+

WO1999038922A1 - Vibration-damping coating material - Google Patents

Vibration-damping coating material Download PDF

Info

Publication number
WO1999038922A1
WO1999038922A1 PCT/JP1998/000445 JP9800445W WO9938922A1 WO 1999038922 A1 WO1999038922 A1 WO 1999038922A1 JP 9800445 W JP9800445 W JP 9800445W WO 9938922 A1 WO9938922 A1 WO 9938922A1
Authority
WO
WIPO (PCT)
Prior art keywords
base resin
vibration damping
active ingredient
damping paint
weight
Prior art date
Application number
PCT/JP1998/000445
Other languages
French (fr)
Japanese (ja)
Other versions
WO1999038922A8 (en
Inventor
Masamitsu Muto
Takeshi Hirata
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP1998/000445 priority Critical patent/WO1999038922A1/en
Publication of WO1999038922A1 publication Critical patent/WO1999038922A1/en
Publication of WO1999038922A8 publication Critical patent/WO1999038922A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a vibration damping paint applied to a place where vibration occurs, such as an automobile, an interior material, a building material, and a household electric appliance.
  • the present invention relates to a vibration-damping paint which is less susceptible to deformation, swelling, and cracking due to baking and drying, and less occurrence of bright cracks due to shrinkage of a base resin due to cooling after baking and drying.
  • Background Art Conventionally, in places where vibration occurs, such as in automobiles, interior materials, building materials, and home electric appliances, a sheet-shaped vibration-damping sheet has been generally used as a member for absorbing the vibration energy. However, in the case of a damping sheet, it must first be cut into a size and shape corresponding to the application area.
  • damping sheet is attached to the application area using an adhesive or a pressure-sensitive adhesive, most of the attaching work is manual, and there was a problem that the working efficiency was poor.
  • the damping sheet cannot be pasted on curved surfaces or narrow gaps, or it can be easily occupied by shells, but it can easily be peeled off, or it takes a lot of time to paste. And time was required.
  • viscoelastic polymers such as rubber, plastic, and asphalt, these have been dispersed in water to form an emulsion, and a filler such as my scale has been added. So-called damping paints have been proposed.
  • the damping layer can be easily formed simply by spraying the damping paint to the application area, and the work of cutting and pasting as in the case of the damping sheet is not required.
  • a vibration damping layer can be easily formed even on a curved surface portion or a narrow gap portion.
  • the damping paint since the damping paint is simply sprayed on the applicable portion, the work can be performed using a robot or the like, and there is an advantage that work efficiency can be greatly improved.
  • this damping paint is in the form of an emulsion in which the base and fillers are dispersed in water or alcohol.
  • a coating film with a thickness of 3 mm or 4 mm is formed to enhance the vibration damping performance, the deformation and swelling of the coating film also increase, making it difficult to suppress the occurrence. there were.
  • the resulting coating film has poor elasticity as compared with those based on a rubber or asphalt, so that the base resin is cooled by cooling after baking and drying. There was a problem that it shrank and caused a bright crack.
  • the present invention has been made in view of the above-mentioned circumstances, and it has been found that deformation, swelling, and cracks due to baking and drying, and the occurrence of bright cracks due to shrinkage of the base resin due to cooling after baking and drying, are avoided.
  • the object of the present invention is to propose a small amount of damping paint.
  • the vibration damping paint of the present invention will be described in detail.
  • the vibration damping paint of the present invention contains a gelling agent, a nonionic surfactant having a cloud point of 60 ° C to 90 ° C, a water-soluble polymer, and an ionic crosslinking agent. It does.
  • the base resin examples include unsaturated carboxylic acids such as acrylonitrile, acrylic acid, methacrylic acid, itaconic acid, and fumaric acid, and polymers of the alkyl esters thereof, copolymers with styrene, and the like, or polyvinyl chloride, polyether.
  • unsaturated carboxylic acids such as acrylonitrile, acrylic acid, methacrylic acid, itaconic acid, and fumaric acid
  • Tylene, polypropylene, ethylene-vinyl acetate copolymer, polyurethane, polyvinylidene fluoride, polyisoprene, polystyrene, chlorinated polyethylene and the like can be mentioned.
  • One or more of these are dispersed in water or alcohol and used in the form of emulsion.
  • the performance is best exhibited in the operating temperature range (120 ° C to 80 ° C) to which the damping coating is applied, such as automobiles, interior materials, building materials, and home appliances. Further, those having a glass transition point (T g) in the operating temperature range are preferable.
  • the gelling agent gels the base resin emulsion. As described above, when the coating is baked and dried after spraying the damping paint to the application area, the water inside the coating film boils and evaporates at once, causing bubbles to be formed, resulting in deformation, swelling, and cracking of the coating. I do.
  • Known gelling agents having such an action include, for example, calcium acetate, calcium phosphate, calcium nitrate, ferrous sulfate, ferrous nitrate, nickel acetate, nickel sulfate, nickel nitrate, magnesium acetate , Magnesium sulfate, magnesium nitrate, copper sulfate, copper nitrate, zinc acetate, zinc sulfate, zinc nitrate, aluminum acetate, aluminum phosphate, aluminum sulfate, and aluminum nitrate.
  • Nonionic surfactants with a cloud point of 60 ° C to 90 ° C for example, when the temperature reaches 60 ° C or 90 ° C, the surface activity that had been acting until then decreases.
  • a surfactant with the property of having When a surfactant having such properties is used in combination, the damping paint is liquid at room temperature due to the action of the surfactant, but the temperature of the coating film is increased by baking and drying. When the surfactant reaches the cloud point temperature of 90 ° C or 90 ° C, the surface activity of the surfactant decreases, and the gelling of the coating film proceeds due to the action of the gelling agent. This leads to the effect of suppressing deformation, swelling and cracking of the coating film.
  • nonionic surfactant having a cloud point of 60 ° C. to 90 ° C. examples include those containing phenol ethoxylate as a main component.
  • the content of the gelling agent and the nonionic surfactant is 0.75 to 3.5% by weight for the gelling agent, and 1.34 to 3.5% by weight for the nonionic surfactant. A range of% is preferred.
  • gelation is weak, and it is not possible to sufficiently suppress the deformation, swelling, and cracking of the coating film during baking and drying.
  • the content of the agent exceeds 3.5% by weight, the gelation is too strong, the viscosity of the paint at the time of application becomes high (the effect of the surfactant is not sufficiently exerted), and the spray becomes clogged. May occur.
  • the content of the nonionic surfactant is less than 1.34, the surface activity is weak, gelation by the gelling agent proceeds, and the viscosity of the paint at the time of application increases.
  • the content of the nonionic surfactant exceeds 3.5% by weight, The surface activity becomes too strong, and the gelation of the coating film does not proceed sufficiently during baking and drying.
  • the ionic cross-linking agent suppresses the generation of cracks in the coating film during baking and drying of, for example, zinc oxide, and the content thereof is preferably in the range of 0.5 to 2.0% by weight.
  • the water-soluble polymer imparts elasticity to the base resin, so that even if the base resin shrinks due to cooling after baking and drying, the occurrence of bright cracks can be suppressed.
  • the content of the water-soluble polymer is preferably in the range of 0.05 to 0.40% by weight.
  • the vibration damping paint of the present invention has a form in which an active ingredient for increasing the amount of dipole moment in the same base resin is included in the base resin emulsion for the purpose of dramatically improving the vibration damping performance. Can also be taken.
  • Fig. 1 shows the arrangement of the dipoles 12 inside the base resin 11 constituting the coating film before the vibration energy is transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, the transmission of vibration energy causes a displacement in the dipoles 12 where the base resin 11 is located, and as shown in FIG. 2, each dipole 12 in the base resin 11 is displaced. It will be in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in Figure 1. At this time, energy is consumed.
  • the vibration energy is absorbed (vibration damping performance) through such displacement of the dipole inside the base resin 11 and energy consumption by the restoring action of the dipole.
  • the active ingredient dramatically increases the amount of dipole moment in the base resin.
  • the active ingredient itself has a large amount of dipole moment, or the active ingredient itself has a small amount of dipole moment, but the inclusion of the active ingredient results in a dipole in the base resin.
  • the amount of dipole moment generated in the base resin 11 constituting a coating film under a predetermined temperature condition and vibration energy is determined by the fact that the active ingredient is contained in the base resin. As shown in Fig. 3, under the same conditions, the amount will increase by a factor of three or ten.
  • N N-dicyclohexylbenzothiazyl-1-sulfenamide
  • DCHBSA 2-mercaptobenzothiazole
  • MTT 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl sulfide
  • CBS Cyclohexyl benzothiazyl-1-sulfenamide
  • BSS N-tert-butylbenzothiazyl-12-sulfenamide
  • OBS N-oxycetylene Lenbenzothiazilyl 2-sulfenamide
  • N N —Compounds containing a mercaptobenzothiazyl group, such as diisopropylbenzothiazirulu-2-sulfenamide (DPBS), and a benzotriazole in which an azole group is bonded to the benzene
  • the content of the above-mentioned active ingredient is preferably from 100 to 100 parts by weight based on 100 parts by weight of the base resin.
  • the content of the active ingredient is less than 100 parts by weight, the effect of increasing the amount of the dipole moment cannot be obtained, and when the content of the active ingredient exceeds 100 parts by weight, Insufficient compatibility or insufficient film strength may be obtained.
  • the amount of the dipole moment varies depending on the type of the base resin and the active component described above.
  • the base resin and active component should be selected and used so as to have the largest dipole moment at that time. Is desirable.
  • the above-mentioned active ingredients are not limited to one kind, and two or more kinds can be mixed. Also this In this case, at least two or more types of active components having different glass transition points can be included in the base resin to extend the temperature range in which the vibration damping property is exhibited.
  • the vibration-damping paint containing the active ingredient in the base resin emulsion significantly increases the amount of the dipole moment in the coating film, thereby exhibiting excellent vibration-damping performance.
  • the amount of this dipole moment is expressed as the difference in dielectric constant (£ ') between A and B shown in Fig. 4.
  • FIG. 4 is a graph showing the relationship between the dielectric constant ⁇ ′) and the dielectric loss factor (£ ⁇ ).
  • dielectric loss factor dielectric constant (£ ') X dielectric loss tangent (tan (5).
  • the present inventor has studied through the research on vibration damping paints, The higher the £ ⁇ ), the higher the loss factor (r?) And the loss tangent (t anS). That is, the dielectric loss factor (£ ⁇ ), which expresses the electronic properties of a polymer, and the dynamics Based on this finding, there is a correlation between the loss coefficient () and the loss tangent (tancS), which indicate the properties, and based on this finding, the dielectric loss factor (£) in the coating film of the vibration damping paint of the present invention.
  • the base resin emulsion further improved the damping performance Fillers such as my scales, glass pieces, glass fiber, carbon fiber, calcium carbonate, barite, and precipitated barium sulfate are filled for the purpose.
  • the filling amount of the filler is preferably from 10 to 90% by weight. For example, when the filling amount of the filler is less than 10% by weight, sufficient improvement in vibration damping performance is not observed even when the filler is filled, and conversely, the filling amount of the filler is reduced to 90% by weight.
  • this damping paint is obtained by dissolving a base resin, a dispersing medium such as water and alcohol, a filler, and other components containing an active ingredient, a dispersant, and a thickener as necessary, such as a dissolver or a bumper.
  • FIG. 1 is a schematic diagram showing dipoles in a coating film.
  • FIG. 2 is a schematic diagram showing a state of a dipole in a coating film when vibration energy is transmitted.
  • Fig. 3 is a schematic diagram showing the state of the dipole in the coating film when the active ingredient is blended.
  • FIG. 5 is a graph showing the loss coefficient () at each temperature in Examples 1 to 3.
  • Example 1 Was applied to the surface density of the steel plate of the vibration damping paint thickness 0. 8 mm according to Example 1 and Comparative Examples 1 to 4 containing the ingredients shown in Table 1 is 4 kg / m 2, 16 CTC In 2
  • the coating was formed on the steel sheet by baking and drying for 0 minutes, and then allowed to cool and then bake and dry again at 160 ° C for 20 minutes.
  • the formed coating film was visually inspected for blisters and cracks, and the results are shown in Table 2 below.
  • the properties of the coating film were evaluated as “X” when the coating film was swollen or cracked, and as “ ⁇ ” when there was no swelling or cracking. Table 2
  • the loss coefficient (7?) Of the coating film according to Example 1 was measured. The results are shown in FIG.
  • the loss coefficient (7?) was measured using an electromagnetic vibration detector (MT-1, A202) manufactured by Denshi Sokki Co., Ltd.
  • MT-1, A202 electromagnetic vibration detector
  • those coated so as to have an areal density of 2 kg / m 2 (Example 2) and those coated so as to have an areal density of 3 kg / m 2 were used in the same manner as in Example 1.
  • the loss factor (77) was measured and is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A vibration-damping coating material applicable to places where vibration occurs, such as motor vehicles, interior materials, constructional materials, and domestic electrical appliances, in particular, a coating material which is reduced in the deformation, blistering, and cracking caused by baking/drying and in the cracking caused by base resin shrinkage due to cooling after baking/drying. The coating material is characterized by comprising a base resin emulsion, a gelling agent, a nonionic surfactant having a cloud point of 60 °C to 90 °C, a water-soluble polymer, and an ionic cross-linking agent.

Description

曰月糸田 β 制振塗料 技術分野 本発明は、 自動車、 内装材、 建材、 家電機器などの振動の発生する箇所に適用 される制振塗料に関する。 特には焼き付け乾燥による変形や膨れ、 亀裂の発生、 並びに焼き付け乾燥後の冷却によるベース樹脂の収縮に起因する輝割れの発生が 少ない制振塗料に関する。 景技術 従来より自動車、 内装材、 建材、 家電機器などの振動の発生する箇所には、 そ の振動エネルギーを吸収する部材としてシート状に成形された制振シー卜が一般 に用いられていた。 ところが、 制振シートの場合、 まず、 適用箇所に対応する大きさや形状に裁断 しなければならない。 また制振シートは、 適用箇所に接着剤や粘着剤を用いて貼 り付けるため、 その貼り付け作業の多くは手作業となり、 作業効率が悪いといつ た問題があった。 特に曲面部分や狭い隙間部分といった適用箇所にあっては、 制 振シートを貼り付けることができなかったり、 貝占ることはできても容易に剥がれ てしまったり、 あるいは貼り付け作業に多くの手間と時間とを要するといった不 具合があった。 このような不具合に鑑み、 近年では、 ゴム系、 プラスチック系、 アスファルト 系といった粘弾性高分子をベースとし、 これを水に分散してェマルジヨンの形態 とすると共に、 マイ力鱗片などの充填剤を添加した所謂制振塗料が提案されるに 至っている。 この制振塗料にあっては、 適用箇所に当該制振塗料を吹き付けるだけで容易に 制振層を形成でき、 制振シートの場合のような裁断、 貼り付けといった作業が不 要であり、 しかも例えば曲面部分や狭い隙間部分であっても、 簡単に制振層を形 成することができるといったメリットを有している。 更にこの制振塗料の場合は、 当該制振塗料を適用部分に吹き付けるだけなので、 ロボットなどを用いてその作 業を行うことができ、 作業効率を大幅に向上させることができるというメリット がある。 ところがこの制振塗料にあっては、 ベースや充填剤を水やアルコールに分散さ せたェマルジヨンの形態となっているので、 当該制振塗料を適用箇所に吹き付け た後に、 焼き付け乾燥すると、 塗膜内部の水が一時に沸騰蒸発して気泡となり、 この気泡により塗膜に変形や膨れ、 亀裂が発生し、 外観を著しく損なっていた。 特に制振性能を高めるため、 膜厚が 3 mm、 4 mmといった厚さの塗膜を形成し た場合には、 塗膜に生じる変形や膨れも大きくなり、 その発生を抑えることは困 難であった。 また、 プラスチック系をベースとする制振塗料の場合、 得られる塗膜は、 ゴム 系やアスファルト系をベースとしたものに比べて弾性に乏しいことから、 焼き付 け乾燥後の冷却によりベース樹脂が収縮し、 これに起因して輝割れが生じるとい う不具合があった。 発明の開示 本発明は、 このような事情に鑑みなされたものであり、 焼き付け乾燥による変 形や膨れ、 亀裂の発生、 並びに焼き付け乾燥後の冷却によるベース樹脂の収縮に 起因する輝割れの発生が少ない制振塗料を提案することを目的とするものである 以下、 本発明の制振塗料について詳しく説明する。 本発明の制振塗料は、 ベー ス樹脂ェマルジヨンに、 ゲル化剤と、 曇点が 6 0 °C~ 9 0 °Cの非イオン系界面活 性剤と、 水溶性ポリマーと、 イオン架橋剤とが含まれていることを特徴とするも のである。 ベース樹脂としては、 例えばアクリロニトリル、 アクリル酸、 メタクリル酸、 ィタコン酸、 フマル酸などの不飽和カルボン酸、 及びそれらのアルキルエステル の重合体、 あるいはスチレンなどとの共重合体、 またはポリ塩化ビニル、 ポリエ チレン、 ポリプロピレン、 エチレン一酢ビ共重合体、 ポリウレタン、 ポリフッ化 ビニリデン、 ポリイソプレン、 ポリスチレン、 塩素化ポリエチレンなどを挙げる ことができる。 そして、 これらの 1種もしくは 2種以上を水またはアルコールに 分散させてェマルジヨンの形態として用いる。 尚、 ベース樹脂としては、 自動車、 内装材、 建材、 家電機器など、 当該制振塗 料の適用される使用温度域 (一 2 0 ° C〜8 0 ° C ) において最も性能が発揮さ れるように、 使用温度域にガラス転移点 (T g ) を有するものが好ましい。 ゲル化剤は、 前記ベース樹脂ェマルジヨンをゲル化させるものである。 前述の 如く当該制振塗料を適用箇所に吹き付けた後に、 塗膜を焼き付け乾燥すると、 塗 膜内部の水が一時に沸騰蒸発して気泡となり、 この気泡により塗膜に変形や膨れ、 亀裂が発生する。 しかしながら塗膜が焼き付け乾燥時にゲル化していると、 水は 塗膜内部に包み込まれることになり、 この結果塗膜の変形や膨れ、 亀裂の発生が 抑制されるというものである。 このような作用を持つゲル化剤としては、 従来より知られたもの、 例えば酢酸 カルシウム、 燐酸カルシウム、 硝酸カルシウム、 硫酸第一鉄、 硝酸第一鉄、 酢酸 ニッケル、 硫酸ニッケル、 硝酸ニッケル、 酢酸マグネシウム、 硫酸マグネシウム、 硝酸マグネシウム、 硫酸銅、 硝酸銅、 酢酸亜鉛、 硫酸亜鉛、 硝酸亜鉛、 酢酸アル ミニゥム、 燐酸アルミニウム、 硫酸アルミニウム及び硝酸アルミニウムなどを用 いることができる。 中でも硝酸カルシウム、 硝酸マグネシウム及び硫酸銅は性能、 安定性の面からより好ましい。 上記ゲル化剤を前記ベース樹脂ェマルジヨンに単独で添加した場合、 上記ゲル 化剤の多くが不安定であることから、 常温でゲル化が起こり、 塗料の粘度が高く なり、 スプレー塗装時に目詰まりを生じるといった不具合を生じることがある。 このため本発明では、 これに曇点が 6 0 °C〜9 0 °Cの非イオン系界面活性剤を共 存させている。 曇点が 6 0 °C~ 9 0 °Cの非イオン系界面活性剤とは、 例えば 6 0 °Cや 9 0 °Cの温度となったとき、 それまで作用していた界面活性が低下してしま う性質を持つ界面活性剤をいう。 このような性質を持つ界面活性剤を併用するこ とにより、 常温において、 当該制振塗料は界面活性剤の作用で液状であるが、 焼 き付け乾燥により塗膜の温度が高くなり、 6 0 °Cや 9 0 °Cといった界面活性剤の 曇点温度となったとき、 当該界面活性剤の界面活性が低下し、 代わりにゲル化剤 の作用により、 塗膜のゲル化が進行し、 これにより塗膜の変形や膨れ、 亀裂の発 生が抑制されるという作用効果が導き出される。 曇点が 6 0 °C〜9 0 °Cの非イオン系界面活性剤としては、 フエノールエトキシ レートなどを主成分とするものを挙げることができる。 上記ゲル化剤及び非イオン系界面活性剤の含有量としては、 ゲル化剤が 0 . 7 5〜3 . 5重量%の範囲、 非イオン系界面活性剤が 1 . 3 4〜3 . 5重量%の範 囲が好ましい。 ゲル化剤の含有量が 0 . 7 5重量%を下回るとき、 ゲル化が弱く、 焼き付け乾燥時における塗膜の変形や膨れ、 亀裂の発生を十分に抑制することが できなくなり、 一方、 ゲル化剤の含有量が 3 . 5重量%を上回るときには、 ゲル 化が強すぎて、 塗布時における塗料の粘度が高くなり (界面活性剤の作用が十分 に発揮されなくなり) 、 スプレーが目詰まりを生じたりする恐れが生じる。 非イオン系界面活性剤の含有量が 1 . 3 4を下回るときは、 界面活性力が弱く、 ゲル化剤によるゲル化が進行して塗布時における塗料の粘度が高くなる。 一方、 非イオン系界面活性剤の含有量が 3 . 5重量%を上回るときには、 界面活性剤の 界面活性作用が強すぎることになり、 焼き付け乾燥時に、 十分に塗膜のゲル化が 進行しなくなる。 イオン架橋剤は、 例えば酸化亜鉛などの焼き付け乾燥時における塗膜の亀裂の 発生を抑制するものであり、 その含有量としては 0 . 5〜2 . 0重量%の範囲が 好ましい。 水溶性ポリマーは、 ベース樹脂に弾性を付与するものであり、 これにより焼き 付け乾燥後の冷却によりベース樹脂が収縮しても、 輝割れの発生を抑えることが できるようになつている。 この水溶性ポリマーの含有量としては、 0 . 0 5〜0 . 4 0重量%の範囲が好ましい。 また本発明の制振塗料は、 制振性能を飛躍的に高めることを目的として、 前記 ベース樹脂ェマルジヨン中に、 同べ一ス樹脂における双極子モーメント量を増加 させる活性成分を含ませた形態を採ることもできる。 まずここで、 双極子モーメント量と制振性能との関係について説明する。 図 1 には振動エネルギーが伝達される前の塗膜を構成するべ一ス樹脂 1 1内部におけ る双極子 1 2の配置状態を示した。 この双極子 1 2の配置状態は安定な状態にあ ると言える。 ところが、 振動エネルギーが伝達されることで、 ベース樹脂 1 1内 部の存在する双極子 1 2には変位が生じ、 図 2に示すように、 ベース樹脂 1 1内 部における各双極子 1 2は不安定な状態に置かれることになり、 各双極子 1 2は、 図 1に示すような安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じることになる。 こうした、 ベース樹脂 1 1 内部における双極子の変位、 双極子の復元作用によるエネルギー消費を通じて、 振動エネルギーの吸収 (制振性能) が生じるものと考えられる。 活性成分とは、 上記ベース桉 ί脂における双極子モーメントの量を飛躍的に増加 させる成分であり、 当該活性成分そのものが双極子モ一メント量が大きいもの、 あるいは活性成分そのものの双極子モ一メント量は小さいが、 当該活性成分が含 まれることで、 ベース樹脂における双極子モ一メント量が飛躍的に増加するよう な成分をいう。 例えば所定の温度条件、 振動エネルギーの大きさとしたときの、 塗膜を構成す るベース樹脂 1 1に生じる双極子モ一メン卜の量が、 ベース樹脂に活性成分が含 まれることで、 図 3に示すように、 同じ条件の下で 3倍とか、 10倍とかいった 量に増加することになるのである。 これに伴って、 振動エネルギーが伝達された ときの双極子の復元作用によるェネルギ一消費量も飛躍的に増大することになり、 予測を遥かに超えた制振性能が生じることになると考えられる。 このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジル一 2—スルフェンアミ ド (DCHBSA) 、 2—メルカプトべ ンゾチアゾール (MBT) 、 ジベンゾチアジルスルフィ ド (MBTS) 、 N—シ クロへキシルベンゾチアジル一 2—スルフェンアミ ド (CBS) 、 N- t e r t —ブチルベンゾチアジル一 2—スルフェンアミ ド (BBS) 、 N—ォキシジェチ レンべンゾチアジルー 2—スルフェンアミ ド (OBS) 、 N、 N—ジイソプロピ ルベンゾチアジルー 2—スルフェンアミ ド (DPBS) などのメルカプトべンゾ チアジル基を含む化合物、 ベンゼン環にァゾ一ル基が結合したベンゾトリアゾールを母核とし、 これにフ ェニル基が結合した 2— {2' —ハイ ドロキシ一 3' — (3 , 4" , 5" , 6 " テトラハイ ドロフタリミデメチル) 一 5' —メチルフエ二ル} —ベンゾトリア ゾ一ル (2HPMMB) 、 2- {2' —ハイ ドロキシ一 5' —メチルフエ二ル} —ベンゾトリアゾ一ル (2HMPB) 、 2- {2' —ハイ ドロキシー 3' — t— ブチル一5' —メチルフエ二ル} — 5—クロ口べンゾトリアゾ一ル (2HBMP CB) 、 2— {2' —ハイ ドロキシ一 3' , 5' —ジ一 t—ブチルフエ二ル} - 5—クロ口べンゾトリアゾ一ル (2HDBPCB) などのベンゾトリアゾ一ル基 を持つ化合物、 ェチル一 2—シァノー 3 , 3—ジ一フエ二ルァクリレートなどのジフエニルァ クリレート基を含む化合物、 あるいは 2—ハイ ドロキシ一 4—メ トキシベンゾフエノン (H M B P ) 、 2 - ハイ ドロキシ一 4—メ トキシベンゾフエノン一 5—スルフォニックァシド (H M B P S ) などのべンゾフヱノン基を持つ化合物の中から選ばれた 1種若しくは 2 種以上を挙げることができる。 上述の活性成分の含有量としては、 ベース樹脂 1 0 0重量部に対して 1 0〜 1 0 0重量部の割合が好ましい。 例えば活性成分の含有量が 1 0重量部を下回る場 合、 双極子モーメントの量を増大させるという十分な効果が得られず、 活性成分 の含有量が 1 0 0重量部を上回る場合には、 十分に相溶しなかったり、 十分な膜 強度が得られなかったりすることがある。 尚、 前記ベース樹脂に含まれる活性成分を決定するに当たり、 活性成分とベ一 ス樹脂との相溶し易さ、 すなわち S P値を考慮し、 その値の近いものを選択する と良い。 尚、 双極子モーメントの量は、 前述のベース樹脂や活性成分の種類により様々 に異なっている。 また、 同じ成分を用いたとしても、 振動エネルギーが伝達され たときの温度により、 その双極子モーメントの量は変わる。 また、 伝達される振 動エネルギーの大小によっても、 双極子モーメントの量は変わる。 このため、 制 振塗料として適用するときの温度や振動エネルギーの大きさなどを考慮して、 そ のとき最も大きな双極子モーメント量となるように、 ベース樹脂や活性成分を選 択して用いるのが望ましい。 また上記活性成分は 1種に限らず、 2種以上配合することもできる。 またこの 場合、 ガラス転移点の異なる少なくとも 2種以上の活性成分を前記ベース樹脂中 に含ませて、 制振性の発揮される温度領域を拡張することも可能である。 上記の如く、 ベース樹脂ェマルジヨン中に活性成分が含まれる制振塗料は、 塗 膜における双極子モーメントの量が飛躍的に増加し、 もって優れた制振性能を発 揮するに至るのであるが、 この双極子モーメントの量は、 図 4に示す A— B間に おける誘電率 (£' ) の差として表される。 すなわち図 4に示す A— B間におけ る誘電率 (£' ) の差が大きければ大きいほど、 双極子モーメントの量が大きい ということになる。 さて、 図 4は誘電率 、ε' ) と誘電損率 (£〃 ) との関係を示したグラフであ るが、 このグラフに示す誘電率 (£' ) と誘電損率 、 ) との間には、 誘電損 率 ) =誘電率 (£' ) X誘電正接 (t an(5) といった関係が成り立って いる。 本発明者は、 制振塗料についての研究を通して、 ここでいう誘電損率 (£〃 ) が高ければ高いほど損失係数 (r?) 及び損失正接 (t anS) も高いということ を見い出したのである。 すなわち、 高分子の電子物性を表す誘電損率 (£〃 ) と 力学的性質を示す損失係数 ( ) 及び損失正接 (t ancS) との間には相関閧係 があるということである。 この知見に基づいて、 本発明の制振塗料による塗膜における誘電損率 (£〃 ) を調べたところ、 周波数 1 10Hzにおける誘電損率が 50以上のとき、 損失係 数 ( ) 及び損失正接 (t and) のいずれの値も高く、 優れた制振性能を有し ていることが解った。 尚、 上記ベース樹脂ェマルジヨン中には活性成分の他に、 制振性能をさらに向 上させる目的で、 マイ力鱗片、 ガラス片、 グラスファイバ一、 カーボンファイバ 一、 炭酸カルシウム、 バライ ト、 沈降硫酸バリウム等のフィラーが充填される。 フィラーの充填量としては、 1 0〜9 0重量%が好ましい。 例えばフイラ一の充 填量が 1 0重量%を下回る場合には、 フイラ一を充填しても十分な制振性能の向 上がみられず、 反対にフィラーの充填量を 9 0重量%を上回る量としても、 現実 に充填できなかったり、 ベース樹脂により構成される塗膜の機械的強度が低下し たりするといつた弊害を招くことになる。 尚、 本発明の制振塗料には、 上記成分以外に分散剤、 湿潤剤、 増粘剤、 消泡剤 凍結防止剤、 あるいは着色剤といった他の成分も必要に応じて適宜添加される。 またこの制振塗料は、 上述のベース樹脂、 水、 アルコールなどの分散媒、 及び フイラ一、 その他必要に応じて活性成分、 分散剤、 増粘剤などを配合した配合物 を、 ディゾルバー、 バンバリ一ミキサー、 プラネタリーミキサー、 グレンミル、 オープンニーダ、 真空ニーダなどの従来公知の混合分散機によって分散混合して 製造される。 またこの制振塗料を塗布する場合には、 従来公知のエアスプレーガン、 エアレ ススプレーガン、 刷毛塗りなどの塗布手段を用いることができる。 図面の簡単な説明 図 1は、 塗膜における双極子を示した模式図。 図 2は、 振動エネルギーが伝達されたときの塗膜における双極子の状態を示し た模式図。 図 3は、 活性成分が配合されたときの塗膜における双極子の状態を示した模式 TECHNICAL FIELD The present invention relates to a vibration damping paint applied to a place where vibration occurs, such as an automobile, an interior material, a building material, and a household electric appliance. In particular, the present invention relates to a vibration-damping paint which is less susceptible to deformation, swelling, and cracking due to baking and drying, and less occurrence of bright cracks due to shrinkage of a base resin due to cooling after baking and drying. Background Art Conventionally, in places where vibration occurs, such as in automobiles, interior materials, building materials, and home electric appliances, a sheet-shaped vibration-damping sheet has been generally used as a member for absorbing the vibration energy. However, in the case of a damping sheet, it must first be cut into a size and shape corresponding to the application area. In addition, since the damping sheet is attached to the application area using an adhesive or a pressure-sensitive adhesive, most of the attaching work is manual, and there was a problem that the working efficiency was poor. In particular, the damping sheet cannot be pasted on curved surfaces or narrow gaps, or it can be easily occupied by shells, but it can easily be peeled off, or it takes a lot of time to paste. And time was required. In light of these problems, in recent years, based on viscoelastic polymers such as rubber, plastic, and asphalt, these have been dispersed in water to form an emulsion, and a filler such as my scale has been added. So-called damping paints have been proposed. With this damping paint, the damping layer can be easily formed simply by spraying the damping paint to the application area, and the work of cutting and pasting as in the case of the damping sheet is not required. For example, there is an advantage that a vibration damping layer can be easily formed even on a curved surface portion or a narrow gap portion. Further, in the case of this damping paint, since the damping paint is simply sprayed on the applicable portion, the work can be performed using a robot or the like, and there is an advantage that work efficiency can be greatly improved. However, this damping paint is in the form of an emulsion in which the base and fillers are dispersed in water or alcohol. The water inside boils and evaporates at once, forming bubbles, which deform, swell, and crack the coating film, significantly impairing its appearance. In particular, when a coating film with a thickness of 3 mm or 4 mm is formed to enhance the vibration damping performance, the deformation and swelling of the coating film also increase, making it difficult to suppress the occurrence. there were. In addition, in the case of a vibration damping paint based on a plastic, the resulting coating film has poor elasticity as compared with those based on a rubber or asphalt, so that the base resin is cooled by cooling after baking and drying. There was a problem that it shrank and caused a bright crack. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and it has been found that deformation, swelling, and cracks due to baking and drying, and the occurrence of bright cracks due to shrinkage of the base resin due to cooling after baking and drying, are avoided. The object of the present invention is to propose a small amount of damping paint. Hereinafter, the damping paint of the present invention will be described in detail. The vibration damping paint of the present invention The resin emulsion contains a gelling agent, a nonionic surfactant having a cloud point of 60 ° C to 90 ° C, a water-soluble polymer, and an ionic crosslinking agent. It does. Examples of the base resin include unsaturated carboxylic acids such as acrylonitrile, acrylic acid, methacrylic acid, itaconic acid, and fumaric acid, and polymers of the alkyl esters thereof, copolymers with styrene, and the like, or polyvinyl chloride, polyether. Tylene, polypropylene, ethylene-vinyl acetate copolymer, polyurethane, polyvinylidene fluoride, polyisoprene, polystyrene, chlorinated polyethylene and the like can be mentioned. One or more of these are dispersed in water or alcohol and used in the form of emulsion. In addition, as the base resin, the performance is best exhibited in the operating temperature range (120 ° C to 80 ° C) to which the damping coating is applied, such as automobiles, interior materials, building materials, and home appliances. Further, those having a glass transition point (T g) in the operating temperature range are preferable. The gelling agent gels the base resin emulsion. As described above, when the coating is baked and dried after spraying the damping paint to the application area, the water inside the coating film boils and evaporates at once, causing bubbles to be formed, resulting in deformation, swelling, and cracking of the coating. I do. However, if the coating is gelled during baking and drying, water will be entrapped inside the coating, and as a result, the deformation, swelling and cracking of the coating will be suppressed. Known gelling agents having such an action include, for example, calcium acetate, calcium phosphate, calcium nitrate, ferrous sulfate, ferrous nitrate, nickel acetate, nickel sulfate, nickel nitrate, magnesium acetate , Magnesium sulfate, magnesium nitrate, copper sulfate, copper nitrate, zinc acetate, zinc sulfate, zinc nitrate, aluminum acetate, aluminum phosphate, aluminum sulfate, and aluminum nitrate. Among them, calcium nitrate, magnesium nitrate and copper sulfate are performance, It is more preferable from the viewpoint of stability. When the above-mentioned gelling agent is added alone to the base resin emulsion, many of the above-mentioned gelling agents are unstable, so that gelation occurs at room temperature, the viscosity of the paint becomes high, and clogging during spray coating may occur. May occur. Therefore, in the present invention, a nonionic surfactant having a cloud point of 60 ° C. to 90 ° C. is added thereto. Nonionic surfactants with a cloud point of 60 ° C to 90 ° C, for example, when the temperature reaches 60 ° C or 90 ° C, the surface activity that had been acting until then decreases. A surfactant with the property of having When a surfactant having such properties is used in combination, the damping paint is liquid at room temperature due to the action of the surfactant, but the temperature of the coating film is increased by baking and drying. When the surfactant reaches the cloud point temperature of 90 ° C or 90 ° C, the surface activity of the surfactant decreases, and the gelling of the coating film proceeds due to the action of the gelling agent. This leads to the effect of suppressing deformation, swelling and cracking of the coating film. Examples of the nonionic surfactant having a cloud point of 60 ° C. to 90 ° C. include those containing phenol ethoxylate as a main component. The content of the gelling agent and the nonionic surfactant is 0.75 to 3.5% by weight for the gelling agent, and 1.34 to 3.5% by weight for the nonionic surfactant. A range of% is preferred. When the content of the gelling agent is less than 0.75% by weight, gelation is weak, and it is not possible to sufficiently suppress the deformation, swelling, and cracking of the coating film during baking and drying. When the content of the agent exceeds 3.5% by weight, the gelation is too strong, the viscosity of the paint at the time of application becomes high (the effect of the surfactant is not sufficiently exerted), and the spray becomes clogged. May occur. When the content of the nonionic surfactant is less than 1.34, the surface activity is weak, gelation by the gelling agent proceeds, and the viscosity of the paint at the time of application increases. On the other hand, when the content of the nonionic surfactant exceeds 3.5% by weight, The surface activity becomes too strong, and the gelation of the coating film does not proceed sufficiently during baking and drying. The ionic cross-linking agent suppresses the generation of cracks in the coating film during baking and drying of, for example, zinc oxide, and the content thereof is preferably in the range of 0.5 to 2.0% by weight. The water-soluble polymer imparts elasticity to the base resin, so that even if the base resin shrinks due to cooling after baking and drying, the occurrence of bright cracks can be suppressed. The content of the water-soluble polymer is preferably in the range of 0.05 to 0.40% by weight. Further, the vibration damping paint of the present invention has a form in which an active ingredient for increasing the amount of dipole moment in the same base resin is included in the base resin emulsion for the purpose of dramatically improving the vibration damping performance. Can also be taken. First, the relationship between the dipole moment amount and the damping performance will be described. Fig. 1 shows the arrangement of the dipoles 12 inside the base resin 11 constituting the coating film before the vibration energy is transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, the transmission of vibration energy causes a displacement in the dipoles 12 where the base resin 11 is located, and as shown in FIG. 2, each dipole 12 in the base resin 11 is displaced. It will be in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in Figure 1. At this time, energy is consumed. It is considered that the vibration energy is absorbed (vibration damping performance) through such displacement of the dipole inside the base resin 11 and energy consumption by the restoring action of the dipole. The active ingredient dramatically increases the amount of dipole moment in the base resin. The active ingredient itself has a large amount of dipole moment, or the active ingredient itself has a small amount of dipole moment, but the inclusion of the active ingredient results in a dipole in the base resin. A component that increases the amount of momentum dramatically. For example, the amount of dipole moment generated in the base resin 11 constituting a coating film under a predetermined temperature condition and vibration energy is determined by the fact that the active ingredient is contained in the base resin. As shown in Fig. 3, under the same conditions, the amount will increase by a factor of three or ten. Along with this, the energy consumption due to the dipole restoring action when the vibration energy is transmitted will also increase dramatically, and it is thought that the vibration suppression performance far exceeds the prediction. Examples of active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-1-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), dibenzothiazyl sulfide (MBTS), Cyclohexyl benzothiazyl-1-sulfenamide (CBS), N-tert-butylbenzothiazyl-12-sulfenamide (BBS), N-oxycetylene Lenbenzothiazilyl 2-sulfenamide (OBS), N, N —Compounds containing a mercaptobenzothiazyl group, such as diisopropylbenzothiazirulu-2-sulfenamide (DPBS), and a benzotriazole in which an azole group is bonded to the benzene ring, to which a phenyl group is bonded 2— {2'—Hydroxy-1 3 '— (3,4 ", 5", 6 "tetrahydrophthalimimidemethyl) 1-5'-Methyl Phenyl} -benzotriazole (2HPMMB), 2- {2'-hydroxy-5'-methylphenyl} -benzotriazoyl (2HMPB), 2- {2'-hydroxy-3'-t— Butyl-5'-methylphenyl} -5-chloro benzotriazole (2HBMP CB), 2- {2'-hydroxy-1 3 ', 5'-di-t-butylphenyl} -5-chloro Benzotriazole groups such as benzobenzotriazole (2HDBPCB) A compound containing diphenylacrylate, such as ethyl 2-cyano-3,3-diphenylacrylate, or 2-hydroxy14-methoxybenzophenone (HMBP), 2-hydroxy14 One or more selected from compounds having a benzophenone group, such as —methoxybenzophenone-1-5-sulfonic acid (HMBPS). The content of the above-mentioned active ingredient is preferably from 100 to 100 parts by weight based on 100 parts by weight of the base resin. For example, when the content of the active ingredient is less than 100 parts by weight, the effect of increasing the amount of the dipole moment cannot be obtained, and when the content of the active ingredient exceeds 100 parts by weight, Insufficient compatibility or insufficient film strength may be obtained. In deciding the active ingredient contained in the base resin, it is preferable to take into consideration the easiness of compatibility between the active ingredient and the base resin, that is, the SP value, and select a substance having a similar value. The amount of the dipole moment varies depending on the type of the base resin and the active component described above. And even if the same components are used, the amount of the dipole moment changes depending on the temperature at which the vibrational energy is transmitted. Also, the amount of the dipole moment changes depending on the magnitude of the transmitted vibration energy. For this reason, considering the temperature and the magnitude of vibration energy when applied as a damping paint, the base resin and active component should be selected and used so as to have the largest dipole moment at that time. Is desirable. The above-mentioned active ingredients are not limited to one kind, and two or more kinds can be mixed. Also this In this case, at least two or more types of active components having different glass transition points can be included in the base resin to extend the temperature range in which the vibration damping property is exhibited. As described above, the vibration-damping paint containing the active ingredient in the base resin emulsion significantly increases the amount of the dipole moment in the coating film, thereby exhibiting excellent vibration-damping performance. The amount of this dipole moment is expressed as the difference in dielectric constant (£ ') between A and B shown in Fig. 4. In other words, the larger the difference in dielectric constant (£ ') between A and B shown in Fig. 4, the larger the amount of dipole moment. Now, FIG. 4 is a graph showing the relationship between the dielectric constant ε ′) and the dielectric loss factor (£ 〃). The relationship between the dielectric constant (£ ′) and the dielectric loss factor Has a relationship such as: dielectric loss factor) = dielectric constant (£ ') X dielectric loss tangent (tan (5). The present inventor has studied through the research on vibration damping paints, The higher the £ 〃), the higher the loss factor (r?) And the loss tangent (t anS). That is, the dielectric loss factor (£ 〃), which expresses the electronic properties of a polymer, and the dynamics Based on this finding, there is a correlation between the loss coefficient () and the loss tangent (tancS), which indicate the properties, and based on this finding, the dielectric loss factor (£) in the coating film of the vibration damping paint of the present invention. 〃), when the dielectric loss factor at a frequency of 1 10 Hz is 50 or more, the loss coefficient () and the loss It was found that both of the values of t and were high and that they had excellent damping performance In addition to the active ingredient, the base resin emulsion further improved the damping performance Fillers such as my scales, glass pieces, glass fiber, carbon fiber, calcium carbonate, barite, and precipitated barium sulfate are filled for the purpose. The filling amount of the filler is preferably from 10 to 90% by weight. For example, when the filling amount of the filler is less than 10% by weight, sufficient improvement in vibration damping performance is not observed even when the filler is filled, and conversely, the filling amount of the filler is reduced to 90% by weight. Even if the amount exceeds the above range, adverse effects may be caused if the material cannot be actually filled or if the mechanical strength of the coating film composed of the base resin decreases. In addition, other components such as a dispersing agent, a wetting agent, a thickening agent, a defoaming agent, an antifreezing agent, or a coloring agent may be appropriately added to the damping paint of the present invention as necessary. In addition, this damping paint is obtained by dissolving a base resin, a dispersing medium such as water and alcohol, a filler, and other components containing an active ingredient, a dispersant, and a thickener as necessary, such as a dissolver or a bumper. It is manufactured by dispersing and mixing with a conventionally known mixing and dispersing machine such as a mixer, a planetary mixer, a Glenmill, an open kneader, and a vacuum kneader. When applying the vibration damping paint, a conventionally known application means such as an air spray gun, an air spray gun, or a brush can be used. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing dipoles in a coating film. FIG. 2 is a schematic diagram showing a state of a dipole in a coating film when vibration energy is transmitted. Fig. 3 is a schematic diagram showing the state of the dipole in the coating film when the active ingredient is blended.
図 4は、 塗膜における誘電率 (《£ ' ) と誘電損率 (£〃 ) との関係を示したグ ラフ。 図 5は、 実施例 1〜3の各温度における損失係数 ( ) を示したグラフ。 発明を実施するための最良の形態 Figure 4 shows the relationship between the dielectric constant (<< £ ') and the dielectric loss factor (£ 〃) in the coating film. rough. FIG. 5 is a graph showing the loss coefficient () at each temperature in Examples 1 to 3. BEST MODE FOR CARRYING OUT THE INVENTION
(以下余白) (Hereinafter the margin)
表 1 table 1
Figure imgf000013_0001
上記表 1に示す成分を含む実施例 1並びに比較例 1〜4に係る各制振塗料を厚 さ 0. 8 mmの鋼板に面密度が 4 k g/m2 となるように塗布し、 16 CTCで 2 0分間焼き付け乾燥し、 放冷後再度 160°Cで 20分間焼き付け乾燥するという 手順で鋼板に塗膜を形成した。 形成された塗膜について、 膨れ、 亀裂の有無を目 視により確認し、 その結果を下記表 2に示した。 尚、 塗膜の性状評価は、 塗膜に 膨れや亀裂が有るときは、 「X」 とし、 無いときは、 「〇」 とした。 表 2
Figure imgf000013_0001
Was applied to the surface density of the steel plate of the vibration damping paint thickness 0. 8 mm according to Example 1 and Comparative Examples 1 to 4 containing the ingredients shown in Table 1 is 4 kg / m 2, 16 CTC In 2 The coating was formed on the steel sheet by baking and drying for 0 minutes, and then allowed to cool and then bake and dry again at 160 ° C for 20 minutes. The formed coating film was visually inspected for blisters and cracks, and the results are shown in Table 2 below. The properties of the coating film were evaluated as “X” when the coating film was swollen or cracked, and as “〇” when there was no swelling or cracking. Table 2
Figure imgf000014_0001
上記実施例 1に係る塗膜について、 損失係数 (7? ) を測定した。 その結果を図 5に示した。 尚、 損失係数 (7? ) の測定は、 電子測器株式会社製の電磁加振検出 装置 (MT— 1、 A202) を用いて行った。 また面密度が 2 kg/m2 となるよ うに塗布したもの (実施例 2) 、 面密度が 3 kg/m2となるように塗布したもの 実施例 3についても、 実施例 1と同様にして、 損失係数 (77 ) を測定し、 図 5に 示した。
Figure imgf000014_0001
The loss coefficient (7?) Of the coating film according to Example 1 was measured. The results are shown in FIG. The loss coefficient (7?) Was measured using an electromagnetic vibration detector (MT-1, A202) manufactured by Denshi Sokki Co., Ltd. In addition, those coated so as to have an areal density of 2 kg / m 2 (Example 2) and those coated so as to have an areal density of 3 kg / m 2 were used in the same manner as in Example 1. The loss factor (77) was measured and is shown in FIG.

Claims

言青求の範囲 Scope of word blue
1. ベ一ス樟 ί脂ェマルジヨンに、 ゲル化剤と、 曇点が 60°C〜90°Cの非ィォ ン系界面活性剤と、 水溶性ポリマーと、 イオン架橋剤とが含まれていることを特 徴とする制振塗料。 1. Base camphor oil emulsion contains a gelling agent, a nonionic surfactant having a cloud point of 60 ° C to 90 ° C, a water-soluble polymer, and an ionic cross-linking agent Damping paint that is characterized by
2. 前記ゲル化剤が 0. 75〜3. 5重量%、 非イオン系界面活性剤が 1. 34〜3. 5重量%、 水溶性ポリマーが 0. 05〜0. 40重量%、 イオン架橋 剤が 0. 5〜2. 0重量%の割合で含まれていることを特徴とする請求項 1記載 の制振塗料。 2. The above-mentioned gelling agent is 0.75 to 3.5% by weight, the nonionic surfactant is 1.34 to 3.5% by weight, the water-soluble polymer is 0.05 to 0.40% by weight, and ionic cross-linking. The damping paint according to claim 1, wherein the agent is contained in a ratio of 0.5 to 2.0% by weight.
3. ベース樹脂ェマルジヨン中に、 前記べ一ス樹脂における双極子モ一メン ト量を増加させる活性成分が含まれていることを特徴とする請求項 1または 2記 載の制振塗料。 3. The vibration damping paint according to claim 1, wherein the base resin emulsion contains an active ingredient that increases the amount of dipole moment in the base resin.
4. 前記活性成分がベース樹脂 100重量部に対して 10〜 100重量部の 割合で含まれていることを特徴とする請求項 3記載の制振塗料。 4. The vibration damping paint according to claim 3, wherein the active ingredient is contained in a ratio of 10 to 100 parts by weight based on 100 parts by weight of the base resin.
5. 前記活性成分が、 メルカプトべンゾチアジル基を含む化合物の中から選 ばれた 1種若しくは 2種以上であることを特徴とする請求項 3または 4に記載の 制振塗料。 5. The vibration damping paint according to claim 3, wherein the active ingredient is one or more selected from compounds containing a mercaptobenzothiazyl group.
6. 前記活性成分が、 ベンゾトリァゾ一ル基を持つ化合物の中から選ばれた 1種若しくは 2種以上であることを特徴とする請求項 3または 4に記載の制振塗 料。 6. The vibration damping coating according to claim 3, wherein the active ingredient is one or more selected from compounds having a benzotriazole group.
7. 前記活性成分が、 ジフエ二ルァクリレート基を持つ化合物の中から選ば れた 1種若しくは 2種以上であることを特徴とする請求項 3または 4に記載の制 振塗料。 7. The vibration damping paint according to claim 3, wherein the active ingredient is one or more selected from compounds having a diphenylacrylate group.
8 . 前記活性成分が、 ベンゾフエノン基を持つ化合物の中から選ばれた 1種 若しくは 2種以上であることを特徴とする請求項 3または 4に記載の制振塗料。 8. The vibration damping paint according to claim 3, wherein the active ingredient is at least one selected from compounds having a benzophenone group.
9 . 前記べ一ス樹脂中にガラス転移点の異なる活性成分が少なくとも 2種以 上配合されていて、 制振性の発揮される温度領域が拡張されていることを特徴と する請求項 3〜 8のいずれかに記載の制振塗料。 9. The base resin according to claim 3, wherein at least two or more active ingredients having different glass transition points are blended, and a temperature range in which vibration damping is exhibited is extended. 8. The damping paint according to any one of 8.
1 0 . 周波数 1 1 0 H zにおける誘電損率が 5 0以上であることを特徴とする 請求項 3〜 9のいずれかに記載の制振塗料。 10. The vibration damping paint according to claim 3, wherein the dielectric loss factor at a frequency of 110 Hz is 50 or more.
PCT/JP1998/000445 1998-02-02 1998-02-02 Vibration-damping coating material WO1999038922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000445 WO1999038922A1 (en) 1998-02-02 1998-02-02 Vibration-damping coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000445 WO1999038922A1 (en) 1998-02-02 1998-02-02 Vibration-damping coating material

Publications (2)

Publication Number Publication Date
WO1999038922A1 true WO1999038922A1 (en) 1999-08-05
WO1999038922A8 WO1999038922A8 (en) 1999-09-23

Family

ID=14207536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000445 WO1999038922A1 (en) 1998-02-02 1998-02-02 Vibration-damping coating material

Country Status (1)

Country Link
WO (1) WO1999038922A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040391A1 (en) * 1999-12-02 2001-06-07 Shishiai-Kabushikigaisha Vibration-damping coating material
WO2007110989A1 (en) * 2006-03-27 2007-10-04 Cci Corporation Attenuating coating
JP2008248185A (en) * 2007-03-30 2008-10-16 Cci Corp Damping coating
JP2008248188A (en) * 2007-03-30 2008-10-16 Cci Corp Damping coating
WO2009139314A1 (en) * 2008-05-09 2009-11-19 株式会社日本触媒 Emulsion composition for vibration damping material
JP2009270063A (en) * 2008-05-09 2009-11-19 Nippon Shokubai Co Ltd Emulsion composition for damping material
JP2010053210A (en) * 2008-08-27 2010-03-11 Nippon Shokubai Co Ltd Emulsion composition for vibration damping material and vibration damping material formulation
CN105860719A (en) * 2016-06-06 2016-08-17 青岛爱尔家佳新材料有限公司 Sprayable baking type water soluble damping coating and preparation method thereof
JP2018021179A (en) * 2016-06-23 2018-02-08 日本合成化学工業株式会社 Aqueous coating liquid, coating liquid for ink receiving layer and multilayer structure body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141251A (en) * 1982-02-16 1983-08-22 Kuraray Co Ltd Vibration damping paint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141251A (en) * 1982-02-16 1983-08-22 Kuraray Co Ltd Vibration damping paint

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040391A1 (en) * 1999-12-02 2001-06-07 Shishiai-Kabushikigaisha Vibration-damping coating material
WO2007110989A1 (en) * 2006-03-27 2007-10-04 Cci Corporation Attenuating coating
JP2008248185A (en) * 2007-03-30 2008-10-16 Cci Corp Damping coating
JP2008248188A (en) * 2007-03-30 2008-10-16 Cci Corp Damping coating
WO2009139314A1 (en) * 2008-05-09 2009-11-19 株式会社日本触媒 Emulsion composition for vibration damping material
JP2009270063A (en) * 2008-05-09 2009-11-19 Nippon Shokubai Co Ltd Emulsion composition for damping material
JP2010053210A (en) * 2008-08-27 2010-03-11 Nippon Shokubai Co Ltd Emulsion composition for vibration damping material and vibration damping material formulation
CN105860719A (en) * 2016-06-06 2016-08-17 青岛爱尔家佳新材料有限公司 Sprayable baking type water soluble damping coating and preparation method thereof
JP2018021179A (en) * 2016-06-23 2018-02-08 日本合成化学工業株式会社 Aqueous coating liquid, coating liquid for ink receiving layer and multilayer structure body

Also Published As

Publication number Publication date
WO1999038922A8 (en) 1999-09-23

Similar Documents

Publication Publication Date Title
US5741824A (en) Acoustically active plastisols
RU2155780C2 (en) Plastisol with acoustic effect
US20180142129A1 (en) Coating composition, method for producing same, coating film, exhaust fan and air conditioner
WO1999038922A1 (en) Vibration-damping coating material
JP2008095031A (en) Heat insulating coating material
WO1997048772A1 (en) Chipping resistant paint
EP0952192A1 (en) Vibration damping coating
JP3161030B2 (en) Acrylic foam composition
JP3067932B2 (en) Lightweight resin composition
US5256716A (en) Coating for foams and plastics
JP2001348495A (en) Liquid dispersion composition
JPH10268870A (en) Board material for building
WO2003046099A1 (en) Water-based adhesive compositions
JP4816858B2 (en) Sealant composition for aqueous electrolyte battery
JP2997066B2 (en) Paint composition and coated aluminum material
JPH05202313A (en) Agent for hydrophilic treatment
WO2001040391A1 (en) Vibration-damping coating material
JP2010275546A (en) Emulsion for damping material and damping material composition
JPS6136376A (en) Coating compound composition for precoated metal
JPS6232127A (en) Antitack composition for unvulcanized rubber
JPH1177939A (en) Agricultural polyurethane resin film
WO1999006491A1 (en) Damping paint
JP2649297B2 (en) Paint composition, painted fin material, and method for producing fin material
JPS62169641A (en) PVC resin molded products
JP2821762B2 (en) Powdered conductivity imparting agent and antistatic body using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载