+

WO2000047706A1 - Methodes de lavage du linge en douceur - Google Patents

Methodes de lavage du linge en douceur Download PDF

Info

Publication number
WO2000047706A1
WO2000047706A1 PCT/US2000/003518 US0003518W WO0047706A1 WO 2000047706 A1 WO2000047706 A1 WO 2000047706A1 US 0003518 W US0003518 W US 0003518W WO 0047706 A1 WO0047706 A1 WO 0047706A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
fabric
surfactant
composition
compositions
Prior art date
Application number
PCT/US2000/003518
Other languages
English (en)
Inventor
Mary Vijayarani Barnabas
Toan Trinh
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU39994/00A priority Critical patent/AU3999400A/en
Publication of WO2000047706A1 publication Critical patent/WO2000047706A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • This invention relates to surfactant-containing laundry detergent products and methods for using such products to reduce damage to fabrics that go through many wash then wear cycles ("wash and wear fabrics"), especially fabrics made from cellulosic fibers, such as cotton, rayon, ramie, jute, flax, linen, polynosic-fibers, Lyocell (Tencel ®), polyester/cotton blends, other cotton blends, and the like, especially cotton, rayon, linen, polyester/cotton blends, and mixtures thereof, compared to laundry detergent products with low organic surfactant content and/or alternative laundry products that do not contain surfactants.
  • wash and wear fabrics especially fabrics made from cellulosic fibers, such as cotton, rayon, ramie, jute, flax, linen, polynosic-fibers, Lyocell (Tencel ®), polyester/cotton blends, other cotton blends, and the like, especially cotton, rayon, linen, polyester/cotton blends, and mixtures thereof, compared to laundry detergent products with low organic surfactant content and
  • the first type of damage is mechanical abrasion/friction damage producing fuzz and pill and fiber breakage. Mechanical damage causes a decrease in the abrasion resistance of the fabrics.
  • the second type of damage is chemical damage, such as bleach damage (i.e., oxidative damage). Oxidative damage is reflected by an increase of carbonyl groups and aldehyde groups on the fabric surface.
  • the two types of damage are interdependent in that one type of damage will make the fabric more prone to the other type. Thus the abrasion resistance of a fabric is decreased when it is soaked in a higher level of hypochlorite bleach and/or at longer soaking time.
  • laundry detergent compositions with high contents of organic surfactants do not damage or significantly reduce the fabric damage resulting from the multiple wash and wear cycles, as compared to laundry compositions with low contents of organic surfactants and/or laundry products that do not contain organic surfactants such as laundry discs (A.C. Lumley, B.M. Gatewood, "Effectiveness of Selected Laundry Disks in Removing Soil and Stains from Cotton and Polyester", Textile Chemist and Colorist, December 1998, pp. 31-35) commercially available under the trade name CLEAN POWER PLUS from The Magellan Group of Chattanooga, Tennessee, balls and other non-surfactant containing "cleaning" objects and/or devices.
  • laundry discs A.C. Lumley, B.M. Gatewood, "Effectiveness of Selected Laundry Disks in Removing Soil and Stains from Cotton and Polyester", Textile Chemist and Colorist, December 1998, pp. 31-35
  • CLEAN POWER PLUS commercially available under the trade name CLEAN
  • the present invention relates to an article of manufacture comprising a granular, paste, gel or liquid laundry detergent composition
  • a granular, paste, gel or liquid laundry detergent composition comprising a high level of a surfactant system including one or more surfactants packaged in a container in association with instructions to use the composition at a level that will provide from about 100 ppm to about 2500 ppm, preferably from about 300 ppm to about 1800 ppm, of organic surfactant in the aqueous wash solution to provide the benefit that fabric damage is reduced as compared to a comparable treatment with lower level of, or no, surfactants.
  • an article of manufacture comprising a granular, paste, gel or liquid laundry detergent composition comprising a high level of a surfactant system including one or more surfactants packaged in a container in association with instructions to use the composition is provided.
  • a method for reducing fabric damage to fabric that is subjected to multiple wash cycles is provided.
  • the present invention relates to an article of manufacture comprising a granular, paste, gel or liquid laundry detergent composition
  • a surfactant system including one or more surfactants packaged in a container in association with instructions to use the composition at a level that will provide a level of organic surfactant of from about 100 ppm to about 2500 ppm, preferably from about 300 ppm to about 1800 ppm, by weight of the aqueous wash solution, to provide the benefit that fabric damage is reduced as compared to a comparable treatment with lower level of, or no, surfactants.
  • the preferred levels of organic surfactant vary with the type of washing machines used.
  • the preferred level of surfactant is from about 800 ppm to about 2500 ppm, more preferably from about 900 ppm to about 1700 ppm, by weight of the aqueous wash solution.
  • the preferred level of surfactant is from about 200 ppm to about 1000 ppm, more preferably from about 300 ppm to about 900 ppm, by weight of the aqueous wash solution.
  • the preferred level of surfactant is from about 100 ppm to about 300 ppm, by weight of the aqueous wash solution.
  • a method for reducing fabric damage to wash and wear fabric that is subjected to multiple wash cycles comprising contacting said fabric with a treating composition comprising a surfactant system including one or more surfactants such that the fabric damage of said treated fabric is less than the fabric damage to a fabric that is not treated with a surfactant system.
  • a surfactant system including one or more surfactants such that the fabric damage of said treated fabric is less than the fabric damage to a fabric that is not treated with a surfactant system.
  • Especially preferred surfactants include long chain alkyl surfactants.
  • the treating composition further comprises additional cleaning adjunct materials selected from the group consisting of bleaching agents, builders, alkalinity sources and mixtures thereof.
  • the treating composition further comprises additional cleaning adjunct materials selected from the group consisting of enzymes, chelants, soil releasing agents, dye transfer inhibiting agents, fabric softening agents, and other conventional detergent ingredients.
  • the surfactant is present in said treating composition at a level such that from about 100 ppm to about 2500 ppm of surfactant is present in a wash solution comprising said treating composition.
  • the surfactant is present at a level of from about 100 ppm to about 300 ppm in a wash solution comprising said treating composition.
  • vertical axis washing machines such as North
  • the surfactant is present at a level of from about 200 ppm to about 1000 ppm, more preferably from about 300 ppm to about 900 ppm in a wash solution comprising said treating composition.
  • the surfactant is present at a level of from about 800 ppm to about 2500 ppm, more preferably from about 900 ppm to about 1700 ppm in a wash solution comprising said treating composition.
  • the fabric is preferably made from natural fibers.
  • the fabric is made from cellulosic fibers, such as cotton, rayon, ramie, jute, flax, linen, polynosic-fibers, Lyocell (Tencel ®), polyester/cotton blends, other cotton blends, and the like, especially cotton, rayon, linen, polyester/cotton blends, and mixtures thereof.
  • Oxidative Damage was measured by determining the carboxyl groups and aldehyde groups on the fabric surface. Carboxyl groups were measured using ATR and Turnbull's blue test. Aldehyde groups were measured using Fehling's Solution test.
  • Abrasion Resistance of the fabric and Pilling Resistance of the fabric was measured using a Martindale abrader, preferably a Nu-Martindale Abrasion and Pilling Tester.
  • Wet Abrasion Resistance Method is measured in terms of fabric weight loss after a certain number of abrasion cycles under pressure wherein the fabric being tested is in contact with a thicker fabric, such as wool. Increasing wet abrasion cycles (in Martindale abrader) results in increased fiber weight loss. No additional carboxyl groups are produced by just abrasion cycles. (In fact, carboxyl containing fibers on surface may be removed due to abrasion).
  • Pilling Resistance Method is measured in terms of appearance of the fabric being tested. This method is typically performed to measure the early cycle effects. In this method, the fabric being tested is in contact with another piece of the same type of fabric. Also, under this method, the two fabrics are in contact with one another without any additional pressure being added, unlike the Wet Abrasion Resistance Method.
  • the laundry detergent compositions in accordance with the present invention comprise one or more surfactants, preferably long chain alkyl surfactants and/or surfactants that adhere to the fabric, and preferably one or more additional cleaning adjuncts, preferably compatible with the surfactant(s).
  • cleaning adjunct materials means any liquid, solid or gaseous material selected for the particular type of laundry composition desired and the form of the product (e.g., liquid; granule; powder; gel composition), which materials are also preferably compatible with the surfactants.
  • cleaning adjunct materials are readily made by considering the surface, item or fabric to be cleaned, and the desired form of the composition for the laundry conditions during use (e.g., through the wash detergent use).
  • compatible means the cleaning adjunct materials do not reduce the detersive activity of the other detergent ingredients, especially the enzymes.
  • cleaning adjunct materials include, but are not limited to, surfactants, builders, bleaches, bleach activators, bleach catalysts, other enzymes, enzyme stabilizing systems, chelants, optical brighteners, soil release polymers, dye transfer agents, dispersants, suds suppressers, dyes, perfumes, colorants, filler salts, hydrotropes, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, preservatives, anti-oxidants, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, alkalinity sources, solubilizing agents, carriers, processing aids, pigments and pH control agents as described in U.S. Patent Nos. 5,705,464, 5,710,115, 5,698,504, 5,695,679, 5,686,014 and 5,646,101. Specific cleaning adjunct materials are exemplified in detail hereinafter.
  • the compositions of the present invention preferably contain both a surfactant and a builder compound and additionally one or more cleaning adjunct materials preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressers, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • Laundry compositions can also contain softening agents, as additional cleaning adjunct materials.
  • the compositions of the present invention can also be used as detergent additive products in solid or liquid form. Such additive products are intended to supplement or boost the performance of conventional detergent compositions and can be added at any stage of the laundry process. If needed the density of the laundry detergent compositions herein ranges from
  • the "compact" form of the laundry compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition. In the compact compositions, the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition.
  • the inorganic filler salts, such as meant in the present compositions are selected from the alkali and alkaline-earth-metal salts of sulfates and chlorides.
  • a preferred filler salt is sodium sulfate.
  • Liquid laundry compositions according to the present invention can also be in a "concentrated form", in such case, the liquid laundry compositions according the present invention will contain a lower amount of water, compared to conventional liquid detergents.
  • the water content of the concentrated liquid laundry composition is preferably less than 40%, more preferably less than 30%, most preferably less than 20% by weight of the laundry composition.
  • the laundry detergent compositions and/or products preferably incorporate low density filler particles of the present invention in an amount sufficient to suspend the particulate solids of the present invention such that the laundry detergent compositions and/or products of the present invention are similar in properties to laundry detergent compositions and/or products comprising particulate solids having a particle density of from about 0.8 to about 2.1 g/mL, more preferably from about 0.8 to about 1.5 g/mL, most preferably from about 0.9 to about 1.2 g/mL.
  • CLEANING ADJUNCT MATERIALS The laundry detergent compositions of the present invention as described hereinbefore may optionally include, in addition to the particulate solids of the present invention, cleaning adjunct materials described below.
  • Biodegradably branched surfactants The present invention includes important embodiments comprising at least one biodegradably branched and/or crystallinity disrupted and/or mid-chain branched surfactant or surfactant mixture.
  • biodegradably branched and/or crystallinity disrupted and/or mid-chain branched indicate that such surfactants or surfactant mixtures are characterized by the presence of surfactant molecules having a moderately non-linear hydrophobe; more particularly, wherein the surfactant hydrophobe is not completely linear, on one hand, nor is it branched to an extent that would result in unacceptable biodegradation.
  • the preferred biodegradably branched surfactants are distinct from the known commercial LAS, ABS, Exxal, Lial, etc. types, whether branched or unbranched.
  • the biodegradably branched materials comprise particularly positioned light branching, for example from about one to about three methyl, and/or ethyl, and/or propyl or and/or butyl branches in the hydrophobe, wherein the branching is located remotely from the surfactant headgroup, preferably toward the middle of the hydrophobe.
  • branching is located remotely from the surfactant headgroup, preferably toward the middle of the hydrophobe.
  • Typically from one to three such branches can be present on a single hydrophobe, preferably only one.
  • Such biodegradably branched surfactants can have exclusively linear aliphatic hydrophobes, or the hydrophobes can include cycloaliphatic or aromatic substitution.
  • Highly preferred are MCB analogs of common linear alkyl sulfate, linear alkyl poly(alkoxylate) and linear alkylbenzenesulfonate surfactants, said surfactant suitably being selected from mid-chain-C ⁇ -C 4 -branched C 8 - C ⁇ 8 -alkyl sulfates, mid-chain-Ci-C 4 -branched C 8 -C ⁇ 8 -alkyl ethoxylated, propoxylated or butoxylated alcohols, mid-chain-C ⁇ -C -branched C 8 -C ⁇ 8 -alkyl ethoxysulfates, mid-chain- C ⁇ -C 4 -branched C 8 -C ⁇ 6 -alkyl benzenesulfonates and mixtures thereof.
  • the surfactants can in general be in acid or salt, for example sodium, potassium, ammonium or substituted ammonium, form.
  • the biodegradably branched surfactants offer substantial improvements in cleaning performance and/or usefulness in cold water and/or resistance to water hardness and/or economy of utilization.
  • Such surfactants can, in general, belong to any known class of surfactants, e.g., anionic, nonionic, cationic, or zwitterionic.
  • the biodegradably branched surfactants are synthesized through processes of Procter & Gamble, Shell, and Sasol.
  • MCB surfactants as disclosed in the following references: WO98/23712 A published 06/04/98 includes disclosure of MCB nonionic surfactants including MCB primary alkyl polyoxyalkylenes of formula (1): CH 3 CH 2 (CH 2 ) w C(R)H(CH 2 ) x C(R 1 )H(CH 2 ) y C(R 2 )H(CH 2 ) z (EO/PO) m OH (1), where the total number of carbon atoms in the branched primary alkyl moiety of this formula, including the R, R 1 and R 2 branching, but not including the carbon atoms in the EO/PO alkoxy moiety, is preferably 14-20, and wherein further for this surfactant mixture, the average total number of carbon atoms in the MCB primary alkyl hydrophobe moiety is preferably 14.5-17.5, more preferably 15-17; R, R 1 and R 2 are each independently
  • WO97/38957 A also discloses (i) production of MCB alkyl sulfatesulfat surfactants by sulfatingsulfat (I) or (II); (ii) preparation of MCB alkylethoxy sulfatessulfat which comprises ethoxylating and then sulfating (I) or (II); (iii) preparation of MCB alkyl carboxylate surfactants which comprises oxidizing (I) or (II) or their aldehyde intermediates and (iv) preparation of MCB acyl taurate, MCB acyl isethionate, MCB acyl sarcosinate or MCB acyl N-methylglucamide surfactants using the branched alkyl carboxylates as feedstock.
  • WO97/38956 A published 10/23/97 discloses the preparation of mid- to near mid- chain branched alpha olefins which is effected by: (a) preparing a mixture of carbon monoxide and hydrogen; (b) reacting this mixture in the presence of a catalyst under Fischer-Tropsch conditions to prepare a hydrocarbon mixture comprising the described olefins; and (c) separating the olefins from the hydrocarbon mixture.
  • WO97/38956 A further discloses the preparation of mid- to near mid-chain branched alcohols by reacting the olefins described with CO/H 2 under Oxo conditions.
  • These alcohols can be used to prepare (1) MCB sulfate surfactants by sulfating the alcohols; (2) MCB alkyl ethoxy sulfates by ethoxylating, then sulfating, the alcohols; or (3) branched alkyl carboxylate surfactants by oxidizing the alcohols or their aldehyde intermediates.
  • the branched carboxylates formed can be used as a feedstock to prepare branched acyl taurate, acyl isethionate, acyl sarcosinate or acyl N-methylglucamide surfactants, etc.
  • WO97/39091 A published 10/23/97 includes disclosure of a detergent surfactant composition comprising at least 0.5 (especially 5, more especially 10, most especially 20) wt% of longer alkyl chain, MCB surfactant of formula (I).
  • WO97/39089 A published 10/23/97 includes disclosure of liquid cleaning compositions comprising: (a) as part of surfactant system 0.1-50 (especially 1-40) wt % of a mid-chain branched surfactant of formula (I); (b) as the other part of the surfactant system 0.1-50 t% of co-surfactant(s); (c) 1-99.7 wt% of a solvent; and (d) 0.1-75 wt% of adjunct ingredients.
  • the surfactant composition has an average total number of C atoms in the A-X moiety of 14.5-17.5 (especially 15-17); and B is a hydrophilic moiety selected from sulfates, polyoxyalkylene (especially polyoxyethylene and polyoxypropylene) and alkoxylated sulfates.
  • WO97/39088 A published 10/23/97 includes disclosure of a surfactant composition
  • WO97/39088 A also discloses (1) a surfactant composition comprising a mixture of branched primary alkyl sulfates of formula (I) as above.
  • M is a water-soluble cation;
  • a detergent composition comprising: (a) 0.001-99% of MCB primary alkyl alkoxylated sulfate of formula (LT) and/or (TV).
  • WO97/39087 A published 10/23/97 includes disclosure of a surfactant composition
  • a surfactant composition comprising 0.001-100% of mid-chain branched primary alkyl alkoxylated sulfate(s) of formula (I) wherein that total number of C atoms in compound (I) including R, R 1 and R 3 , but not including C atoms of EO/PO alkoxy moieties is 14-20 and the total number of C atoms in branched alkyl moieties averages 14.5-17.5 (especially 15-17);
  • M cations especially selected from Na, K, Ca, Mg, quaternary alkyl amines of formula (II) ( M is especially Na and/or K)
  • R 3 , R 4 , R 5 , R 6 H, 1-22
  • a method for manufacturing longer chain alkyl alkoxylated sulfate surfactant mixture compositions comprising alkoxylating the specified long chain aliphatic alcohol mixture; sulfating the resulting polyoxyalkylene alcohol with SO 3 ; and neutralising the resulting alkyl alkoxylate sulfate acid.
  • the alkyl alkoxylated sulfates may be produced directly from the polyoxyalkylene alcohol by sulfating with SO and neutralising.
  • WO 98/23566 A Shell, published 06/04/98 discloses branched primary alcohol compositions having 8-36 C atoms and an average number of branches per mol of 0.7-3 and comprising ethyl and methyl branches.
  • a branched primary alkoxylate composition preparable by reacting a branched primary alcohol composition as above with an oxirane compound
  • a detergent composition comprising: (a) surfactant(s) selected from branched primary alcohol alkoxylates as in (1), branched primary alcohol sulfates as in (2), and branched alkoxylated primary alcohol sulfates as in (3); (b) a builder; and (c) optionally additive(s) selected from foam control agents, enzymes, bleaching agents, bleach activators, optical brighteners, co-builders
  • Biodegradably branched surfactants useful herein also include the modified alkylaromatic, especially modified alkylbenzenesulfonate surfactants described in copending commonly assigned patent applications (P&G Case Nos. 7303P, 7304P).
  • these surfactants include (P&G Case 6766P) alkylarylsulfonate surfactant systems comprising from about 10%> to about 100% by weight of said surfactant system of two or more crystallinity-disrupted alkylarylsulfonate surfactants of formula (B-Ar-
  • D)a(M c l + )b wherein D is SO3", M is a cation or cation mixture, q is the valence of said cation, a and b are numbers selected such that said composition is electroneutral;
  • Ar is selected from benzene, toluene, and combinations thereof; and B comprises the sum of at least one primary hydrocarbyl moiety containing from 5 to 20 carbon atoms and one or more crystallinity-disrupting moieties wherein said crystallinity-disrupting moieties interrupt or branch from said hydrocarbyl moiety; and wherein said alkylarylsulfonate surfactant system has crystallinity disruption to the extent that its Sodium Critical Solubility Temperature, as measured by the CST Test, is no more than about 40°C and wherein further said alkylarylsulfonate surfactant system has at least one of the following properties: percentage biodegradation, as measured by the modified SCAS test, that exceeds te
  • compositions also include (P&G Case 7303P) surfactant mixtures comprising (preferably, consisting essentially of): (a) from about 60% to about 95% by weight (preferably from about 65% to about 90%, more preferably from about 70% to about 85%o) of a mixture of branched alkylbenzenesulfonates having formula (I):
  • L is an acyclic aliphatic moiety consisting of carbon and hydrogen and having two methyl termini
  • said mixture of branched alkylbenzenesulfonates contains two or more (preferably at least three, optionally more) of said compounds differing in molecular weight of the anion of said formula (I) and wherein said mixture of branched alkylbenzenesulfonates is characterized by an average carbon content of from about 10.0 to about 14.0 carbon atoms (preferably from about 11.0 to about 13.0, more preferably from about 11.5 to about 12.5), wherein said average carbon content is based on the sum of carbon atoms in R , L and R , (preferably said sum of carbon atoms in R , L and R 2 is from 9 to 15, more preferably, 10 to 14) and further, wherein L has no substituents other than A, R 1 and R 2 ; M is a cation or cation mixture (preferably selected from H, Na, K, Ca, Mg and
  • Y is an unsubstituted linear aliphatic moiety consisting of carbon and hydrogen having two methyl termini, and wherein Y has an average carbon content of from about 10.0 to about 14.0 (preferably from about 11.0 to about 13.0, more preferably 11.5 to 12.5 carbon atoms); (preferably said mixture of nonbranched alkylbenzenesulfonates is further characterized by a sum of carbon atoms in Y, of from 9 to 15, more preferably 10 to 14); and wherein said composition is further characterized by a 2/3-phenyl index of from about 350 to about 10,000 (preferably from about 400 to about 1200, more preferably from about 500 to about 700) (and also preferably wherein said surfactant mixture has a 2-methyl-2-phenyl index of less than about 0.3, preferably less than about 0.2, more preferably less than about 0.1, more preferably still, from 0 to 0.05).
  • surfactant mixtures comprising the product of a process comprising the steps of: alkylating benzene with an alkylating mixture; sulfonating the product of (I); and neutralizing the product of (LI); wherein said alkylating mixture comprises: (a) from about 1% to about 99.9%o, by weight of branched C 7 -C 20 monoolefins, said branched monoolef ⁇ ns having structures identical with those of the branched monoolefins formed by dehydrogenating branched parafins of formula R ⁇ R 2 wherein L is an acyclic aliphatic moiety consisting of carbon and hydrogen and containing two terminal methyls; R 1 is to C 3 alkyl; and R 2 is selected from H and Ci to C 3 alkyl; and (b) from about 0.1 %> to about 85%, by weight of C7-C20 linear
  • Bleaching System The laundry compositions of the present invention may comprise a bleaching system.
  • Bleaching systems typically comprise a "bleaching agent” (source of hydrogen peroxide) and an "initiator” or “catalyst".
  • bleaching agents will typically be at levels of from about 1%, preferably from about 5% to about 30%, preferably to about 20% by weight of the composition.
  • the amount of bleach activator will typically be from about 0.1%, preferably from about 0.5% to about 60%, preferably to about 40% by weight, of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • Bleaching Agents Hydrogen peroxide sources are described in detail in the herein incorporated Kirk Othmer's Encyclopedia of Chemical Technology, 4th Ed (1992, John Wiley & Sons), Vol. 4, pp. 271-300 "Bleaching Agents (Survey)", and include the various forms of sodium perborate and sodium percarbonate, including various coated and modified forms.
  • the preferred source of hydrogen peroxide used herein can be any convenient source, including hydrogen peroxide itself.
  • perborate e.g., sodium perborate (any hydrate but preferably the mono- or tetra-hydrate), sodium carbonate peroxyhydrate or equivalent percarbonate salts, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, or sodium peroxide
  • sources of available oxygen such as persulfate bleach (e.g., OXONE, manufactured by DuPont).
  • Sodium perborate monohydrate and sodium percarbonate are particularly preferred. Mixtures of any convenient hydrogen peroxide sources can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10%) by weight of said particles being smaller than about 200 micrometers and not more than about 10%> by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with a silicate, borate or water- soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • compositions of the present invention may also comprise as the bleaching agent a chlorine-type bleaching material.
  • a chlorine-type bleaching material such agents are well known in the art, and include for example sodium dichloroisocyanurate (“NaDCC").
  • NaDCC sodium dichloroisocyanurate
  • chlorine-type bleaches are less preferred for compositions which comprise enzymes.
  • the peroxygen bleach component in the composition is formulated with an activator (peracid precursor).
  • the activator is present at levels of from about 0.01%, preferably from about 0.5%, more preferably from about 1% to about 15%), preferably to about 10%, more preferably to about 8%, by weight of the composition.
  • Preferred activators are selected from the group consisting of tetraacetyl ethylene diamine (TAED), benzoylcaprolactam (BzCL), 4-nitrobenzoylcaprolactam, 3- chlorobenzoylcaprolactam, benzoyloxybenzenesulphonate (BOBS), nonanoyloxybenzenesulphonate (NOBS), phenyl benzoate (PhBz), decanoyloxybenzenesulphonate (C ⁇ Q- OBS), benzoylvalerolactam (BZVL), octanoyloxybenzenesulphonate (Cg-OBS), perhydrolyzable esters and mixtures thereof, most preferably benzoylcaprolactam and benzoylvalerolactam.
  • Particularly preferred bleach activators in the pH range from about 8 to about 9.5 are those selected having an OBS or VL leaving group.
  • Preferred hydrophobic bleach activators include, but are not limited to, nonanoyloxybenzenesulphonate (NOBS), 4-[N-(nonaoyl) amino hexanoyloxy] -benzene sulfonate sodium salt (NACA-OBS) an example of which is described in U.S. Patent No.
  • NOBS nonanoyloxybenzenesulphonate
  • NACA-OBS 4-[N-(nonaoyl) amino hexanoyloxy] -benzene sulfonate sodium salt
  • Preferred bleach activators are those described in U.S. 5,698,504 Christie et al., issued December 16, 1997; U.S. 5,695,679 Christie et al. issued December 9, 1997; U.S.
  • the mole ratio of peroxygen bleaching compound (as AvO) to bleach activator in the present invention generally ranges from at least 1 : 1, preferably from about 20: 1, more preferably from about 10:1 to about 1 :1, preferably to about 3:1.
  • Quaternary substituted bleach activators may also be included.
  • the present laundry compositions preferably comprise a quaternary substituted bleach activator
  • QSBA quaternary substituted peracid
  • QSP quaternary substituted peracid
  • bleach activators useful herein are amide-substituted as described in U.S. 5,698,504, U.S. 5,695,679, and U.S. 5,686,014 each of which are cited herein above.
  • Preferred examples of such bleach activators include: (6- octanamidocaproyl)oxybenzenesulfonate,(6-nonanamidocaproyl) oxybenzenesulfonate,
  • bleaching results can be obtained from bleaching systems having with in-use pH of from about 6 to about 13, preferably from about 9.0 to about 10.5.
  • activators with electron-withdrawing moieties are used for near-neutral or sub-neutral pH ranges.
  • Alkalis and buffering agents can be used to secure such pH.
  • Acyl lactam activators as described in U.S. 5,698,504, U.S. 5,695,679 and U.S. 5,686,014, each of which is cited herein above, are very useful herein, especially the acyl caprolactams (see for example WO 94-28102 A) and acyl valerolactams (see U.S. 5,503,639 Willey et al., issued April 2, 1996 incorporated herein by reference).
  • compositions and methods may utilize metal-containing bleach catalysts that are effective for use in bleaching compositions.
  • metal-containing bleach catalysts that are effective for use in bleaching compositions.
  • Preferred are manganese and cobalt-containing bleach catalysts.
  • One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid) and water-soluble salts thereof.
  • a transition metal cation of defined bleach catalytic activity such as copper, iron, titanium, ruthenium tungsten, molybdenum, or manganese cations
  • an auxiliary metal cation having little or no bleach catalytic activity such as zinc or aluminum cations
  • a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid
  • compositions herein can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Patent Nos. 5,576,282; 5,246,621; 5,244,594; 5,194,416; and 5,114,606; and European Pat. App. Pub. Nos. 549,271 Al, 549,272 Al, 544,440 A2, and 544,490 Al;
  • Preferred examples of these catalysts include Mn ⁇ 2( u ⁇ C)3( > 7-trimefhyl-l,4,7-
  • metal-based bleach catalysts include those disclosed in U.S. Patent Nos. 4,430,243 and U.S. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following: U.S. Patent Nos. 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,1 17; 5,274,147; 5,153,161; and 5,227,084.
  • Cobalt Metal Complexes - Cobalt bleach catalysts useful herein are known, and are described, for example, in U.S. Patent Nos. 5,597,936; 5,595,967; and 5,703,030; and M. L. Tobe, "Base Hydrolysis of Transition-Metal Complexes", Adv. Inorg. Bioinorg.
  • cobalt pentaamine acetate salts having the formula [Co(NH3)5OAc] T y , wherein "OAc” represents an acetate moiety and "T v " is an anion, and especially cobalt pentaamine acetate chloride, [Co(NH3)5OAc]Cl2; as well as [Co(NH3)5OAc](OAc)2; [Co(NH 3 ) 5 OAc](PF 6 )2; [Co(NH3) 5 OAc](SO 4 ); [Co(NH 3 )5OAc3(BF 4 )2; and [Co(NH3) 5 OAc](NO )2 (herein "PAC").
  • cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. Patent Nos. 5,597,936; 5,595,967; and 5,703,030; in the Tobe article and the references cited therein; and in U.S. Patent 4,810,410; J. Chem. Ed. (1989), 66 (12), 1043-45; The Synthesis and Characterization of Inorganic Compounds, W.L. Jolly (Prentice-Hall; 1970), pp. 461-3; Inorg. Chem.. 18, 1497-1502 (1979); Inorg. Chem.. 21, 2881-2885 (1982); Inorg. Chem.. 18, 2023-2025 (1979); Inorg.
  • Transition Metal Complexes of Macropolycyclic Rigid Ligands -Compositions herein may also suitably include as bleach catalyst a transition metal complex of a macropolycyclic rigid ligand.
  • the phrase "macropolycyclic rigid ligand” is sometimes abbreviated as "MRL” in discussion below.
  • the amount used is a catalytically effective amount, suitably about 1 ppb or more, for example up to about 99.9%, more typically about 0.001 ppm or more, preferably from about 0.05 ppm to about 500 ppm (wherein "ppb” denotes parts per billion by weight and "ppm” denotes parts per million by weight).
  • Suitable transition metals e.g., Mn are illustrated hereinafter.
  • Macropolycyclic means a MRL is both a macrocycle and is polycyclic.
  • Polycyclic means at least bicyclic.
  • the term “rigid” as used herein herein includes “having a superstructure” and “cross- bridged”. "Rigid” has been defined as the constrained converse of flexibility: see D.H. Busch., Chemical Reviews., (1993), 93, 847-860, incorporated by reference.
  • rigid as used herein means that the MRL must be determinably more rigid than a macrocycle ("parent macrocycle") which is otherwise identical (having the same ring size and type and number of atoms in the main ring) but lacking a superstructure (especially linking moieties or, preferably cross-bridging moieties) found in the MRL's.
  • parent macrocycle which is otherwise identical (having the same ring size and type and number of atoms in the main ring) but lacking a superstructure (especially linking moieties or, preferably cross-bridging moieties) found in the MRL's.
  • the practitioner will use the free form (not the metal-bound form) of the macrocycles.
  • Rigidity is well-known to be useful in comparing macrocycles; suitable tools for determining, measuring or comparing rigidity include computational methods (see, for example, Zimmer, Chemical Reviews. (1995), 95(38), 2629-2648 or Hancock et al., Inorganica Chimica Acta. (1989), 164,
  • Preferred MRL's herein are a special type of ultra-rigid ligand which is cross- bridged.
  • a "cross-bridge” is nonlimitingly illustrated in 1.11 hereinbelow. In 1.11, the cross-bridge is a -CH2CH2- moiety. It bridges N 1 and N 8 in the illustrative structure.
  • Suitable metals in the rigid ligand complexes include Mn(II), Mn(m), Mn(IV),
  • transition- metals in the instant transition-metal bleach catalyst include manganese, iron and chromium.
  • the MRL's (and the corresponding transition-metal catalysts) herein suitably comprise: (a) at least one macrocycle main ring comprising four or more heteroatoms; and
  • a covalently connected non-metal superstructure capable of increasing the rigidity of the macrocycle, preferably selected from (i) a bridging superstructure, such as a linking moiety; (ii) a cross-bridging superstructure, such as a cross-bridging linking moiety; and (iii) combinations thereof.
  • a bridging superstructure such as a linking moiety
  • a cross-bridging superstructure such as a cross-bridging linking moiety
  • Preferred superstructures herein not only enhance the rigidity of the parent macrocycle, but also favor folding of the macrocycle so that it co-ordinates to a metal in a cleft.
  • Suitable superstructures can be remarkably simple, for example a linking moiety such as any of those illustrated in Fig. 1 and Fig. 2 below, can be used.
  • n is an integer, for example from 2 to 8, preferably less than 6, typically 2 to 4, or
  • Fig. 2 wherein m and n are integers from about 1 to 8, more preferably from 1 to 3; Z is N or CH; and T is a compatible substituent, for example H, alkyl, trialkylammonium, halogen, nitro, sulfonate, or the like.
  • the aromatic ring in 1.10 can be replaced by a saturated ring, in which the atom in Z connecting into the ring can contain N, O, S or C.
  • Suitable MRL's are further nonlimitingly illustrated by the following compound:
  • this ligand is named 5,12-dimethyl-l,5,8,12-tetraazabicyclo[6.6.2]hexadecane using the extended von Baeyer system. See "A Guide to IUPAC Nomenclature of Organic Compounds: Recommendations 1993", R. Panico, W.H. Powell and J-C Richer (Eds.), Blackwell Scientific Publications, Boston, 1993; see especially section R-2.4.2.1.
  • Transition-metal bleach catalysts of Macrocyclic Rigid Ligands which are suitable for use in the invention compositions can in general include known compounds where they conform with the definition herein, as well as, more preferably, any of a large number of novel compounds expressly designed for the present laundry or laundry uses, and non-limitingly illustrated by any of the following:
  • Manganese(LI) Dichloro-5 -n-butyl- 12-methyl- 1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane Manganese(H).
  • compositions and laundry processes herein can be adjusted to provide on the order of at least one part per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from about 0.01 ppm to about 25 ppm, more preferably from about 0.05 ppm to about 10 ppm, and most preferably from about 0.1 ppm to about 5 ppm, of the bleach catalyst species in the wash liquor.
  • typical compositions herein will comprise from about 0.0005% to about 0.2%, more preferably from about 0.004% to about 0.08%, of bleach catalyst, especially manganese or cobalt catalysts, by weight of the bleaching compositions.
  • compositions herein may comprise one or more other bleach catalysts.
  • Preferred bleach catalysts are zwitterionic bleach catalysts, which are described in U.S. Patent No. 5,576,282 (especially 3-(3,4-dihydroisoquinolinium) propane sulfonate.
  • Other bleach catalysts include cationic bleach catalysts are described in U.S. Patent Nos. 5,360,569, 5,442,066, 5,478,357, 5,370,826, 5,482,515, 5,550,256, and WO 95/13351, WO 95/13352, and WO 95/13353.
  • PAP phthalimido- peroxy-caproic acid
  • the preferred enzymes for use in the particulate solids of the present invention are selected from proteases, amylases, cellulases and mixtures thereof.
  • Nonlimiting examples of other suitable enzymes include the following:
  • Suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, mannanases, more preferably plant cell wall degrading enzymes and non-cell wall-degrading enzymes (WO 98/39403 A) and can, more specifically, include pectinase (WO 98/06808 A, JP10088472 A, JP10088485 A); pectolyase (WO98/06805 Al
  • Oxidoreductases and/or their associated antibodies can be used, for example with H 2 O 2 , as taught in WO 98/07816 A.
  • other redox-active enzymes can be used, even, for example, catalases (see, for example JP09316490 A).
  • any oxygenases of extracellular origin especially fungal oxygenase such as dioxygenase of extracellular origin. The latter is most especially quercetinase, catechinase or an anthocyanase, optionally in combination with other suitable oxidase, peroxidase or hydrolytic enzymes, all a taught in WO9828400 A2.
  • the cellulases useful in the present invention include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and a specific activity above 50 CEVU/mg (Cellulose Viscosity Unit).
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, J61078384 and WO96/02653 which discloses fungal cellulase produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum.
  • EP 73 ' 9 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS- 2.247.832 and WO95/26398.
  • cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. fhermoidea), particularly the Humicola strain DSM 1800.
  • Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids; and a ⁇ 43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in WO 91/17243.
  • suitable cellulases are the EGffl cellulases from Trichoderma longibrachiatum described in WO94/21801 to Genencor. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A S) are especially useful. See also WO91/17244 and WO91/21801. Other suitable cellulases for fabric care and or laundry properties are described in WO96/34092, WO96/17994 and WO95/24471.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc and with a phenolic substrate as bleach enhancing molecule. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase. Suitable peroxidases and peroxidase-containing detergent compositions are disclosed, for example, in U.S. Patent Nos.
  • Suitable enhancers are selected from the group consisting of substituted phenthiazine and phenoxasine 10-Phenothiazinepropionicacid (PPT), 10- ethylphenothiazine-4-carboxylic acid (EPC), 10-phenoxazinepropionic acid (POP) and 10-methylphenoxazine (described in WO 94/12621), substituted syringates (C3-C5 substituted alkyl syringates), phenols and mixtures thereof.
  • Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
  • Enzymatic systems may be used as bleaching agents.
  • the hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process.
  • an enzymatic system i.e. an enzyme and a substrate therefore
  • Such enzymatic systems are disclosed in EP Patent Application
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034.
  • Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P".
  • lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • lipases such as Ml Lipase ⁇ - an ⁇ 1 Lipomax ⁇ - (Gist-Brocades) and Lipolase ⁇ - and Lipolase
  • UltraR(Novo) which have found to be very effective when used in combination with the compositions of the present invention.
  • lipolytic enzymes described in EP 258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO 96/00292 by Unilever.
  • cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to laundry compositions have been described in e.g.
  • phospholipases may be incorporated into the laundry compositions of the present invention.
  • suitable phospholipases included: EC 3.1.1.32 Phospholipase Al ; EC 3.1.1.4 Phospholipase A2; EC 3.1.1.5 Lysopholipase; EC 3.1.4.3 Phospholipase C; EC 3.1.4.4. Phospolipase D.
  • phospholipases include LECITASE® from Novo Nordisk A/S of Denmark and Phospholipase A2 from Sigma.
  • amylases are also included.
  • the combined action of the phospholipase and amylase provide substantive stain removal, especially on greasy/oily, starchy and highly colored stains and soils.
  • the phospholipase and amylase when present, are incorporated into the compositions of the present invention at a pure enzyme weight ratio between 4500: 1 and 1 :5, more preferably between 50: 1 and 1 :1.
  • Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN').
  • One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo.
  • Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine proteolytic enzyme which is called "Protease A” herein.
  • Protease C is a variant of an alkaline serine protease from Bacillus in which Lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274.
  • Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
  • a preferred protease referred to as "Protease D” is a carbonyl hydrolase as described in U.S. Patent No. 5,677,272, and WO95/10591. Also suitable is a carbonyl hydrolase variant of the protease described in WO95/ 10591, having an amino acid sequence derived by replacement of a plurality of amino acid residues replaced in the precursor enzyme corresponding to position +210 in combination with one or more of the following residues : +33, +62, +67, -r76, +100, +101, +103, +104, +107, +128, +129, + 130, +132, +135, +156, +158, +164, -166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturally-occurring subtilisin from Bacillus amylohquefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such
  • proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in WO91/02792 and their variants described in WO 95/23221.
  • protease from Bacillus sp. NCLMB 40338 described in WO 93/18140 A to Novo.
  • Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo.
  • a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble.
  • a recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo.
  • Other suitable proteases are described in EP 516 200 by Unilever.
  • proteases are described in PCT publications: WO 95/30010; WO 95/30011; and WO 95/29979. Suitable proteases are commercially available as ESPERASE®, ALCALASE®, DURAZYM®, SAVINASE®, EVERLASE® and
  • MAXACAL®, PROPERASE® and MAXAPEM® all from Genencor International (formerly Gist-Brocades of The Netherlands).
  • Preferred proteases useful herein include certain variants ( WO 96/28566 A; WO 96/28557 A; WO 96/28556 A; WO 96/25489 A).
  • Other particularly useful proteases are multiply-substituted protease variants comprising a substitution of an amino acid residue with another naturally occurring amino acid residue at an amino acid residue position corresponding to position 103 of Bacillus amylohquefaciens subtilisin in combination with a substitution of an amino acid residue with another naturally occurring amino acid residue at one or more amino acid residue positions corresponding to positions 1, 3, 4, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61 , 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160
  • the protease variant includes a substitution set selected from the group consisting of:
  • the protease variant includes a substitution set selected from the group consisting of:
  • the protease variant includes the substitution set 101/103/104/159/232/236/245/248/252, preferably 101G/103A 104I/159D/232V/ 236H/245R/248D/252K.
  • enzymes and their directly linked inhibitors e.g., protease and its inhibitor linked by a peptide chain as described in WO 98/13483 A
  • enzymes and their non-linked inhibitors used in selected combinations herein include protease with protease inhibitors selected from proteins, peptides and peptide derivatives as described in WO 98/13461 A, WO 98/13460 A, WO 98/13458 A, WO 98/13387 A.
  • Amylases can be used with amylase antibodies as taught in WO 98/07818 A and WO 98/07822 A, lipases can be used in conjunction with lipase antibodies as taught in
  • proteases can be used in conjunction with protease antibodies as taught in WO 98/07819 A and WO 98/06811 A, Cellulase can be combined with cellulase antibodies as taught in WO 98/07823 A and WO 98/07821 A. More generally, enzymes can be combined with similar or dissimilar enzyme directed antibodies, for example as taught in WO 98/07820 A or WO 98/06812 A.
  • the preferred enzymes herein can be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
  • Preferred selections are influenced by factors such as pH-activity and/or stability optima, fhermostability, and stability to active detergents, builders and the like.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Amylases ( ⁇ and/or ⁇ ) can be included for removal of carbohydrate-based stains.
  • WO94/02597 describes laundry compositions which incorporate mutant amylases. See also WO95/ 10603.
  • Other amylases known for use in laundry compositions include both ⁇ - and ⁇ -amylases.
  • ⁇ -Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no. 1,296,839 (Novo).
  • amylases are stability-enhanced amylases described in WO94/18314 and WO96/05295, Genencor, and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603. Also suitable are amylases described in EP 277 216.
  • ⁇ -amylases characterized by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to
  • the above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used.
  • the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased.
  • the variant may be designed such that the optimal pH, bleach or chelant stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular laundry application.
  • the isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric point may help to improve compatibility with anionic surfactants.
  • the stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability.
  • Suitable cleaning adjunct materials that can be added are enzyme oxidation scavengers.
  • enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
  • a range of enzyme materials are also disclosed in WO 9307263 and WO 9307260 to Genencor International, WO 8908694, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, and in U.S. 4,507,219. Enzyme materials particularly useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868. Enzyme Stabilizers - Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. 3,600,319, EP 199,405 and EP 200,586.
  • Enzyme stabilization systems are also described, for example, in U.S. 3,519,570.
  • the enzymes employed herein can be stabilized by the presence of water- soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. Suitable enzyme stabilizers and levels of use are described in U.S. Pat. Nos. 5,705,464, 5,710,115 and 5,576,282.
  • the detergent and laundry compositions described herein preferably comprise one or more detergent builders or builder systems. When present, the compositions will typically comprise at least about 1% builder, preferably from about 5%, more preferably from about 10% to about 80%, preferably to about 50%, more preferably to about 30%) by weight, of detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
  • Preferred builders for use in the detergent and laundry compositions, particularly dishwashing compositions, described herein include, but are not limited to, water-soluble builder compounds, (for example polycarboxylates) as described in U.S. Patent Nos. 5,695,679, 5,705,464 and 5,710,115. Other suitable polycarboxylates are disclosed in U.S. Patent Nos. 4,144,226, 3,308,067 and 3,723,322.
  • Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly titrates.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates (see, for example, U.S. Patent Nos. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137), phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulfates, and aluminosilicates.
  • polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates
  • phosphonates see, for example, U.S. Patent Nos. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137
  • phytic acid silicates
  • carbonates including
  • compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt” situation that may occur with zeolite or layered silicate builders.
  • Suitable silicates include the water-soluble sodium silicates with an SiO 2 :Na 2 O ratio of from about 1.0 to 2.8, with ratios of from about 1.6 to 2.4 being preferred, and about 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an SiO :Na 2 O ratio of 2.0 is the most preferred.
  • Silicates, when present, are preferably present in the detergent and laundry compositions described herein at a level of from about 5% to about 50% by weight of the composition, more preferably from about 10% to about 40% by weight.
  • Partially soluble or insoluble builder compounds which are suitable for use in the detergent and laundry compositions, particularly granular detergent compositions, include, but are not limited to, crystalline layered silicates, preferably crystalline layered sodium silicates (partially water-soluble) as described in U.S. Patent No. 4,664,839, and sodium aluminosilicates (water-insoluble).
  • these builders are typically present at a level of from about 1% to 80% > by weight, preferably from about 10%> to 70% by weight, most preferably from about 20% > to 60%) by weight of the composition.
  • Crystalline layered sodium silicates having the general formula NaMSi x ⁇ 2 ⁇ +i -yH2 ⁇ wherein M is sodium or hydrogen, x is a number from about 1.9 to about 4, preferably from about 2 to about 4, most preferably 2, and y is a number from about 0 to about 20, preferably 0 can be used in the compositions described herein.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • the most preferred material is delta-Na2SiO5, available from Hoechst AG as NaSKS-6
  • NaSKS-6 silicate builder
  • NaSKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na2Si ⁇ 5 morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use in the compositions described herein herein, but other such layered silicates, such as those having the general formula NaMSi x ⁇ 2 ⁇ +l-yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used in the compositions described herein.
  • layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • the delta-Na2Si ⁇ 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • the crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionizable material.
  • the solid, water-soluble ionizable material is preferably selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders have the empirical formula:
  • the aluminosilicate builder is an aluminosilicate zeolite having the unit cell formula:
  • the aluminosilicate builders are preferably in hydrated form and are preferably crystalline, containing from about 10%> to about 28%, more preferably from about 18% to about 22%> water in bound form.
  • aluminosilicate ion exchange materials can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived.
  • a method for producing aluminosilicate ion exchange materials is disclosed in U.S. 3,985,669.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite MAP and Zeolite HS and mixtures thereof.
  • the crystalline aluminosilicate ion exchange material has the formula: Nai2[(AlO 2 )i2(SiO2)i2]- H 2 O wherein x is from about 20 to about 30, especially about 27.
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Zeolite X has the formula: Na 86 [(AlO2)86(SiO 2 )i06]-276H 2 O
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt) are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like.
  • Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Fatty acids e.g., C12-C1 g monocarboxylic acids
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • Dispersants One or more suitable polyalkyleneimine dispersants may be incorporated into the laundry compositions of the present invention. Examples of such suitable dispersants can be found in European Patent Application Nos.
  • any suitable clay/soil dispersent or anti-redepostion agent can be used in the laundry compositions of the present invention.
  • polymeric dispersing agents which include polymeric polycarboxylates and polyethylene glycols, are suitable for use in the present invention.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in U.S. 3,308,067.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1 :1, more preferably from about 10:1 to 2: 1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
  • Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers.
  • Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal- antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
  • compositions according to the present invention may optionally comprise one or more soil release agents. If utilized, soil release agents will generally comprise from about 0.01%, preferably from about 0.1%, more preferably from about 0.2% to about 10%, preferably to about 5%, more preferably to about 3% by weight, of the composition.
  • suitable soil release polymers are disclosed in: U.S. Patent Nos.
  • compositions of the present invention herein may also optionally contain a chelating agent which serves to chelate metal ions and metal impurities which would otherwise tend to deactivate the bleaching agent(s).
  • a chelating agent which serves to chelate metal ions and metal impurities which would otherwise tend to deactivate the bleaching agent(s).
  • Useful chelating agents can include amino carboxylates, phosphonates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof. Further examples of suitable chelating agents and levels of use are described in U.S. Pat. Nos. 5,705,464, 5,710,115, 5,728,671 and 5,576,282.
  • compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates and the like.
  • MGDA water-soluble methyl glycine diacetic acid
  • these chelating agents will generally comprise from about 0.1 % to about 15%), more preferably from about 0.1% to about 3.0%> by weight of the detergent compositions herein.
  • Suds suppressor - Another optional ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures.
  • suitable suds suppressers are disclosed in U.S. Patent Nos. 5,707,950 and 5,728,671. These suds suppressers are normally employed at levels of from 0.001% to 2%> by weight of the composition, preferably from 0.01 % to 1 % by weight.
  • Softening agents - Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898 and in U.S. 5,019,292.
  • Organic softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-011 340 and their combination with mono C12- C14 quaternary ammonium salts are disclosed in EP-B-026 527 and EP-B-026 528 and di-long-chain amides as disclosed in EP-B-0 242 919.
  • Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0 299 575 and 0 313 146. Particularly suitable fabric softening agents are disclosed in U.S. Patent Nos.
  • Levels of smectite clay are normally in the range from 2% to 20%>, more preferably from 5% to 15% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5%> to 5% by weight, normally from 1%> to 3%> by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1 %> to 2%, normally from 0.15% to 1.5% by weight.
  • These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as molten liquid on to other solid components of the composition.
  • Biodegradable quaternary ammonium compounds as described in EP-A-040 562 and EP-A-239 910 have been presented as alternatives to the traditionally used di-long alkyl chain ammonium chlorides and methyl sulfates.
  • Non-limiting examples of softener-compatible anions for the quaternary ammonium compounds and amine precursors include chloride or methyl sulfate.
  • the detergent compositions of the present invention can also include compounds for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering and conditioning operations involving colored fabrics. .
  • Polymeric dye transfer inhibiting agents The detergent compositions according to the present invention can also comprise from 0.001% to 10 %, preferably from 0.01% to 2%, more preferably from 0.05% to 1% by weight of polymeric dye transfer inhibiting agents. Said polymeric dye transfer inhibiting agents are normally incorporated into detergent compositions in order to inhibit the transfer of dyes from colored fabrics onto fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
  • Especially suitable polymeric dye transfer inhibiting agents are polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. Examples of such dye transfer inhibiting agents are disclosed in U.S. Patent Nos. 5,707,950 and 5,707,951.
  • Additional suitable dye transfer inhibiting agents include, but are not limited to, cross-linked polymers.
  • Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups n the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.
  • the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure.
  • the cross-linked polymers entrap the dyes by swelling.
  • Such cross-linked polymers are described in the co-pending European patent application 94870213.9.
  • pH and Buffering Variation Many of the detergent and laundry compositions described herein will be buffered, i.e., they are relatively resistant to pH drop in the presence of acidic soils. However, other compositions herein may have exceptionally low buffering capacity, or may be substantially unbuffered. Techniques for controlling or varying pH at recommended usage levels more generally include the use of not only buffers, but also additional alkalis, acids, pH-jump systems, dual compartment containers, etc., and are well known to those skilled in the art.
  • adjuncts optionally included in the instant compositions can include one or more materials for assisting or enhancing laundry performance, treatment of the substrate to be cleaned, or designed to improve the aesthetics of the compositions.
  • Adjuncts which can also be included in compositions of the present invention, at their conventional art-established levels for use (generally, adjunct materials comprise, in total, from about 30% to about 99.9%, preferably from about 70%) to about 95%), by weight of the compositions), include other active ingredients such as non-phosphate builders, color speckles, silvercare, anti-tarnish and/or anti- cooosion agents, dyes, fillers, germicides, alkalinity sources, hydrotropes, anti-oxidants, perfumes, solubilizing agents, carriers, processing aids, pigments, and pH control agents as described in U.S. Patent Nos. 5,705,464, 5,710,115, 5,698,504, 5,695,679, 5,686,014 and 5,646,101.
  • the invention herein also encompasses a laundering pretreatment process for fabrics which have been soiled or stained comprising directly contacting said stains and/or soils with a highly concentrated form of the laundry composition set forth above prior to washing such fabrics using conventional aqueous washing solutions.
  • the laundry composition remains in contact with the soil/stain for a period of from about 30 seconds to 24 hours prior to washing the pretreated soiled/stained substrate in conventional manner. More preferably, pretreatment times will range from about 1 to 180 minutes.
  • the present invention also encompasses the inclusion of instructions on the use of the particulate solid containing compositions of the present invention with the packages containing the compositions herein or with other forms of advertising associated with the sale or use of the compositions.
  • the instructions may be included in any manner typically used by consumer product manufacturing or supply companies. Examples include providing instructions on a label attached to the container holding the composition; on a sheet either attached to the container or accompanying it when purchased; or in advertisements, demonstrations, and/or other written or oral instructions which may be connected to the purchase or use of the compositions.
  • the instructions will include a description of the use of the composition, for instance, the recommended amount of composition to use in a washing machine to clean the fabric; the recommended amount of composition to apply to the fabric; if soaking or rubbing is appropriate .
  • the compositions of the present invention are preferably included in a product.
  • the product preferably comprises a composition comprising one or more low density filler particles of the present invention and one or more particulate solids of the present invention, and optionally one or more cleaning adjunct materials, and further comprises instructions for using the product to launder fabrics by contacting a fabric in need of cleaning with an effective amount of the composition such that the composition cleans the fabric.
  • Protease 1 means a protease variant comprising substitution of amino acid residues with another naturally occurring amino acid residue at positions corresponding to positions
  • Protease 1 can be substituted with any other additional protease variant of the present invention, with substantially similar results in the following examples.
  • the Protease 1 enzyme levels are expressed by pure enzyme by weight of the total composition
  • the other enzyme levels are expressed by raw material by weight of the total composition
  • the other ingredients are expressed by weight of the total composition.
  • the granular fabric cleaning compositions of the present invention contain an effective amount of one or more protease enzymes, preferably from about 0.001%) to about 10%, more preferably, from about 0.005% to about 5%, more preferably from 0 01% to about 1% by weight of active protease enzyme of the composition. (See U.S. Patent No. 5,679,630 Examples).
  • Protease other than the Protease 1 including but not limited to the additional proteases useful in the present invention desc ⁇ bed herein.
  • Zeolite A (1-10 micrometer) 26.00 26.00 26.00 26.00 26.00 C j 2-Ci4 secondary (2,3) alkyl sulfate, 5.00 5.00 5.00 5.00
  • Protease other than the Protease 1 including but not limited to the additional proteases useful in the present invention described herein.
  • Fillers e.g., silicates; carbonates; perfumes; water Up to 100 Up to 100
  • DC- 1400 Deaerant 0.02 0.02 0.02
  • Example 37 The following granular laundry detergent compositions 37 A-C are of particular utility under European machine wash conditions were prepared in accord with the invention:
  • Example 38 The following formulations are examples of compositions in accordance with the invention, which may be in the form of granules or in the form of a tablet.
  • Example 39 Granular laundry detergent compositions 39 A-E are of particular utility under Japanese machine wash conditions and are prepared in accordance with the invention:
  • Liquid fabric cleaning compositions of the present invention preferably comprise an effective amount of one or more protease enzymes, preferably from about 0.0001% to about 10%, more preferably from about 0.001% to about 1%, and most preferably from about 0.001% to about 0.1% by weight of active protease enzyme of the composition. (See U.S. Patent No. 5,679,630 Examples).
  • Ci 2- Cj4 alkyl sulfate Na 20.00 20.00 20.00 20.00 20.00 20.00
  • Protease other than the Protease 1 including but not limited to the additional proteases useful in the present invention described herein.
  • Ci 2_14 alkenyl succinic acid 3.0 8.0
  • Citric acid monohydrate 10.0 15.0
  • Borax premix (Borax/MEA/Pdiol/CitncAcid) 2.50 -
  • Liquid fabric cleaning composition of particular utility under Japanese machine wash conditions is prepared in accordance with the invention:
  • Example 46 Liquid Fabric Cleaning Composition
  • Liquid fabric cleaning composition of particular utility under Japanese machine wash conditions and for fine fabrics is prepared in accordance with the invention:
  • Bar fabnc cleaning compositions of the present invention suitable for handwashmg soiled fab ⁇ cs typically contain an effective amount of one or more protease enzymes, preferably from about 0.001% to about 10%, more preferably from about 0.01% to about 1% by weight active protease enzyme of the composition. (See U.S. Patent No. 5,679,630 Examples).
  • Protease 1 0 3 - 0.1 0.02
  • Protease other than the Protease 1 including but not limited to the additional proteases useful in the present invention described herein.
  • compositions of the present invention can be suitably prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. 5,691,297 Nassano et al, issued November 11, 1997; U.S. 5,574,005 Welch et al, issued November 12, 1996; U.S. 5,569,645 Dinniwell et al, issued October 29, 1996; U.S.
  • compositions of the present invention can be formulated into any suitable laundry detergent composition, non-limiting examples of which are described in U.S. 5,679,630 Baeck et al., issued October 21, 1997; U.S. 5,565,145 Watson et al., issued October 15, 1996; U.S. 5,478,489 Fredj et al., issued December 26, 1995; U.S. 5,470,507 Fredj et al., issued November 28, 1995; U.S. 5,466,802 Panandiker et al., issued November 14, 1995; U.S. 5,460,752 Fredj et al., issued October 24, 1995; U.S. 5,458,810 Fredj et al., issued October 17, 1995; U.S. 5,458,809 Fredj et al., issued October 17, 1995; U.S. 5,288,431 Huber et al., issued February 22, 1994 all of which are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne des produits détergents contenant des tensioactifs, et des méthodes d'utilisation de ces produits en vue de réduire les altérations subies par le linge après de nombreux cycles de lavage et après avoir été porté à maintes reprises, notamment les altérations subies par les tissus à base de fibres de cellulose (telles que le coton, la soie artificielle, la ramie, le jute, la fibre de lin, le lin, les fibres polynosiques, les fibres Lyocell (Tencel®), les mélanges polyester/coton, autres mélanges de coton, et analogues), en particulier le coton, la soie artificielle, le lin, les mélanges polyester/coton, et autres associations, par rapport aux produits détergents pour lessive à faible teneur en tensioactifs organiques.
PCT/US2000/003518 1999-02-10 2000-02-09 Methodes de lavage du linge en douceur WO2000047706A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU39994/00A AU3999400A (en) 1999-02-10 2000-02-09 Methods for reducing damage to laundered fabrics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11954899P 1999-02-10 1999-02-10
US60/119,548 1999-02-10

Publications (1)

Publication Number Publication Date
WO2000047706A1 true WO2000047706A1 (fr) 2000-08-17

Family

ID=22384998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/003518 WO2000047706A1 (fr) 1999-02-10 2000-02-09 Methodes de lavage du linge en douceur

Country Status (2)

Country Link
AU (1) AU3999400A (fr)
WO (1) WO2000047706A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243431A (zh) * 2013-05-21 2013-08-14 海安县鑫荣纺织有限责任公司 一种棉纤维、亚麻纤维和粘胶纤维的混纺纱
WO2018029021A1 (fr) * 2016-08-08 2018-02-15 Basf Se Formulation liquide de blanchisserie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118189A (en) * 1975-07-02 1978-10-03 Henkel Kommanditgesellschaft Auf Aktien Method of washing textiles
US4489574A (en) * 1981-11-10 1984-12-25 The Procter & Gamble Company Apparatus for highly efficient laundering of textiles
US5362413A (en) * 1984-03-23 1994-11-08 The Clorox Company Low-temperature-effective detergent compositions and delivery systems therefor
WO1997049789A1 (fr) * 1996-06-21 1997-12-31 Henkel Kommanditgesellschaft Auf Aktien Procede de lavage pour textiles a proprietes ameliorees en termes de facilite d'entretien
WO1998053131A1 (fr) * 1997-05-23 1998-11-26 The Procter & Gamble Company Nettoyage par voie humide de vetements delicats non structures avec un minimum de froissement, de retrecissement et de dommage aux couleurs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118189A (en) * 1975-07-02 1978-10-03 Henkel Kommanditgesellschaft Auf Aktien Method of washing textiles
US4489574A (en) * 1981-11-10 1984-12-25 The Procter & Gamble Company Apparatus for highly efficient laundering of textiles
US5362413A (en) * 1984-03-23 1994-11-08 The Clorox Company Low-temperature-effective detergent compositions and delivery systems therefor
WO1997049789A1 (fr) * 1996-06-21 1997-12-31 Henkel Kommanditgesellschaft Auf Aktien Procede de lavage pour textiles a proprietes ameliorees en termes de facilite d'entretien
WO1998053131A1 (fr) * 1997-05-23 1998-11-26 The Procter & Gamble Company Nettoyage par voie humide de vetements delicats non structures avec un minimum de froissement, de retrecissement et de dommage aux couleurs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243431A (zh) * 2013-05-21 2013-08-14 海安县鑫荣纺织有限责任公司 一种棉纤维、亚麻纤维和粘胶纤维的混纺纱
WO2018029021A1 (fr) * 2016-08-08 2018-02-15 Basf Se Formulation liquide de blanchisserie
CN109563447A (zh) * 2016-08-08 2019-04-02 巴斯夫欧洲公司 液体洗衣制剂

Also Published As

Publication number Publication date
AU3999400A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
CN100558871C (zh) 含有多取代的蛋白酶变体和淀粉酶变体的清洗组合物
US6503876B1 (en) Stable non-aqueous liquid laundry detergents comprising low density particles
US6699828B1 (en) Aqueous liquid detergent compositions comprising an effervescent system
US6919304B2 (en) Stability enhancing formulation components, compositions and laundry methods employing same
EP1151077A1 (fr) Solides particulaires faible densite utilises dans les detergents pour lessive
CA2380328C (fr) Compositions detergentes comportant des hydrotropes
CN101484565A (zh) 包含脂肪酶和漂白催化剂的组合物
US6903060B1 (en) Stable formulation components, compositions and laundry methods employing same
JP2003505580A (ja) Xetおよび多糖および/またはオリゴ糖を含んでなる組成物
US6844305B1 (en) Aqueous liquid detergent compositions comprising a polymeric stabilization system
WO2000047706A1 (fr) Methodes de lavage du linge en douceur
EP1023448A1 (fr) Techniques de production d'enzymes amylase
CA2381896A1 (fr) Compositions detergentes liquides aqueuses comprenant un systeme de stabilisation polymerique
WO2000077155A1 (fr) Compositions de detergents liquides non aqueux, comprenant un compose de liberation de borate et une mannanase
EP1149145A1 (fr) Granules d'enzymes basse densite et compositions en integrant
WO2000066704A1 (fr) Microspheres utiles dans des compositions detergentes
JP2000504066A (ja) 洗剤組成物
GB2353280A (en) Methods for activating enzymes
GB2363614A (en) Modified chitosan fabric treatment agents
MXPA01007838A (en) Low density enzyme granulates and compositions employing same
CZ135299A3 (cs) Čisticí prostředky
MXPA01008079A (es) Detergentes liquidos para lavanderia no acuosos, estables, que comprenden particulas de baja densidad
WO2000017308A1 (fr) Composition detergente en barre pour lessive contenant un agent de blanchiment a base de peroxygene
MXPA01008081A (en) Low density particulate solids useful in laundry detergents
MXPA00003977A (en) Multiply-substituted protease variant and amylase variant-containing cleaning compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载