+

WO1999038991A1 - Procede relatif au transfert de gene dans des cellules germinales - Google Patents

Procede relatif au transfert de gene dans des cellules germinales Download PDF

Info

Publication number
WO1999038991A1
WO1999038991A1 PCT/JP1999/000177 JP9900177W WO9938991A1 WO 1999038991 A1 WO1999038991 A1 WO 1999038991A1 JP 9900177 W JP9900177 W JP 9900177W WO 9938991 A1 WO9938991 A1 WO 9938991A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
testis
vertebrate
gene
virus
Prior art date
Application number
PCT/JP1999/000177
Other languages
English (en)
French (fr)
Inventor
Mitsuhiro Ueno
Haruko Konishi
Mio Morishita
Atsushi Yuki
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Shuzo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co., Ltd. filed Critical Takara Shuzo Co., Ltd.
Priority to KR1020007006541A priority Critical patent/KR20010033162A/ko
Priority to EP99901113A priority patent/EP1050586A4/en
Publication of WO1999038991A1 publication Critical patent/WO1999038991A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/108Plasmid DNA episomal vectors

Definitions

  • the present invention relates to a method for introducing a gene into a germ cell, and more particularly, a method for introducing a gene into a vertebrate germ cell, which is useful in medicine, pharmacy, livestock fields, and the like, and a gene transfer method obtained by the method.
  • the present invention relates to a method for producing a transgenic animal using cells.
  • Transgenic animal production technology is used not only as an experimental method to elucidate the function of genes, but also as a pathological model for use in evaluating drug performance and as a means of obtaining livestock with excellent traits Is done.
  • the most common method for producing transgenic animals is to inject DNA directly into a fertilized egg using a micromanipulator or the like and then transplant the fertilized egg to a foster parent to obtain an individual that has grown.
  • a micromanipulator or the like transplants the fertilized egg to a foster parent to obtain an individual that has grown.
  • this method requires extremely precise work of injecting DNA into the fertilized eggs, and is expected to be successful only by skilled researchers.
  • the rate of obtaining the individual carrying the foreign gene is low.
  • testis cells into which a gene has been introduced can be obtained simply and efficiently, and have completed the present invention.
  • the first invention of the present invention relates to a method for introducing a gene into a vertebrate testis cell, comprising the steps of reducing the number of testis cells, and inoculating the testis with a recombinant virus having a foreign gene. It is characterized by including.
  • a method for reducing testis cells a chemical method, a physical method, a biological method and the like can be used, and a chemical method using an alkylating agent is particularly preferable.
  • the recombinant virus is inoculated into the testis during the recovery period of the cells in the testis.
  • a recombinant virus having chromosomal integration ability can be used, and preferably, a recombinant retrovirus can be used.
  • a second invention of the present invention relates to a vertebrate in which a foreign gene has been introduced into testis cells, wherein the foreign gene has been introduced by the method of the first invention.
  • a third invention of the present invention relates to a testis cell into which a foreign gene has been introduced, which is obtained from the vertebrate of the second invention.
  • the fourth invention of the present invention relates to a vertebrate into which a foreign gene has been introduced, and is used for the crossing of the vertebrate of the second invention or the artificial fertilization using testis cells of the third invention. Therefore, it is characterized by being obtained. Detailed description of the invention
  • the method of introducing a gene into testis cells of the present invention uses a recombinant virus as a vector.
  • the virus vector that can be used in the present invention is preferably one having the ability to incorporate the target gene into the chromosome of the target cell, and is not particularly limited. Examples thereof include a retrovirus vector and a human immunodeficiency virus (HIV). ) Vectors, adeno-associated virus vectors and the like can be used. Further, the virus vector of the present invention is preferably one lacking replication ability so as not to repeat unlimited infection.
  • a known replication-defective retinovirus vector can be used.
  • MFG ATC-defective retinovirus vector
  • vectors modified from these are known packaging cell lines, for example, PG13 (ATCC CRL-10686), PG13 / LNc8 (ATCC CRL-10685), PM317 (ATCC CRL-9078), GP + E- 86 (ATCC CRL 9642), GP + e nvAm— 1
  • a virus supernatant containing the virus particles in which the vector is packaged can be prepared.
  • the foreign gene introduced into the germ cells by the method of the present invention is not particularly limited, and may be any gene desired to be introduced.
  • a gene encoding an enzyme or other protein, a gene encoding a functional nucleic acid molecule such as an antisense nucleic acid, ribozyme, or decoy can be introduced.
  • a functional nucleic acid molecule such as an antisense nucleic acid, ribozyme, or decoy
  • these genes may be added with appropriate regulatory elements such as a promoter, a terminator, and an enhancer for regulating the expression. These genes are used in the present invention by being incorporated into the above-described viral vector.
  • the gene transfer method of the present invention includes a step of inoculating testis with a progeny virus containing a foreign gene to be transferred.
  • virus inoculation surgical operations such as laparotomy are not performed.
  • the virus is injected into the testes using a syringe under anesthesia.
  • the titer of the recombinant virus is determined by the producer cell producing the virus.
  • constructing producer cells that produce high titer retroviral vectors is not an easy task.
  • the gene transfer method of the present invention has solved this problem by combining a step for reducing the number of testis cells.
  • Testicular cells as described herein refer to germ cells present in the testis.
  • a gene in a testis cell such as a spermatogonia, a spermatocyte, a sperm cell, or a sperm is introduced by the method of the present invention.
  • a chemical method refers to a method of reducing cells in the testis by administering a chemical substance.
  • a chemical substance examples include a DNA synthesis inhibitor, an RNA synthesis inhibitor, a DNA polymerase inhibitor, a mitosis inhibitor, an alkylating agent, and contraception. Drugs and the like can be used.
  • a physical method for example, irradiation of X-rays and gamma rays can be used.
  • biological methods include, for example, Proteins involved in cell growth and replication can be used.
  • an alkylating agent As a method for chemically reducing testis cells, for example, there is a method using an alkylating agent.
  • the alkylating agent that can be used in the method of the present invention include mitomycin C, nitrogen mustard-N-oxide, TESPA, melphalan, carboquouon, a nitrosodiarea derivative, cyclophosphamide, busulfan, and the like. .
  • the gene transfer method of the present invention includes a step of reducing testis cells to such an extent that it can be restored to a state before the treatment. Due to the above-described testis cell number reduction treatment, mature cells are killed in the testis, but then the remaining spermatogonia actively divide and proliferate, and after a certain period of time, the cell number in the state before the treatment is reduced. Recover. This means that, with respect to the animals treated as described above, testis cells were reduced over time, testes were observed with time, microscopic observation of testis tissue sections, cell cycle analysis by FACS (Fluorescence Activated Cell Sorting), and in vivo This can be confirmed by conducting a mating experiment or the like. That is, by such an experiment, it is possible to know in detail the correlation between the performed testis cell reduction treatment and the reduction or recovery of the cell number.
  • FACS Fluorescence Activated Cell Sorting
  • Inoculating a testicular cell with a reduced number of cells with a transgenic virus containing a foreign gene will result in highly efficient virus infection of the testis cells, and with the recovery of the testis cell numbers.
  • Spermatogonia, spermatocytes, spermatids and spermatozoa into which the foreign gene has been introduced are accumulated in the testis.
  • the virus is administered during a convalescent phase in which the remaining cells are actively growing. It is known that retroviruses, which are frequently used as a vector for gene transfer into cells, infect mitotic cells in preference, and this recovery phase is a particularly favorable environment for infection of the virus.
  • the efficiency of gene transfer can be further increased. This can be achieved, for example, by selecting packaging cells having a high titer-virus producing ability and preparing a virus supernatant.
  • a virus concentrated by an appropriate method may be used.
  • the VSV-G vector, a retroviral vector called pseudotype concentrates virus particles by centrifugation. It is possible.
  • the present invention provides a simple method for introducing a foreign gene into a vertebrate germ cell without involving a surgical operation or ex vivo treatment of the germ cell.
  • a male vertebrate individual having a germ cell into which a foreign gene has been introduced can be obtained.
  • a fertilized egg derived from a germ cell into which the gene has been introduced and a vertebrate individual generated from the fertilized egg can be obtained.
  • a method other than mating can be used for obtaining the fertilized egg.
  • a fertilized egg can be produced by artificial fertilization in which testicular cells, for example, sperm are collected from the above male vertebrate individual and fertilized with an egg in a test tube. Fertilized eggs produced by artificial fertilization can be generated as individual animals by transplanting them into a suitable foster parent.
  • the animal thus obtained contains a foreign gene introduced into one chromosome in the cell, that is, a gene modified (heterologous individual).
  • a gene modified heterologous individual
  • Such individuals can be selected by examining whether or not a foreign gene is contained in the gene by a known method, for example, a PCR method or a hybridization method.
  • a homologous individual from the progeny obtained by crossing these individuals, that is, those in which the genes on both chromosomes are modified, the introduced genes and traits derived from the genes can be stabilized.
  • a transgenic animal maintained in the above can be obtained.
  • the present invention can be applied to any species of animals other than humans.
  • animals eg, mice, rats, etc.
  • livestock and poultry eg, Cattle such as dairy cattle and beef cattle, and birds such as horses, pigs and chickens
  • transgenic animals useful as experimental animals or having excellent traits as domestic animals can be easily and inexpensively produced.
  • a male vertebrate individual into which the foreign gene of interest has been introduced into testis cells by the method of the present invention produces spermatozoa in which the gene has been integrated on its chromosome. Therefore, the method is expected to be, for example, a breeding cow for producing high value-added calves and foals, and a means for producing stallion. By mating using this male, offspring carrying the gene can be produced.
  • FIG. 1 shows FACS analysis data of testis cells of mice treated with busulfan.
  • A, B, and C show the results of analysis of testis cells 1, 3, and 5 weeks after busulfan administration, respectively.
  • FIG. 2 shows the fertility of male mice treated with busulfan.
  • the pregnancy rate in the figure represents the percentage of pregnant female mice.
  • A shows the results for the control
  • B and C show the results for mice to which 20, 30, and 40 mg Zkg of busulfan were administered, respectively.
  • FIG. 3 shows the region of the VGL2 virus gene integrated into the chromosome of the infected cell, contained in the plasmid pGL2.
  • LTR is LTR (Long Terminal Repeat) derived from Moroni murine leukemia virus
  • SD is the splice donor site
  • (/> is the packaging signal
  • CMV is the cytomegalovirus-derived early enhancer promoter
  • GF P is a green funoreletosense protein gene
  • SA is a splice acceptor site
  • Neo is a neomycin phosphotransferase gene
  • SV4 Oori is a replication origin from SV40
  • pBR322ori is a replication origin from pBR322. Indicate the starting point respectively.
  • FIG. 4 shows the results of FACS analysis of GFP expression in testis cells of mice inoculated with the vGL2 virus.
  • FIG. 5 shows the results of FACS analysis of GFP expression in sperm collected from the epididymis of mice inoculated with the vGL2 virus.
  • mice Male mice (CLEA Japan) were treated with 5 mg / kg, 1 Omg / kg, 2 Omg / kg, and 4 OmgZkg of busulfan (1,4-butanedioleinomethanemethane sulfonate). (Wako Pure Chemical Industries, Ltd.) was intraperitoneally administered. At 1, 2, 3, 4, and 5 weeks after administration, testes of mice were excised and weighed, and used as a control for testes of mice administered with saline. Was compared with the weight.
  • busulfan 1,4-butanedioleinomethanemethane sulfonate
  • mice administered with 2 Omg / kg and 4 Omg / kg of busulfan were administered with 2 Omg / kg and 4 Omg / kg of busulfan.
  • mice administered with S Omg / kg tended to recover their weight 5 weeks after administration.
  • mice Four-week-old MCH (ICR) male mice were intraperitoneally administered with 1 OmgZkg, 2 Omg / kg, 3 Omg / kg and 4 Omg / kg busulfan, and the change in body weight up to 7 weeks after administration was measured. The body weight was compared with that of control mice to which physiological saline was administered. The mice of each administration group and the control group each used 5 mice per group.
  • mice Four-week-old MCH (ICR) male mice were intraperitoneally administered with 2 OmgZkg, 30 mg / kg and 40 mgZkg of busulfan, and the testes and epididymis were removed 10 weeks after administration To prepare tissue sections. The sections were stained with HE (hematoxylin-eosin stain) and observed under a microscope, and the state of tissues and cells was compared with that of control mice to which saline was administered. Each administration group and control group used 5 mice per group.
  • HE hematoxylin-eosin stain
  • Judgment was made based on the results of microgun observation of the testis and epididymis tissue sections of 5 animals per group.
  • collagenase I manufactured by Gibco
  • trypsin // EDTA gibco
  • the cell mass was separated using ⁇ $ 3 ⁇ 4lml, and the cell mass of 100 ⁇ m or more was removed with a filter, followed by fixation with 1% paraformaldehyde, followed by fixation with 70% ethanol.
  • the cells were washed with phosphate-buffered saline (PBS), suspended in PBS, treated with 2 mg / ml RNase A (manufactured by Sigma), and then treated with 0.0 SmgZml of probidium iodide. Immediately before measurement, cell clumps were removed using a 30-micron mesh, and the excitation wavelength was 488 nm and the measurement wavelength was 564 to 606 nm using a FACSVantage (Becton Dickinson). The analysis of the DNA content in the cells was carried out.
  • PBS phosphate-buffered saline
  • RNase A manufactured by Sigma
  • spermatogonia and primary spermatocytes in G2 phase, M phase with DNA content of 4 n, spermatogonia and secondary spermatocytes in G1 phase with DNA quantity of 2 n The number of sperm cells and spermatozoa having a DNA amount of n and the number of apoptotic cells having a lower DNA amount than these can be determined.
  • Table 4 shows the values obtained from this analysis data.
  • FIG. 1 shows, as a representative example, FACS data obtained for testis cells at 1, 3, and 5 weeks after administration of 20 mg / kg of busulfan mouse.
  • Figure 1 shows that most of the testis cells undergo apoptosis at 3 weeks post-dose, whereas at 5 weeks the percentage of 2n cells increases.
  • Table 4 shows that the total number of cells in the testes was lowest at about 4 weeks after administration of busulfan, and after that, cell regeneration was started. It became clear from the cells that the number increased.
  • sperm cells and / or sperm
  • GFP green fluorescent protein
  • S 65T serine to threonine
  • Lantern-1 (Lifetech Orientalnet ⁇ $ 3 ⁇ 4) was digested with S spl (Takara Shuzo) and electrophoresed on a 1% agarose gel, after which a DNA fragment corresponding to about 1.9 kb was recovered.
  • the plasmid pZIP-NeoSV (X) I [Cell, Vol. 37, pp. 1053-1062 (1984)] is digested with BamHI (Takara Shuzo), and the ends are digested with a DNA blunting kit (Takara Shuzo).
  • plasmid DNA was mixed with the above approximately 1.9 kb DNA fragment and ligated. After, Iichi 'Kori JM 109 (Takara Shuzo). The plasmid retained in the obtained transformant was examined, and one containing only one molecule of the above-mentioned approximately 1.9 kb fragment was selected and named plasmid pGL2.
  • the virus particles derived from the plasmid can integrate the GFP gene on the chromosome of the infected cell by infecting the cell.
  • Fig. 3 shows the region of the retrovirus gene that is incorporated into the chromosome of the infected cell and contained in the plasmid pGL2.
  • the virus derived from the plasmid pGL2 is named vGL2 virus, and the supernatant containing the virus is used as packaging cells, BO SC23 cells [Proc. Natl. Acad. Sci. USA, Vol. 90, No. 8392-8396 (1993)]. That is, 10% gelatin-coated cell culture tissue (Iwaki Glass Co., Ltd.) contains 10% 10% fetal serum (FCS, Dainippon Pharmaceutical Co., Ltd.) containing 1 ⁇ 10 7 BOSC 23 cells per cell. Cultured in 1 Oml Dulbecco's modified Eagle's medium (DMEM, Iwaki Glass) containing 1 / ml penicillin and 50 ⁇ g / ml streptomycin (both from Gibco).
  • DMEM Oml Dulbecco's modified Eagle's medium
  • All DMEM used in this experiment contained 50 units / ml of penicillin and 50 ⁇ g / ml of streptomycin.) After replacing the medium with a fresh one (10 ml), Transfection was performed by the calcium phosphate method using the plasmid pGL 2. After 8 hours, the medium was replaced with 10 ml of fresh medium, 24 hours later, the medium was replaced with 5 ml of fresh medium, and cultured for another 24 hours. Culture after continuing The supernatant was collected and the collected culture supernatant was filtered through a 0.45 micron filter.
  • the titer of the supernatant was measured using NIH / 3T3 cells (ATCC CRL-165).
  • a 6-well tissue culture plate (manufactured by Iwaki Glass Co., Ltd.) contains 10% lysate serum (CS, manufactured by Gibco) containing 2000 NI HZ3T3 cells per gel. After adding MEM and culturing overnight, serially diluted virus supernatant and hexadimethrin / bromide (polybrene: Aldrich) at a final concentration of 7.5 ⁇ g / ral were added to each well.
  • CS lysate serum
  • the medium was replaced with DMEM containing a final concentration of 0.75 mgZml of G418 (manufactured by Gibbone) and 10% CS, and further incubation was continued. G418-resistant colonies that grew 10 to 12 days later were stained with crystal violet and the numbers were recorded. Calculate the number of infectious particles (cfuZml) per 1 ral of the supernatant, that is, the titer of the virus supernatant, from the value obtained by multiplying the number of colonies per well by the dilution ratio of the virus supernatant. Based on this titer, the amount of virus supernatant used in subsequent experiments was determined.
  • cfuZml infectious particles
  • mice per group Four 4-week-old MCH (ICR) male mice per group were intraperitoneally administered with 3 Omg / kg of busulfan and inoculated with the virus three times on days 14, 17, and 20 after administration Group (Group 1), 21 days and 24 days after administration, group receiving 3 doses of virus on day 27 (Group 2), 3 days after administration, 28 days, 31 days and 34 days after administration
  • the virus was inoculated into the groups that received the virus once (Group 3) and the groups that received the virus three times (Group 4) on days 35, 38, and 41 days after administration.
  • the virus was inoculated by inoculating both testes with 1 ⁇ 10 4 cfuZml of vGL2 virus supernatant 501 each.
  • testes were excised from each group of mice, and testicular cell preparations were prepared. Detection of intracellular GF gene and fluorescence measurement of GF gene product by FACS were performed.
  • results of analysis of testicular cell preparations on day 25 after virus inoculation in group (3), and results of testicular cell preparations from mice of the same age that were not inoculated with virus after busulfan administration and analyzed as controls Is shown in FIG.
  • the GFP-derived fluorescence region region with a relative fluorescence intensity of GFP of 30 to 100 shown on the horizontal axis of the drawing, which is not seen in the control when the virus was inoculated, was present. was confirmed to be expressed in testis cells.
  • Example 2 Some of the testis cell preparations prepared in (5) were selected to prepare chromosomal DNA. Approximately 1 ⁇ 10 6 cells from the above testis cell preparation were taken, and a DNA extract (10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 1 mM EDTA, 39 mM DTT, 2% (SDS) was suspended in 700 zl. To this suspension was added 35 / zl of proteinase K (10 mg / ml, menoletane: fc), incubated at 37 ° C, and then added 2 ⁇ l of ribonuclease A (2 Omg / m sigma). The temperature was further kept at 37 ° C for 2 hours.
  • a DNA extract 10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 1 mM EDTA, 39 mM DTT, 2% (SDS) was suspended in 700 zl. To this suspension was added 35 / z
  • the DNA was recovered by ethanol precipitation, and dissolved in 100 / l TE buffer (1 OmM Tris-HCl (pH 8.0), ImM EDTA) to remove the chromosomal DNA. The solution was used.
  • Oligonucleotides GFP-13 and GFP-16R synthesized based on the above chromosomal DNA and GFP gene sequence (SEQ ID NOS: 1 and 2 in the sequence listing show the oligonucleotides GFP-13 and GFP-16R, respectively)
  • Chromosomal DNA solutions prepared by the same procedure as described above from testicular cell preparations of NI HZ3T3 cells infected with the virus and testis cells of the same age that had not been inoculated with the virus after the administration of busulfan were used as positive and negative controls, respectively. used.
  • the exogenous gene that is, the GFP gene
  • the exogenous gene was integrated on the chromosome with high efficiency in the groups inoculated with the virus from week 4 to week 5 or from week 5 to week 6 after busulfan administration. It was shown to be. Therefore, it is important to inoculate the virus several times around the 5th week after busulfan administration, which is the time of recovery of decreased testicular cells, as revealed by the preliminary experiment shown in Example 1.
  • Example 2 The results of (4) to (6) indicate that, in order to integrate a target gene into the chromosome of testis cells in vivo, the target gene is introduced into a satter having incorporation ability, and this is transferred to the testis cells. This indicates that it is important to inoculate when it is time to recover from a drug injury.
  • Example 3 The mouse epididymis described in (1) was replaced with 2% penicillin Z streptomyces. After chopping with a scissor in the cell, the cell mass was removed with a 30- micron mesh to prepare a sperm fraction. The GFP gene expression of this sperm fraction was confirmed by FACS according to the method described in Example 2- (5). In addition, at this time, a cell fraction in which the fluorescence derived from GFP was positive 1 "was collected.
  • Fig. 5 shows the results of analysis of the sperm fraction derived from mice on day 42 after virus inoculation, and the results of testicular cells from mice of the same age that were not inoculated with the virus after administration of busulfan and analyzed as controls. Show. As shown in the figure, it was confirmed that GFP-expressing spermatozoa (regions with relative fluorescence intensity of 8 to 20 indicated on the horizontal axis of the GFP) were present in the epididymis of the mice 42 days after virus inoculation. did it.
  • Example 3 About 1 ⁇ 10 5 cells were taken from the GFP fluorescence-positive sperm fraction collected by FACS in (2), and a DNA extract (1 OmM Tris-HC 1 (pH 8.0), The suspension was suspended in 1 OmM NaCl, 1 OmM EDTA, 39 mM DTT, 2% SDS) 7 OO / x1. After adding 35 tl of proteinase K (1 Omg / ml) to the suspension and incubating at 37 ° C, 2/1 of ribonuclease A was added.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 生殖細胞への遺伝子導入法 発明の分野
本発明は、 生殖細胞への遺伝子導入法、 さらに詳しくは、 医学、 薬学、 畜産分 野等において有用な、 脊椎動物生殖細胞への遺伝子導入方法および該方法によつ て得られた遺伝子導入生殖細胞を用いたトランスジエニック動物の作成方法に関 する。 発明の背景
近年の遺伝子工学的技術の発展は、 外来遺伝子の導入や特定の遺伝子の欠失と いった遺伝子の修飾が施された動物、 すなわち、 トランスジエニック動物の作成 を可能にした。 トランスジエニック動物作成技術は遺伝子の機能を解明するため の実験手法として使用される他、 医薬品の性能評価に使用するための病態モデル 動物や優れた形質を有する家畜類を得るための手段として使用される。
トランスジエニック動物の作成方法としてもっとも一般的なものは、 マイクロ マニュピレーター等を使用して受精卵に直接 D N Aを注入し、 この受精卵を仮親 に移植して成長した個体を取得するというものである [ゴードン (Gordon, J. H. ) ら、 プロシーディングズ ·ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイ エンシーズ ·ォブ 'ザ · U S A (Proc. Natl. Acad. Sci. USA) 、 第 77卷、 第 7380〜7384頁 (1980) ] 。 この方法は生体外での受精卵の取り扱いに加えて、 受精卵への D N A注入という極めて精密な作業を要し、 熟練した研究者の手によ つてのみ成功が期待される。 また、 注入された D NAは積極的に染色体 D NAに 組み込まれることはないため、 外来遺伝子を保持した個体が得られる割合は低い。
したがって、 確実に目的を達成するためには数多くの受精卵について処理を行 わなければならず、 作業的な負担、 受精卵を採取するための動物の購入コストと いった問題を有している。 このため、 以下に述べるような種々の方法が考案され、 試 られてきた。 外来遺伝子を効果的に染色体上に組み込ませるために、 レトロウィルスべクタ 一を用いて外来遺伝子を初期胚へ導入しょうという試みが報告されている [ボウ ェン (Bowen, R. A. ) ら、 モレキュラー' リプロダクション 'アンド 'デベロ プメント (Molec. Reprod. Dev. ) 、 第 40卷、 第 386〜390頁 (1995) ] 。
さらに、 妊娠中の雌マウスに、 塩基性ポリアミンとプラスミドとの混合物を静 脈注射することにより胎児に外来遺伝子を導入しょうとする試みも報告されてい る [寺田ら、 ネイチヤー ·ジエネテイクス (Nature Genetics) 、 第 9卷、 第 243 〜248頁 (1995) ] 。
—方、 まず遺伝子的に修飾された精子を作成し、 これを用いて受精卵を作成す るという原理に基づいたトランスジエニック動物の作成法も試みられている。 例 えば、 精巣内細胞を物理的もしくは化学的処理により死滅させ、 その後、 遺伝的 に修飾した精原細胞を精細管に移植するという方法が報告されている [プリンス ター (Brinster, R. し) ら、 Proc. Natl. Acad. Sci. USA、 第 91巻、'第 11303〜11307頁 (1994) 、 ネィチヤ一 'メディシン (Nature Med. ) 、 第 2卷、 第 693〜696頁 Q996) ] 。
'また、 外来遺伝子を含有する環状または直鎖状プラスミド D NAを、 リン酸力 ルシゥムにて共沈させた後、 これをリボソーム法によって精巣内に投与し、 精巣 内幹細胞や精子に外来遺伝子を導入しょうという試みも行われている [多田ら、 アニマノレ .バイオテクノロジー (Animal Biotechnol. ) 、 第 5卷、 第 19〜31頁 (1994) 、 高橋ら、 日本畜産学会要旨、 2x- 8、 (1996) ] 。
上記の 「ブリンスターら」 、 「ボウェンら」 等の方法は高い効率で遺伝子的に 修飾された個体を得ることを主眼としたものである。 し力 しながら、 これらの技 術は初期胚の維持、 ウィルスによる遺伝子導入、 精巣内精細管への細胞移植とい つた高水準な実験技術とそれを可能とするだけの高価な設備とを要するため、 通 常の実験設備をもつて実施することは不可能である。
さらに、 「多田ら」 「高橋ら」 「寺田ら」 の方法は上記のような設備を必要と しない簡便な方法ではあるが、 投与された外来遺伝子が標的である生殖細胞の染 色体上に積極的に組み込まれることはなく、 したがって一過性にその存在は確認 されることはあっても、 子孫に伝達する可能性はほとんどない。 すなわち、 生物 学的に機能的な目的遺伝子が組み込まれた生殖細胞や、 該細胞を起源とするトラ ンスジエニック動物の取得法には適さない。 発明の目的
本発明は、 目的とする外来遺伝子が組み込まれた生殖細胞、 および該細胞を保 持する脊椎動物を取得するための簡便な方法を提供することを目的とする。 また、 本発明の他の目的は、 上記の生殖細胞あるいは脊椎動物を利用した、 遺 伝子的に新しい脊椎動物系統を作成するための方法を提供することにある。 発明の概要
本発明者らは、 脊椎動物の精巣に組換えゥィルスを接種する精巣内細胞への遺 伝子導入において、 ウィルスの接種と、 精巣内の細胞数を減少させるような処理 とを組み合わせることにより、 簡便かつ効率よく遺伝子導入された精巣内細胞を 取得できることを見い出し、 本発明を完成させるに至った。
すなわち、 本発明の第一の発明は脊椎動物精巣内細胞への遺伝子導入方法に関 し、 精巣内細胞数を減少させる工程と、 外来遺伝子を有する組換えウィルスを精 巣中に接種する工程とを包含することを特徴とする。 精巣内細胞を減少させる方 法としては化学的方法、 物理的方法、 生物学的方法等が使用でき、 特に、 アルキ ル化剤を使用する化学的方法が好適である。 また、 好ましくは組換えウィルスは 精巣内細胞の回復期に精巣内に接種される。
本発明に使用される組換えウイルスには染色体組み込み能を有する組換えゥィ ルスを使用することができ、 好ましくは組換えレトロウイルスを使用することが できる。
本発明の第二の発明は、 その精巣内細胞に外来遺伝子を導入された脊椎動物に 関し、 第一の発明の方法により外来遺伝子を導入されていることを特徴とする。 本発明の第三の発明は、 外来遺伝子を導入された精巣内細胞に関し、 第二の発 明の脊椎動物から得られることを特徴とする。
さらに、 本発明の第四の発明は外来遺伝子を導入された脊椎動物に関し、 第二 の発明の脊椎動物の交配、 あるいは第三の発明の精巣内細胞を用いた人工受精に よって得られることを特徴とする。 発明の詳細な説明
本発明の精巣内細胞への遺伝子導入方法は、 組換えウィルスをベクターとして 使用する。 本発明に使用できるウィルスベクターは目的遺伝子を標的細胞の染色 体上に,袓み込む能力を有するものが好ましく、 特に限定するものではないが、 例 えば、 レトロウイルスベクター、 ヒト免疫不全ウィルス (H I V) ベクタ一、 ァ デノ随伴ウィルスベクター等を使用することができる。 さらに、 本発明のウィル スベクターは無制限な感染を繰り返さないよう、 複製能を欠損したものであるこ とが好ましい。
本発明の遺伝子導入方法には、 公知の複製能欠損レト口ウィルスベクターを使 用することができる。 特に限定するものではないが、 例えば、 MFG (ATCC
No. 68754) 、 α-SGC (ATCC No. 68755) 、 pLRNL
[ウイロロジー (Virology) 、 第 171卷、 第 331頁 (1989) ] 、 pBa b e [ヌク レイツク ♦ァシッズ' リサーチ (Nucleic Acids Research) 、 第 18巻、 第 3587
〜3596頁 (1990) ] 等のレトロウイルスベクター、 またはこれらを改変したべク ターを使用することができる。 また、 これらのベクターは公知のパッケージング 細胞株、 例えば、 PG 13 (ATCC CRL— 10686) 、 PG 13/LN c 8 (ATCC CRL— 10685) 、 PM317 (ATCC CRL— 90 78) 、 GP + E— 86 (ATCC CRL 9642) 、 GP+e nvAm— 1
2 (ATCC CRL 9641) 等の細胞株を使用することにより、 該ベクター がパッケージングされたウィルス粒子を含有するウィルス上清液を調製すること ができる。
本発明の方法により生殖細胞に導入される外来遺伝子には特に限定はなく、 導 入を望まれる任意の遺伝子であってよい。 例えば、 酵素やその他の蛋白質をコー ドする遺伝子、 アンチセンス核酸やリボザィム、 デコイのような機能的な核酸分 子をコードする遺伝子等を導入することができる。 これらの遺伝子の起源にも特 に限定はなく、 該遺伝子が導入される生殖細胞と同種の生物由来のもの、 異種生 物由来のもの、 化学的に合成されたもの、 さらにはこれらの組み合わせであって もよい。 また、 これらの遺伝子はその発現を調節するための適当なプロモーター、 ターミネータ一、 ェンハンサーといった調節要素を付加されていてもよい。 これ らの遺伝子は上記のウィルスベクターに組み込まれて本発明に使用される。
本発明の遺伝子導入方法は、 導入しょうとする外来遺伝子を含有する,祖換えゥ ィルスを精巣に接種する工程を含む。 ウィルス接種は開腹等の外科的手術を行わ ず、 例えば、 麻酔下に注射器を使用して精巣内に注入する。
細胞へのウィルス感染においては標的細胞数とウィルス粒子数、 すなわち、 ゥ ィルスのタイターとの比が感染効率を大きく左右する因子となることが知られて レ、る。 例えば、 本発明者らは外来遺伝子を組み込んだレトロウイルス (I X 1 04 cfu/ml) を両精巣に 5 0 1ずつ注入した雄マウス 1 0匹を用い、 8週 齢の正常雌マウスと毎週月曜日から金曜日まで 1対 1で同居させる自然交配を 5 週間にわたり行った。 この雌マウス 5 0匹から得られた産子計 5 3 4匹について P C R法にて遺伝子解析を行つたところ、 使用した外来遺伝子を保持した産子は 認められなかった。
この問題を解決するためには、 高いタイターの組換えウィルスを接種すること が望ましいが、 組換えウィルスのタイターは該ウィルスを産生するプロデューサ 一細胞により決定される。 実際には高タイターのレトロウィルスべクターを産生 するプロデューサー細胞の構築は容易なことではない。 本発明の遺伝子導入方法 では、 精巣内細胞の数を減少させる工程を組み合わせることにより、 この問題を 解決した。
本明細書に記載の精巣内細胞とは、 精巣内に存在する生殖細胞をいう。 例えば、 精原細胞、 精母細胞、 精細胞、 精子等の精巣内細胞が本発明の方法により遺伝子 導入される。
精巣内細胞を減少させる方法としては、 化学的方法、 物理的方法、 生物学的方 法を単独で、 または組み合わせて使用することができる。 化学的方法とは化学物 質の投与による精巣内細胞の減少方法をいい、 例えば、 D NA合成阻害剤、 R N A合成阻害剤、 D N Aポリメラーゼ阻害剤、 有糸分裂阻害剤、 アルキル化剤、 避 妊薬等を使用することができる。 物理的方法としては、 例えば、 エックス線ゃガ ンマ一線の照射を使用することができる。 また、 生物学的方法としては、 例えば、 細胞の増殖、 複製に関与する蛋白質等を利用することができる。 上記の種々の方 法により精巣内細胞数を減少させることができるが、 本発明では特別な装置、 操 作を必要とせず、 また、 作用のコントロールが容易である化学的方法により精巣 内細胞を減少させることが好ましい。
化学的に精巣内細胞を減少させる方法としては、 例えば、 アルキル化剤を使用 する方法がある。 本発明の方法に使用可能なアルキル化剤としては、 例えば、 マ イ トマイシン C、 ナイトロジェンマスタード一 N—オキサイド、 T E S P A、 メ ルファラン、 カルボクウオン、 ニトロソゥレア誘導体、 サイクロフォスフアミ ド、 ブサルファン等が挙げられる。
本発明の遺伝子導入方法は、 処理前の状態に回復可能な程度に精巣内細胞を減 少させる工程を含む。 上記の精巣内細胞数減少処理により精巣内では成熟細胞の 枯渴が起こるが、 その後、 残存する精原細胞が活発に分裂、 増殖を始め、 一定の 期間を経て処理前の状態に細胞数が回復する。 このことは上記のような精巣内細 胞減少処理を行った動物個体について、 経時的に精巣の観察、 精巣の組織切片の 顕微鏡観察、 F A C S (Fluorescence Activated Cell Sorting) による細胞 周期の解析および in vivo 交配実験等を実施することにより確認することがで きる。 すなわち、 こうした実験により、 実施された精巣内細胞減少処理と、 細胞 数の減少〜回復との相関を詳細に知ることができる。
このようにして細胞数を減少させた精巣に外来遺伝子を含有する糸且換えウィル スを接種すれば高効率で精巣内細胞へのウィルス感染が起こり、 さらに精巣内細 胞数の回復にともなって外来遺伝子の導入された精原細胞、 精母細胞、 精細胞、 精子が精巣内に蓄積される。 好ましくは、 ウィルスは残存する細胞が活発に増殖 を行っている回復期を選んで投与される。 細胞への遺伝子導入にベクタ一として 多用されるレトロウィルスは分裂期の細胞に好んで感染することが知られており、 この回復期は該ゥィルスの感染にとって特に良好な環境にある。
高いタイターの組換えウィルスを接種することにより、 さらに遺伝子導入の効 率を上げることが可能である。 これは、 例えば、 高タイタ一ウィルス産生能を有 するパッケージング細胞を選択してウィルス上清液を調製することにより達成す ることができる。 また、 適当な方法で濃縮したウィルスを使用してもよい。 例え ば、 シユードタイプと呼ばれるレトロウイルスベクターである V S V— Gベクタ 一 [Proc. Natl. Acad. Sci. USA, 第 90卷、 第 8033〜8037頁 (1994) ] は遠 心分離法によりウィルス粒子の濃縮が可能である。
本発明は、 外科的手術、 生体外での生殖細胞の取り扱いを伴わない簡便な脊椎 動物生殖細胞への外来遺伝子導入法を提供するものである。 本発明を使用するこ とにより、 外来遺伝子を導入された生殖細胞を保持する雄の脊椎動物個体を取得 することができる。 さらに、 得られた雄の脊椎動物個体を雌の個体と交配させる ことによって、 遺伝子導入された生殖細胞由来の受精卵、 さらには該受精卵より 発生した脊椎動物個体を得ることができる。 なお該受精卵の取得には、 交配以外 の方法も使用することができる。 例えば、 上記の雄の脊椎動物個体より精巣内細 胞、 例えば、 精子を採取し、 これを試験管内で卵子と受精させる人工受精により、 受精卵を作成することもできる。 人工受精により作成された受精卵はこれを適当 な仮親に移植することにより、 動物個体として発生させることができる。
こうして得られた動物個体にはその細胞中の一方の染色体上に外来遺伝子の導 入、 すなわち、 遺伝子の修飾を受けたもの (ヘテロ個体) が含まれている。 この ような個体は、 公知の方法、 例えば、 P C R法やハイブリダィゼーシヨン法によ つてその遺伝子中に外来遺伝子が含まれているかどうかを調べ、 選択することが できる。 この個体どうしの交配を行って得られる子孫よりホモの個体、 すなわち、 両染色体上の遺伝子が修飾されたものを選択することにより、 導入された遺伝子、 およぴ該遺伝子に由来する形質を安定に保持したトランスジエニック動物を得る ことができる。
なお、 本発明はヒト以外の動物のあらゆる種に適用することができ、 例えば、 研究用として使用されることの多いげつ齒動物 (例えばマウス、 ラット等) の他、 家畜や家禽類 (例えば乳牛、 肉牛等の畜牛、 馬、 豚、 鶏等の鳥類等) にも応用可 能である。 本発明の方法を使用することにより、 実験動物として有用な、 あるい は家畜として優れた形質を有したトランスジヱニック動物を簡便、 安価に作成す ることが可能となる。
また、 本発明の方法によってその精巣内細胞に目的の外来遺伝子が導入された 雄の脊椎動物個体は、 該遺伝子をその染色体上に組み込まれた精子を産生する。 したがって、 該方法は、 例えば、 高付加価値の仔牛、 仔馬を生産するための種牛、 種馬の作成手段として期待される。 この雄を用いた交配により、 該遺伝子を保持 する子孫を産生させることができる。 図面の簡単な説明
図 1はブサルファン投与マゥスの精巣内細胞の F A C Sによる解析データを示 す。 図中 A、 B、 Cはそれぞれブサルファン投与後 1、 3、 5週後の精巣内細胞 についての解析結果を示す。
図 2はブサルファン投与雄マウスの生殖能力を示す。 図中の妊娠率は妊娠した 雌マウスの割合を表す。 また図中 Aは対照、 また B、 Cはそれぞれ 20、 30、 40 mgZkgのブサルファンを投与されたマゥスにつレ、ての結果を示す。
図 3はプラスミド pGL2に含有される、 被感染細胞染色体に組み込まれる V G L 2ウィルス遺伝子の領域を示す。 図中 LTRはモロニ一マウス白血病ウィル ス由来の LTR (Long Terminal Repeat) を、 SDはスプライス ドナ—部位 を、 (/>はパッケージングシグナルを、 CMVはサイトメガロウィルス由来初期ェ ンハンサ プロモーターを、 GF Pはグリ一ンフノレオレツセンスプロティン遺 伝子を、 SAはスプライス ァクセプター部位を、 Ne oはネオマイシンホスフ オトランスフェラーゼ遺伝子を、 S V4 Ooriは S V40由来複製開始点を、 p BR322oriは pBR322由来複製開始点をそれぞれ示す。
図 4は vGL 2ウィルスを接種されたマウスの精巣内細胞中での GFPの発現 を F A C Sで解析した結果を示す。
図 5は vGL 2ウィルスを接種されたマウスの精巣上体より採取した精子での GFPの発現を F A C Sで解析した結果を示す。 実施例
以下、 実施例を挙げて本発明をさらに詳しく説明するが、 本発明はこれらの実 施例に限定されるものではない。
実施例 1
ブサルフ了ン腹腔内投与によるマウス精巣内細胞の変動 (1) 精巣重量へ及ぼす影響
4週齢の MCH (I CR) 雄マウス (日本クレア社) に、 5mg/kg、 1 Omg/ kg、 2 Omg/kg, 4 OmgZkgのブサルファン (1, 4—ブタンジォーノレジメタン スルフォネート、 和光純薬社製) を腹腔内投与した。 投与後 1週目、 2週目、 3 週目、 4週目および 5週目にマウスの精巣を摘出してその重量を測定し、 対照と して用レ、た生理食塩水投与マゥスの精巣の重量と比較した。
その結果、 表 1に示すように、 2 Omg/kgおよび 4 Omg/kgのブサルファンを 投与したマウスにおいてその重量の低下が観察された。 さらに、 S Omg/kg投与 マウスでは投与後 5週目にその重量が回復する傾向が認められた。
ブサルファン投与のマウス精巣重量への影響
Figure imgf000011_0001
(2) 体重へ及ぼす影響
4週齢の MCH (I CR) 雄マウスに、 1 OmgZkg 2 Omg/kg、 3 Omg/kg および 4 Omg/kgのブサルファンを腹腔内投与し、 投与後 7週目までの体重変化 を測定し、 生理食塩水を投与した対照マウスの体重と比較した。 なお、 各投与群、 対照群にはそれぞれ 1群 5匹のマゥスを使用した。
その結果、 表 2に示すように、 これらの範囲の投与量においてブサルファンは マウスの体重に全く影響を及ぼさなかった。 また、 マウスの外見にも変化は見ら れなかった。 表 2
ブサルファン投与のマウス体重への影饗
Figure imgf000012_0001
1群 5匹の平均体重 ±標準偏差 (単位: g) で表示した ·
( 3 ) 精巣および精巣上体組織切片の顕微鏡による観察結果
4週齢の MC H ( I C R) 雄マウスに、 2 OmgZkg、 3 0 mg/kg および 4 0 mgZkgのブサルファンを腹腔内投与し、 投与後 1 0週目にマウスの精巣、 および 精巣上体を摘出して組織切片を作成した。 この切片を H E染色 (へマトキシリン —ェォジン染色) した後に顕微鏡観察を行い、 組織、 細胞の状態を生理食塩水を 投与した対照マウスと比較した。 なお、 各投与群、 対照群にはそれぞれ 1群 5匹 のマウスを使用した。
その結果、 表 3に示すように、 2 0 mg/kg および 3 0 mg/kg投与群では精巣、 精巣上体ともにほぼ対照マウスと同様の状態まで回復していた。 表 3 ブサルファン投与マウスの精巣および精巣上体組織切片の顕微鏡観察結果
Figure imgf000013_0001
1群 5匹の精巣および精巣上体組織切片の顕微銃観察結果をもとに判定した,
( 4 ) ブサルファン腹腔内投与による精巣内細胞集団の F A C Sによる解析 1群 6匹の 4週齢 MCH (I CR) 雄マウスに、 2 OragZkg、 30 mg/kgのブ サルファンを、 また、 対照群に生理食塩水を腹腔内投与した。 投与後 1週目、 2 週目、 3週目、 4週目、 5週目おょぴ 6週目に各群のマウス 1匹ずつから精巣を 摘出し、 下記の操作にしたがって精巣内細胞を処理した。 まず精巣の外皮を除い た後、 終濃度 1 mg/mlのコラゲナーゼ I (ギブコ社製) を加えて 37 °Cで 15分 間処理し、 洗浄し、 さらに 0. 25%トリプシン/ /EDTA (ギブコネ ±$¾ lml を用いて細胞塊を分離させた。 ついで、 100ミクロン以上の細胞塊をフィルタ 一で除去した後、 1%パラホルムアルデヒドによって固定、 続いて 70%ェタノ ールによって固定を行った。 細胞をリン酸緩衝生理食塩水 (PBS) で洗浄した 後、 PBSに懸濁し、 2mg/mlの RN a s e A (シグマ社製) 処理を行った後、 0. 0 SmgZmlのプロビジゥムアイオダイド (シグマ社製) により DNAの染色 を行った。 測定直前に 30ミクロンのメッシュで細胞塊を除き、 FACSVa n t a g e (べクトン'ディッキンソン社製) を使用し、 励起波長 488nm、 測定 波長 564〜606 nmで細胞中の DN A含量の解析を行った。
F A C S解析により D N A量が 4 nである G 2期、 M期にある精原細胞および 一次精母細胞、 DNA量が 2 nである G 1期にある精原細胞および二次精母細胞、 D NA量が nである精細胞および精子、 そして、 これらよりも D NA量が少ない アポトーシスを起こしている細胞数を求めることができる。 表 4にこの解析デー タより求めた値を示した。 また、 図 1には代表例としてブサルファン 2 0 mg/kg 投与マウスの 1、 3、 および 5週後の精巣細胞について得られた F A C Sのデー タを示した。
図 1は、 投与後 3週目には大部分の精巣内細胞がアポトーシスを起こしている のに対し、 5週目には 2 nの細胞数の割合が増加していることを示している。 ま た、 表 4に示す結果より、 精巣内の全細胞数はブサルファン投与から約 4週後に もっとも少なくなり、 その後に細胞の再生が開始されること、 ならびに細胞の再 生過程ではまず 2 nの細胞からその数が増加していくことが明らかとなった。
表 4
ブサルファン改控内投与後のマウスの精巣内細胞種の変動
Figure imgf000015_0001
結果は 2匹のマウスについての各細胞致の平均値を示した.
η : 精細胞および/または精子
2η: G1期铕展細胞および/または二次精母細胞
4η: G2,M期の铕原細胞および/または一次精母細胞 ( 5 ) ブサルファン腹腔內投与による雄マウスの生殖能力の減少と回復時期の 決定
1群 6匹の 4週齢 MCH (I CR) 雄マウスに、 2 Omg/kgおよび 3 OmgZkg のブサルファンを腹腔内投与し、 投与後 1週目から 10週目まで、 月曜日から金 曜日まで 5日間毎週異なる雌マウスと自然交配させた。 この雌マウスの妊娠率を 調べることにより、 ブサルファンを投与された雄マウスと、 対照である生理食塩 投与群の生殖能力を比較した。
その結果、 図 2に示すように、 2 Omg/kg および 3 OmgZkg腹腔内投与群に おいて、 生殖能力の低下 (ブサルファン投与後 4〜7週目) とその回復 (ブサル ファン投与後 8週目) が認められた。 マウスでは精原細胞から精母細胞を経て精 細胞となり成熟精子になるまでおよそ 3〜 6週間を要するとされている。 上記の 実施例 1一 (3) 、 (4) に示された組織切片の顕微鏡観察結果、 および F AC Sによる精巣内細胞集団変化の解析結果では、 ブサルフ了ン投与後の精巣内細胞 の回復は薬剤投与後 5週目より観察される。 それより 3週間遅れて雄マウスの生 殖能力の回復が認められたことは、 精原細胞から成熟精子が形成されるまでに要 する時間とよく一致するものであった。
実施例 2
マゥス精巣内細胞への外来遺伝子の導入と発現
(1) 組換えレトロウイルスの構築
コドンがヒト用に至適化され、 かつ N末端から 65番目にコードされるァミノ 酸がセリンからスレオニンに置換された (S 65T) グリーンフルォレツセンス プロテイン (GFP) をコードする遺伝子を含有するプラスミド pGreen
Lantern- 1 (ライフテックオリエンタルネ±$¾ を S s p l (宝酒造社製) で消ィ匕 し、 1 %ァガロースゲルを用いて電気泳動した後、 約 1. 9kbに相当する DNA 断片を回収した。 一方、 プラスミド pZIP- NeoSV(X)I [セル (Cell) 、 第 37卷、 第 1053〜1062頁 (1984) ] を BamH I (宝酒造社製) で消化し、 末端を DNAブ ランティングキット (宝酒造ネ; t ) を使用して平滑化した後、 アルカリホスファ ターゼ (宝酒造社製) を用いて脱リン酸化した。 このプラスミド DNAと上記の 約 1. 9kbDNA断片とを混合してライゲ一シヨンを行った後、 ィ一 'コリ JM 109 (宝酒造社製) に導入した。 得られた形質転換体に保持されているプラス ミドを調べ、 上記約 1. 9 kb断片 1分子のみが含まれているものを選んで、 プラ スミド p G L 2と命名した。 該プラスミド由来のウィルス粒子は、 細胞に感染す ることにより被感染細胞の染色体上に G F P遺伝子を組み込むことができる。 プ ラスミド pGL 2に含まれている、 被感染細胞染色体に,袓み込まれるレトロウイ ルスの遺伝子の領域を図 3に示す。
(2) vGL 2ウィルス上清液の調製
プラスミド pGL 2由来のウィルスは vGL 2ウィルスと命名されており、 該 ウィルスを含む上清液はパッケージング細胞である BO S C 23細胞 [Proc. Natl. Acad. Sci. . USA, 第 90巻、 第 8392〜8396頁 (1993) ] を使用して調製 した。 すなわち、 10 cm径のゼラチンコート細胞培養用デイツシュ (岩城硝子社 製) 1枚当たりに 1 X 107個の B O S C 23細胞を含む 10 %ゥシ胎児血清 (FCS、 大日本製薬ネ; ならびに 50単位/ mlのペニシリンおよび 50 μ g/mlのストレプトマイシン (共にギブコ社製) を含有する 1 Omlのダルベッコ改 変イーグル培地 (DMEM、 岩城硝子社製) 中で一晚培養した (なお、 以降の操 作に使用した DMEMはすべて 50単位/ mlのぺニシリンおよび 50 μ g/mlのス トレプトマイシンを含んだものである) 。 培地を新しいもの (10ml) に交換し た後に、 5 O gの上記のプラスミド pGL 2を用いてリン酸カルシウム法によ るトランスフエクシヨンを行った。 8時間後に培地を新鮮なもの 10mlに、 続い て 24時間後に培地を新鮮なもの 5 mlに交換し、 さらに 24時間培養を継続した 後に培養上清を採集した。 採集した培地上清を 0. 45ミクロンのフィルター
(ミリポアネ でろ過して vGL 2ウィルス上清液ストックとし、 使用するま で一 80 °Cで保存した。
(3) 上清液の力価の測定
上清液のタイターの測定は N I H/3T3細胞 (ATCC CRL— 165
8) を使用して標準的な方法 [ (ジャーナル ·ォブ ·ウイロロジー (J.
Vilol.) 、 第 62卷、 第 1120〜1124頁 (1988) ] に従って測定した。 すなわち、 6 ゥェルの組織培養用プレート (岩城硝子社製) の 1ゥェル当たりに 2000個の NI HZ3T3細胞を含む 10%仔ゥシ血清 (CS、 ギブコ社製) を含有する D MEMを添加し、 一晩培養した後、 系列希釈したウィルス上清液と終濃度 7. 5 μ g/ralのへキサジメトリン ·ブロミド (ポリブレン: アルドリツチ社製) とを各 ゥェルに加えた。 これを 37 °Cで 24時間インキュベートした後、 培地を終濃度 0. 75mgZmlの G418 (ギブコネ土製) と 10 %の C Sとを含有する DMEM と交換してさらにインキュベートを続けた。 10〜12日後に生育した G418 耐性コロニーをクリスタルバイオレットで染色し、 その数を記録した。 ゥエルあ たりのコロ二一数にウィルス上清液の希釈倍率を乗じた値より、 上清 1 ral当たり に含まれる感染性粒子数 (cfuZml) 、 すなわち、 ウィルス上清液のタイターを 算出し、 このタイターをもとに以降の実験におけるウィルス上清液の使用量を決 定した。
(4) マウス精巣内細胞への外来遺伝子 GFPの導入
1群 4匹の 4週齢 MCH (I CR) 雄マウスに、 3 Omg/kgのブサルファン を腹腔内投与し、 投与後 14日目、 17日目および 20日目の 3回ウィルスを接 種する群 (グループ 1) 、 投与後 21日目、 24日目おょぴ 27日目の 3回ウイ ルスを接種する群 (グループ 2) 、 投与後 28日目、 31日目および 34日目の 3回ウィルスを接種する群 (グループ 3) および投与後 35日目、 38日目およ ぴ 41日目の 3回ウィルスを接種する群 (グループ 4) にわけてウィルスの接種 を実施した。 ウィルスの接種は、 1 X 104 cfuZmlの vGL 2ウィルス上清液 50 1ずつを両方の精巣内に接種するという方法で行った。 ウィルス最終接種 後 4日目、 1 1日目、 18日目、 および 25日目にそれぞれの群のマウス 1匹ず つから精巣を摘出して精巣内細胞標品を調製し、 P CR法による細胞内 G F Ρ遺 伝子の検出、 ならびに F AC Sによる GF Ρ遺伝子産物の蛍光測定を行った。
( 5 ) マウス精巣内細胞での G F P遺伝子発現の F A C Sによる解析 実施例 2— (4) で摘出されたマウス 1匹分の精巣より外皮を取り除き、 ホモ ジナイザーを用いて組織をバラバラにした。 ここに lmlの 0.25%トリプシン ZEDT A溶液を加えて細胞塊を解離させ、 30ミクロンのメッシュを用いて残 つた細胞塊を除いて精巣内細胞標品を調製した。 こうして得られた精巣内細胞標 品を F ACSによる解析に供し、 GFP遺伝子の発現を調べた。 解析には F AC SVa n t a g eを使用し、 励起波長 488nm、 測定波長 515〜545nmで G F P由来の蛍光の測定を行った。
グループ (3) のウィルス接種後 25日目の精巣内細胞標品を解析した結果、 および対照として解析したブサルファン投与後ウィルスを接種しなかった同週齢 のマウスの精巣内細胞標品についての結果を図 4に示す。 ウィルスが接種された ものでは対照には見られない GFP由来の蛍光を示す領域 (図面の横軸に示した GFPの相対蛍光強度 30〜100の領域) が存在しており、 導入された GFP 遺伝子が精巣内細胞中で発現されていることが確認された。
(6) マウス精巣内細胞に導入された GFP遺伝子の検出
実施例 2— (5) で調製された精巣内細胞標品のうちのいくつかを選び、 染色 体 DNAを調製した。 上記の精巣内細胞標品より約 1 X 106個の細胞をとり、 DNA抽出液 (l OmM トリス— HC l (pH8. 0) 、 10 Om Na C l、 1 OmM EDTA、 39mM DTT、 2% SDS) 700 zlに懸濁した。 こ の懸濁液に 35 /zlのプロティナーゼ K (10mg/ml、 メノレタネ: fc ) を加えて 3 7 °Cで一晚保温した後、 2 μ 1のリボヌクレアーゼ A ( 2 Omg/m シグマ ) を加え、 さらに 37°C、 2時間保温した。 フエノールークロロホルム抽出により 反応を停止した後、 エタノール沈殿を行って DNAを回収し、 100/ lの TE 緩衝液 (1 OmM トリス一 HC l (pH8. 0) 、 ImM EDTA) に溶かして 染色体 DNA溶液とした。
vGL 2ウィルスが細胞に感染し、 GFP遺伝子が染色体に組込まれているこ とは、 PCR法により確認した。 上記の染色体 DNAと、 GFP遺伝子の配列を もとに合成したォリゴヌクレオチド G F P— 13および G F P— 16 R (配列表 の配列番号 1、 2にそれぞれォリゴヌクレオチド G F P— 13および G F P— 1 6 Rの塩基配列を示す) を含む PC R反応液を調製し、 94° (:、 1分の処理の後、 94°C、 30秒〜63°〇、 30秒〜72°〇、 30秒を 1サイクルとした 30サイ クルの反応を行った。 なお PCRには TaKa Ra T a q (宝酒造社製) を使 用し、 添付の反応用緩衝液を使用して反応液を調製した。 また、 vGL2ウイノレ スが感染した N I HZ3T3細胞、 およびブサルファン投与後ウィルスを接種し なかった同週齢のマウスの精巣内細胞標品から上記同様の操作で調製した染色体 DN A溶液をそれぞれポジティブコントロール、 ネガティブコントロールとして 使用した。
その結果、 表 5に示すように、 グループ 2のウィルス最終接種後 1 8日目、 グ ループ 3のウィルス最終接種後 4および 2 5日目、 グループ 4のウィルス最終接 種後 4および 1 8日目の精巣内細胞より調製した染色体 D NAについて G F P遺 伝子由来の 2 3 4 bpの D N A断片の増幅が認められた。
以上の結果より、 ブサルファン投与後 4週目から 5週目にかけて、 もしくは 5 週目から 6週目にかけてウィルスを接種された群において、 高い効率で外来遺伝 子、 すなわち、 G F P遺伝子が染色体上に組み込まれることが示された。 したが つて、 実施例 1に示された予備実験より明らかになった、 減少した精巣内細胞の 回復時期であるブサルファン投与後 5週目を中心に数回のウィルス接種を行うこ とが重要である事が明らかになった。
実施例 2— ( 4 ) 〜 (6 ) の結果は、 in vivoにおいて目的遺伝子を精巣内細 胞の染色体に組み込むには、 目的遺伝子を組み込み能力を有するベタターに導入 し、 これを精巣内細胞が薬剤による障害から回復する時期に接種することが重要 であることを示している。
表 5
?じ にょる0??遣伝子の検出
Figure imgf000021_0001
+ : 234 bp断片の増幅あり
- : 234 bp断片の増幅なし
実施例 3
マウス精巣上体内精細胞への G F P遺伝子の導入と発現
(1) マウス精巣上体内精細胞への GFP遺伝子の導入
16匹の4週齢1\ 。1"1 (I CR) 雄マウスに 3 Omg/kgのブサルファンを腹腔 内投与し、 投与後 28日目、 31日目および 34日目に 1 X 104 cfu/mlの v GL2ウィルス上清液 50 μ 1ずつを両精巣内に接種した。 ウィルス接種後 28 日目、 35日目、 42日目および 49日目にマウス 4匹ずつより精巣上体を摘出 して精子画分を調製し、 F ACSによる GFP遺伝子産物の蛍光測定と蛍光陽性 画分細胞の収集、 ならびに蛍光陽性画分細胞について P C R法による G F P遺伝 子の検出を行った。
(2) マウス精巣上体内精細胞中の GFP遺伝子発現の解析
実施例 3— (1) 記載のマウス精巣上体を 2%ペニシリン Zストレブトマイシ ン中でハサミによって細断した後、 30ミクロンのメッシュで細胞塊を除いて精 子画分を調製した。 この精子画分につき、 実施例 2— (5) 記載の方法にしたが つて、 F ACSによる GFP遺伝子発現の確認を行った。 また、 この際に GFP 由来の蛍光が陽 1"生の細胞画分を分取した。
ウィルス接種後 42日目のマウス由来精子画分についての解析結果、 ならびに 対照として解析したブサルファン投与後ウィルスを接種しなかつた同週齢のマゥ スの精巣內細胞標品についての結果を図 5に示す。 図に示されるようにウィルス 接種後 42日目のマウスの精巣上体中に GFPを発現する精子 (図面の横軸に示 した G F Pの相対蛍光強度 8〜 20の領域) が存在することを確認できた。
(3) マウス精巣上体内精細胞の GFP遺伝子の検出
実施例 3— (2) で FACSにより分取された GFP蛍光陽性の精子画分より 約 1 X 105個相当の細胞をとり、 DNA抽出液 (1 OmM トリスー HC 1 (p H8. 0) 、 10 OmM NaC l、 1 OmM EDTA、 39mM DTT、 2% SDS) 7 OO/x 1に懸濁した。 この懸濁液に 35 tlのプロティナ—ゼ K ( 1 Omg/ml) を加えて 37 °Cでー晚保温した後、 2 / 1のリボヌクレア一ゼ A
(2 Omg/ml) を加え、 さらに 37°C、 2時間保温した。 フエノール一クロロホ ルム抽出により反応を停止した後、 エタノール沈殿を行って DN Aを回収し、 3 0 μΐの TE緩衝液に溶かして染色体 DNA溶液とした。
この染色体 DN Α溶液について実施例 2— (5) 記載の方法により、 GFP遺 伝子の検出を行った。 この結果、 表 6に示すようにウィルス投与後 42、 49日 目の精子から調製された染色体 DN Aについて GFP遺伝子の存在を示す 234 bpの DN A断片の増幅が認められた。 表 6
PCRによる GFP遣伝子の検出
Figure imgf000023_0001
+ : 234 bp断片の増幅あり
一: 234bp断片の増幅なし

Claims

請 求 の 範 囲
1 . 精巣内細胞数を減少させる工程と、 外来遺伝子を有する組換えウィルスを 精巣中に接種する工程とを包含することを特徴とする脊椎動物精巣内細胞への遺 伝子導入方法。
2 . 精巣内細胞数を減少させる工程を、 化学的方法、 物理的方法および生物学 的方法から選択される方法により行なう請求項 1記載の遺伝子導入方法。
3. アルキル化剤を使用する請求項 2記載の遺伝子導入方法。
4. 組換えウィルスの精巣中への接種を、 精巣内細胞の回復期に行なう請求項 1〜 3レ、ずれか 1項に記載の遺伝子導入方法。
5 . 染色体組み込み能を有する組換えウィルスを接種する請求項 1〜 4いずれ か 1項に記載の遺伝子導入方法。
6 . 糸且換えウィルスが複製能を欠損したウィルスベクターを用いたものである 請求項 5記載の遺伝子導入方法。
7 . 組換えレトロウイルスを接種する請求項 5または 6記載の遺伝子導入方法。
8 . 請求項 1〜 7いずれか 1項記載の方法により精巣内細胞に外来遺伝子を導 入された脊椎動物。
9 . 請求項 8記載の脊椎動物から得られる、 外来遺伝子を導入された精巣内細 胞。
1 0 . 精原細胞、 精母細胞、 精細胞および精子より選択される請求項 9記載の 精巣内細胞。
1 1 . 請求項 8記載の脊椎動物の交配によって得られる、 外来遺伝子を導入さ れた脊椎動物。
1 2 . 請求項 9または請求項 1 0記載の精巣内細胞を用いて人工的に作成され た受精卵より得られる、 外来遺伝子を導入された脊椎動物。
PCT/JP1999/000177 1998-01-28 1999-01-20 Procede relatif au transfert de gene dans des cellules germinales WO1999038991A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020007006541A KR20010033162A (ko) 1998-01-28 1999-01-20 생식세포로의 유전자 도입법
EP99901113A EP1050586A4 (en) 1998-01-28 1999-01-20 METHOD FOR GENE TRANSFER IN GERMINAL CELLS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/15629 1998-01-28
JP1562998 1998-01-28

Publications (1)

Publication Number Publication Date
WO1999038991A1 true WO1999038991A1 (fr) 1999-08-05

Family

ID=11894020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000177 WO1999038991A1 (fr) 1998-01-28 1999-01-20 Procede relatif au transfert de gene dans des cellules germinales

Country Status (5)

Country Link
EP (1) EP1050586A4 (ja)
KR (1) KR20010033162A (ja)
CN (1) CN1289370A (ja)
TW (1) TW542856B (ja)
WO (1) WO1999038991A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543814A (ja) * 1999-05-13 2002-12-24 セダーシナイ メディカル センター トランスジェニック種の発生と遺伝子療法用の雄性生殖細胞の遺伝的修飾法
US7053187B2 (en) 2000-03-28 2006-05-30 Gioagri Corporation Sperm-specific monoclonal antibody, mAbC
US7067308B1 (en) 2000-03-28 2006-06-27 Bioagri Corporation Vector for genetically modifying non-human animals
JP2007275004A (ja) * 2006-04-10 2007-10-25 Kaneka Corp レンチウイルスベクターの精巣への感染による遺伝子組換え鳥類作製法
US7294755B1 (en) * 1997-11-14 2007-11-13 Cedars-Sinai Medical Center Genetic modification of male germ cells for generation of transgenic species and genetic therapies
WO2018207736A1 (ja) 2017-05-08 2018-11-15 国立大学法人京都大学 雄性生殖細胞またはセルトリ細胞にポリヌクレオチドを導入する方法
KR20190120904A (ko) * 2018-04-17 2019-10-25 경북대학교 산학협력단 정원세포 이식을 위한 수여동물 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876720B (zh) * 2011-07-13 2015-01-07 首都医科大学 一种用于通过睾丸注射制备转基因动物的试剂盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011597A1 (fr) * 1995-09-29 1997-04-03 Hoechst Marion Roussel Ltd. Obtention d'un animal transgenique
JPH09220039A (ja) * 1996-02-14 1997-08-26 Chihiro Koike 精子又は卵子への外来遺伝子の導入方法及びトランスジェニック動物の作製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906214D0 (en) * 1989-03-17 1989-05-04 Nat Res Dev Introducing an exogenous gene into birds
CA2125161A1 (en) * 1991-12-06 1993-06-10 Ralph L. Brinster Repopulation of testicular seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny
US5604090A (en) * 1994-06-06 1997-02-18 Fred Hutchinson Cancer Research Center Method for increasing transduction of cells by adeno-associated virus vectors
AU2557097A (en) * 1996-04-17 1997-11-07 Board Of Regents, The University Of Texas System Enhanced expression of transgenes
EP1047792A1 (en) * 1998-11-13 2000-11-02 Cedars-Sinai Medical Center A method for depopulating of vertebrate testis and for generation of transgenic species

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011597A1 (fr) * 1995-09-29 1997-04-03 Hoechst Marion Roussel Ltd. Obtention d'un animal transgenique
JPH09220039A (ja) * 1996-02-14 1997-08-26 Chihiro Koike 精子又は卵子への外来遺伝子の導入方法及びトランスジェニック動物の作製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRINSTER R. L., AVARBOCK M. R.: "GERMLINE TRANSMISSION OF DONOR HAPLOTYPE FOLLOWING SPERMATOGONIAL TRANSPLANTATION.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 91., no. 24., 1 November 1994 (1994-11-01), US, pages 11303 - 11307., XP002920126, ISSN: 0027-8424, DOI: 10.1073/pnas.91.24.11303 *
SATO M., ET AL.: "DIRECT INJECTION OF FOREIGN DNA INTO MOUSE TESTIS AS A POSSIBLE ALTERNATIVE OF SPERM-MEDIATED GENE TRANSFER.", ANIMAL BIOTECHNOLOGY, NEW YORK, NY, US, vol. 05., no. 01., 1 January 1994 (1994-01-01), US, pages 19 - 31., XP002920125, ISSN: 1049-5398 *
See also references of EP1050586A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294755B1 (en) * 1997-11-14 2007-11-13 Cedars-Sinai Medical Center Genetic modification of male germ cells for generation of transgenic species and genetic therapies
JP2002543814A (ja) * 1999-05-13 2002-12-24 セダーシナイ メディカル センター トランスジェニック種の発生と遺伝子療法用の雄性生殖細胞の遺伝的修飾法
US7053187B2 (en) 2000-03-28 2006-05-30 Gioagri Corporation Sperm-specific monoclonal antibody, mAbC
US7067308B1 (en) 2000-03-28 2006-06-27 Bioagri Corporation Vector for genetically modifying non-human animals
US8148143B2 (en) 2000-03-28 2012-04-03 Kwang-Hua Development And Investment Ltd. Method and composition for genetically modifying non-human cells and animals
JP2007275004A (ja) * 2006-04-10 2007-10-25 Kaneka Corp レンチウイルスベクターの精巣への感染による遺伝子組換え鳥類作製法
WO2018207736A1 (ja) 2017-05-08 2018-11-15 国立大学法人京都大学 雄性生殖細胞またはセルトリ細胞にポリヌクレオチドを導入する方法
KR20190120904A (ko) * 2018-04-17 2019-10-25 경북대학교 산학협력단 정원세포 이식을 위한 수여동물 제조방법
KR102293384B1 (ko) 2018-04-17 2021-08-26 경북대학교 산학협력단 정원세포 이식을 위한 수여동물 제조방법

Also Published As

Publication number Publication date
EP1050586A1 (en) 2000-11-08
CN1289370A (zh) 2001-03-28
KR20010033162A (ko) 2001-04-25
EP1050586A4 (en) 2003-07-23
TW542856B (en) 2003-07-21

Similar Documents

Publication Publication Date Title
Mozdziak et al. Status of transgenic chicken models for developmental biology
AU761758B2 (en) Transfection and transfer of male germ cells for generation of transgenic species
US7323619B2 (en) Method for producing transgenic birds and fish
KR20180091821A (ko) 유전적 상보성에 의한 인간화 car t-세포 및 혈소판의 조작방법
AU2002330022A1 (en) Method for producing transgenic birds and fish
JPH04503004A (ja) レトロウイルスベクターおよびそのトランスジェニック動物の生産における使用法
KR20180100303A (ko) 키메라 배아-보조 기관 생성을 위한 조성물 및 방법
Shuman Production of transgenic birds
WO1999038991A1 (fr) Procede relatif au transfert de gene dans des cellules germinales
JP2002176880A (ja) 効率的な遺伝子導入鳥類の作製法及びそれによって得られる遺伝子導入鳥類
KR20180128386A (ko) 유전적 상보성에 의한 인간화 신장의 조작
AU781014B2 (en) Genetic modification of male germ cells for generation of transgenic species and genetic therapies
JP2003526326A (ja) 選択可能トランスジェニック幹細胞作成を目的とする雄性生殖細胞の形質移入
Schusser et al. Advances in genetic engineering of the avian genome
CN1369006A (zh) 禽胚层细胞系
WO2000075342A1 (fr) Nouveau vecteur plasmidique
EP1672076A1 (en) Method of constructing transgenic bird using lentivirus vector and transgenic bird obtained thereby
CN107018955A (zh) 一种抗猪圆环病毒2型的转基因猪
CN113564203B (zh) HSV1-tk/GCV诱导型血液系统缺陷小鼠模型的制备方法及应用
Petitte The avian germline and strategies for the production of transgenic chickens
Pal et al. Transgenesis and Biopharming
KR20100113594A (ko) 영장류 동물의 초기 배아에의 외래 유전자 도입법 및 상기 도입법을 포함하는 트랜스제닉 영장류 동물을 작출하는 방법
WO2009103978A2 (en) Biological materials and uses thereof
US7351580B2 (en) Use of a transgene encoding a vertebrate phytase to increase capacity to utilize phytic acid in livestock feed
JP4474017B2 (ja) 新規プラスミドベクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802368.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL CA CN JP KR LT LV MK RO SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007006541

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999901113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09601135

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999901113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007006541

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999901113

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007006541

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载