WO1999039433A1 - Convertisseur d'impedance actif - Google Patents
Convertisseur d'impedance actif Download PDFInfo
- Publication number
- WO1999039433A1 WO1999039433A1 PCT/SE1999/000036 SE9900036W WO9939433A1 WO 1999039433 A1 WO1999039433 A1 WO 1999039433A1 SE 9900036 W SE9900036 W SE 9900036W WO 9939433 A1 WO9939433 A1 WO 9939433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplifier
- resistor
- impedance
- subscriber line
- signals
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 31
- 239000003990 capacitor Substances 0.000 claims description 20
- 230000008054 signal transmission Effects 0.000 claims description 8
- 101150012579 ADSL gene Proteins 0.000 claims 6
- 102100020775 Adenylosuccinate lyase Human genes 0.000 claims 6
- 108700040193 Adenylosuccinate lyases Proteins 0.000 claims 6
- 238000010586 diagram Methods 0.000 description 7
- 238000013016 damping Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
- H04M11/06—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
- H04M11/062—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/40—Impedance converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/12—Compensating for variations in line impedance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/54—Circuits using the same frequency for two directions of communication
- H04B1/58—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0272—Arrangements for coupling to multiple lines, e.g. for differential transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0298—Arrangement for terminating transmission lines
Definitions
- the present invention relates to an active impedance converter circuit with a first side with complex impedance and a second side with complex/resistive impedance.
- the present invention also relates to a splitter for splitting a subscriber line into a first transmission branch including a low pass filter for providing telephone service signal transmissions along said subscriber line and a second transmission branch including a high pass filter for attenuating said telephone service signals and for providing high rate digital data transmissions along said subscriber line.
- the invention also relates to a termination of a twisted pair telephone transmission line for delivering two-way service including low frequency band telephone signals and high frequency band digital subscriber line signals.
- the telephony signals are separated from the ADSL signals by means of a pair of splitters, one in the central office and one at the customer's premises.
- the splitters provides the filtering required to separate the POTS and the ADSL bands before being input to their respective transceivers. Normally there is a low pass filter between the telephone and the line, and a high pass filter between the ADSL transceiver and the line.
- the insulation generated by the splitter is important for power limiting and for the removal of transients.
- POTS uses complex, i.e. capacitive impedances for termination and balance in the transmission bridges at telephone and central office.
- the introduction of the ADSL technique into POTS will not be successful if it involves a reduced quality in the transmission of speech or if the digital signals are influenced by transients in the POTS.
- the speech quality may be impaired by echo, sidetone or transmission loss.
- the digital signals may be influenced by the low frequency POTS signalling voltages.
- a passive inductance-capacitance filter within each respective passband has an almost entirely resistive impedance. This necessitates some form of impedance conversion, to meet demands from the operator that operational damping and reflection damping should be measured against a complex impedance.
- the impedance for POTS signalling frequencies must be high for an unterminated filter. Usually, the impedance converter function of the impedance converters is 1 for this frequency, and therefore the impedance of the low pass filter must be high.
- a splitter having an active impedance converter is described in "ADSL and VADSL Splitter Design and Telephony Performance", by John Cook and Phil Sheppard, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 9, DECEMBER 1995.
- This impedance converter is provided with an amplifier which has more gain for low frequencies than for high frequencies .
- a high inductance transformer is needed which causes problems with a high leakage inductance for high frequencies .
- a separate filter is needed for frequencies below 300 Hz in order to quench the 25 Hz POTS ringing signals, or the 50 or 60 Hz electric power supply transients.
- the impedance for the filters will be too low so that the parallel capacitances will load ringing signals and impulsing for POTS excessively.
- One object of the invention is therefore to provide a simple and efficient active impedance converter which reduces the above described problems.
- an active impedance converter circuit with a first side with complex impedance and a second side with complex/resistive impedance, which circuit is characterized in an amplifier which is connected to said first side of the circuit, and which amplifier is adapted to provide low gain for low frequency signals and to change over to provide more gain for high frequency signals.
- the amplifier comprises a capacitor, a first resistor, an operational amplifier and a second resistor.
- the capacitor is connected in series with the first resistor and said first resistor is connected in series with the operational amplifier which is connected in parallel with the second resistor.
- the capacitor acts as a block for direct current, and secondly it is dimensioned to function as a provider of reactance.
- the amplifier is connected to a subscriber line via a transmission line bridge comprising three co-operating transformer inductor coils which are connected to said subscriber line for providing a balancing impedance.
- This version of the invention is a simple and efficient means for providing balance damping as well as damping of longitudinal interferences.
- the amplifier is complemented by an additional amplifier.
- This version of the invention provides efficient means for driving the transformer inductor coils.
- a preferred embodiment of the invention is used for separating ADSL signals from mixed ADSL and POTS signal transmissions along a twisted pair telephone transmission line.
- the splitter comprises an active impedance converter circuit with a first side with complex impedance and a second side with complex/resistive impedance, and is characterized in that the impedance converter circuit comprises an amplifier which is connected to said first side of the circuit, and which amplifier is adapted to provide a low gain for low frequency signals and to change over to provide more gain for high frequency signals.
- the termination in accordance with the invention comprises a splitter for splitting a subscriber line into a first transmission branch including a low pass filter for providing telephone service signal transmissions along said subscriber line and a second transmission branch including a high pass filter for attenuating said telephone service signals and for providing high rate digital data transmissions along said subscriber line, said splitter comprising an active impedance converter circuit with a first side with complex impedance and a second side with complex/resistive impedance.
- the impedance converter circuit comprises an amplifier which is connected to said first side of the circuit, and which amplifier is adapted to provide a low gain for low frequency signals and to change over to providing more gain by means of high frequency signals.
- Fig. 1 is a circuit diagram showing the active impedance converter circuit according to a first embodiment of the invention
- Fig. 2 shows a graph of the input signal/frequency, associated with the impedance converter of Fig. 1,
- Fig. 3 is a circuit diagram showing the active impedance converter circuit according to the second embodiment of the invention
- Fig. 4 is a circuit diagram showing the active impedance converter according to the third embodiment of the invention.
- Fig. 5 schematically illustrates a realized version of the impedance converter circuit of Fig. 4.
- the active impedance converter circuit according to the present invention is included in the termination of a telephone subscriber line which presents both complex and resistive impedance.
- the circuit may for example be used in an ADSL splitter where the line is specified as complex for low frequencies like POTS (0.3 - 3.4 kHz) and complex or resistive for ADSL frequencies (30 - 1100 kHz) as well as the associated high pass and low pass filters.
- the circuit is designed for so called twisted pair telephone transmission lines for delivering two-way service.
- the circuit diagram in Fig. 1 shows a theoretical model of a first unbalanced version of the impedance converter.
- the telephone or the line is represented by an AC generator 10 where one of the generator outputs is connected to ground via two resistors 11 and 12 and a capacitor 13 in parallel with said resistor 12 which represents the specified complex impedance.
- the other generator output is connected via a first branch of the circuit to one end of a first transformer inductor coil 14.
- a second branch of the circuit is connected to an amplifier comprising a capacitor 15 which is connected in series with a resistor 16 to the inverting input of an operational amplifier 17. This side of the circuit with said two branches constitutes the complex net side of the circuit.
- the other end of the coil 14 is connected to ground via a resistor 18.
- This side of the circuit represents the resistive net side of the circuit, e.g. the high pass and the low pass filters.
- the amplifier also comprises a resistor 19 which is connected in parallel with the operational amplifier 17, the output of which is connected via a resistor 20 to one end of a second transformer inductor coil 21.
- the other end of the coil 21 is connected directly to ground.
- the two transformer inductor coils 14 and 21 co-operate to form a 1:1 transformer.
- R 2 +- j ⁇ C ⁇ where R x is the resistor 19, N is the transformer ratio 1:1, R 2 is the resistor 16 and C 7 is the capacitor 15.
- R, +- l Jc C ⁇ ) Z IN has an equivalent impedance network built with one capacitor C s in serial with a resistor R s and both in parallel with a resistor R p .
- Fig. 2 illustrates the amplitude of the IN-signal (V IN+ ) which is about 1 Volt from 0.3 kHz to 1100 kHz.
- V IN+ the IN-signal
- the IN-impedance is equal to the impedance of the generator 11-13. Because the load 18 is resistive the gain increases by frequency and the circuit characteristics is dimensioned so that the above described impedance converter acts as a controller by manipulating the voltage over the transformer 14, 21, so that the electric current in the loop becomes similar to the electric current for a complex termination in accordance with the generator impedance.
- Fig. 3 illustrates a theoretical model of a second, balanced version of the impedance converter.
- the same reference numbers have been used for similar components, as in the impedance converter in accordance with Fig. 1.
- the telephone or the line is again represented by the AC generator 10.
- the most significant difference lies in that a balancing impedance has been provided for the IN- signal by means of a third co-operating inductor coil 22 and the amplifier.
- the IN+ voltage of the generator output is, as in Fig. 1, connected via the first branch of the circuit to the end of the first transformer inductor coil 1 .
- the second branch of the circuit is connected to an amplifier comprising the capacitor 15a which is connected in series with the resistor 16a to the inverting input of the operational amplifier 17a.
- the other end of the coil 14 is connected to OUT+ via the load resistor 18b.
- the amplifier also comprises the resistor 19a which is connected in parallel with the operational amplifier 17a, the output of which is connected via the resistor 20 to one end of a second transformer inductor coil 21. The other end of the coil 21 is connected to ground.
- the three transformer inductor coils 14, 21 and 22 co-operate to form a 2:1:1 transformer.
- the IN- impedance 11-13 of the generator output is connected to one end of the balancing inductor coil 22.
- the other end of the coil 22 is connected to OUT- and the load resistor 18a.
- the IN- impedance of the generator 10 is also connected to the amplifier via a capacitor 15b and a resistor 16b to the non-inverting input of the operational amplifier 17.
- a resistor 19b is connected in parallel with the operational amplifier 17.
- Fig. 4 illustrates a theoretical model of a third, balanced version of the impedance converter.
- the same reference numbers have been used for similar components, as in the impedance converter in accordance with Fig. 1 and 3.
- the telephone or the line is again represented by the AC generator 10.
- the most significant difference with reference to the previously described embodiment according to Fig. 3, lies in the addition of a second operational amplifier 17b.
- the IN+ voltage of the generator output is, as in Fig. 3, connected via the first branch of the circuit to the end of the first transformer inductor coil 14.
- the second branch of the circuit is connected to the first amplifier comprising the 10
- the amplifier also comprises the resistor 19a which is connected in parallel with the operational amplifier 17a, the output of which is connected via the resistor 20 to one end of a second transformer inductor coil 21.
- the other end of the coil 21 is connected to the output of the second operational amplifier 17b.
- the three transformer inductor coils 14, 21 and 22 co-operate to form a 2:1:1 transformer.
- the IN- impedance 11-13 of the generator output is connected to one end of the balancing inductor coil 22.
- the other end of the coil 22 is connected to OUT- and the load resistor 18a.
- the IN- impedance of the generator 10 is also connected to the second amplifier comprising the capacitor 15b which is connected in series with the resistor 16b to the inverting input of the second operational amplifier 17b.
- a resistor 19b is connected in parallel with the second operational amplifier 17b.
- Fig. 5 illustrates the realized version of the impedance converter circuit of Fig. 4.
- the three transformer inductor coils 14, 21 and 22 co-operate to form a 1:1:1 transformer.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Interface Circuits In Exchanges (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Telephone Function (AREA)
- Telephonic Communication Services (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0901399A AT410384B (de) | 1998-01-29 | 1999-01-14 | Aktive impedanz-wandlerschaltungsanordnung /splitter-filter |
AU23040/99A AU2304099A (en) | 1998-01-29 | 1999-01-14 | Active impedance converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9800240A SE511316C2 (sv) | 1998-01-29 | 1998-01-29 | Aktiv impedansomvandlare |
SE9800240-5 | 1998-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999039433A1 true WO1999039433A1 (fr) | 1999-08-05 |
Family
ID=20410011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1999/000036 WO1999039433A1 (fr) | 1998-01-29 | 1999-01-14 | Convertisseur d'impedance actif |
Country Status (4)
Country | Link |
---|---|
AT (1) | AT410384B (fr) |
AU (1) | AU2304099A (fr) |
SE (1) | SE511316C2 (fr) |
WO (1) | WO1999039433A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1176775A1 (fr) * | 2000-07-24 | 2002-01-30 | Alcatel | Circuit d'attaque de ligne à large bande et basse tension |
EP1549037A1 (fr) * | 2003-12-22 | 2005-06-29 | STMicroelectronics S.r.l. | Circuit de synthèse d'impédance actif, par exemple pour dispositifs séparateurs XDSL |
CN101056094B (zh) * | 2007-04-06 | 2010-04-21 | 鞍山吉兆电子有限公司 | 同轴型大功率低通滤波-阻抗变换器 |
EP2493168A4 (fr) * | 2009-10-20 | 2017-01-18 | Telefónica, S.A. | Microfiltre actif pour norme de communication vdsl2 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0678979A2 (fr) * | 1994-04-20 | 1995-10-25 | AT&T Corp. | Coupleur pour systèmes de communication utilisant plus qu'une bande de fréquences |
US5623543A (en) * | 1994-02-01 | 1997-04-22 | British Telecommunications Public Limited Company | Two port signalling voltages filter arrangement |
WO1997020396A2 (fr) * | 1995-11-27 | 1997-06-05 | Analog Devices, Inc. | Ensemble diviseur de telephonie traditionnelle a perte par reflexion amelioree, destinee a une boucle numerique d'abonne |
-
1998
- 1998-01-29 SE SE9800240A patent/SE511316C2/sv not_active IP Right Cessation
-
1999
- 1999-01-14 AU AU23040/99A patent/AU2304099A/en not_active Abandoned
- 1999-01-14 AT AT0901399A patent/AT410384B/de not_active IP Right Cessation
- 1999-01-14 WO PCT/SE1999/000036 patent/WO1999039433A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5623543A (en) * | 1994-02-01 | 1997-04-22 | British Telecommunications Public Limited Company | Two port signalling voltages filter arrangement |
EP0678979A2 (fr) * | 1994-04-20 | 1995-10-25 | AT&T Corp. | Coupleur pour systèmes de communication utilisant plus qu'une bande de fréquences |
WO1997020396A2 (fr) * | 1995-11-27 | 1997-06-05 | Analog Devices, Inc. | Ensemble diviseur de telephonie traditionnelle a perte par reflexion amelioree, destinee a une boucle numerique d'abonne |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1176775A1 (fr) * | 2000-07-24 | 2002-01-30 | Alcatel | Circuit d'attaque de ligne à large bande et basse tension |
US6985578B2 (en) | 2000-07-24 | 2006-01-10 | Alcatel | Low voltage broadband line driver |
EP1549037A1 (fr) * | 2003-12-22 | 2005-06-29 | STMicroelectronics S.r.l. | Circuit de synthèse d'impédance actif, par exemple pour dispositifs séparateurs XDSL |
WO2005064911A1 (fr) * | 2003-12-22 | 2005-07-14 | Stmicroelectronics S.R.L. | Circuit de synthese d'impedance active, par exemple pour diviseurs de type xdsl |
US8406391B2 (en) | 2003-12-22 | 2013-03-26 | Stmicroelectronics S.R.L. | Active impedance synthesis circuit, for example for XDSL splitters |
CN101056094B (zh) * | 2007-04-06 | 2010-04-21 | 鞍山吉兆电子有限公司 | 同轴型大功率低通滤波-阻抗变换器 |
EP2493168A4 (fr) * | 2009-10-20 | 2017-01-18 | Telefónica, S.A. | Microfiltre actif pour norme de communication vdsl2 |
Also Published As
Publication number | Publication date |
---|---|
SE9800240L (sv) | 1999-07-30 |
SE511316C2 (sv) | 1999-09-13 |
SE9800240D0 (sv) | 1998-01-29 |
ATA901399A (de) | 2002-08-15 |
AU2304099A (en) | 1999-08-16 |
AT410384B (de) | 2003-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4456986A (en) | Apparatus for coupling signals to or from a two-wire line | |
US4456985A (en) | Apparatus for coupling signals to or from a two-wire line | |
EP0742972B1 (fr) | Filtrage | |
US4443662A (en) | Filters comprising reactive components, and a method of determining impedances thereof | |
US6853724B2 (en) | Cascade low-pass filter to improve xDSL band attenuation for POTS splitter | |
US6895089B2 (en) | Pots splitter with line impedance matching | |
US6542540B1 (en) | Integrated analog adaptive equalizer | |
JPH07303020A (ja) | 1以上の周波数バンドを利用する通信システムのための結合器 | |
US6681012B1 (en) | Directional receiver coupling arrangement with frequency selectivity and gain control for DSL | |
US4074087A (en) | Bidirectional voice frequency repeater | |
US4878244A (en) | Electronic hybrid circuit | |
JP2000151470A (ja) | フィルタ構成 | |
EP0062442B1 (fr) | Dispositif pour une ligne bifilaire, destiné au couplage de signaux | |
US6826278B2 (en) | Central office interface techniques for digital subscriber lines | |
WO1999039433A1 (fr) | Convertisseur d'impedance actif | |
US6566947B2 (en) | Combined active impedance and filter in line drivers | |
US6381284B1 (en) | Method of and devices for telecommunications | |
WO1999040716A2 (fr) | Separateur actif | |
DE60111873T2 (de) | Eine frequenzempfindliche Induktanzeinrichtung für POTS-Splitterentwurf | |
EP0063414B1 (fr) | Dispositif pour coupler des signeaux d'une ligne a deux fils | |
CA1158789A (fr) | Filtres a composants reactifs, et methode de determination des impedances pertinentes | |
US6694013B1 (en) | Filter arrangement and method for telecommunication device | |
US7031378B1 (en) | Unified DSL transceiver | |
CA1165914A (fr) | Dispositif pour injecter des signaux dans une ligne bifilaire ou en extraire | |
US20020186824A1 (en) | Splitterless, transformerless, voice service independent ADSL interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: AT Ref document number: 1999 9013 Date of ref document: 19990805 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19999013 Country of ref document: AT |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |