明細書 Specification
荷電粒子線露光装置における位置合わせ用マークの検出方法 本出願は日本国特許出願平成 1 1年第 2 5 3 5 8号を基礎とし、 その内容は 引用文としてここに含まれる。 技術分野 Method for Detecting Alignment Marks in Charged Particle Beam Exposure Apparatus This application is based on Japanese Patent Application No. 255358/1999, the contents of which are incorporated herein by reference. Technical field
本発明は、 荷電粒子線露光装置およびこの露光装置で使用され、 ウェハ一等 の被露光基板に設けられた位置合わせ用マークを確実に検出する方法に関する ものである。 背景技術 The present invention relates to a charged particle beam exposure apparatus and a method for reliably detecting an alignment mark used on an exposure substrate such as a wafer, which is used in the exposure apparatus. Background art
荷電粒子線露光装置においては、 レチクルやマスク (以下では、 レチクルと いう) に形成されたパターンの像を、 荷電粒子線によって、 ウェハ一等の被露 光基板 (単に基板という) に投影露光している。 この際、 レチクル像と基板の 相対位置を正確に合わせるために、 レチクルに位置合わせ用パターンが、 基板 に位置合わせ用マークが、 それぞれ設けられている。 そして、 レチクルの位置 合わせ用パターンを通過した荷電粒子線を基板の位置合わせ用マークに照射し てスキャニングし、 その際発生する 2次電子等を検出することにより、 位置合 わせを行う。 In a charged particle beam exposure apparatus, an image of a pattern formed on a reticle or a mask (hereinafter, referred to as a reticle) is projected and exposed to a light-exposed substrate (simply, a substrate) such as a wafer by a charged particle beam. ing. At this time, a positioning pattern is provided on the reticle, and a positioning mark is provided on the substrate in order to accurately align the relative position between the reticle image and the substrate. Then, the charged particle beam that has passed through the reticle alignment pattern is irradiated onto the alignment mark on the substrate to perform scanning, and secondary electrons and the like generated at that time are detected to perform alignment.
位置合わせ用マークが形成された基板の上にはレジストが全面に塗布されて おり、 位置合わせ用の荷電粒子線の照射により位置合わせ用マーク上のレジス トも露光される。 このレジストにポジ型レジストを使用した場合、 レジストを 現像した際に位置合わせ用マーク上のレジス卜が除去され、 続いて行われるェ ツチング等により位置合わせ用マークが破損してしまう。 そのため、 改めて位 置合わせ用マークを作成しなおす必要があった。 A resist is applied to the entire surface of the substrate on which the alignment mark is formed, and the resist on the alignment mark is also exposed by irradiation of the charged particle beam for alignment. When a positive resist is used as the resist, the resist on the alignment mark is removed when the resist is developed, and the alignment mark is damaged by subsequent etching or the like. Therefore, it was necessary to re-create the alignment mark.
—方、 ネガ型レジストを使用した場合には、 逆にマーク検出の際の露光量が 不充分であると、 レジストを現像した際に位置合わせ用マーク上のレジス卜が 除去され、 続いて行われるエッチング等により位置合わせ用マークが損傷して しまう。 そのため、 描画方式の荷電粒子線露光装置においては、 この対策とし
て位置合わせ用マークの領域を露光し、 現像時にレジス卜が除去されないよう にして位置合わせ用マークを保護している。 発明の開示 On the other hand, when a negative resist is used, if the amount of exposure at the time of mark detection is insufficient, the resist on the alignment mark is removed when the resist is developed, and The alignment mark will be damaged due to etching and the like. Therefore, in a charged particle beam exposure system of the drawing method, By exposing the area of the alignment mark, the resist is not removed during development to protect the alignment mark. Disclosure of the invention
しかしながら、 改めて位置合わせ用マークを作成しなおす場合、 全体の工程 が複雑になると共に、 新たなマークを作るためのスペースを空けておく必要が あるため、 チップの有効面積が減少するという欠点があった。 また、 マーク形 成誤差のため重ね合わせ精度が低下することから良品度が低下し、 製造コス卜 の増加を招くとともに、 線幅の非常に小さな半導体デバイスを製造するのが困 難であった。 さらに、 ネガ型レジス卜において位置合わせ用マーク領域を露光 する方法の場合には、 スループットが低下するという問題があった。 特に、 被 露光領域を複数のス卜ライプに分割し、 各ス卜ライプの長手方向にレチクルと 基板を連続移動させながらレチクルから基板への転写を行う方式 (分割投影転 写方式) の荷電粒子線露光装置においては、 スループットを落とさずに位置合 わせ用マーク領域を露光する方式が開発されていないのが現状である。 However, re-creating the alignment mark again has the disadvantages of complicating the whole process and reducing the effective area of the chip due to the need to make room for a new mark. Was. In addition, since the overlay accuracy is lowered due to the mark formation error, the quality is lowered, the manufacturing cost is increased, and it is difficult to manufacture a semiconductor device having a very small line width. Further, in the method of exposing the alignment mark area in the negative resist, there is a problem that the throughput is reduced. In particular, charged particles of a method in which the exposure area is divided into a plurality of stripes and transfer from the reticle to the substrate while continuously moving the reticle and the substrate in the longitudinal direction of each stripe (divided projection transfer method). At present, a line exposure system has not been developed that exposes the alignment mark area without reducing the throughput.
本発明の目的は、 荷電粒子線露光装置で露光される基板上に設けられた位置 合わせ用マーク上のレジス卜が、 レジス卜現像により除去されるのを防止する ことができる位置合わせ用マークの検出方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an alignment mark which can prevent a resist on an alignment mark provided on a substrate exposed by a charged particle beam exposure apparatus from being removed by resist development. It is to provide a detection method.
本発明の他の目的は、 スループットを落とさずに、 位置合わせ用マークを確 実に検出できる荷電粒子線露光装置を提供することにある。 Another object of the present invention is to provide a charged particle beam exposure apparatus capable of reliably detecting a positioning mark without reducing the throughput.
さらに他の目的は、 線幅が細く、 集積度の高い半導体デバイス、 および、 そ のような半導体デバイスを製造できる半導体デバイス製造方法を提供すること にある。 Still another object is to provide a semiconductor device having a small line width and a high degree of integration, and a semiconductor device manufacturing method capable of manufacturing such a semiconductor device.
上記目的を達成するため、 本発明による荷電粒子線露光装置およびその露光 装置に使用される位置合わせ用マークの検出法では、 ポジ型レジス卜が塗布さ れた基板上の位置合わせ用マークを荷電粒子線により走査して、 その位置合わ せ用マークを検出する際に位置合わせ用マーク領域に与えられる荷電粒子線の ドーズ量を、 上記基板上の回路パターンが露光されるパターン形成領域が受け るドーズ量よりも少なくするようにした。
このように、 位置合わせ用マーク領域の受けるドーズ量を、 ポジレジス卜の ァ値に応じて通常の露光面が受けるドーズ量よりも小さくすることにより、 レ ジス卜現像後にも位置合わせ用マーク上にレジス卜を残留させることができる。 その結果、 この残留したレジストにより、 位置合わせ用マークがエッチング等 により損傷するのを防止することができる。 また、 改めて位置合わせ用マーク を作成しなおす必要がないので、 工程の簡略化や重ね合わせ精度の向上を図る ことができる。 In order to achieve the above object, a charged particle beam exposure apparatus according to the present invention and a method for detecting an alignment mark used in the exposure apparatus include a method of charging an alignment mark on a substrate coated with a positive type resist. The pattern forming area where the circuit pattern on the substrate is exposed receives the dose of the charged particle beam given to the alignment mark area when scanning with the particle beam and detecting the alignment mark. It was made smaller than the dose. In this way, by making the dose received by the alignment mark area smaller than the dose received by the normal exposure surface in accordance with the positive value of the positive register, the dose on the alignment mark is maintained even after the resist development. The resist can be left. As a result, it is possible to prevent the alignment mark from being damaged by etching or the like due to the remaining resist. Also, since it is not necessary to re-create the alignment mark, the process can be simplified and the overlay accuracy can be improved.
また、 位置合わせ用マークに与えられる荷電粒子線のドーズ量を、 パターン 形成領域が受けるドーズ量の 1 Z 2未満とするのが好ましい。 このようにする と、 ほとんどの種類のポジ型レジストに対して、 現像後のレジスト膜厚の減少 量を 15 %以下とすることができる。 Further, it is preferable that the dose of the charged particle beam given to the alignment mark is less than 1 Z 2 of the dose received by the pattern formation region. In this manner, the resist film thickness after development can be reduced by 15% or less for most types of positive resists.
さらに、 位置合わせ用マーク、 及びその上を走査される荷電粒子線は、 それ ぞれ複数のパターンで構成するのが好ましい。 この場合、 位置合わせ時の検出 信号 (例えば、 位置合わせ用マークに荷電粒子線が照射されたときに放出され る反射電子または 2次電子) を減少させることなく、 位置合わせ用マーク領域 が受けるドーズ量を少なくすることができる。 Further, it is preferable that each of the alignment mark and the charged particle beam scanned on the mark is composed of a plurality of patterns. In this case, the dose received by the alignment mark area is reduced without reducing the detection signal at the time of alignment (for example, reflected electrons or secondary electrons emitted when the alignment mark is irradiated with the charged particle beam). The amount can be reduced.
本発明による位置合わせ用マーク検出方法は、 基板上のパターン形成領域を 複数のストライプに分割し、 各ストライプの長手方向にレチクルと基板を連続 移動させながらレチクルから基板への投影を行う荷電粒子線露光装置に用いら れ、 ネガ型レジス卜が塗布された基板上の位置合わせ用マークを荷電粒子線に より走査して検出する方法に関するものであり、 位置合わせ用マークを検出す るためのパターンが形成された領域に近接してマーク保護用パターン領域が形 成されたレチクルを用い、 上記検出方法には、 マーク検出用露光の前又は後に、 マーク保護用パターンを通過した荷電粒子線により位置合わせ用マークを露光 する工程が含まれる。 In the alignment mark detection method according to the present invention, a charged particle beam that projects a pattern from a reticle onto a substrate while continuously moving the reticle and the substrate in the longitudinal direction of each stripe by dividing a pattern formation region on the substrate into a plurality of stripes It relates to a method of scanning a positioning mark on a substrate coated with a negative type resist with a charged particle beam, which is used in an exposure apparatus, to detect a pattern, and a pattern for detecting the positioning mark. Using a reticle in which a mark protection pattern area is formed in proximity to the area where the mark is formed, the above-described detection method includes, before or after the mark detection exposure, the position using a charged particle beam that has passed through the mark protection pattern. The step of exposing the alignment mark is included.
この場合、 位置合わせ時のマーク検出用露光とは別に、 マーク保護用パター ンを通過した荷電粒子線により位置合わせ用マークを露光するため、 位置合わ せ用マーク上のネガ型レジス卜は充分な量の露光を受けることになる。 そのた め、 現像後も位置合わせ用マーク上にレジス卜が残存し、 エッチング等による
マークの損傷を防止することができる。 In this case, apart from the mark detection exposure at the time of alignment, the alignment mark is exposed by the charged particle beam that has passed through the mark protection pattern, so that the negative type resist on the alignment mark is not sufficient. Amount of exposure. As a result, the resist remains on the alignment mark even after development, and the Mark damage can be prevented.
また、 マーク保護用パターンを通過した荷電粒子線による位置合わせ用マー クの露光は、 パターン露光やマーク検出を行える程に試料台及びレチクルステ —ジの定速性が保証されていないときに行うのが好ましい。 この場合、 全体の 露光プロセスのスループットを下げることなく、 マーク保護用パターンを通過 した荷電粒子線による露光を行うことができる。 Exposure of the alignment mark with the charged particle beam that has passed through the mark protection pattern is performed when the constant speed of the sample stage and reticle stage is not ensured enough to perform pattern exposure and mark detection. Is preferred. In this case, it is possible to perform exposure using the charged particle beam that has passed through the mark protection pattern without lowering the throughput of the entire exposure process.
また、 半導体デバイス製造方法におけるリソグラフイエ程に、 上述したよう な荷電粒子線露光装置や位置合わせマーク検出方法を使用することにより、 線 幅が細く、 集積度の高い半導体デバイスを製造することができる。 図面の簡単な説明 Further, by using the charged particle beam exposure apparatus and the alignment mark detection method as described above in the lithographic process in the semiconductor device manufacturing method, a semiconductor device having a small line width and a high degree of integration can be manufactured. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 半導体デバイス製造方法を示すフローチヤ一トである。 FIG. 1 is a flowchart showing a semiconductor device manufacturing method.
図 2は、 ウェハプロセッシング工程におけるリソグラフイエ程の内容を示す フローチャートである。 FIG. 2 is a flowchart showing the contents of the lithographic process in the wafer processing step.
図 3は、 分割投影露光装置の概略構成を示すプロック図である。 FIG. 3 is a block diagram showing a schematic configuration of the divided projection exposure apparatus.
図 4は、 ポジ型レジストを使用した場合の、 露光ドーズ量と残留レジスト膜 厚の関係を示す図である。 FIG. 4 is a diagram showing the relationship between the exposure dose and the residual resist film thickness when a positive resist is used.
図 5は、 ドーズ量を減少した露光方法を説明する図であり、 位置合わせ用マ FIG. 5 is a diagram for explaining an exposure method in which the dose amount is reduced, and the alignment mask is
—クと、 それに照射される電子線を示す図である。 FIG. 2 is a diagram showing a laser beam and an electron beam irradiated on the laser beam.
図 6は、 分割投影転写方式の露光装置における分割露光の単位を示す図であ る。 FIG. 6 is a view showing a unit of divisional exposure in an exposure apparatus of a divisional projection transfer system.
図 7は、 分割投影露光装置における露光方式を示す図である。 FIG. 7 is a diagram showing an exposure method in the divided projection exposure apparatus.
図 8は、 分割投影露光装置に用いられるレチクルの一例を示す図である。 発明を実施するための最良の形態 FIG. 8 is a diagram showing an example of a reticle used in a divided projection exposure apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について、 図を用いて説明する。 まず、 本発明による 位置合わせ用マークの検出方法を用いた荷電粒子線露光装置が適用される半導 体デバイス製造方法について説明する。 図 1は半導体デバイス製造方法を示す フローチャートであり、 主工程として、 ウェハ一を製造するウェハ一製造工程
S 1、 ウェハーにチップを形成するのに必要な加工処理を行うウェハプロセッ シング工程 S 2、 ウェハ一に形成されたチップを 1個づっ切り出して、 デバイ スとして動作可能な形態に組み立てるチップ組み立て工程 S 3、 完成したチッ プを検査するチップ検査工程 S 4、 およびウェハプロセッシング工程 S 2で使 用するマスクを製作するマスク製造工程 S 5を有している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a method for manufacturing a semiconductor device to which a charged particle beam exposure apparatus using the method for detecting a positioning mark according to the present invention is applied will be described. FIG. 1 is a flowchart showing a semiconductor device manufacturing method. The main process is a wafer-one manufacturing process for manufacturing a wafer. S1, Wafer processing step for processing necessary to form chips on a wafer S2, Chip assembly step for cutting out chips formed on a wafer one by one and assembling them into a form that can be operated as a device S3, a chip inspection step S4 for inspecting a completed chip, and a mask production step S5 for producing a mask used in the wafer processing step S2.
これらの工程の中で、 半導体デバイスの性能に決定的な影響を有する工程は ウェハプロセッシング工程 S 2である。 このウェハプロセッシング工程 S 2で は、 設計された回路パターンがウェハー上に順次積層形成され、 メモリ一や M P Uとして動作するデバイスチップがウェハー上に多数形成される。そのため、 ウェハプロセッシング工程 S 2には、 ① C V Dやスパッタリング等を用いて絶 縁層となる誘電体薄膜や、 配線部、 電極部を形成する金属薄膜等を形成する薄 膜形成工程、 ②ウェハー基板や薄膜形成工程で形成された薄膜層を酸化する酸 化工程、 ③薄膜層やウェハ一基板等を選択的に加工するために、 マスク (レチ クルとも呼ばれる) を用いてレジストパターンを形成するリソグラフイエ程、 ④レジストパターンを用いてドライエッチング等により薄膜層や基板を加工す るエッチング工程、 ⑤イオン '不純物注入工程、 ⑥レジスト剥離工程、 ⑦ゥェ ハ一を洗浄する洗浄工程、 ⑧加工されたウェハ一を検査する検査工程などが含 まれている。 なお、 ウェハプロセッシング工程 S 2は必要な層数だけ繰り返し 行われる。 Among these steps, the step that has a decisive effect on the performance of the semiconductor device is the wafer processing step S2. In the wafer processing step S2, designed circuit patterns are sequentially formed on the wafer, and a large number of device chips that operate as memories and MPUs are formed on the wafer. Therefore, the wafer processing step S2 includes: (1) a thin film forming step of forming a dielectric thin film as an insulating layer using CVD, sputtering, or the like, and a metal thin film for forming wiring portions and electrodes, and (2) a wafer substrate. Lithography, which uses a mask (also called a reticle) to selectively process the thin film layer and wafer-to-substrate, etc. (A) Etching process to process thin film layer and substrate by dry etching using resist pattern, (2) ion implantation process, (4) resist stripping process, (4) cleaning process to clean wafer, and (5) processing It includes an inspection process for inspecting a wafer that has been damaged. Note that the wafer processing step S2 is repeatedly performed for the required number of layers.
図 2はウェハプロセッシング工程 S 2の中核を成すリソグラフイエ程の内容 を示すフローチャートである。 レジス卜塗布工程 S 1 1でウェハー上にレジス 卜を塗布したならば、 露光工程 S 1 2において、 マスク製造工程で作製された マスクを用いて露光装置によりレジス卜を露光する。 露光されたレジストを現 像工程 S 1 3で現像すると、 レジストのパターンが得られる。 このレジストパ ターンは、 続くァニール工程 S 1 4により安定化される。 FIG. 2 is a flowchart showing the contents of the lithographic process that forms the core of the wafer processing step S2. After applying the resist on the wafer in the resist coating step S11, the resist is exposed by an exposure apparatus using the mask produced in the mask manufacturing step in an exposure step S12. When the exposed resist is developed in the developing step S13, a resist pattern is obtained. This resist pattern is stabilized by the subsequent annealing step S14.
上述した露光工程 S 1 2に、 本発明による位置合わせ用マークの検出方法を 適用した露光装置を用いることにより、 リソグラフイエ程のスループット, コ スト, 精度および良品度を大幅に改善することができる。 特に、 必要な最小線 幅、 およびそれに見合った重ね合わせ精度の実現に関係する工程はリソグラフ
イエ程であって、 その中でも位置合わせ制御を含めた露光工程 S 1 2が重要で ある。 この露光工程 S 1 2に本発明を適用することにより、 今まで製造が不可 能であるとされていた半導体デバイスの製造が可能となる。 By using an exposure apparatus to which the method of detecting a mark for alignment according to the present invention is applied in the above-described exposure step S12, the throughput, cost, accuracy, and quality of the lithography can be significantly improved. . In particular, the steps involved in achieving the required minimum line width and the corresponding overlay accuracy are lithographic. The exposure process S 12 including the alignment control is important among them. By applying the present invention to this exposure step S12, it becomes possible to manufacture a semiconductor device which has been considered impossible to manufacture.
次に、 図 3を用いて荷電粒子線露光装置の概略構成について説明する。 電子 銃 2 1から出射された電子線 E Bは、 コンデンサーレンズ 2 2により平行ビー ム化される。 2 3はビームブラン力であり、 電子銃 2 1からコンデンサーレン ズ 2 2へ出射される電子線 E Bを制御アンプ 2 3 aの信号に基づいてオン ·ォ フするシャツ夕の働きをする。 コンデンサ一レンズ 2 2を通過した電子線 E B は、 副視野選択用偏向器 2 4により偏向されてレチクル 1 0 0のサブフィ一ル ドの一つに導かれる。 Next, a schematic configuration of the charged particle beam exposure apparatus will be described with reference to FIG. The electron beam EB emitted from the electron gun 21 is formed into a parallel beam by the condenser lens 22. Reference numeral 23 denotes a beam blank force, which acts as a shirt for turning on / off the electron beam EB emitted from the electron gun 21 to the condenser lens 22 based on the signal of the control amplifier 23a. The electron beam EB that has passed through the condenser lens 22 is deflected by the sub-field selecting deflector 24 and guided to one of the subfields of the reticle 100.
レチクル 1 0 0はレチクルステージ 2 5に装着されており、 レチクルステ一 ジ 2 5は駆動装置 2 6により X軸, y軸方向に水平駆動される。 レチクル 1 0 0を通過した電子線 E Bは、 偏向器 2 7により X軸方向および y軸方向に所定 量偏向されるたのち、 投影光学系 2 8によりウェハステージ 3 0上に装着され たウェハー Wの所定領域に投影される。 ウェハステージ 3 0は駆動装置 3 1に より X軸方向および y軸方向に水平駆動される。 The reticle 100 is mounted on a reticle stage 25, and the reticle stage 25 is horizontally driven in the X-axis and y-axis directions by a driving device 26. The electron beam EB that has passed through the reticle 100 is deflected by a predetermined amount in the X-axis direction and the y-axis direction by the deflector 27, and then the wafer W mounted on the wafer stage 30 by the projection optical system 28. Is projected on a predetermined area of the image. The wafer stage 30 is horizontally driven by the driving device 31 in the X-axis direction and the y-axis direction.
レチクルステージ 2 5およびウェハステージ 3 0の X軸方向および y軸方向 の位置はレーザ干渉計等の位置検出器 3 2, 3 3でそれぞれ検出され、 それら の検出結果は制御装置 3 4へ出力される。 制御装置 3 4には予め露光条件等の データが入力されており、 それらのデータと位置検出器 1 2, 1 3からのステ —ジ位置情報とに基づいて偏向器 2 4 , 2 7による電子線 E Bの偏向量を演算 するとともに、 レチクルステージ 2 5およびウェハステージ 3 0の動作を制御 するのに必要な情報 (例えば、 位置および移動速度) を演算する。 The positions of the reticle stage 25 and the wafer stage 30 in the X-axis direction and the y-axis direction are detected by position detectors 32, 33, such as laser interferometers, respectively, and the detection results are output to the controller 34. You. Data such as exposure conditions are input to the controller 34 in advance, and based on the data and the stage position information from the position detectors 12 and 13, the electronic devices by the deflectors 24 and 27 are used. In addition to calculating the deflection amount of the line EB, information (eg, position and moving speed) necessary for controlling the operations of the reticle stage 25 and the wafer stage 30 is calculated.
偏向量の演算結果は偏向量設定器 3 5, 3 6に出力され、 各偏向器設定器 3 5 , 3 6によって偏向器 2 4 , 2 7の偏向量がそれぞれ設定される。 また、 ブ ラン力 2 3による電子線 E Bのオン ·オフの制御も制御装置 3 4の指令に基づ いてなされる。 レチクルステージ 2 5およびウェハステージ 3 0の動作に関す る演算結果はドライバ 3 8, 3 9にそれぞれ出力され、 ドライバ 3 8 , 3 9に よって駆動装置 2 6、 3 1の動作がそれぞれ制御される。
レチクル 1 0 0とウェハ一 Wとの位置合わせを行う際には、 レチクル 1 0 0 に設けられた位置合わせ用パターンを通過した電子線 E Bをウェハー上に設け られた位置合わせ用マークに照射して、 そのときに発生する 2次電子等を 2次 電子検出器 4 0により検出する。 2次電子検出器 4 0の検出信号は制御装置 3 4へ出力され、 制御装置 3 4はこの検出信号に基づいて偏向器 2 7を駆動して ビームの位置調整を行ってレチクル 1 0 0の像とウェハ一 Wとの位置合わせを 行う。 The calculation result of the deflection amount is output to the deflection amount setting units 35 and 36, and the deflection amounts of the deflectors 24 and 27 are set by the deflector setting units 35 and 36, respectively. In addition, on / off control of the electron beam EB by the blanking force 23 is also performed based on a command from the control device 34. The operation results of the operations of the reticle stage 25 and the wafer stage 30 are output to drivers 38 and 39, respectively, and the operations of the driving devices 26 and 31 are controlled by the drivers 38 and 39, respectively. . When aligning the reticle 100 with the wafer W, the electron beam EB that has passed through the alignment pattern provided on the reticle 100 is irradiated onto the alignment mark provided on the wafer. Then, secondary electrons and the like generated at that time are detected by the secondary electron detector 40. The detection signal of the secondary electron detector 40 is output to the control device 34, and the control device 34 drives the deflector 27 based on the detection signal, adjusts the beam position, and outputs the reticle 100 Align the image with the wafer W.
上述したように、 回路パターンを露光, 現像してエッチングするとき、 位置 合わせマーク上のレジストはある程度残存させる必要がある。 本発明は、 位置 合わせマーク上のレジス卜の露光量を制御してレジストを残存させるものであ る。 そこで、 まず、 露光ドーズ量と残存レジスト膜厚との関係について説明す る。 As described above, when the circuit pattern is exposed, developed and etched, the resist on the alignment mark needs to remain to some extent. In the present invention, the resist is left by controlling the exposure amount of the resist on the alignment mark. Therefore, the relationship between the exposure dose and the remaining resist film thickness will be described first.
図 4は、ポジ型レジストを用いた場合の、電子線の露光ドーズ量( C Z cm2) と、 残存レジスト膜厚との関係をレジスドの種類をパラメ一夕として示したも のである。 横軸は露光ドーズ量 (常用対数値)、 縦軸は現像前の膜厚に対する残 存レジス卜の膜厚の相対値を示す。図中の a〜cはレジス卜の種類に対応する。 a、 bのレジストは、 露光時のドーズ量が 6 i C / cm ) 以上であると現像 によりレジス卜が完全に除去され、 通常のパターン形成を行うことができる。 —方、 ドーズ量を 3 ( C Z cm2) 以下とした場合には、 aのレジストでは 86 %以上が、 bのレジス卜では 90 %以上が現像後に残存する。 Figure 4 shows the relationship between the electron beam exposure dose (CZ cm 2 ) and the remaining resist film thickness when a positive resist is used, with the type of resist as a parameter. The horizontal axis indicates the exposure dose (common logarithmic value), and the vertical axis indicates the relative value of the film thickness of the remaining resist to the film thickness before development. A to c in the figure correspond to the type of the registry. If the dose of the resists a and b is 6 iC / cm 2 or more at the time of exposure, the resist is completely removed by development, and normal pattern formation can be performed. On the other hand, when the dose is 3 (CZ cm 2 ) or less, 86% or more of the resist a and 90% or more of the resist b remain after development.
よって、 位置合わせ用マークを検出する際の電子線のドーズ量を通常のパ夕 —ン形成に使用されるドーズ量の 1 / 2とすれば、 当初の膜厚の 86 %以上が残 存することになる。 同様のことは cのレジストについても、 数値は異なるが当 てはまり、 ほとんどのレジストに共通である。 従って、 位置合わせ用マークを 検出するときに照射する荷電粒子線のドーズ量を、 通常のパターン形成に使用 されるドーズ量の 1 2とすることにより、 現像後も位置合わせ用マーク上の レジス卜がなお残留しており、 位置合わせ用マークがエッチング等により破損 することがない。 なお、 ドーズ量の低减のさせかたは、 使用するレジストの γ 値や完成までのウェハーの露光回数に応じて最適になるように設定すれば良い。
図 5を参照して、 このようなドーズ量を減少した露光方法の一例を説明する。 図 5において、 1はウェハー Wに形成された位置合わせ用マークで、 図 5に示 す例では 3個形成されており、 その幅は A、 マーク 1同士のピッチは Bである。 2はレチクル 1 0 0に設けられた位置合わせ用パターン (図示せず) を通過し てウェハ一 W上に投影された電子線 E Bを示しており、 置合わせ用パターンの 像である。 位置合わせ用パターンも 3個設けられており、 ウェハー W上に投影 された像 2の幅は C、 ピッチは位置合わせ用マーク 1のピッチと同じ Bである。 像 2を形成する電子線 E Bは図 3の偏向器 2 7によって偏向され、 像 2はマー ク 1の並び方向 (図の左右方向) に等速度でスキャンされる。 このときの走査 時間を Tとすれば、 走査速度は B ZTである。 Therefore, if the dose of the electron beam at the time of detecting the alignment mark is set to 1/2 of the dose used for normal pattern formation, 86% or more of the original film thickness remains. become. The same is true for the resist c, although the numerical values are different, and are common to most resists. Therefore, by setting the dose of the charged particle beam to be applied when detecting the alignment mark to 12 which is the dose used for normal pattern formation, the resist on the alignment mark can be maintained even after development. Still remain, and the alignment mark is not damaged by etching or the like. The method of decreasing the dose may be set so as to be optimal according to the γ value of the resist to be used and the number of exposures of the wafer until completion. An example of an exposure method in which such a dose is reduced will be described with reference to FIG. In FIG. 5, reference numeral 1 denotes an alignment mark formed on the wafer W. In the example shown in FIG. 5, three marks are formed. The width is A, and the pitch between the marks 1 is B. Reference numeral 2 denotes an electron beam EB projected on the wafer W through a positioning pattern (not shown) provided on the reticle 100, and is an image of the positioning pattern. Three alignment patterns are also provided. The width of the image 2 projected on the wafer W is C, and the pitch is B, which is the same as the pitch of the alignment mark 1. The electron beam EB forming the image 2 is deflected by the deflector 27 in FIG. 3, and the image 2 is scanned at a constant speed in the direction in which the marks 1 are arranged (the left-right direction in the figure). If the scanning time at this time is T, the scanning speed is BZT.
各位置合わせ用マーク 1に電子線 E Bが照射された際に放出される 2次電子 は、 2次電子検出器 4 0により検出され、 2次電子の数が最も多くなつたとき に、 各像 2が各位置合わせ用マーク 1に一致したと判断し、 この信号に基づい てレチクル 1 0 0の像とウェハ一 Wの位置合わせを行う。 Secondary electrons emitted when each alignment mark 1 is irradiated with the electron beam EB are detected by the secondary electron detector 40, and when the number of secondary electrons becomes the largest, each image is It is determined that 2 coincides with each alignment mark 1, and based on this signal, the image of reticle 100 and the wafer 1W are aligned.
通常のパターン部 (回路パターンが露光される領域) が露光される時間を T ' とし、 位置合わせの際にレチクル 1 0 0を照射する電子線 E Bの単位面積当 たりの強度が通常のパターン部の露光時と変わらないとすれば、 位置合わせの 際に位置合わせ用マーク 1上のレジス卜が受けるドーズ量は、 通常のパターン 部が受けるドーズ量の C T / { ( B + C ) T ' } 倍となる。 Cと Tを適当に選ぶ ことによりこの値を 1以下とすると、 位置合わせ用マーク 1上のレジス卜が受 けるドーズ量を通常のパターン部が受けるドーズ量より小さい任意の値にする ことができる。 通常、 走査時間 Tは露光時間 T ' と等しく設定される。 The exposure time of the normal pattern area (the area where the circuit pattern is exposed) is T ', and the intensity per unit area of the electron beam EB that irradiates the reticle 100 during alignment is the normal pattern area. Assuming that this is the same as during exposure, the dose received by the resist on the alignment mark 1 during alignment is CT / {(B + C) T '} of the dose received by the normal pattern portion. Double. If this value is set to 1 or less by appropriately selecting C and T, the dose received by the resist on the alignment mark 1 can be set to an arbitrary value smaller than the dose received by the normal pattern portion. . Usually, the scanning time T is set equal to the exposure time T '.
図 5において、 ウェハ一 W上の位置合わせ用マーク 1と、 レチクル 1 0 0上 の位置合わせ用パターンの数 (像 2の数) を複数としたのは、 位置合わせ用マ ーク 1が受ける電子線 E Bのドーズ量を小さくしても、 位置合わせに必要な量 の 2次電子が発生するようにするためである。 図 5に示す例では、 位置合わせ 用マーク 1と像 2の数は各々 3個である力 これらの数を多くすれば、 位置合 わせ用マーク領域が受ける電子線 E Bのドーズ量を増加させることなく多くの 2次電子を発生させることができる。
次に、 ネガ型レジストを使用した場合の位置合わせ用マークの保護について 説明する。 図 6は分割投影転写方式の露光方法を説明する図であり、 分割露光 の単位を示す図である。 まず、 基板 (通常はウェハ一である) W上には複数の チップ 3が形成され、 さらにチップ 3の領域は複数のストライプ 4に、 各スト ライプ 4は複数のサブフィールド Sにそれぞれ分割されている。 レチクル 1 0 0にはチップ 3の領域に転写されるパターンが形成されており、 このパターン は、 チップ 3のストライプ 4に対応してストライプ 1 0 (図 7参照) に分割さ れ、 さらにストライプ 1 0はス卜ライプ 4のサブフィールド Sに対応してサブ フィールド S ' に分割されている。 In FIG. 5, the number of the alignment marks 1 on the wafer W and the number of the alignment patterns (the number of images 2) on the reticle 100 are plural, because the alignment marks 1 This is because even if the dose of the electron beam EB is reduced, the amount of secondary electrons required for alignment is generated. In the example shown in FIG. 5, the number of the alignment marks 1 and the number of the images 2 are each three.If these numbers are increased, the dose of the electron beam EB received by the alignment mark area can be increased. And can generate many secondary electrons. Next, protection of the alignment mark when a negative resist is used will be described. FIG. 6 is a view for explaining the exposure method of the divided projection transfer system, and is a view showing a unit of the divided exposure. First, a plurality of chips 3 are formed on a substrate (usually a wafer) W, and the area of the chip 3 is divided into a plurality of stripes 4 and each stripe 4 is divided into a plurality of subfields S. I have. On reticle 100, a pattern to be transferred to the area of chip 3 is formed. This pattern is divided into stripes 10 (see FIG. 7) corresponding to stripes 4 of chip 3, and further divided into stripes 1 and 2. 0 is divided into subfields S 'corresponding to the subfield S of stripe 4.
分割投影露光装置では、 通常、 図 7に示すような方法で露光が行われる。 図 7では、 ウェハ一 Wの 1つのストライプ 4と、 このストライプ 4に対応するス トライプ 1 0とを示した。 まず、 レチクルステージ 2 5とウェハステージ 3 0 とを、 ストライプ 4 , 1 0の中心に沿って縮小比に近い速度比で等速移動させ る。 レチクル 1 0 0上のサブフィールド S ' は電子線 E Bによって照明され、 サブフィールド S ' に形成されたパターンの像が投影光学系 2 8 (図 3を参照) によってウェハー Wの対応するサブフィールド S上に縮小投影される。 In a divided projection exposure apparatus, exposure is usually performed by a method as shown in FIG. In FIG. 7, one stripe 4 of one wafer W and a stripe 10 corresponding to the stripe 4 are shown. First, the reticle stage 25 and the wafer stage 30 are moved at a constant speed along the center of the stripes 4 and 10 at a speed ratio close to the reduction ratio. The subfield S 'on the reticle 100 is illuminated by the electron beam EB, and an image of the pattern formed in the subfield S' is projected by the projection optical system 28 (see FIG. 3) onto the corresponding subfield S of the wafer W. It is reduced and projected on top.
そして、 電子線 E Bをレチクルステージ 3 0の進行方向と略直角な方向に偏 向させ、 順次、 一列に配置されたサブフィールド S ' , Sの投影露光を行う。 一 列のサブフィールド S ', Sの投影露光が終了すると、 次の列のサブフィールド S Sの投影露光を開始するが、 その際、 図 7に示すように電子線 E Bの偏向 方向を逆にして、 ライン L ', Lのように順次サブフィールド S ' , Sの投影露 光を行うことにより、 スループットを上げるようにしている。 Then, the electron beam EB is deflected in a direction substantially perpendicular to the traveling direction of the reticle stage 30, and the subfields S 'and S arranged in a row are sequentially subjected to projection exposure. When the projection exposure of one row of subfields S ′ and S is completed, the projection exposure of the next row of subfields SS is started. At this time, as shown in FIG. The throughput is increased by sequentially projecting and exposing subfields S ′ and S like lines L ′ and L.
このような方法で露光が行われる分割投影露光装置を従来の荷電粒子線露光 装置と比較すると、 サブフィールド領域が一括露光され、 またレチクル 1 0 0 には露光すべきパターンが全て形成されているため、 非常にスループットを向 上させることができる。 Compared with a conventional charged particle beam exposure apparatus, a divided projection exposure apparatus that performs exposure in this manner shows that the subfield area is exposed all at once, and that the reticle 100 has all the patterns to be exposed. Therefore, the throughput can be greatly improved.
この露光方式で使用するレチクル 1 0 0は、 光を使用した露光装置の場合と は異なり、 図 7に示すようにパターンが形成されるサブフィールド S ' とその 周辺の梁部 S Tに分割されている。 梁部 S Tは、 レチクル 1 0 0自体の強度を
保っために設けられたものである。 The reticle 100 used in this exposure method is divided into a subfield S 'where a pattern is formed and a beam ST around it, as shown in Fig. 7, unlike the case of an exposure apparatus using light. I have. The beam ST increases the strength of the reticle 100 itself. It is provided to keep it.
図 8は分割投影型の電子線露光装置に用いられるレチクル 1 0 0の一部を示 す図であり、 ウェハ一 Wに塗布されるレジス卜にはネガ型レジス卜が用いられ る。 図 8ではストライプ 1 0が X軸方向に複数形成されており、 1 1は隣り合 うストライプ 1 0の間に形成される梁部である。 1 2は転写パターンが形成さ れた一般のサブフィールド (図 6 , 7のサブフィールド S ' に対応する) を示 しており、 1 3は X方向位置合わせ用ビームを作るサブフィールド、 1 4は 方向位置合わせ用ビームを作るサブクイ一ルド、 1 5はマーク保護用のビーム を作るサブフィールドである。 サブフィールド 1 3には X軸方向位置合わせ用 パターン 1 6が形成され、 サブフィールド 1 4には y軸方向位置合わせ用パ夕 —ンが形成されている。 パターン 1 6 , 1 7はウェハ一 W上に図 5に示した像 2を形成するためのパターンである。 FIG. 8 is a view showing a part of a reticle 100 used in a split projection type electron beam exposure apparatus. A negative type resist is used as a resist applied to one wafer W. In FIG. 8, a plurality of stripes 10 are formed in the X-axis direction, and 11 is a beam portion formed between adjacent stripes 10. Numeral 1 2 indicates a general sub-field (corresponding to sub-field S ′ in FIGS. 6 and 7) on which a transfer pattern is formed. Numeral 13 indicates a sub-field for forming an X-direction alignment beam. Is a sub-field for producing a beam for directional alignment, and 15 is a sub-field for producing a beam for protecting marks. A sub-field 13 has an X-axis direction alignment pattern 16 formed therein, and a sub-field 14 has a y-axis direction alignment pattern formed therein. Patterns 16 and 17 are patterns for forming image 2 shown in FIG. 5 on one wafer W.
図 8に示したレチクルは、 ストライプ 1 0の長手方向すなわち y方向に移動 する。 ストライプ 1 0の y方向の各両端部には、 マーク保護用のビームを作る サブフィールド 1 5が図のように設けられ、 続いてその内側に、 X方向位置合 わせ用ビームを作るサブフィールド 1 3と、 y方向位置合わせ用ビームを作る サブフィールド 1 4とが、 X方向に交互に設けられている。 一方、 ウェハ一 W に関しても、 回路パターンが投影されるサブフィールド Sとは別に、 レチクル 1 0 0のサブフィールド 1 3 , 1 4に対応するサブフィールドが対応する位置 に形成されている。 なお、 図 8においては、 サブフィールド 1 3、 1 4、 1 5 は、 ストライプ 1 0の両側に設けられているが、 ストライプ 1 0が最初に露光 される方の側のみに設けてもよい。 The reticle shown in FIG. 8 moves in the longitudinal direction of the stripe 10, that is, in the y direction. At each end of the stripe 10 in the y direction, a subfield 15 for forming a beam for protecting a mark is provided as shown in the figure. Then, a subfield 1 for forming a beam for aligning in the X direction is provided inside the subfield 15. 3 and subfields 14 for producing a beam for alignment in the y direction are provided alternately in the X direction. On the other hand, with regard to wafer W, subfields corresponding to subfields 13 and 14 of reticle 100 are formed at positions corresponding to subfields S on which circuit patterns are projected. In FIG. 8, the subfields 13, 14, and 15 are provided on both sides of the stripe 10, but may be provided only on the side on which the stripe 10 is first exposed.
露光の際のレチクル 1 0 0とウェハ一 Wとの位置合わせは、 一つのストライ プ 1 0に関する露光を行う度に行われる。 例えば、 図 8に示すレチクルを用い て露光を行う場合には、 ストライプ 1 0のサブフィールド 1 2の露光を開始す る前に、 図示上側のサブフィールド 1 3, 1 4を用いて位置合わせを行い、 ス トライプ 1 0の露光が終了した後にも、 図示下側のサブフィールド 1 3, 1 4 を用いて位置合わせを行う。 また、 上述したように、 ストライプ 1 0が最初に 露光される方の側 (図示上側) のみに位置合わせ用のサブフィールド 1 3 , 1
4が設けられている場合には、 ストライプ 1 0のサブフィールド 1 2の露光を 開始する前に位置合わせを行う。 The alignment between the reticle 100 and the wafer 1 W at the time of exposure is performed every time exposure is performed on one stripe 10. For example, when performing exposure using the reticle shown in FIG. 8, before starting exposure of subfield 12 of stripe 10, alignment is performed using subfields 13 and 14 on the upper side of the figure. After the exposure of the stripe 10 is completed, the positioning is performed using the subfields 13 and 14 on the lower side of the figure. As described above, the subfields 13 and 1 for alignment are located only on the side on which the stripe 10 is first exposed (upper side in the figure). If 4 is provided, alignment is performed before exposure of subfield 12 of stripe 10 starts.
次に、 ネガレジストが使用された場合のマーク保護について述べる。 まず、 照明光学系 (図 3のコンデンサ一レンズ 2 3 ) からの電子線 E Bを、 偏向器 2 4で偏向してサブフィールド 1 5の一つに照射する。 サブフィールド 1 5には 図 8に示すような穴パターンが形成されており、 この穴パターンを通過した電 子線 E Bを位置合わせ用マークが設けられたウェハ一 W上の対応するサブフィ 一ルド (サブフィールド 1 3 , 1 4に対応するサブフィールド) に照射する。 その際、 ウェハ一 Wの位置合わせ用サブフィールドの y方向位置は、 レチクル 1 0 0のサブフィールド 1 3、 1 4の y方向位置に対応しているので、 レチク ル 1 0 0に照射される穴パターンのビームを偏向器 2 7により y方向に 1サブ フィールド分だけ余分に偏向し、 サブフィールド 1 5の穴パターンの像が、 ゥ ェハー W側の位置合わせ用マークが形成されている領域全体に転写されるよう にする。 このような露光を図 8の X方向に並んだサブフィールド 1 5に対して 次々と行うことによって、 全ての位置合わせ用サブフィールドへの保護露光が 行われる。 これにより、 ウェハー Wの位置合わせ用サブフィールドには、 予め 十分な露光が行われることになる。なお、 ポジレジストが使用された場合には、 この露光は省略される。 Next, mark protection when a negative resist is used will be described. First, the electron beam EB from the illumination optical system (condenser-lens 23 in FIG. 3) is deflected by a deflector 24 and irradiated to one of the subfields 15. A hole pattern as shown in FIG. 8 is formed in the subfield 15. The electron beam EB that has passed through the hole pattern is placed in the corresponding subfield (on the wafer W provided with the alignment mark). (The subfields corresponding to subfields 13 and 14). At this time, since the y-direction position of the alignment subfield of the wafer W corresponds to the y-direction position of the subfields 13 and 14 of the reticle 100, the reticle 100 is irradiated. The beam of the hole pattern is further deflected by one deflector in the y direction by the deflector 27, and the image of the hole pattern of the subfield 15 is displayed over the entire area where the alignment mark on the wafer W side is formed. To be transcribed. By performing such exposure successively on the subfields 15 arranged in the X direction in FIG. 8, protective exposure is performed on all the positioning subfields. As a result, the alignment subfield of the wafer W is sufficiently exposed in advance. This exposure is omitted when a positive resist is used.
続いて、 照明光学系からの電子線 E Bを偏向器 2 4で X方向に偏向して、 X 方向位置合わせ用ビームを作るサブフィールド 1 3および y方向位置合わせ用 ビームを作るサブフィールド 1 4に次々と照射し、 各サブフィールド 1 3 , 1 4のパターンによりパターン化された電子線 E Bをゥェハ一 W側の位置合わせ 用マークが設けられたサブフィールドに次々と照射する。 レチクル 1 0 0から ウェハ一 Wに照射される位置合わせ用ビームを偏向器 2 7で偏向することによ り、 ウェハ一 W上における各位置合わせ用ビームの走査が行われるが、 X軸方 向位置合わせ用マークを検出する場合には X軸方向に走査され、 y軸方向位置 合わせ用マークを検出する場合には y軸方向に走査される。 Subsequently, the electron beam EB from the illumination optical system is deflected in the X direction by the deflector 24 to form a subfield 13 for forming a beam for X direction alignment and a subfield 14 for forming a beam for y direction alignment. Irradiation is performed one after another, and the electron beam EB patterned by the pattern of each subfield 13 and 14 is sequentially radiated to the subfield provided with the alignment mark on the wafer 1W side. By deflecting the alignment beam irradiated from the reticle 100 onto the wafer 1W by the deflector 27, each alignment beam is scanned on the wafer 1W, but in the X-axis direction. Scanning is performed in the X-axis direction when detecting alignment marks, and scanning in the y-axis direction when detecting alignment marks in the y-axis direction.
サブフィールド 1 3、 1 4を通過してパターン化された電子線 E B (位置合 わせ用ビーム) が、 ウェハ一 Wの位置合わせ用マークを照射すると、 位置合わ
せ用マークから 2次電子が放出されるので、 これを検出器 4 0 (図 3参照) で 検出することにより、 レチクル 1 0 0とウェハー Wの相対位置関係を検出する。 そして、 検出された相対位置関係に基づいてレチクル 1 0 0の像とウェハ一 W の位置合わせを行い、 以後、 通常のサブフィールド 1 2の露光を実施する。 上述した検出方法によれば、 ウェハー Wの位置合わせ用マークが設けられて いるサブフィールド 1 3 , 1 4は、 サブフィールド 1 5に明けられた穴を通過 した電子ビームによって予め十分な露光を受けているので、 レジス卜現像後に もサブフィールド 1 3 , 1 4上のネガ型レジス卜は残留し、 その下にある位置 合わせ用マークがエツチング等により損傷することはない。 When the patterned electron beam EB (alignment beam) passing through subfields 13 and 14 irradiates the alignment mark of 1 W of the wafer, the alignment is performed. Since secondary electrons are emitted from the markings, the secondary electrons are detected by the detector 40 (see FIG. 3) to detect the relative positional relationship between the reticle 100 and the wafer W. Then, the image of the reticle 100 and the wafer 1 W are aligned based on the detected relative positional relationship, and thereafter, the normal exposure of the subfield 12 is performed. According to the above-described detection method, the subfields 13 and 14 provided with the alignment marks of the wafer W are subjected to sufficient exposure in advance by the electron beam that has passed through the hole formed in the subfield 15. Therefore, even after the resist development, the negative resists on the subfields 13 and 14 remain, and the positioning marks thereunder are not damaged by etching or the like.
サブフィールド 1 5で形成された保護用ビームをウェハー Wの位置合わせ用 マークが設けられたサブフィールドに照射するためには、 前述のように、 通常 の y軸偏向の他に 1サブフィールド分 (たとえば 250 m程度) の y軸偏向を 保護用ビームに加えなけばならないが、 穴パターン像をマーク領域より十分大 きく作れば、 このマーク保護用の露光は数 a m程度位置がずれても特に問題は ないので、 収差の問題は特に気にしなくてもよい。 ところで、 上述したような 分割投影型の露光装置では、 ステージ 2 5 , 3 0を等速移動させながら一つの ス卜ライプ 4 , 1 0の露光が終了したら、 ステージ 2 5 , 3 0の移動方向を反 転させて次のストライプ 4 , 1 0の露光が行われる。 そこで、 保護用ビームの 露光位置が多少ずれても問題ないことから、 ストライプ 4 , 1 0の露光の度に 行われる保護露光を、 ストライプ 4 , 1 0の露光 (回路パターンの露光転写) が行われる前後のステージ加減速中等のステージの定速性が保証されていない 時に実施することにより、 スループットを低下させることなく保護露光を行う ことができる。 As described above, in order to irradiate the protection beam formed in subfield 15 to the subfield provided with the alignment mark of wafer W, in addition to the normal y-axis deflection, one subfield ( The y-axis deflection (for example, about 250 m) must be added to the protection beam. However, if the hole pattern image is made sufficiently larger than the mark area, this mark protection exposure is particularly problematic even if the position is shifted by several am. There is no need to worry about aberrations. By the way, in the division projection type exposure apparatus as described above, when the exposure of one stripe 4, 10 is completed while moving the stages 25, 30 at a constant speed, the moving direction of the stages 25, 30 is Then, exposure of the next stripes 4 and 10 is performed. Therefore, since there is no problem even if the exposure position of the protection beam is slightly shifted, the protection exposure performed every time the stripes 4 and 10 are exposed is performed by exposing the stripes 4 and 10 (exposure transfer of the circuit pattern). Performing this when the constant speed of the stage is not guaranteed, such as during stage acceleration / deceleration before and after the exposure, enables the protection exposure to be performed without lowering the throughput.
なお、 図 8に示すように、 X軸方向位置合わせ用パターン 1 6、 y軸方向位 置合わせ用パターン 1 7は、 各パターンの長さが長すぎると電子線照射によつ て熱的に不安定となるので、 10 〜 50 /x mのものを多数並べるようにすると良 い。 産業上の利用可能性
なお、 上述した実施例では電子線を用いた露光装置を例に説明したが、 ィォ ンビームを含む荷電粒子線を用いる露光装置に関して本発明は適用可能である。
As shown in FIG. 8, the X-axis direction alignment pattern 16 and the y-axis direction alignment pattern 17 are thermally affected by electron beam irradiation when the length of each pattern is too long. Since it becomes unstable, it is good to arrange a lot of 10 to 50 / xm. Industrial applicability In the above-described embodiment, an exposure apparatus using an electron beam has been described as an example. However, the present invention is applicable to an exposure apparatus using a charged particle beam including an ion beam.