9805869B2 (en) 2012-11-07 2017-10-31 Carver Scientific, Inc. High energy density electrostatic capacitor
MX2019006368A (es) 2016-12-02 2019-08-21 Carver Scient Inc Dispositivo de memoria y dispositivo de almacenamiento de energia capacitiva.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243116A (ja) * 1991-01-17 1992-08-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JP2640864B2 (ja) * 1989-08-22 1997-08-13 マルコン電子株式会社 タンタル固体電解コンデンサの製造方法
JP2962743B2 (ja) 1989-09-08 1999-10-12 日本ケミコン株式会社 固体電解コンデンサの製造方法
US5119274A (en) * 1989-12-29 1992-06-02 Matsushita Electric Industrial Co., Ltd. Solid capacitor
JPH03228305A (ja) * 1990-02-02 1991-10-09 Japan Carlit Co Ltd:The アルミニウム固体電解コンデンサの製造方法
DE69127240T2 (de) * 1990-05-25 1998-02-12 Matsushita Electric Ind Co Ltd Festelektrolytkondensatoren und ihr Herstellungsverfahren
JP3241758B2 (ja) 1991-08-09 2001-12-25 日本カーリット株式会社 固体電解コンデンサの製造方法
JPH05121274A (ja) * 1991-09-05 1993-05-18 Rohm Co Ltd 固体電解コンデンサ及びその製造方法
JPH05166681A (ja) 1991-12-13 1993-07-02 Elna Co Ltd 固体電解コンデンサの製造方法
US5483415A (en) * 1993-02-26 1996-01-09 Rohm Co., Ltd. Solid electrolytic capacitor and method of making the same
JP3801660B2 (ja) * 1994-05-30 2006-07-26 ローム株式会社 タンタル固体電解コンデンサ用コンデンサ素子の製造方法
US5643986A (en) 1995-03-17 1997-07-01 Ube Industries, Ltd. Polyimidosiloxane compositions
JP3243963B2 (ja) 1995-03-17 2002-01-07 宇部興産株式会社 ポリイミドシロキサン組成物
JPH0936003A (ja) 1995-07-14 1997-02-07 Nitsuko Corp 積層形固体コンデンサ及びその製造方法
JP3235475B2 (ja) 1996-07-16 2001-12-04 日本電気株式会社 固体電解コンデンサ及びその製造方法
JPH1180596A (ja) 1997-09-04 1999-03-26 Central Glass Co Ltd マスキング剤及びパターン膜の形成法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243116A (ja) * 1991-01-17 1992-08-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059776A (ja) * 2001-08-10 2003-02-28 Nippon Chemicon Corp 固体電解コンデンサ
EP1437750A4 (en) * 2001-10-18 2007-10-10 Matsushita Electric Ind Co Ltd FIXED ELECTROLYTE CONDENSER AND METHOD FOR PRODUCING THE CONDENSER
JP2005216929A (ja) * 2004-01-27 2005-08-11 Nec Tokin Corp 表面実装薄型コンデンサ及びその製造方法
JP2006303310A (ja) * 2005-04-22 2006-11-02 Showa Denko Kk 小片の一括処理方法及びその方法に用いる装置
JPWO2006118174A1 (ja) * 2005-04-28 2008-12-18 昭和電工株式会社 支持部材の再生方法及びその方法に用いる装置
WO2006118174A1 (ja) * 2005-04-28 2006-11-09 Showa Denko K. K. 支持部材の再生方法及びその方法に用いる装置
JP2007109722A (ja) * 2005-10-11 2007-04-26 Showa Denko Kk 固体電解コンデンサ素子の製造方法
JP2007123733A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk 固体電解コンデンサ素子の製造方法
WO2007061005A1 (ja) * 2005-11-22 2007-05-31 Showa Denko K.K. 固体電解コンデンサ、その製法、および固体電解コンデンサ用基材
JP4905358B2 (ja) * 2005-11-22 2012-03-28 株式会社村田製作所 固体電解コンデンサ、その製法、および固体電解コンデンサ用基材
US9964490B2 (en) 2006-01-24 2018-05-08 Life Technologies Corporation Device and methods for quantifying analytes
US11635383B2 (en) 2006-01-24 2023-04-25 Life Technologies Corporation Device and methods for quantifying analytes introduction
US10962480B2 (en) 2006-01-24 2021-03-30 Life Technologies Corporation Device and methods for quantifying analytes introduction
US10533946B2 (en) 2006-01-24 2020-01-14 Life Technologies Corporation Device and methods for quantifying analytes
JP4955000B2 (ja) * 2006-06-27 2012-06-20 昭和電工株式会社 固体電解コンデンサ
WO2008001630A1 (en) * 2006-06-27 2008-01-03 Showa Denko K.K. Solid electrolytic capacitor
WO2008038584A1 (fr) * 2006-09-25 2008-04-03 Showa Denko K. K. Matière de base pour condensateur électrolytique solide, condensateur utilisant une telle matière, et procédé de fabrication dudit condensateur
JP5088634B2 (ja) * 2006-09-25 2012-12-05 株式会社村田製作所 固体電解コンデンサ用基材それを用いたコンデンサおよびその製造方法
US8379369B2 (en) 2006-09-25 2013-02-19 Murata Manufacturing Co., Ltd. Base material for solid electrolytic capacitor, capacitor using the base material, and method for manufacturing the capacitor
KR101381191B1 (ko) * 2006-09-25 2014-04-04 가부시키가이샤 무라타 세이사쿠쇼 고체 전해 콘덴서용 기재, 그것을 사용한 콘덴서 및 그 제조방법
JP2009088277A (ja) * 2007-09-28 2009-04-23 Nippon Chemicon Corp 電解コンデンサ
JP2010267866A (ja) * 2009-05-15 2010-11-25 Murata Mfg Co Ltd 固体電解コンデンサ
USD653981S1 (en) 2010-08-06 2012-02-14 Life Technologies Corporation Fluorometer
CN102005300A (zh) * 2010-10-26 2011-04-06 福建国光电子科技股份有限公司 一种固体电解电容器的制备工艺
WO2017056623A1 (ja) * 2015-09-29 2017-04-06 日本ライフライン株式会社 バルーンカテーテルおよびケミカルアブレーション装置
US11862406B2 (en) 2019-01-24 2024-01-02 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US12283435B2 (en) 2019-01-24 2025-04-22 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US12198869B2 (en) 2019-10-31 2025-01-14 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method thereof
WO2023162904A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 固体電解コンデンサ素子および固体電解コンデンサ、固体電解コンデンサ素子の製造方法

Also Published As

Publication number Publication date
EP1193727A4 (en) 2007-12-12
KR100450885B1 (ko) 2004-10-01
EP2264727A3 (en) 2011-01-05
EP1193727B1 (en) 2017-08-02
EP2264727A2 (en) 2010-12-22
KR20010112460A (ko) 2001-12-20
EP1193727A1 (en) 2002-04-03
AU4145100A (en) 2000-11-17
EP2264727B1 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2000067267A1 (fr) Condensateur electrolytique solide et son procede de fabrication
US6890363B1 (en) Solid electrolytic capacitor and method for producing the same
JP5257796B2 (ja) 固体電解コンデンサ素子及びその製造方法
JP4955000B2 (ja) 固体電解コンデンサ
EP0953996A2 (en) Capacitor and its manufacturing method
US20100149729A1 (en) Solid electrolytic capacitor and method for manufacturing the same
WO2006137482A1 (ja) 固体電解コンデンサ及びその製造方法
WO2007061005A1 (ja) 固体電解コンデンサ、その製法、および固体電解コンデンサ用基材
JP4623404B2 (ja) 固体電解コンデンサ及びその製造方法
JP5088634B2 (ja) 固体電解コンデンサ用基材それを用いたコンデンサおよびその製造方法
JP2009289833A (ja) 固体電解コンデンサの製造方法
JP4811709B2 (ja) 固体電解コンデンサ素子の製造方法
WO2007074869A1 (ja) 固体電解コンデンサおよびその製造方法
JP2007123733A (ja) 固体電解コンデンサ素子の製造方法
JP2018082082A (ja) 固体電解コンデンサの製造方法
JP3752235B2 (ja) 電子部品用セパレータ
WO2022185999A1 (ja) 固体電解コンデンサおよびその製造方法
JPWO2007077914A1 (ja) 固体電解コンデンサ
JP2007152436A (ja) 金属箔の裁断方法
JP2023165284A (ja) 電解コンデンサ及び電解コンデンサの製造方法
JPH04188816A (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806986.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09720839

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2000 616028

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017013646

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2000921093

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2000921093

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017013646

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000921093

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017013646

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载