WO1999038173A1 - Composition polymere - Google Patents
Composition polymere Download PDFInfo
- Publication number
- WO1999038173A1 WO1999038173A1 PCT/GB1999/000205 GB9900205W WO9938173A1 WO 1999038173 A1 WO1999038173 A1 WO 1999038173A1 GB 9900205 W GB9900205 W GB 9900205W WO 9938173 A1 WO9938173 A1 WO 9938173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- granules
- composition
- composition according
- composite
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 72
- 229920000642 polymer Polymers 0.000 title claims abstract description 71
- 239000008187 granular material Substances 0.000 claims abstract description 87
- 239000004020 conductor Substances 0.000 claims abstract description 48
- 239000011231 conductive filler Substances 0.000 claims abstract description 7
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 40
- 239000002131 composite material Substances 0.000 claims description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 238000002156 mixing Methods 0.000 claims description 23
- 229920001971 elastomer Polymers 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000000806 elastomer Substances 0.000 claims description 15
- 239000000945 filler Substances 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 14
- 238000004132 cross linking Methods 0.000 claims description 11
- 239000004744 fabric Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000011324 bead Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000002679 ablation Methods 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 229920000126 latex Polymers 0.000 claims description 4
- 239000004816 latex Substances 0.000 claims description 4
- 239000005060 rubber Substances 0.000 claims description 4
- 229920002379 silicone rubber Polymers 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 238000009472 formulation Methods 0.000 claims description 2
- 239000004945 silicone rubber Substances 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 229910001092 metal group alloy Inorganic materials 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 description 25
- 239000000843 powder Substances 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000008393 encapsulating agent Substances 0.000 description 6
- 229910021485 fumed silica Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- NPURPEXKKDAKIH-UHFFFAOYSA-N iodoimino(oxo)methane Chemical compound IN=C=O NPURPEXKKDAKIH-UHFFFAOYSA-N 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- -1 polydimethylsiloxane Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008241 heterogeneous mixture Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- OTXBWGUYZNKPMG-UHFFFAOYSA-N isofulminic acid Chemical compound O[N+]#[C-] OTXBWGUYZNKPMG-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/027—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
Definitions
- This invention relates to a polymer composition including a finely divided electrical conductor, particularly comprising such a composition in an advantageous physical form.
- a polymer composition comprises at least one substantially non- conductive polymer, and at least one electrically conductive filler and is characterized by being in the form of granules.
- the granules are typically in the size range up to 1mm, especially 0.04 to 0.2mm. Thus 2 the smaller granules behave as powders. These ranges are based on measuring the greater diameter of the granules if not regularly spherical.
- the granules may be for example in an approximate Poisson size distribution, or sieved to a skewed distribution or a narrow spread (for example, largest granules no greater than 2 x smallest) or classified so that small granules fill the spaces between larger granules .
- the conductor polymer volumetric ratio (tapped bulk : voidless solid) is suitably at least 3:1 especially in the range 5-15:1.
- the ratio of conductive medium to polymer small changes will be required to account for differences in relative surface tensions of types and grades of polymer and the various surface energies of the different conductive oxides and other solids present. Changes of this ratio have an effect on the piezo-charge properties, the overall resistance range, the recovery hysteresis and the pressure sensitivity of the granules .
- Various relationships within the granules are envisaged, for example : a. the conductor particles are fully covered, giving non-conduction under mere gravity, but conduction under applied stress; b.
- the conductor particles are in mutual contact within granules but do not project outside granules ; 3 c. the conductor particles are out of mutual contact within granules but project outwards, giving inter- granule contact; d. the conductor particles are in mutual inter- granular and intra-granular contact.
- the conductive material can be one or more metals, other conductive or semiconductive elements and oxides or intrinsically conductive or semiconductive organic or inorganic polymers.
- the conductive material is suitably selected from powdered forms of the metallic elements or their electrically conductive alloys or reduced oxides either on their own or together.
- the conducting filler can be the basic element in the unoxidised state; or can be a layer on a carrier core of powder, grains, fibres or other shaped forms.
- the oxides can be mixtures comprising sintered powders of an oxycompound.
- the alloy may be for example titanium diboride .
- the micro-structure of the conductor particles is of 4 substantial importance.
- dendritic, filamentous, and spiked forms of the conductive materials have been shown to be capable of producing particularly sensitive conductive granules when coated with a polymer such as silicone.
- the conductor particles are rough- surfaced with smaller and spikier powders producing more sensitive granules.
- the particles comprise metal having at least one of these characteristics: (i) spiky and/or dendritic surface texture; (ii) filamentary structure, with a three- dimensional chain- like network of spiky beads, the chains being on average 2.5 - 3.5 microns in cross- section and possibly more than 15 - 20 microns in length.
- these characteristics are present in the conductor particles before mixing with polymer, and mixing is controlled to substantially preserve them.
- preferred conductor particles comprise carbonyl-derived metallic nickel.
- Other examples include dendritic copper.
- the polymer constituent of the granules can be chosen from a wide range of materials, the only limitation being that the polymer or a precursor thereof should be available in a form sufficiently mobile to permit incorporation of conductor particles. In an extreme case it can be a fully or partly cured resin, such as a formaldehyde condensate, epoxy resin, maleimide resin or 3 -dimensional olefin resin. Polymers having 5 flexibility, such as linear thermoplasts, are of more general application. Very suitably the polymer constituent is an elastomer. Since elastomers are preferred in certain composites including the granules, they will be described further below.
- the invention provides a method of making the granules by mixing conductor particles with liquid-form polymer in granule-forming conditions.
- the liquid-form polymer may be, for example, a precursor subject to polymerization or to cross-linking during the granule- forming step or later.
- Liquid-form means sufficiently flowable to undergo mixing with the conductor particles.
- the polymer may be very viscous.
- a liquid may be present to modify the viscosity of the polymer as an aid to mixing. It may be added, for example, by pre-mixing with the polymer or with the conductor powder.
- the liquid should of course be chemically inert with respect to the conductor and polymer.
- Hydrocarbons such as petroleum distillates, are very suitable .
- a hydrophobising agent Before or during mixing there may be added a hydrophobising agent. This is believed to act by displacing adsorbed water from the surfaces of the components of the mix, for example the conductor particles, solid additives such as those described below, especially fumed silica, and possibly of newly exposed polymer and newly formed granules .
- the agent may 6 also act as a lubricant limiting friction at mixer surfaces. Since it can act by formation of very thin, even unimolecular layers, the quantity to be used is very small, for example 10 - 1000 ppm w/w of the mix.
- Examples of the agent are liquid hydrocarbons carrying groups favouring chemisorption on metals, and fluorocarbons .
- the granules are made by coating conductive particles with a layer of polymer in a controlled mixing regime that imparts only sufficient force to the components of the mix to achieve the coating process and avoids additional force which has been found to have a degrading effect on the electrical properties of the final polymer.
- the relationship between filler, binder, mixing energy, time, rate of shear, temperature and pressure determine the particle size-distribution and electro-mechanical properties of the resulting granule. It appears likely that the conductor particles act as a nuclei for granule formation.
- Such mixing is preferably at a low level of shear, so that the conductor particles remain structurally intact.
- a dish-granulator, blunger, coaxial cylinder mixer (rotary ablation) can be used.
- the total shear can be of the same order as in the production of bulk composition but applied at greater intensity for a shorter time.
- Granule formation is preferably accompanied by some cross-linking of the polymer.
- the polymer formulation 7 is chosen and the conditions of mixing are controlled so that breakage of the mixture into granules is synchronized with cross-linkage of the polymer sufficient for a non-sticky state. This is especially convenient using RTV silicone.
- the process may if desired be controlled to produce a precursor of the granules in which the polymer may be subjected to further cross-linking to develop elastomerism.
- Use of HTV silicone affords more scope in making such precursors.
- the silicone very suitably is one subject to high shrinkage for example by 10 - 20% on cross- linking. This makes possible a relatively high conductor to polymer volume ratio in granules without an inconveniently high ratio at the start of mixing.
- silicone content of the mix is increased, sensitivity is decreased and agglomeration increases.
- silicone may be applied to previously made granules of lower silicone content .
- This pressure affects the time taken to achieve the granulated state and is important to the coating thickness, the eventual size of the granule and the amount of agglomeration between individual granules . Too much pressure produces destructive shear forces .
- the resulting granules can be comminuted to provide a 8 desired range. They can be screened to separate the different sized agglomerations if required. Different sized granules show different sensitivities; granule sizes can be separated and remixed in different proportions to alter the final sensitivity of the granule composite. It has also been found possible to combine different conductive materials, conductive, semi-conductive or non-conductive powders, prior to the granule-forming agglomeration/coating process to obtain the required conduction or other electrical and mechanical properties in the final granule form.
- the invention provides also a composite comprising the granules.
- the granules can be used by containing them in a device which limits peripheral movement but allows the input of an electrical or mechanical pressure in order to activate it . They may be mixed with or coated onto other bulk or foamed polymers to form solid, semi-flexible or flexible composite structures.
- the granules can be extruded or pressed into sheet, pellet or fibre form or can be cast into moulds. In the course of the shaping process they can be milled or cryogenically powdered. Energy imparted during mixing and moulding the polymer composition in the uncured state may, however, affect the physical and electrical performance of the composite.
- the granules may be associated with a containing means.
- a containing means This may be a fibre 9 or sheet, for example of polymer fibre film, plate or cloth and may carry granules on one or both faces .
- the polymer sheet may already contain or carry conductor particles as described for example in Example 7 of the co-pending application.
- the sheet may comprise or carry an adhesive for the granules.
- precursor granules (as specified above) can be pressed into the surface or surfaces of the un-cross-linked carrier polymer and permanently bonded to the carrier polymer when it is cross-linked. This produces a pressure sensitive or EM screening layer on the carrier polymer.
- the granules are associated with a three-dimensional matrix.
- the matrix may be electrically non-conducting, but could be composed, for example, of polymer having conductor particles dispersed in it , such as described in the co- pending application or in prior-published documents.
- Several variants of this type are possible, for example:
- matrix material may enter spaces between granules or may be just a containment bag.
- the polymer composition in a composite structure for generation, detection and relay of electrical signals internal connectivity is provided in the form of an integrated electrically conductive member for example a layer such as metal film or sheet especially continuous metallised cloth, typically polyester based.
- the cloth increases the tactile sensitivity (increase in resistance drop versus mass loading) of the conductive polymer composition by providing a hard fibre anvil for elastomeric distortion and provides an electron bridge between zones of low resistance within the composite.
- the conductive polymer composition can be bonded to or formed on the conductive member.
- the composite may be a simple device for switching on or off when deformed, more complicated electrical circuits may be built into the layer, for example, of the metallised cloth structure.
- the metal coated fabric is typically manufactured by application of metal by vapour deposition, sputtering or similar means to a woven polyester cloth.
- Electrical circuits analogous to those etched onto a conventional printed circuit board, may be created by masking and etching the pre-metallised cloth or preferably by masking the target cloth at the point of metallisation.
- the metal coating will only be 11 deposited where the mask allows and by this process a conductive circuit layout can be produced.
- Composites incorporating the circuit cloth show true flexibility, are solid state and may be made extremely sensitive to touch or other operating forces . They may be used for digital and analogue switching and control, may incorporate PTC load control or heat production capability and have the capacity to carry substantial electric currents.
- a particularly useful one comprises conductive granules and includes means for the input of electrical and/or mechanical deformation to activate it .
- the sheet or matrix would comprise ohmic conductor (s) connecting the granule assembly electrically.
- the granules can also be used as a conductive component of other conductive and electromagnetic shielding materials either alone or in combination with other powders or granules or other non-conductive, semiconductive or conductive materials.
- Granule-coated surfaces can be particularly sensitive to applied pressure, increasing in pressure sensitivity with increasing surface loading.
- Granules on their own and granule-coated surfaces can show a drop in electrical resistance of more than 10 12 ohms with an applied force within the range 0.01 - 6 N/cm 2 .
- hydrophobising agent as above 12 described, present when an assembly of the granules is being set up.
- Composites containing the granules as a film or heterogeneous mixture with other polymers and materials tend to show greater repeatability, sensitivity and linearity of resistance change than can be obtained with bulk pressure sensitive polymer compositions as in the co-pending application. Like the bulk composition, the granules return to a quiescent resistance state when the operating force is removed.
- the polymer constituent is an elastomer, especially having the general properties: i) low surface energy typically in the range 15 - 50 dyne/cm but especially 22 - 30 dyne/cm; ii) a surface energy of wetting for hardened elastomer higher than its uncured liquid; iii) a low energy of rotation (close to zero) giving extreme flexibility; iv) excellent pressure sensitive tack both to the filler particles and electrical contacts to which the composite may be attached - that is, possess a high ratio of viscous to elastic properties at time spans comparable to bonding times (fraction of a second) ; v) high on the triboelectric series as a positive charge carrier (conversely, will not carry negative charge on its surface) ; vi) chemically inert, fire extinguishing and 13 effective as a barrier to oxygen and air ingress.
- Silicone elastomer rubbers are typically but not exclusively based on polydimethylsiloxane, polysilamine and allied silicone backbone polymers, with leaving groups, cross-linkers and cure systems based on:
- the elastomer can be mixtures comprising cured elastomers selected from the group comprising one, two or more component silicones, one, two or more component polygermanes and polyphosphazines and at least one silicone agent. In such polymer mixtures, the silicone component exceeds other polymer components .
- additives are included with the silicone for the purpose of modifying the physical and/or electrical properties of the uncured or cured polymer composition.
- Such additives can include at least one property modifier from the group comprising: alkyl and hydroxyalkycellulose , carboxymethylcellulose , hydroxyethylcellulose, hydroxypropylcellulose, polyacrylamide, polyethylene glycol, poly (ethylene oxide) , polyvinyl alcohol, polyvinylpyrrolidone, starch and its modifications, calcium carbonate, fumed silica, 14 silica gel and silicone analogues and at least one silica analogue or silicone analogue modifier. Fumed silica is an example of a modifier as commonly used in elastomer technology.
- a silicone system is manufactured from high strength room temperature cured fumed silica loaded (RTV) silicone polymer.
- RTV room temperature cured fumed silica loaded
- Another example uses high temperature cured HTV silicone filled with fumed silica to provide interstitial structure, useful strength, pressure tack and life, cross-linked at an elevated temperature in the presence of a peroxide or other catalyst, that may typically but not exclusively be 2,4 dichloro dibenzoyl peroxide .
- HTV products may be stored for prolonged periods in the uncured state prior to processing into sheet, rod, foam, fibre, press moulded or other forms.
- Another usable class of elastomer is the natural or synthetic hydrocarbon rubbers. Especially for matrix material, such rubber may be introduced in latex form.
- the resulting composites may display a piezo-charge affect and will change their inherent electrical resistance in response to both pressure and strain forces.
- Working resistance is around the range 10 12 to 15
- the composites have excellent current carrying capability; typically a 2mm thick sample of the composite on a heat-sink can control AC or DC currents of 3A/cm 2 .
- the initial application of pressure or force to a sample of the high-resistance composite results in the generation of an electrostatic charge; increasing the pressure or force decreases the electrical resistance of the composite.
- the composites can be flexible and can reassert themselves when the force or pressure is removed. As this occurs the electrical resistance will increase towards a quiescent value and a pronounced electrostatic charge will develop.
- the electrostatic effect can provide digital switching indications or provide a voltage source.
- the electrical resistance change can provide an analogue of the applied pressure or force.
- the resistance range can be used to provide digital switching especially but not essentially at its upper and lower limits.
- Sensitive versions of composite which are close to conduction can be changed into a fully conducting state by applying an electrostatic charge, typically that generated by a piezoelectric spark generator and greater than 0.5kV.
- the composite consists of the granules held within a matrix.
- the conductive particles are of such a size distribution as to provide for a close packed structure with interstitial particle infilling.
- Voids present in the bulk conductor powder 16 become infilled with elastomer during mixing and conductor particles become set in close proximity during curing.
- the elastomer will have a low surface energy relative to the powder phase and uncured liquid surface energy less than cured elastomer surface energy.
- Such polymer compositions will include silicones, polygermanes and polyphosphazines . In the stressed state the distortion takes place such that the average entrapped inter- particle distance decreases. For metal particles this corresponds to an increase in electrical conductivity, for other types of particle other effects may be generated (change in ferromagnetism, piezoelectricity, ionic conduction, etc.).
- the assembly of granules is capable of carrying significant electrical current.
- Up to 30 amps continuous load has been carried by a 2 x 2cm conductor to date when in a compressed state.
- This unique property may be explained by the fact that in the compressed state conduction occurs principally through the metal bridges described above. So for the purpose of explaining conduction the materials are best described in terms of a heterogeneous mixture in which the insulative encapsulant dominates electrical property in the quiescent state; and tending towards that of the conductor bridges (having a local resistivity tending to that of the conductor typically 1 - 1000 microhm-cm) , in the compressed state (typically having a bulk resistivity greater than 1 milliohm-cm) .
- Electron conduction is further confined to the conductor filler by the inability of the encapsulant to hold negative 'electron' charge (typically the encapsulant is the optimal positive triboelectric charge carrier) .
- the encapsulant is the optimal positive triboelectric charge carrier
- the statistical chance of bridge formation is directly related to composite thickness.
- both the sensitivity to distortion and current carrying capability increase with reduction in thickness with the thinnest films limited by the filler size distribution.
- the 18 filler size distribution will typically limit thickness to >10 - 40 microns.
- the composite By incorporation of zirconium particles (or other ionic conducting materials) into a silicone elastomer, within and/or between granules, the composite may be made to conduct both electrons and, in the presence of gaseous oxygen, oxygen ions.
- control of bulk material stress for example by the incorporation of static or externally resonated "stress grids' into the bulk composition
- conduction of electrons and oxygen may be made to occur in different planes or different parts of the bulk structure.
- Such properties may be of particular interest in the design of fuel cell systems. It has also been found that internal ohmic heating may affect the internal structure of the composite.
- ohmic heating switches by virtue of the PTC effect between conducting and insulating states in a composition that is under little or no compressive force.
- This effect allows these polymer compositions to be used as switches or fuses which switch sharply to a high resistance state in response to excess current and which, because of their elastomeric nature, will return to a conductive state without the removal of power when the current flow returns to a set value.
- This PTC effect can also be used in self-regulating heating elements where heat levels can be set by applying mechanical pressure to keep the polymer composition close to its PTC point at the required temperature.
- the polymer composition will maintain a relatively steady temperature by cycling in and out of the PTC phase.
- the composition has wide temperature tolerance and good thermal conductivity.
- a nickel powder used in the invention was INCO Type 287 which has the following properties: beads are on average 2.5 - 3.5 microns in cross-section; chains may be more than 15 - 20 microns in length. It is a filamentary powder with a three-dimensional chain- like network of spiky beads having a high surface area . 20
- the sizes of the particles are substantially all under 100 microns, preferably at least 75% w/w being in the range 4.7 to 53 microns.
- the particle size distribution (in microns and by weight) is as follows (in rounded % figures): 2.4 - 3%, 3.4 - 5%, 4.7 - 7%, 6.7 - 10%, 9.4
- Nickel powders also made by the carbonyl process usable in the invention are : Type 123 : bulk density 1.6 - 2.6 g/cm 2 ; equiaxial shape, spiked irregular surface;
- Type 210 apparent density less than 0.5g/cm 2 ; filamentary powder of average particle size 0.5 - 1.0 microns; Type 255 : bulk density 0.5 - 0.65g/cm 2 ; filamentary powder with 3 - dimensional chain-like network of very spiky beads cross-section 2 - 3 microns; chain length 20 - 25 microns;
- the conductor particles have a bulk density less than one third of their solid density.
- the composition may be usefully employed in association with the anode or cathode construction of an electrochemical cell based on lithium, manganese, nickel, cobalt, zinc, mercury, silver or other battery chemistry including organic chemistry. Either or both the electrodes may be exchanged or coated with the polymer composition to give the following advantages:
- the cell could incorporate its own integral pressure switch which, for example, could be operated by the pressure normally used to hold the cell in place in the battery compartment. By this means, self-discharge or short circuiting of the cell could be reduced or eliminated whilst the cell was in an unstressed storage state;
- the integral pressure switch could simplify circuit design and permit new applications by eliminating the need for external switches
- (iii) as the polymer composition can be manufactured without metal, it is possible to construct a wholly plastic electrochemical cell.
- Pressure sensitive polymer composition can also be used without direct involvement in the cell chemistry by positioning the composition on external casings or non- reacting surfaces of electrodes. Switching of the polymer composition could be initiated by externally applied mechanical pressure such as finger pressure or 22 spring pressure from within a battery compartment . This could form a switch for controlling external circuits including battery check circuits.
- compositions include: Mechanical Transducers, both relative and absolute, for measuring pressure, load, displacement, torque, elongation, mass and volume change, acceleration, flow, vibration and other mechanically induced changes.
- Figs.1(a) and 1(b) are graphs showing the variation/dependence of resistance with applied pressure for the granules according to the invention. 23
- Granules were prepared from:
- ALFAS Industries RTV silicone type 2000 4g [This weight ratio corresponds approximately to a nickel : polymer volume ratio of 7 : 1 based on the tapped bulk volume of the nickel and the voidless volume of the silicone]
- the silicone as a soft lump was placed in the bottom of a RETSCH RM100 motorized mixer having a steel mortar and a porcelain rotary pestle.
- the nickel powder was placed around the lump of silicone.
- the pestle was lowered under hand control with an approximate 1mm clearance from the wall of the mortar. This machine subjects the mixture to rotary ablation. In about 5 min ⁇ tes the silicone coated the nickel particles and in so doing became resolved into granules having the following size distribution % w/w in microns:
- Example 1 The procedure of Example 1 was repeated using: ALFAS Industries RTV silicone type 1000 6g INCO nickel powder 287 30g corresponding to a nickel : polymer ingredient volume ratio of approximately 5 : 1. Although the ratio is lower than in Example 1, the characteristic shrinkage on cross-linking of the grade of silicone used, resulted in granules electrically conductive without applied pressure. The shrinkage seems to be a product of the loss of volatile components at cross-linking. ALFAS 1000 contains 12% of volatile substances. ALFAS 2000 contains 4% of volatile substances.
- Such granules are for example of especial value in conductive adhesives, EM screening and PTC devices.
- Example of a conductor based on the granules a test piece conductor was made by loading a sample of the granules prepared in Example 1 into a test cell consisting of a washer of silicone rubber sponge 12mm in diameter, 3mm thick and with a hole 6mm in diameter, resting on an electrically conductive surface 25 as lower electrode. A conductive plate was placed on top of the washer to form an upper electrode. The electrodes were connected via a constant-current 10 volt supply and a 20M ohm high- impedance buffer amplifier to a Picoscope ADC 100 signal processor and recording device.
- test cell To allow measured amounts of force to be applied to the test cell, it was placed on the platen of a load testing device, namely a Lloyd Instruments LRX fitted with a 100N maximum force resolver. Slowly increasing pressure was applied to the cell and its resistance was recorded and represented graphically by the signal processor. Runs were carried out at two levels of current:
- test cell of Example 3 was compressed with a static loading of approximately 3N, a current of 10 microAmps was passed through the test cell and its resistance, calculated from the potential difference (PD) across the cell, was 100K Ohms. Keeping the voltage and applied pressure constant, the current was 26 increased to 100 microAmps. The measured PD now showed the resistance of the cell to have dropped to 50K ohms.
- Example 1 was repeated with the difference that the starting materials were:
- Example 1 was repeated with the difference that, before being added to the mixer, the nickel powder was sprayed with an aerosol of the fluorocarbon hydrophobising agent WD40 (RTM) .
- the granules were tested as in Examples 3 and 4 and found to be substantially more sensitive than those prepared without the WD40.
- Granules made as in Example 1 were formulated as follows :
- the gel was split in two and applied through a stencil onto:
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Thermistors And Varistors (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000528985A JP2002501949A (ja) | 1998-01-23 | 1999-01-21 | ポリマー組成物 |
EP99901767A EP1050054B1 (fr) | 1998-01-23 | 1999-01-21 | Composition polymere |
CA002318742A CA2318742A1 (fr) | 1998-01-23 | 1999-01-21 | Composition polymere |
DE69935416T DE69935416T2 (de) | 1998-01-23 | 1999-01-21 | Polymerzusammensetzung |
AU21768/99A AU2176899A (en) | 1998-01-23 | 1999-01-21 | Polymer composition |
US09/600,808 US6495069B1 (en) | 1998-01-30 | 1999-01-21 | Polymer composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/GB1998/000206 WO1998033193A1 (fr) | 1997-01-25 | 1998-01-23 | Composition polymere |
GBPCT/GB98/00206 | 1998-01-23 | ||
GBGB9806623.6A GB9806623D0 (en) | 1998-03-28 | 1998-03-28 | Conductive structures within conductive polymerse |
GB9806623.6 | 1998-03-28 | ||
GB9814131.0 | 1998-06-30 | ||
GBGB9814131.0A GB9814131D0 (en) | 1998-06-30 | 1998-06-30 | Polymeric sensing materials |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999038173A1 true WO1999038173A1 (fr) | 1999-07-29 |
Family
ID=27269164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1999/000205 WO1999038173A1 (fr) | 1998-01-23 | 1999-01-21 | Composition polymere |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1050054B1 (fr) |
JP (1) | JP2002501949A (fr) |
CN (1) | CN1149588C (fr) |
AU (1) | AU2176899A (fr) |
CA (1) | CA2318742A1 (fr) |
WO (1) | WO1999038173A1 (fr) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1071099A2 (fr) * | 1999-07-23 | 2001-01-24 | Ngk Insulators, Ltd. | Composition inorganique métallique avec comportement PTC fiable |
WO2002099822A3 (fr) * | 2001-06-07 | 2003-03-06 | Peratech Ltd | Dispositif d'analyse |
WO2005029514A1 (fr) * | 2003-09-20 | 2005-03-31 | Peratech Limited | Materiaux a conductance variable |
US7093499B2 (en) | 2004-12-21 | 2006-08-22 | Delphi Technologies, Inc. | Force sensor, strain sensor and methods for measuring same |
US7145432B2 (en) * | 2000-05-18 | 2006-12-05 | Canesis Network Ltd. | Flexible switching devices |
WO2008022031A2 (fr) | 2006-08-11 | 2008-02-21 | Mastercard International Inc. | Carte de paiement de proximité avec commutateur actionné par l'utilisateur et procédés de réalisation de la carte |
GB2441733A (en) * | 2006-09-18 | 2008-03-19 | Powered Triangle Ltd | Footwear display comprising a display |
WO2008046988A2 (fr) | 2006-10-13 | 2008-04-24 | Computer Masters International | Dispositif de signalisation de touches pour la pratique de l'escrime sans fil |
WO2008135787A1 (fr) | 2007-05-04 | 2008-11-13 | Peratech Limited | Composition polymère |
GB2462920A (en) * | 2008-08-29 | 2010-03-03 | Peratech Ltd | Electrically responsive composite material for transducers |
US7837123B2 (en) | 2007-09-10 | 2010-11-23 | Mastercard International, Inc. | Identification token and method of making identification token |
US7857202B2 (en) | 2006-08-11 | 2010-12-28 | Mastercard International, Inc. | Method and apparatus for a contactless smartcard incorporating a pressure sensitive switch |
US7992779B2 (en) | 2007-09-10 | 2011-08-09 | Mastercard International, Inc. | Method for use in association with identification token and apparatus including identification token |
US7997498B2 (en) | 2006-09-08 | 2011-08-16 | Mastercard International, Inc. | Identification of installable card |
US8167198B2 (en) | 2006-11-06 | 2012-05-01 | Mastercard International, Inc. | Method, apparatus, assembly and kit for identification token |
WO2012076612A1 (fr) | 2010-12-08 | 2012-06-14 | Condalign As | Procédé d'assemblage de particules conductrices dans des chemins conducteurs et capteurs ainsi formés |
US8226013B2 (en) | 2007-10-26 | 2012-07-24 | Mastercard International, Inc. | Method and apparatus for use in providing an identification token |
US8230600B2 (en) | 2007-09-17 | 2012-07-31 | The Gillette Company | Cartridge detachment sensor |
WO2012131289A2 (fr) | 2011-03-25 | 2012-10-04 | Peratech Limited | Matériau composite |
US8286862B2 (en) | 2007-12-28 | 2012-10-16 | Mastercard International, Inc. | Methods and apparatus for use in association with security parameter |
US8587422B2 (en) | 2010-03-31 | 2013-11-19 | Tk Holdings, Inc. | Occupant sensing system |
US8684261B2 (en) | 2009-01-20 | 2014-04-01 | Mastercard International Incorporated | Methods, apparatus, computer program products and articles for use in providing human understandable indication of account balance |
US8725230B2 (en) | 2010-04-02 | 2014-05-13 | Tk Holdings Inc. | Steering wheel with hand sensors |
US8730012B2 (en) | 2007-01-05 | 2014-05-20 | Mastercard International Incorporated | Enabling identification token for a timed period |
US8794532B2 (en) | 2008-12-29 | 2014-08-05 | Mastercard International Incorporated | Methods and apparatus for use in association with identification token |
DE102013202375A1 (de) * | 2013-02-14 | 2014-08-14 | Zumtobel Lighting Gmbh | Schaltelement mit triboelektrischem Element |
US8812402B2 (en) | 2009-01-05 | 2014-08-19 | Mastercard International Incorporated | Methods, apparatus and articles for use in association with token |
US8983732B2 (en) | 2010-04-02 | 2015-03-17 | Tk Holdings Inc. | Steering wheel with hand pressure sensing |
WO2015036647A1 (fr) * | 2013-09-16 | 2015-03-19 | Sensing Tex, S.L. | Capteur textile piézorésistif et système de détection du rythme cardiaque et/ou respiratoire |
US8991695B2 (en) | 2007-12-28 | 2015-03-31 | Mastercard International Incorporated | Methods and apparatus for use in docking |
US9007190B2 (en) | 2010-03-31 | 2015-04-14 | Tk Holdings Inc. | Steering wheel sensors |
US9696223B2 (en) | 2012-09-17 | 2017-07-04 | Tk Holdings Inc. | Single layer force sensor |
US9727031B2 (en) | 2012-04-13 | 2017-08-08 | Tk Holdings Inc. | Pressure sensor including a pressure sensitive material for use with control systems and methods of using the same |
WO2018128583A1 (fr) | 2017-01-04 | 2018-07-12 | Mas Innovation (Private) Limited | Ensemble bouton tactile pouvant être porté |
GB2561609A (en) * | 2017-04-21 | 2018-10-24 | Peratech Holdco Ltd | Composite material |
CN110894359A (zh) * | 2019-12-05 | 2020-03-20 | 中国电子科技集团公司第三十三研究所 | 一种海绵型定向导电橡胶及其制备方法 |
US10783514B2 (en) | 2007-10-10 | 2020-09-22 | Mastercard International Incorporated | Method and apparatus for use in personalizing identification token |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10923776B2 (en) | 2007-12-31 | 2021-02-16 | Apple Inc. | Systems and methods for monitoring and responding to forces influencing a battery |
DE102011076717A1 (de) * | 2011-05-30 | 2012-12-06 | Siemens Aktiengesellschaft | Hochfrequenzantenneneinheit, eine Magnetresonanzvorrichtung mit einer Hochfrequenzantenneneinheit, sowie ein Herstellungsverfahren für eine Hochfrequenzantenneneinheit |
US9229029B2 (en) * | 2011-11-29 | 2016-01-05 | Formfactor, Inc. | Hybrid electrical contactor |
DE102020213275A1 (de) * | 2020-10-21 | 2022-04-21 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines elektrisch leitfähigen Verbundwerkstoffs, Verwendung eines elektrisch leitfähigen Verbundwerkstoffs zur Herstellung eines Heizelements, Heizelement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2054277A (en) * | 1979-06-28 | 1981-02-11 | Shinetsu Polymer Co | Pressure-sensitive electroconductive bodies |
US5106540A (en) * | 1986-01-14 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
DE4315382A1 (de) * | 1992-06-18 | 1993-12-23 | Bayer Italia Spa | Hydrophobe, fließfähige Aufbaugranulate, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung |
US5591382A (en) * | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
-
1999
- 1999-01-21 CA CA002318742A patent/CA2318742A1/fr not_active Abandoned
- 1999-01-21 CN CNB998031917A patent/CN1149588C/zh not_active Expired - Lifetime
- 1999-01-21 EP EP99901767A patent/EP1050054B1/fr not_active Expired - Lifetime
- 1999-01-21 WO PCT/GB1999/000205 patent/WO1999038173A1/fr active IP Right Grant
- 1999-01-21 AU AU21768/99A patent/AU2176899A/en not_active Abandoned
- 1999-01-21 JP JP2000528985A patent/JP2002501949A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2054277A (en) * | 1979-06-28 | 1981-02-11 | Shinetsu Polymer Co | Pressure-sensitive electroconductive bodies |
US5106540A (en) * | 1986-01-14 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
DE4315382A1 (de) * | 1992-06-18 | 1993-12-23 | Bayer Italia Spa | Hydrophobe, fließfähige Aufbaugranulate, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung |
US5591382A (en) * | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1071099A3 (fr) * | 1999-07-23 | 2003-10-29 | Ngk Insulators, Ltd. | Composition inorganique métallique avec comportement PTC fiable |
EP1071099A2 (fr) * | 1999-07-23 | 2001-01-24 | Ngk Insulators, Ltd. | Composition inorganique métallique avec comportement PTC fiable |
US7145432B2 (en) * | 2000-05-18 | 2006-12-05 | Canesis Network Ltd. | Flexible switching devices |
EP1887595A1 (fr) * | 2000-05-18 | 2008-02-13 | Peratech Limited | Dispositifs de commutation flexibles |
US7301435B2 (en) | 2000-05-18 | 2007-11-27 | Peratech Limited | Flexible switching devices |
WO2002099822A3 (fr) * | 2001-06-07 | 2003-03-06 | Peratech Ltd | Dispositif d'analyse |
WO2005029514A1 (fr) * | 2003-09-20 | 2005-03-31 | Peratech Limited | Materiaux a conductance variable |
GB2423646A (en) * | 2003-09-20 | 2006-08-30 | Peratech Ltd | Variable Conductance Materials |
US7093499B2 (en) | 2004-12-21 | 2006-08-22 | Delphi Technologies, Inc. | Force sensor, strain sensor and methods for measuring same |
WO2008022031A2 (fr) | 2006-08-11 | 2008-02-21 | Mastercard International Inc. | Carte de paiement de proximité avec commutateur actionné par l'utilisateur et procédés de réalisation de la carte |
US7900843B2 (en) | 2006-08-11 | 2011-03-08 | Mastercard International, Inc. | Proximity payment card with user-actuated switch and methods of making the card |
US7857202B2 (en) | 2006-08-11 | 2010-12-28 | Mastercard International, Inc. | Method and apparatus for a contactless smartcard incorporating a pressure sensitive switch |
US7997498B2 (en) | 2006-09-08 | 2011-08-16 | Mastercard International, Inc. | Identification of installable card |
US8336784B2 (en) | 2006-09-08 | 2012-12-25 | Mastercard International, Inc. | Identification of installable card |
GB2441733A (en) * | 2006-09-18 | 2008-03-19 | Powered Triangle Ltd | Footwear display comprising a display |
WO2008046988A2 (fr) | 2006-10-13 | 2008-04-24 | Computer Masters International | Dispositif de signalisation de touches pour la pratique de l'escrime sans fil |
US8167198B2 (en) | 2006-11-06 | 2012-05-01 | Mastercard International, Inc. | Method, apparatus, assembly and kit for identification token |
US8730012B2 (en) | 2007-01-05 | 2014-05-20 | Mastercard International Incorporated | Enabling identification token for a timed period |
GB2465077A (en) * | 2007-05-04 | 2010-05-12 | Peratech Ltd | Polymer composition with electrically-conductive filler |
GB2450587B (en) * | 2007-05-04 | 2010-08-18 | Peratech Ltd | Polymer composition |
US8765027B2 (en) | 2007-05-04 | 2014-07-01 | Peratech Limited | Polymer composition |
GB2450587A (en) * | 2007-05-04 | 2008-12-31 | Peratech Ltd | Electrically conductive polymer composition |
WO2008135787A1 (fr) | 2007-05-04 | 2008-11-13 | Peratech Limited | Composition polymère |
US7992779B2 (en) | 2007-09-10 | 2011-08-09 | Mastercard International, Inc. | Method for use in association with identification token and apparatus including identification token |
US8925825B2 (en) | 2007-09-10 | 2015-01-06 | Mastercard International Incorporated | Identification token and method of making identification token |
US7837123B2 (en) | 2007-09-10 | 2010-11-23 | Mastercard International, Inc. | Identification token and method of making identification token |
US8230600B2 (en) | 2007-09-17 | 2012-07-31 | The Gillette Company | Cartridge detachment sensor |
US8510958B2 (en) | 2007-09-17 | 2013-08-20 | The Gillette Company | Cartridge detachment sensor |
US10783514B2 (en) | 2007-10-10 | 2020-09-22 | Mastercard International Incorporated | Method and apparatus for use in personalizing identification token |
US8226013B2 (en) | 2007-10-26 | 2012-07-24 | Mastercard International, Inc. | Method and apparatus for use in providing an identification token |
US8286862B2 (en) | 2007-12-28 | 2012-10-16 | Mastercard International, Inc. | Methods and apparatus for use in association with security parameter |
US8991695B2 (en) | 2007-12-28 | 2015-03-31 | Mastercard International Incorporated | Methods and apparatus for use in docking |
GB2462920A (en) * | 2008-08-29 | 2010-03-03 | Peratech Ltd | Electrically responsive composite material for transducers |
GB2462920B (en) * | 2008-08-29 | 2010-12-22 | Peratech Ltd | Electrically responsive composite material, a method of manufacture and a transducer produced using said material |
US8794532B2 (en) | 2008-12-29 | 2014-08-05 | Mastercard International Incorporated | Methods and apparatus for use in association with identification token |
US8812402B2 (en) | 2009-01-05 | 2014-08-19 | Mastercard International Incorporated | Methods, apparatus and articles for use in association with token |
US8684261B2 (en) | 2009-01-20 | 2014-04-01 | Mastercard International Incorporated | Methods, apparatus, computer program products and articles for use in providing human understandable indication of account balance |
US8587422B2 (en) | 2010-03-31 | 2013-11-19 | Tk Holdings, Inc. | Occupant sensing system |
US9007190B2 (en) | 2010-03-31 | 2015-04-14 | Tk Holdings Inc. | Steering wheel sensors |
US8725230B2 (en) | 2010-04-02 | 2014-05-13 | Tk Holdings Inc. | Steering wheel with hand sensors |
US8983732B2 (en) | 2010-04-02 | 2015-03-17 | Tk Holdings Inc. | Steering wheel with hand pressure sensing |
EP3598122A1 (fr) | 2010-12-08 | 2020-01-22 | Condalign AS | Procédé d'assemblage de particules conductrices dans des trajets conducteurs et capteurs ainsi formés |
WO2012076612A1 (fr) | 2010-12-08 | 2012-06-14 | Condalign As | Procédé d'assemblage de particules conductrices dans des chemins conducteurs et capteurs ainsi formés |
WO2012131289A2 (fr) | 2011-03-25 | 2012-10-04 | Peratech Limited | Matériau composite |
US9727031B2 (en) | 2012-04-13 | 2017-08-08 | Tk Holdings Inc. | Pressure sensor including a pressure sensitive material for use with control systems and methods of using the same |
US9696223B2 (en) | 2012-09-17 | 2017-07-04 | Tk Holdings Inc. | Single layer force sensor |
DE102013202375A1 (de) * | 2013-02-14 | 2014-08-14 | Zumtobel Lighting Gmbh | Schaltelement mit triboelektrischem Element |
US10667755B2 (en) | 2013-09-16 | 2020-06-02 | Sensing Tex, S.L. | Textile piezoresistive sensor and heartbeat and/or respiratory rate detection system |
CN105555186A (zh) * | 2013-09-16 | 2016-05-04 | 传感特克斯有限公司 | 纺织压阻式传感器以及心跳和/或呼吸速率的探测系统 |
WO2015036647A1 (fr) * | 2013-09-16 | 2015-03-19 | Sensing Tex, S.L. | Capteur textile piézorésistif et système de détection du rythme cardiaque et/ou respiratoire |
WO2018128583A1 (fr) | 2017-01-04 | 2018-07-12 | Mas Innovation (Private) Limited | Ensemble bouton tactile pouvant être porté |
US10935445B2 (en) | 2017-01-04 | 2021-03-02 | Mas Innovation (Private) Limited | Wearable touch button assembly |
GB2561609A (en) * | 2017-04-21 | 2018-10-24 | Peratech Holdco Ltd | Composite material |
GB2561609B (en) * | 2017-04-21 | 2019-12-18 | Peratech Holdco Ltd | Method of producing agglomerates for inclusion in a composite material |
CN110894359A (zh) * | 2019-12-05 | 2020-03-20 | 中国电子科技集团公司第三十三研究所 | 一种海绵型定向导电橡胶及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1050054A1 (fr) | 2000-11-08 |
CA2318742A1 (fr) | 1999-07-29 |
AU2176899A (en) | 1999-08-09 |
CN1149588C (zh) | 2004-05-12 |
EP1050054B1 (fr) | 2007-03-07 |
JP2002501949A (ja) | 2002-01-22 |
CN1291338A (zh) | 2001-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1050054B1 (fr) | Composition polymere | |
US6495069B1 (en) | Polymer composition | |
CA2278246C (fr) | Composition polymere | |
WO1998033193A9 (fr) | Composition polymere | |
US6646540B1 (en) | Conductive structures | |
US5669381A (en) | Electrical overstress pulse protection | |
JP5411227B2 (ja) | 櫛歯状の力スイッチ及びセンサー | |
US5340641A (en) | Electrical overstress pulse protection | |
US4314227A (en) | Electronic pressure sensitive transducer apparatus | |
US5476714A (en) | Electrical overstress pulse protection | |
Ruschau et al. | Critical volume fractions in conductive composites | |
JPS5824921B2 (ja) | 感圧抵抗素子 | |
WO1993015137A1 (fr) | Membrane sensible a la pression et procede relatif a cette membrane | |
GB2054277A (en) | Pressure-sensitive electroconductive bodies | |
GB2042272A (en) | Method of generating electrical signals and push-button switch means therefor | |
GB2581223A (en) | Composite materials | |
US6652968B1 (en) | Pressure activated electrically conductive material | |
US7069642B2 (en) | Method of fabricating a current control device | |
RU2222065C2 (ru) | Полимерная композиция | |
RU2234156C2 (ru) | Полимерная композиция | |
JPH0787123B2 (ja) | スイッチ素子として用いる感圧抵抗変化型導電性塗膜形成性組成物 | |
EP0001882A1 (fr) | Touche à pression sans contact utilisable dans un clavier électronique | |
DE69935416T2 (de) | Polymerzusammensetzung | |
JP3541264B2 (ja) | 正温度特性素子 | |
McCluskey et al. | Nanocomposite materials offer higher conductivity and flexibility [conducting polymers] |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99803191.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999901767 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2318742 Country of ref document: CA Ref document number: 2318742 Country of ref document: CA Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09600808 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1999901767 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1999901767 Country of ref document: EP |