+

WO1999037110A1 - Tdma mobile communication system - Google Patents

Tdma mobile communication system Download PDF

Info

Publication number
WO1999037110A1
WO1999037110A1 PCT/JP1999/000085 JP9900085W WO9937110A1 WO 1999037110 A1 WO1999037110 A1 WO 1999037110A1 JP 9900085 W JP9900085 W JP 9900085W WO 9937110 A1 WO9937110 A1 WO 9937110A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
time slot
radio base
mobile communication
shared
Prior art date
Application number
PCT/JP1999/000085
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Miyazaki
Hiroshi Usami
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1999037110A1 publication Critical patent/WO1999037110A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing

Definitions

  • the present invention relates to a mobile communication system using a TDMAC Time Division Multiple Access (TDMAC) method, and more particularly to traffic control when sharing a radio frequency between different radio communication areas.
  • TDMAC Time Division Multiple Access
  • the same occupied radio frequency is repeatedly allocated between different cells in order to increase the frequency utilization efficiency of the entire system.
  • FIG. 10 shows an example of a 7-cell repetition pattern in which 7 waves on the occupied radio frequency are allocated in repetition units.
  • measures have been taken by adding another occupied radio frequency to one cell. That is, two occupied radio frequencies are fixedly assigned to one cell.
  • an occupied radio frequency is assigned so that the base stations do not interfere with each other. For example, f8 which does not interfere with fl to f7 is assigned to the cell fl in FIG.
  • Traffic may be concentrated in a specific cell due to a sudden increase in new subscribers or events.
  • the traffic capacity is increased by increasing the occupied radio frequency allocated to each cell in the service provider.
  • one occupied frequency is allocated to several slots.
  • the purpose of the present invention is to appropriately increase the time-out at each base station according to the increase in traffic even when traffic is concentrated on a specific cell due to a sudden increase in new subscribers or events. By doing so, the resources can be used effectively. Disclosure of the invention
  • the present invention divides a service area into a plurality of cells.
  • a TDMA mobile communication system including a radio base station arranged at least one in the cell and a base station controller controlling the radio base station, radios that do not overlap between adjacent cells
  • a frequency is fixedly allocated to the radio base station, and the radio base station calculates a utilization rate of a time slot of the occupied frequency allocated to the radio base station, and calculates the calculated time slot utilization rate by:
  • the base station controller transmits to the base station controller, and the base station controller compares the time slot utilization rate received from each radio base station with a threshold value. It is characterized in that at least one of the time slots of the shared radio frequency shared by a plurality of cells is supplemented to the radio base station determined to require the allocation of the mouth.
  • the time slot utilization rate is determined based on a time slot of an occupied frequency assigned to the radio base station. It is characterized in that it is calculated based on the ratio of those used for mobile stations that communicate with.
  • the present invention is characterized in that the base station control device has a database that stores an identifier indicating the radio base station and a time slot utilization rate corresponding to the radio base station. .
  • the present invention fixedly assigns an occupied frequency that does not overlap between adjacent cells to the radio base station, and the radio base station reduces the time slot of the occupied frequency assigned to itself. Calculating a utilization rate, transmitting the calculated time slot utilization rate to the base station controller, the base station controller based on the respective time slot utilization rates received from the plurality of radio base stations, The wireless base station is supplemented with a time slot of a shared radio frequency shared by a plurality of cells. Further, according to the present invention, in order to solve the above-mentioned problems, the base station control device is configured to reduce a time slot of the shared radio frequency in proportion to a time slot utilization rate received from each of the plurality of radio base stations.
  • a radio base station calculates a time slot utilization rate of a shared radio frequency allocated to the radio base station, and calculates a time slot utilization of the calculated shared radio frequency.
  • the base station controller compares the time slot utilization rate of the shared radio frequency received from each radio base station with a threshold value, and further transmits a time slot of the shared radio frequency. If it is determined that allocation of a slot is necessary, at least one of the time slots of another shared radio frequency is supplemented to the radio base station.
  • FIG. 1 is a diagram showing an embodiment of a network configuration according to the present invention.
  • FIG. 2 is a diagram showing a configuration example of a base station control device according to the present invention.
  • FIG. 3 is a diagram showing a configuration example of a mobile station according to the present invention.
  • FIG. 4 is a diagram showing a configuration example of a base station according to the present invention.
  • FIG. 6 is a flowchart for explaining a time slot allocation method according to the present invention.
  • FIG. 7 is a diagram showing a time slot management table of occupied radio frequencies according to the present invention.
  • FIG. 8 is a diagram showing a time slot management table of a shared radio frequency according to the present invention.
  • FIG. 9 is a diagram showing the relationship between the number of time slots and the number of radio frequencies when the present invention is applied.
  • FIG. 10 is a diagram showing an example of a 7-cell repetition pattern in which seven waves on an occupied radio frequency are allocated in a repetition unit.
  • FIG. 11 shows the frequency allocation according to the present invention. It is a figure showing an application example.
  • FIG. 12 is a diagram showing the relationship between the traffic capacity and the number of occupied radio frequencies in the case of the 6-multiplex TDMA system. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 11 is a diagram showing an example of frequency allocation according to the present invention.
  • Fi indicates the occupied radio frequency band
  • FXj indicates the shared radio frequency band.
  • the occupied radio frequency band refers to a group of occupied radio frequencies, and most of them are a group of radio frequencies fixedly assigned when the base station is installed. Also does not change its assignment.
  • a shared radio frequency band refers to a group of shared radio frequencies, and a shared radio frequency refers to a frequency that is commonly allocated among a plurality of cells. Is also good.
  • this shared radio frequency is divided into, for example, 64 time slots and the like, and this time slot is shared between adjacent cells according to the traffic.
  • FIG. 1 is a diagram showing a network configuration according to the present invention.
  • cells 110, 111, and 112 indicate cells (wireless communication areas) formed by the base stations 102, 103, and 104, respectively.
  • Each cell is assigned a frequency so that they do not interfere with each other.
  • the mobile stations 105 to 109 when present in an arbitrary cell, communicate with the base station forming this cell through a time slot on the occupied radio frequency. There is no time slot on the occupied radio frequency In this case, communication is performed using the time slot on the shared radio frequency. In other words, by allocating the vacant time slot of the shared radio frequency to the base station where traffic is concentrated and there is no vacant time slot on the occupied radio frequency, the occurrence of the vacant time slot is minimized. It is possible to increase the traffic capacity.
  • the shared radio frequency fxj is shared by three base stations in the embodiment shown in FIG. 1, it may be shared by more base stations. Alternatively, a plurality of shared radio frequencies may be prepared and used repeatedly in the system by the service provider.
  • connection between the base stations 102 to 104 and the base station controller 101 is star-shaped with respect to the digital transmission line 114, but it is apparent that the connection can be applied to other connection forms such as a bus-shaped connection. It is.
  • the transmission clock between the base stations 102 to 104 and the base station controller 101 is synchronized with one of the digital transmission lines 114.
  • the base station control apparatus 101 manages several base stations, that is, cells 110 to 112 formed by the base stations 102 to 104 collectively.
  • the cell unit managed by the base station controller 101 is called a group cell 113 here.
  • the number of cells to be managed as the group cell 113 is determined when the base station is arranged (at the time of designing the station), taking into account the topography, population density, etc. of the area forming the cell.
  • FIG. 2 is a diagram showing a configuration example of the base station control device 101.
  • the base station control device 101 includes a communication processing unit 200 and a control unit 201.
  • the base station control device 101 includes a communication processing unit 200 and a control unit 201.
  • FIG. 2 for the sake of explanation, only base stations 102 and 103 are shown, and other base stations are omitted.
  • the communication processing unit 200 has a multiplex processing unit 201 that processes communication information from each of the base stations 102 to 104, and an interface unit 203 that transmits communication information to the mobile switching network via the digital transmission path 115. .
  • FIG. 3 is a diagram showing a configuration example of a mobile station.
  • mobile stations 105 to 109 include a transmitting / receiving section 301 having a transmitting section 305 and a receiving section 306, an antenna 300 connected to the transmitting / receiving section 301, a switch section 302 having switches 307 and 308, and a predetermined It includes a control unit 304 for controlling the transmission / reception unit 301 and the switch unit 302 so that communication is performed in a time slot, and a human interface unit 303.
  • FIG. 4 is a diagram showing a configuration example of the base stations 102 to 104.
  • the base station includes a transmission / reception unit 401 having a transmission unit 410 and a reception unit 411, an antenna 400 connected to the transmission / reception unit 401, and a communication having switches 412, 413, and an interface unit 405.
  • GPS global positioning system
  • the control unit 403 As shown in the figure, a transmission quality detection unit 414 and a reception timing control unit 415 are provided.
  • the Global Positioning System GPS 400 is provided to synchronize between base stations by absorbing the delay time difference of the digital transmission line 114 connected to each base station due to the difference in transmission line length. It is something that can be done.
  • the base station establishes a clock in accordance with the GPS 400 time signal, thereby synchronizing between the base stations.
  • the numbers 1 to 64 shown in the figure indicate time slot numbers.
  • Each of the 64 slots can be used as either a communication time slot assigned to each user or a control time slot commonly used by many users.
  • all 64 slots are allocated to communication time slots.
  • the communication time slot refers to a time slot for transmitting user information such as voice, and corresponds to a conventional communication channel. Once allocated to a mobile station, the communication time slot is occupied by that mobile station until communication is terminated.
  • the method for allocating a time slot according to the present invention is as follows.
  • the signal from the human interface unit 303 is modulated by the transmission unit 305 via the switch 307, and transmitted from the antenna 300.
  • the signal is demodulated and sent to the switch 413.
  • the transmission quality detection unit 415 calculates the time slot utilization rate of the occupied radio frequency based on the reception signal from each mobile station processed by the communication processing unit 402.
  • FIG. 6 is a flowchart for explaining a method of allocating a time slot according to the present invention.
  • the time slot utilization rate Ua (%) is calculated from the ratio of the total number of time slots in the occupied radio frequency allocated to each base station to the number of time slots used for communication as shown in the following equation (Step 1). ).
  • (Time slot utilization rate Ua (%) 703) is calculated from the ratio of the total number of time slots in the occupied radio frequency allocated to each base station to the number of time slots used for communication as shown in the following equation (Step 1). ).
  • (Time slot utilization rate Ua (%) 703)
  • the transmission quality detection unit 415 of each base station regards a slot that is considered to be a low-power, no-signal slot as an idle time slot, obtains the number of time slots used for communication, and registers a previously registered occupied radio. It is determined by the ratio with the total number of time slots in the frequency.
  • the time-slot utilization rate Ua (%) calculated by the transmission quality detection unit 415 is transmitted from the interface unit 405 to the base station control device 101 via the digital transmission path 114.
  • the time slot utilization rate Ua () transmitted from each base station is transmitted to the resource management Z allocating section 204 in the control section 201.
  • the time slot utilization rate Ua (%) is stored in the time slot management table 206 of the occupied radio frequency in the DB unit 205 (Step 2).
  • the occupied radio frequency time slot management table 206 is configured, for example, as shown in FIG.
  • the occupied radio frequency time slot management table 206 includes an occupied radio frequency 701, a base station number 702, a time slot utilization rate Ua (%) 703, a used time slot number 704, and a total time slot in the occupied radio frequency.
  • the number of lots, such as 705, is stored.
  • Fig. 7 shows the calculation results of the time slot utilization rate Ua () as an example.
  • the time slot utilization rate Ua (3 ⁇ 4) is stored, for example, by rounding up decimal places.
  • the resource management Z allocating section 204 stores in the DB section the cells in which the time slot utilization rate Ua is 90% or more, that is, the base station numbers in which there is a lot of traffic and the number of available slots is insufficient.
  • the time slot management table 206 for the occupied radio frequency in 205 is searched and the base station number is stored. If there is no base station with an insufficient number of available slots, the traffic is not enough to allocate a shared radio frequency, and the processing shifts to processing (13) (step 3).
  • the resource management allocating section 204 obtains the required number of time slots S to be added to each base station based on the occupied radio frequency time slot management table 206, and obtains the occupied radio frequency time slot management table 206.
  • the time slot utilization rate Ua) of base station number 1 is 90% or more. Therefore, four time slots are allocated from the shared radio frequency.
  • S may be a predetermined constant value, or the number of time slots to be allocated may be dynamically varied in consideration of the time variation of traffic in the cell. For example, it is well known that there is a time zone where congestion is expected empirically, but it is conceivable that the number of allocated slots is set to be larger than usual during that time. Further, a value proportional to Ua may be set as S.
  • the Z allocating unit 204 performs time slot management of the occupied radio frequency in the DB unit 205 by dividing the total number of time slots S allocated to the cell units (group cells) managed by the base station controller 101. Determined from table 206 (step 4).
  • FIG. 8 shows an example of the configuration of the time-to-mouth management table 207 of the shared radio frequency.
  • the shared radio frequency time slot management table 207 stores a shared radio frequency 801, the number of used time slots 802, the total number of time slots in the shared radio frequency 803, the number of available time slots 804, and the like. .
  • the number of empty time slots is calculated by the following formula.
  • the number of used time slots is always grasped for each base station by the resource management / allocation unit 204 and is stored in the time slot management table 207 of the shared radio frequency.
  • the resource management Z allocating unit 204 compares ⁇ S and ⁇ Tb, and if there is a shortage of free slots for the shared radio frequency fxj to be allocated to the cell ( ⁇ ⁇ ⁇ Tb ⁇ S), a new shared Add the radio frequency fx (j + l) to the group cell.
  • Step 8 Update the time slot management tables 206 and 207. After the timer is activated, the process from (1) is repeated after a certain period of time (for example, when 120 seconds have elapsed assuming a normal voice call time) (Step 8).
  • the resource management Z allocating section 204 of the base station control apparatus 101 sends the allocation signal of the evening mouth to each base station via the digital transmission line 114.
  • the time slot assignment signal includes an identifier indicating one of the shared radio frequencies and an identifier indicating the time slot.
  • the base station that has received the time slot assignment signal sends a time slot to the mobile station based on the shared radio frequency specified by the time slot assignment signal of the base station controller 101 and the time slot. Send an assignment signal of.
  • the signal from the base station received by the antenna 300 of the mobile station is sent to the receiving section 306, where it is demodulated and passed through the switch 304 to the human interface section 303. Processing such as images or voices is performed within the system to exchange information with the user.
  • the control unit 304 controls the transmission / reception unit 301, the switch unit 302, and the human interface unit 303.
  • the present invention has been described in detail based on the embodiments. However, the present invention is not limited to this.
  • the time slot utilization rate is measured in each base station, but may be collectively measured in the base station controller.
  • the number of TDMA multiplexes is 64, but it is not necessary to be 64. It can also be applied to the TD-CDMA system that performs code division multiplexing within each time slot.
  • FIG. 9 shows the relationship between the number of time slots and the number of radio frequencies when the present invention is applied.
  • radio resources were fixedly allocated to one cell, which caused many idle time slots.
  • 63 timeslots became empty timeslots, and the efficiency of frequency utilization was reduced.
  • an empty time slot not used in the cell C 1 is allocated to the other cells C 2 and C 3 in the service area. Free time slot can be reduced. This effect increases as the number of shared cells increases. For example, if the shared radio frequency is shared by 10 cells, the idle time slot can be reduced to 1/10. That is, in the example of FIG. 12, the empty timeslot of 63 timeslots can be suppressed to an average of 6 timeslots. As a result, the problem can be solved, and as a result, it is possible to promote effective use of wireless resources and increase traffic capacity. Industrial applicability
  • the present invention uses a plurality of timeslots of a shared radio frequency that does not interfere with the existing occupied frequency in accordance with the traffic fluctuation of each cell. By allocating to cells, it is possible to promote effective use of available time slots and frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A TDMA communication system in which additional time slots of radio channels are assigned to base stations according to traffic. Occupied frequencies, without duplication between adjacent cells, are fixedly assigned to radio base stations (102-104), which calculate the usage of occupied frequency time slots assigned to them and send the calculated usage to a base station control system (101). In response to the usage of time slots received from the radio base stations, the base station control system (101) provides the base stations with additional frequencies slots that are shared among base stations.

Description

明 細 書  Specification
T DM A移動体通信システム 技術分野 TDMA mobile communication system technical field
本発明は、 TDMACTime Division Multiple Access)方式を用い た移動体通信システムに関し、 特に、 異なる無線通信エリア間で無線周 波数を共有する際のトラヒック制御に関する。 背景技術  The present invention relates to a mobile communication system using a TDMAC Time Division Multiple Access (TDMAC) method, and more particularly to traffic control when sharing a radio frequency between different radio communication areas. Background art
セルラ方式の移動体通信では、 システム全体として周波数利用効率 を高めるため、 異なるセル間で同一の占有無線周波数を繰り返し割り当 てる。 この割当は、 基地局を建設する際に各基地局に固定的に割り当て るものであり、 各基地局が互いに干渉しないような占有無線周波数 fi(i = l、 2、 3、 ...、 I)を繰り返し単位で割り当てる。 初期においては 1のセルに対し 1の占有無線周波数を割り当てることが一般的であった。 第 1 0図には占有無線周波数上の 7波を繰り返し単位で割り当てる 7セ ル繰り返しパ夕ン例を示している。 加入者の増加等によりセルの トラ ヒックが増加した場合に、 近年では、 1 セルに他の占有無線周波数を追 加することで対処している。 すなわち一のセルに 2つの占有無線周波数 を固定的に割り当てるのである。 なお、 この場合も各基地局が互いに干 渉しないような占有無線周波数が割り当てられる。 例えば、 第 1 0図の flのセルに fl〜f7とは干渉しない f8を割り当てるのである。  In cellular mobile communications, the same occupied radio frequency is repeatedly allocated between different cells in order to increase the frequency utilization efficiency of the entire system. This allocation is fixedly allocated to each base station when constructing the base station, and occupied radio frequencies fi (i = l, 2, 3, ..., so that the base stations do not interfere with each other. I) is assigned in repeat units. Initially, it was common to assign one occupied radio frequency to one cell. FIG. 10 shows an example of a 7-cell repetition pattern in which 7 waves on the occupied radio frequency are allocated in repetition units. In recent years, when the traffic of a cell has increased due to an increase in the number of subscribers, etc., measures have been taken by adding another occupied radio frequency to one cell. That is, two occupied radio frequencies are fixedly assigned to one cell. Also in this case, an occupied radio frequency is assigned so that the base stations do not interfere with each other. For example, f8 which does not interfere with fl to f7 is assigned to the cell fl in FIG.
ところで、 日本特開昭 62— 1 9 7 844号公報では、 T DM Aにお いて、 全ての無線ゾーンに対して同一の無線周波数を割当て、 その周波 数の T DMAフレーム内のチャネルを各無線ゾーンに分割割付すること で、 ハン ドオフの際の周波数切替えに伴う瞬断を短くする方式が記載さ れている。 By the way, in Japanese Patent Application Laid-Open No. 62-197844, the same radio frequency is allocated to all radio zones in TDMA, and the channel in the TDMA frame of that frequency is allocated to each radio. Divide into zones A method for shortening the instantaneous interruption caused by frequency switching at the time of hand-off is described.
新規加入者の急増や、 ィベン 卜等により特定のセルに トラヒックが集 中することがある。 前記したように従来のディ ジタル方式自動車電話シ ステムではサービスェリァ内の各セルに割り当てる占有無線周波数を増 やすことでトラヒック容量を上げていた。 また、 従来の T D M Aシステ 厶では一つの占有周波数を数スロッ 卜に割り当てていた。  Traffic may be concentrated in a specific cell due to a sudden increase in new subscribers or events. As described above, in the conventional digital car telephone system, the traffic capacity is increased by increasing the occupied radio frequency allocated to each cell in the service provider. In the conventional TDMA system, one occupied frequency is allocated to several slots.
しかし、 無線周波数 1波当たり 64 タイムスロッ ト等の非常に多くの タイムスロッ 卜に分割する T D M Aシステムを考慮すると、 従来の周波 数単位でチャネルを増設する方法では、 無線周波数 1波を増設する度に 固定的に 64 ものタイムスロッ 卜が増加してしまう。 例えば、 第 1 2図 に示すように、 1スロッ ト程の増加ですむような トラヒック状態にもか かわらず、 固定的に一の無線基地局に対し 64 タイムスロッ トを追加し たのでは、 63 タイムスロッ トも資源の無駄使いとなるという第 1 の課 題がある。  However, considering a TDMA system that divides into a very large number of time slots such as 64 time slots per radio frequency wave, the conventional method of adding channels in frequency units is fixed every time one radio frequency wave is added. As a result, 64 time slots increase. For example, as shown in Fig. 12, even if the traffic condition requires only one slot increase, if 64 time slots are fixedly added to one radio base station, 63 time slots will be required. The first problem is that resources also waste resources.
また、 全ての無線ゾーンに対して同一の無線周波数を割当て、 その周 波数の T D M Aフレーム内のチャネルを各無線ゾーンに分割割付すると いう従来技術では、 トラヒック増加に応じたタイムス口ッ 卜の割当が考 慮されていないという第 2の課題がある。  Further, in the conventional technology of allocating the same radio frequency to all the radio zones and dividing and allocating the channel in the TDMA frame of the frequency to each radio zone, it is necessary to allocate a time slot according to an increase in traffic. There is a second issue that has not been taken into account.
本発明の目的は、 新規加入者の急増や、 イベン ト等により特定のセル にトラヒックが集中した際にも、 そのトラヒックの増加に応じて、 各基 地局に適切にタイムス口ッ トを増加させることにより資源の有効利用を 図るものである。 発明の開示  The purpose of the present invention is to appropriately increase the time-out at each base station according to the increase in traffic even when traffic is concentrated on a specific cell due to a sudden increase in new subscribers or events. By doing so, the resources can be used effectively. Disclosure of the invention
本発明は、 上記課題を解決すべく、 サービスエリアを複数のセルに分 割し、 前記セルに少なく とも一つづつ配置される無線基地局と、 前記無 線基地局を制御する基地局制御装置とからなる T D M A移動体通信シス テムにおいて、 隣接するセル間で重複しない無線周波数を前記無線基地 局に固定的に割当て、 前記無線基地局は、 自己に割り当てられた占有周 波数のタイムス口ッ 卜の利用率を算出し、 算出された前記タイムス口ッ ト利用率を、 前記基地局制御装置に送信し、 前記基地局制御装置は各無 線基地局から受信した前記タイムス口ッ ト利用率としきい値とを比較し、 タイムスロッ 卜の割り当てが必要と判断すると、 前記タイムス口ッ 卜の 割当が必要と判断された無線基地局に対し、 複数のセル間で共有する共 有無線周波数のタイムスロッ 卜の少なく とも一つを補充することを特徴 とする。 In order to solve the above problems, the present invention divides a service area into a plurality of cells. In a TDMA mobile communication system including a radio base station arranged at least one in the cell and a base station controller controlling the radio base station, radios that do not overlap between adjacent cells A frequency is fixedly allocated to the radio base station, and the radio base station calculates a utilization rate of a time slot of the occupied frequency allocated to the radio base station, and calculates the calculated time slot utilization rate by: The base station controller transmits to the base station controller, and the base station controller compares the time slot utilization rate received from each radio base station with a threshold value. It is characterized in that at least one of the time slots of the shared radio frequency shared by a plurality of cells is supplemented to the radio base station determined to require the allocation of the mouth.
また本発明は、 上記課題を解決すべく、 請求項 1記載の T D M A移 動体通信システムにおいて、 前記タイムスロッ ト利用率は、 前記無線基 地局に割り当てられた占有周波数のタイムスロッ 卜が前記無線基地局と 通信する移動局に使用されているものの割合により算出することを特徴 とする。  Further, according to the present invention, in order to solve the above-mentioned problem, in the TDMA mobile communication system according to claim 1, the time slot utilization rate is determined based on a time slot of an occupied frequency assigned to the radio base station. It is characterized in that it is calculated based on the ratio of those used for mobile stations that communicate with.
また本発明は、 上記課題を解決すべく、 基地局制御装置は、 前記無線 基地局を示す識別子と、 前記無線基地局に対応するタイムスロッ ト利用 率とを記憶するデータベースを有することを特徴とする。  Further, in order to solve the above problem, the present invention is characterized in that the base station control device has a database that stores an identifier indicating the radio base station and a time slot utilization rate corresponding to the radio base station. .
また本発明は、 上記課題を解決すべく、 隣接するセル間で重複しない 占有周波数を前記無線基地局に固定的に割当て、 前記無線基地局は、 自 己に割り当てられた占有周波数のタイムスロッ 卜の利用率を算出し、 算 出した前記タイムスロッ ト利用率を前記基地局制御装置に送信し、 前記 基地局制御装置は、 複数の前記無線基地局から受信した各々タイムス ロッ 卜利用率に基づいて、 前記無線基地局に対し複数のセル間で共有す る共有無線周波数のタイムスロッ トを補充することを特徴とする。 また本発明は、 上記課題を解決すべく、 前記基地局制御装置は、 複数 の前記無線基地局から受信した各々タイムス口ッ 卜利用率に比例して、 前記共有無線周波数のタイムス口ッ 卜を補充することを特徴とする。 また本発明は、 上記課題を解決すべく、 無線基地局は、 自己に割り当 てられた共有無線周波数のタイ厶スロッ 卜の利用率を算出し、 算出され た前記共有無線周波数のタイムスロッ ト利用率を、 前記基地局制御装置 に送信し、 前記基地局制御装置は各無線基地局から受信した前記共有無 線周波数のタイムスロッ 卜利用率としきい値とを比較し、 さらなる共有 無線周波数のタイムス口ッ 卜の割り当てが必要と判断すると、 前記無線 基地局に対し、 他の共有無線周波数のタイムスロッ トの少なく とも一つ を補充することを特徴とする。 図面の簡単な説明 Further, in order to solve the above problem, the present invention fixedly assigns an occupied frequency that does not overlap between adjacent cells to the radio base station, and the radio base station reduces the time slot of the occupied frequency assigned to itself. Calculating a utilization rate, transmitting the calculated time slot utilization rate to the base station controller, the base station controller based on the respective time slot utilization rates received from the plurality of radio base stations, The wireless base station is supplemented with a time slot of a shared radio frequency shared by a plurality of cells. Further, according to the present invention, in order to solve the above-mentioned problems, the base station control device is configured to reduce a time slot of the shared radio frequency in proportion to a time slot utilization rate received from each of the plurality of radio base stations. It is characterized by replenishment. Further, according to the present invention, in order to solve the above problems, a radio base station calculates a time slot utilization rate of a shared radio frequency allocated to the radio base station, and calculates a time slot utilization of the calculated shared radio frequency. The base station controller compares the time slot utilization rate of the shared radio frequency received from each radio base station with a threshold value, and further transmits a time slot of the shared radio frequency. If it is determined that allocation of a slot is necessary, at least one of the time slots of another shared radio frequency is supplemented to the radio base station. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係わるネッ 卜ワーク構成の実施例を示す図である。 第 2図は、 本発明に係わる基地局制御装置の構成例を示す図である。 第 3図は、 本発明に係わる移動局の構成例を示す図である。 第 4図は、 本 発明に係わる基地局の構成例を示す図である。 第 5図は、 本発明に係わ る共有無線周波数 fx;j ( j = l、 2、 3、 . .、 J )の T D M A無線フ レーム フォーマツ 卜のタイムスロッ ト構成を示す図である。 第 6図は、 本発明 に係わるタイムスロッ 卜の割当方法を説明するための流れ図である。 第 7図は、 本発明に係わる占有無線周波数のタイムスロッ ト管理テーブル を示す図である。 第 8図は、 本発明に係わる共有無線周波数のタイムス ロッ ト管理テーブルを示す図である。 第 9図は、 本発明を適用した場合 のタイムスロッ ト数と無線周波数の数との関係を示す図である。 第 1 0 図は、 占有無線周波数上の 7波を繰り返し単位で割り当てる 7セル繰り 返しパタン例を示す図である。 第 1 1図は、 本発明に係わる周波数割り 当て例を示す図である。 第 1 2図は、 6多重 T D M A方式の場合の トラ ヒック容量と占有無線周波数の数との関係を示す図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing an embodiment of a network configuration according to the present invention. FIG. 2 is a diagram showing a configuration example of a base station control device according to the present invention. FIG. 3 is a diagram showing a configuration example of a mobile station according to the present invention. FIG. 4 is a diagram showing a configuration example of a base station according to the present invention. FIG. 5 is a diagram showing a time slot configuration of a TDMA radio frame format of the shared radio frequency fx; j (j = 1, 2, 3,..., J) according to the present invention. FIG. 6 is a flowchart for explaining a time slot allocation method according to the present invention. FIG. 7 is a diagram showing a time slot management table of occupied radio frequencies according to the present invention. FIG. 8 is a diagram showing a time slot management table of a shared radio frequency according to the present invention. FIG. 9 is a diagram showing the relationship between the number of time slots and the number of radio frequencies when the present invention is applied. FIG. 10 is a diagram showing an example of a 7-cell repetition pattern in which seven waves on an occupied radio frequency are allocated in a repetition unit. FIG. 11 shows the frequency allocation according to the present invention. It is a figure showing an application example. FIG. 12 is a diagram showing the relationship between the traffic capacity and the number of occupied radio frequencies in the case of the 6-multiplex TDMA system. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施例について図面を用いて説明する。 本発明では、 移動体 通信サ一ビスに割り当てられた無線周波数帯域を、 占有無線周波数帯域 と共有無線周波数帯域とに分配して使用する。 第 1 1図は、 本発明に係 わる周波数割り当て例を示す図である。 同図において Fi は占有無線周 波数帯域を、 FXj は共有無線周波数帯域を示す。 ここで占有無線周波数 帯域とは、 占有無線周波数の一群をいい、 多くは基地局の設置時に固定 的に割り当てられた無線周波数の一群であり、 原則として一度割り当て るとその後のシステム運用を重ねても、 その割当の変更をしないものを いう。 一方、 共有無線周波帯域とは、 共有無線周波数からなる一群をい い、 共有無線周波数とは複数のセル間に共通に割り当てられる周波数を いい、 固定的に割り当てても、 ダイナミ ックに割り当てても良い。 本発 明では、 この共有無線周波数を例えば 6 4タイムスロッ ト等に分割し、 このタイムス口ッ トを隣接セル間でそのトラヒックに応じて共有するも のである。  An embodiment of the present invention will be described with reference to the drawings. In the present invention, the radio frequency band allocated to the mobile communication service is distributed to the occupied radio frequency band and the shared radio frequency band for use. FIG. 11 is a diagram showing an example of frequency allocation according to the present invention. In the figure, Fi indicates the occupied radio frequency band, and FXj indicates the shared radio frequency band. Here, the occupied radio frequency band refers to a group of occupied radio frequencies, and most of them are a group of radio frequencies fixedly assigned when the base station is installed. Also does not change its assignment. On the other hand, a shared radio frequency band refers to a group of shared radio frequencies, and a shared radio frequency refers to a frequency that is commonly allocated among a plurality of cells. Is also good. In the present invention, this shared radio frequency is divided into, for example, 64 time slots and the like, and this time slot is shared between adjacent cells according to the traffic.
第 1図は、 本発明に係わるネッ 卜ワーク構成を示す図である。 本実施 例ではセル 110、 111、 112 はそれぞれ基地局 102、 103、 104が形成す るセル (無線通信エリア) を示す。 各セルでは、 お互いに干渉しないよ うに周波数が割り当てられて。 例えば第 3図に示した周波数繰り返しに 従って各セル 110、 111、 112に占有無線周波数 fi ( i = l、 2、 3、 · · ·)を 割り当てる。 移動局 105〜109 は、 任意のセル内に存在するとき、 この セルを形成する基地局と占有無線周波数の上のタイムスロッ トを通じて 通信を行なう。 なお、 占有無線周波数上のタイムスロッ 卜に空きが無い 場合は、 共有無線周波数上のタイムスロッ 卜を使用して通信を行う。 す なわち、 トラヒックが集中し占有無線周波数上の空きタイムスロッ 卜が ない基地局に対し、 この共有無線周波数の空きタイムスロッ 卜を割り当 てることで、 空きタイムスロッ 卜の発生を最小限に抑えながら、 トラ ヒック容量を上げることが可能となる。 FIG. 1 is a diagram showing a network configuration according to the present invention. In the present embodiment, cells 110, 111, and 112 indicate cells (wireless communication areas) formed by the base stations 102, 103, and 104, respectively. Each cell is assigned a frequency so that they do not interfere with each other. For example, occupied radio frequencies fi (i = 1, 2, 3,...) Are assigned to each cell 110, 111, 112 according to the frequency repetition shown in FIG. The mobile stations 105 to 109, when present in an arbitrary cell, communicate with the base station forming this cell through a time slot on the occupied radio frequency. There is no time slot on the occupied radio frequency In this case, communication is performed using the time slot on the shared radio frequency. In other words, by allocating the vacant time slot of the shared radio frequency to the base station where traffic is concentrated and there is no vacant time slot on the occupied radio frequency, the occurrence of the vacant time slot is minimized. It is possible to increase the traffic capacity.
ここで共有無線周波数 fx ]' (〕' = l、 2、 3、 . .、 J )は、 サービスエリア 内の基地局 102、 103、 104 で共有する。 なお、 第 1図に示す実施例で は共有無線周波数 fxjを 3つの基地局間で共有しているが、 より多くの 基地局間で共有してもよい。 また、 複数の共有無線周波数を用意し、 シ ステムにサービスェリァ内で繰り返し使用してもよい。 Here, the shared radio frequency f x] '(]' = l, 2, 3,..., J) is shared by the base stations 102, 103, 104 in the service area. Although the shared radio frequency fxj is shared by three base stations in the embodiment shown in FIG. 1, it may be shared by more base stations. Alternatively, a plurality of shared radio frequencies may be prepared and used repeatedly in the system by the service provider.
第 1図の実施例では、 ディジタル伝送路 114に関して、 基地局 102〜 104 と基地局制御装置 101 との間の接続をスター形としているが、 バス 状など他の接続形態にも適用できることは明白である。 基地局 102〜 104 と基地局制御装置 101 との間の伝送クロックはディ ジタル伝送路 114の内の一本に同期する。  In the embodiment shown in FIG. 1, the connection between the base stations 102 to 104 and the base station controller 101 is star-shaped with respect to the digital transmission line 114, but it is apparent that the connection can be applied to other connection forms such as a bus-shaped connection. It is. The transmission clock between the base stations 102 to 104 and the base station controller 101 is synchronized with one of the digital transmission lines 114.
基地局制御装置 101 は、 いくつかの基地局すなわち、 基地局 102〜 104 が形成するセル 110〜112 をまとめて管理している。 基地局制御装 置 101 が管理しているセル単位をここではグループセル 113 と呼ぶ。 基地局制御装置 101 が管理している各セル C1 ~C3では、 それぞれのセ ルに個別に割り当てられた占有無線周波数 fi ( i = l、 2、 3)のタイムス ロッ トと、 本発明による共有無線周波数 ixj ( j = l、 2、 3)のタイムス ロッ トを必要に応じて使用して無線通信を行う。 グループセル 113とし て管理するセル数は基地局を配置する時 (置局設計時) に、 セルを形成 するエリアの地形、 人口密度等を考慮して決定される。 具体的には人口 密度の高い都市部ではグループセルとして管理するセル数を増やしてセ ルを密に配置し、 人口密度の低いルーラル地方ではグループセルとして 管理するセル数を減らしてセルを粗に配置する等の対策が行われる。 次に、 本発明に係る各装置の構成例について説明する。 第 2図は、 基 地局制御装置 101の構成例を示す図である。 図のように、 基地局制御装 置 101 は、 通信処理部 200 と制御部 201 とを備える。 なお、 第 2図で は説明のため、 基地局 102 、 103 のみ図示し、 他の基地局は省略して いる。 通信処理部 200 は、 各基地局 102〜104からの通信情報を処理す る多重化処理部 201 と、 移動交換網へディ ジタル伝送路 115 を介して 通信情報を伝送するイ ンタフェース部 203を有する。 一方、 制御部 201 は各基地局が使用している占有無線周波数 fi(i = l、 2、 3、 ...、 1)、 共有無線周波数 fxj(;i = l、 2、 3、 ..、 J)、 ならびに、 各々のタイムス ロッ トとの割当状況を管理し、 タイムスロッ 卜の割当を行なう リソース 管理/割当部 204、 リ ソースの管理表 (タイムス口ッ ト管理テーブル 206、 207) を記憶する D B部 205を有する。 The base station control apparatus 101 manages several base stations, that is, cells 110 to 112 formed by the base stations 102 to 104 collectively. The cell unit managed by the base station controller 101 is called a group cell 113 here. In each of the cells C1 to C3 managed by the base station controller 101, the time slots of the occupied radio frequencies fi (i = 1, 2, 3) individually allocated to the respective cells are shared by the present invention. Wireless communication is performed using the time slots of the radio frequency ixj (j = 1, 2, 3) as necessary. The number of cells to be managed as the group cell 113 is determined when the base station is arranged (at the time of designing the station), taking into account the topography, population density, etc. of the area forming the cell. Specifically, in urban areas with high population density, the number of cells managed as group cells is increased and cells are densely arranged. In rural areas with low population density, group cells are managed as group cells. Measures such as reducing the number of cells to be managed and arranging the cells roughly are taken. Next, a configuration example of each device according to the present invention will be described. FIG. 2 is a diagram showing a configuration example of the base station control device 101. As illustrated, the base station control device 101 includes a communication processing unit 200 and a control unit 201. In FIG. 2, for the sake of explanation, only base stations 102 and 103 are shown, and other base stations are omitted. The communication processing unit 200 has a multiplex processing unit 201 that processes communication information from each of the base stations 102 to 104, and an interface unit 203 that transmits communication information to the mobile switching network via the digital transmission path 115. . On the other hand, the control unit 201 controls the occupied radio frequencies fi (i = l, 2, 3, ..., 1) and the shared radio frequencies fxj (; i = l, 2, 3, ...) used by each base station. , J) and a resource management / assignment unit 204 that manages the assignment status with each time slot and assigns the time slot, and stores a resource management table (time slot management tables 206 and 207). It has a DB unit 205.
第 3図は、 移動局の構成例を示す図である。 図のように、 移動局 105 〜109は、 送信部 305及び受信部 306を有する送受信部 301 と、 送受信 部 301 に接続されたアンテナ 300 と、 スィッチ 307及び 308を有する スィッチ部 302 と、 所定のタイムス口ッ 卜で通信が行われるように送受 信部 301 及びスィツチ部 302 を制御する制御部 304 と、 ヒューマンィ ンタフヱース部 303を備える。  FIG. 3 is a diagram showing a configuration example of a mobile station. As shown in the figure, mobile stations 105 to 109 include a transmitting / receiving section 301 having a transmitting section 305 and a receiving section 306, an antenna 300 connected to the transmitting / receiving section 301, a switch section 302 having switches 307 and 308, and a predetermined It includes a control unit 304 for controlling the transmission / reception unit 301 and the switch unit 302 so that communication is performed in a time slot, and a human interface unit 303.
第 4図は、 基地局 102〜104 の構成例を示す図である。 図のように、 基地局は、 送信部 410 及び受信部 411 を有する送受信部 401 と、 送受 信部 401 に接続されたアンテナ 400 と、 スィツチ 412、 413、 およびィ ンタフヱ一ス部 405 を有する通信処理部 402 と、 所定のタイムス口ッ 卜で通信が行われるように送受信部 401 及び通信処理部 402 を制御す る制御部 403 と、 全地球測位システム G P S (Global Positioning System)406及び G P Sアンテナ 407 とを備える。 ここで制御部 403は、 図示したように、 伝送品質検出部 414、 受信タイ ミ ング制御部 415を有 する。 また、 全地球測位システム G P S 400は、 各基地局に接続される ディ ジタル伝送路 114の伝送路長が異なることにより発生する伝送路の 遅延時間差を吸収し、 基地局間同期をとるために設けられるものである。 基地局は、 G P S 400の時刻信号に合わせてクロックを確定することに より、 各基地局間の同期を取る。 FIG. 4 is a diagram showing a configuration example of the base stations 102 to 104. As shown in the figure, the base station includes a transmission / reception unit 401 having a transmission unit 410 and a reception unit 411, an antenna 400 connected to the transmission / reception unit 401, and a communication having switches 412, 413, and an interface unit 405. A processing unit 402; a control unit 403 that controls the transmission / reception unit 401 and the communication processing unit 402 so that communication is performed at a predetermined time slot; a global positioning system (GPS) 406 and a GPS antenna 407 And Here, the control unit 403 As shown in the figure, a transmission quality detection unit 414 and a reception timing control unit 415 are provided. In addition, the Global Positioning System GPS 400 is provided to synchronize between base stations by absorbing the delay time difference of the digital transmission line 114 connected to each base station due to the difference in transmission line length. It is something that can be done. The base station establishes a clock in accordance with the GPS 400 time signal, thereby synchronizing between the base stations.
次に、 本実施例で用いる T DMA無線フレームフォーマツ 卜について 説明する。 第 5図は各基地局 102〜104 が共通に使用する共有無線周波 数 fxj(j = l、 2、 3、 ..、 J)の T DMA無線フレームフォーマツ 卜のタ ィムスロッ ト構成を示す図である。 同図に示す 1〜64の数字はタイムス ロッ ト番号を示す。 64 スロッ トある各タイムスロッ 卜は、 各ユーザ一 に割り当てる通信用タイムス口ッ 卜または多くのユーザーが共通で使用 する制御用タイムスロッ 卜とのいずれにも利用できる。 なお、 本実施例 では説明を簡単にするため、 64 スロッ トすべてを通信用タイムスロッ 卜に割り当てることにする。 ここで、 通信用タイムスロッ 卜とは、 音声 などのユーザ情報を伝送するためのタイムスロッ トをいい、 従来の通話 チャネルに相当すものである。 通信用タイムスロッ トは、 ある移動局に いったん割り当てられると通信が終了するまでその移動局に占有される ものである。  Next, the TDMA wireless frame format used in the present embodiment will be described. Fig. 5 is a diagram showing the time slot configuration of the TDMA radio frame format of the shared radio frequency fxj (j = 1, 2, 3, .., J) commonly used by the base stations 102 to 104. It is. The numbers 1 to 64 shown in the figure indicate time slot numbers. Each of the 64 slots can be used as either a communication time slot assigned to each user or a control time slot commonly used by many users. In this embodiment, for simplicity of description, all 64 slots are allocated to communication time slots. Here, the communication time slot refers to a time slot for transmitting user information such as voice, and corresponds to a conventional communication channel. Once allocated to a mobile station, the communication time slot is occupied by that mobile station until communication is terminated.
次に、 本実施例の動作について説明する。 本発明に係わるタイムス ロッ 卜の割当方法は次の手順となる。  Next, the operation of the present embodiment will be described. The method for allocating a time slot according to the present invention is as follows.
( 1 ) 移動局において、 ヒューマンインタフヱース部 303からの信 号は、 スィッチ 307を経由し、 送信部 305で変調されて、 アンテナ 300 から送信される。  (1) In the mobile station, the signal from the human interface unit 303 is modulated by the transmission unit 305 via the switch 307, and transmitted from the antenna 300.
( 2 ) 基地局において、 アンテナ 400で受信された信号は、 受信部 (2) At the base station, the signal received by antenna 400
411へ送られ、 ここで復調されてスィツチ 413に送られる。 ( 3 ) 伝送品質検出部 415 は、 通信処理部 402 で処理された各移 動局からの受信信号に基づいて占有無線周波数のタイムスロッ 卜利用率 を算出する。 The signal is demodulated and sent to the switch 413. (3) The transmission quality detection unit 415 calculates the time slot utilization rate of the occupied radio frequency based on the reception signal from each mobile station processed by the communication processing unit 402.
第 6図は、 本発明に係わるタイムスロ ッ 卜の割当方法を説明するため の流れ図である。 タイムスロッ ト利用率 Ua (%)は次式に示すように各基 地局に割り当てられた占有無線周波数内のタイムス口ッ 卜総数と通信に 使用されているタイムスロッ ト数の比によって求める (ステップ 1 ) 。 (タイムスロッ ト利用率 Ua(%)703 ) =  FIG. 6 is a flowchart for explaining a method of allocating a time slot according to the present invention. The time slot utilization rate Ua (%) is calculated from the ratio of the total number of time slots in the occupied radio frequency allocated to each base station to the number of time slots used for communication as shown in the following equation (Step 1). ). (Time slot utilization rate Ua (%) 703) =
(使用タイムスロッ 卜数 704 ) / (占有無線周波数内総タイムスロッ 卜 数 705 ) x lOO  (Number of used time slots 704) / (Total number of time slots in occupied radio frequency 705) x lOO
すなわち、 個々の基地局の伝送品質検出部 415は、 電力の低い無信号 と思われるスロッ トを空きタイムスロッ 卜とみなし、 通信に使用されて いるタイムスロッ ト数を求め、 予め登録されている占有無線周波数内の タイムスロッ 卜総数との比によって求める。  That is, the transmission quality detection unit 415 of each base station regards a slot that is considered to be a low-power, no-signal slot as an idle time slot, obtains the number of time slots used for communication, and registers a previously registered occupied radio. It is determined by the ratio with the total number of time slots in the frequency.
( 4 ) 第 6図において、 伝送品質検出部 415で算出されたタイムス 口ッ ト利用率 Ua(%)は、 インタフヱ一ス部 405 からディ ジタル伝送路 114を介して基地局制御装置 101に送られる。  (4) In FIG. 6, the time-slot utilization rate Ua (%) calculated by the transmission quality detection unit 415 is transmitted from the interface unit 405 to the base station control device 101 via the digital transmission path 114. Can be
( 5 ) 第 2図の基地局制御装置 101において、 各基地局から送られ てきたタイムスロッ ト利用率 Ua ( は、 制御部 201 内のリソース管理 Z 割当部 204に伝送される。 タイムスロッ ト利用率 Ua(%)は D B部 205内 の占有無線周波数のタイムスロッ 卜管理テーブル 206に記憶される (ス テツプ 2 ) 。  (5) In the base station control apparatus 101 of FIG. 2, the time slot utilization rate Ua () transmitted from each base station is transmitted to the resource management Z allocating section 204 in the control section 201. The time slot utilization rate Ua (%) is stored in the time slot management table 206 of the occupied radio frequency in the DB unit 205 (Step 2).
占有無線周波数のタイムスロッ ト管理テーブル 206は、 例えば第 7図 のように構成する。 占有無線周波数のタイムスロッ 卜管理テーブル 206 は、 占有無線周波数 701、 基地局番号 702、 タイムスロ ッ 卜利用率 Ua(%)703、 使用タイムスロッ 卜数 704、 占有無線周波数内総タイムス ロッ ト数 705などを記憶する。 なお、 第 7図に例としてタイムスロッ ト 利用率 Ua ( )の算出結果が示されている。 タイムスロッ 卜利用率 Ua ( ¾ ) は、 例えば少数点以下を切り上げて記憶する。 The occupied radio frequency time slot management table 206 is configured, for example, as shown in FIG. The occupied radio frequency time slot management table 206 includes an occupied radio frequency 701, a base station number 702, a time slot utilization rate Ua (%) 703, a used time slot number 704, and a total time slot in the occupied radio frequency. The number of lots, such as 705, is stored. Fig. 7 shows the calculation results of the time slot utilization rate Ua () as an example. The time slot utilization rate Ua (¾) is stored, for example, by rounding up decimal places.
( 6 ) 第 2図において、 リソース管理 Z割当部 204では、 タイムス ロッ ト利用率 Ua が 90%以上となるセル、 すなわち、 トラヒックが多く 空きスロッ 卜数が不足している基地局番号を D B部 205内の占有無線周 波数のタイムスロッ ト管理テーブル 206により検索し、 その基地局番号 を記憶する。 空きスロッ ト数が不足している基地局が存在しなければ、 共有無線周波数を割り当てるほどのトラヒックではないため、 処理 ( 1 3 ) に移行する (ステップ 3 ) 。  (6) In FIG. 2, the resource management Z allocating section 204 stores in the DB section the cells in which the time slot utilization rate Ua is 90% or more, that is, the base station numbers in which there is a lot of traffic and the number of available slots is insufficient. The time slot management table 206 for the occupied radio frequency in 205 is searched and the base station number is stored. If there is no base station with an insufficient number of available slots, the traffic is not enough to allocate a shared radio frequency, and the processing shifts to processing (13) (step 3).
( 7 ) リソース管理ノ割当部 204では、 占有無線周波数のタイムス ロッ 卜管理テーブル 206 を基に各基地局に追加すべき必要なタイムス ロッ ト数 Sを求め、 占有無線周波数のタイムスロッ 卜管理テーブル 206 に記憶する。 第 7図では、 基地局番号 1のタイムス口ッ 卜利用率 Ua ) が 90%以上である。 そのため、 共有無線周波数から 4タイムスロッ トを 割り当てている。 このように Sは予め定められた一定値でも良いが、 セ ル内のトラヒックの時間変動等を考慮して割り当てるタイムスロッ ト数 をダイナミ ックに可変させてもい。 例えば、 経験的に混雑が予想される 時間帯があることはよく知られているが、 その時間帯においては割当夕 ィ厶スロッ ト数を通常時よりも多めにすることが考えられる。 また、 Uaに比例した値を Sとしてもよい。  (7) The resource management allocating section 204 obtains the required number of time slots S to be added to each base station based on the occupied radio frequency time slot management table 206, and obtains the occupied radio frequency time slot management table 206. To memorize. In Fig. 7, the time slot utilization rate Ua) of base station number 1 is 90% or more. Therefore, four time slots are allocated from the shared radio frequency. As described above, S may be a predetermined constant value, or the number of time slots to be allocated may be dynamically varied in consideration of the time variation of traffic in the cell. For example, it is well known that there is a time zone where congestion is expected empirically, but it is conceivable that the number of allocated slots is set to be larger than usual during that time. Further, a value proportional to Ua may be set as S.
( 8 ) リソース管理 Z割当部 204 は、 基地局制御装置 101 が管理 しているセル単位 (グループセル) に割り当てるタイムスロッ ト Sの合 計数∑ Sを D B部 205内の占有無線周波数のタイムスロッ 卜管理テ一ブ ル 206から求める (ステップ 4 ) 。  (8) Resource management The Z allocating unit 204 performs time slot management of the occupied radio frequency in the DB unit 205 by dividing the total number of time slots S allocated to the cell units (group cells) managed by the base station controller 101. Determined from table 206 (step 4).
( 9 ) 次にリソース管理/割当部 204は、 グループセルに割り当て た共有無線周波数 fxj (; i = l、 2、 3、 ..、 J)の空きタイムスロ ッ 卜の合 計数∑ Tbを D B部 205 内の共有無線周波数のタイムス口ッ ト管理テー ブル 207から求める (ステップ 5 ) 。 (9) Next, the resource management / allocation unit 204 allocates The total number of available time slots of the shared radio frequency fxj (; i = 1, 2, 3, .., J)) Tb is obtained from the shared radio frequency time slot management table 207 in the DB unit 205. (Step 5).
共有無線周波数のタイムス口ッ ト管理テーブル 207の構成の一例を第 8図に示す。 共有無線周波数のタイムスロッ ト管理テーブル 207には共 有無線周波数 801、 使用タイムスロ ッ 卜数 802、 共有無線周波数内総タ ィ厶ス口ッ 卜数 803、 空きタイムス口ッ ト数 804などを記憶する。 空き タイムスロッ ト数は次式より求める。  FIG. 8 shows an example of the configuration of the time-to-mouth management table 207 of the shared radio frequency. The shared radio frequency time slot management table 207 stores a shared radio frequency 801, the number of used time slots 802, the total number of time slots in the shared radio frequency 803, the number of available time slots 804, and the like. . The number of empty time slots is calculated by the following formula.
(空きタイムスロッ 卜数 804) =  (Number of free time slots 804) =
(共有無線周波数内総タイムスロッ ト数 803) — (使用タイムス 口ッ ト数 802)  (Total number of time slots in shared radio frequency 803) — (Number of used time slots 802)
なお、 使用タイムスロッ ト数は、 常にリソース管理/割当部 204で各基 地局毎に把握し共有無線周波数のタイムスロッ ト管理テーブル 207に記 憶している。 The number of used time slots is always grasped for each base station by the resource management / allocation unit 204 and is stored in the time slot management table 207 of the shared radio frequency.
( 1 0 ) 次にリソース管理 Z割当部 204は、 ∑ S と∑ Tbの比較を 行い、 セルに割り当てる共有無線周波数 fxjの空きスロッ 卜が不足 (∑ Tbく∑ S) する場合は、 新しい共有無線周波数 fx(j + l)をグループセル に追加する。 具体的には、 ; fxj(j = l、 2、 3、 ..、 J)から順に共有無線周 波数をグループセルに割り当て、 共有無線周波数の空きタイムスロッ 卜 が例えば 4スロッ 卜になった時に次の fx(jU)を共有無線周波数として 新たに追加することが考えられる (ステップ 6 ) 。  (10) Next, the resource management Z allocating unit 204 compares ∑S and ∑Tb, and if there is a shortage of free slots for the shared radio frequency fxj to be allocated to the cell (新 し い Tb∑S), a new shared Add the radio frequency fx (j + l) to the group cell. Specifically,; fxj (j = 1, 2, 3, .., J), the shared radio frequencies are assigned to the group cells in order, and when the number of free time slots of the shared radio frequency becomes, for example, four, It is conceivable that fx (jU) is newly added as a shared radio frequency (step 6).
( 1 1 ) なお、 全共有無線周波数 (fxl〜; fxJ) に空きタイムス 口ッ 卜がない場合は、 呼損とする。 但し、 一部のタイムス口ッ 卜が割り 当て可能な状態で全てを呼損とする処理は回避しなければならない。 こ のため、 「呼損処理」 として、 どの呼を呼損にするかの手順を決めてお く。 例えば、 手順を決める方法として以下のものが考えられる。 (a)通信継続時間が長い呼は生かし、 短い呼を呼損とする。 (11) If there is no vacant time slot in all shared radio frequencies (fxl to fxJ), call loss will occur. However, it is necessary to avoid a process in which some time slots can be assigned and all calls are lost. For this reason, the procedure for determining which call is to be blocked as “blocking process” is determined. For example, the following can be considered as a method of determining the procedure. (a) Calls with a long communication duration are utilized, and short calls are regarded as call losses.
(b)タイムスロッ 卜利用率 Ua の高い基地局の呼を優先し、 低い基地 局を呼損とする。  (b) Priority is given to calls from base stations with high time slot utilization Ua, and call losses are made from base stations with low time slot utilization.
( 1 2 ) 第 2図において、 D B部 205の占有無線周波数のタイムス ロッ ド管理テーブル 206 に記憶されたタイムス口ッ ト利用率 Ua の高い 基地局から順に共有無線周波数 fx]'(j = l、 2、 3、 ..、 J)の空きタイム スロッ トを割り当てる (ステップ 7 ) 。  (1 2) In FIG. 2, the shared radio frequency fx] ′ (j = l) is assigned in order from the base station with the highest time-to-mouth utilization rate Ua stored in the time slot management table 206 of the occupied radio frequency of the DB unit 205. , 2, 3, .., J) free time slots (step 7).
( 1 3 ) タイムスロッ ト管理テーブル 206、 207 を更新する。 タイ マーを起動し一定時間経過後 (例えば通常の音声通話時間を想定して 120 秒経過したときなど) に ( 1 ) からの処理を繰り返し行なう (ス テツプ 8 ) 。  (13) Update the time slot management tables 206 and 207. After the timer is activated, the process from (1) is repeated after a certain period of time (for example, when 120 seconds have elapsed assuming a normal voice call time) (Step 8).
( 1 4 ) 基地局制御装置 101 のリソース管理 Z割当部 204 は、 夕 ィ厶ス口ッ 卜の割当信号をディジタル伝送路 114を介して各基地局へ送 る。 このタイムスロッ ト割当信号には、 いずれかの共有無線周波数を示 す識別子と、 そのタイムスロッ 卜を示す識別子が含まれている。  (14) The resource management Z allocating section 204 of the base station control apparatus 101 sends the allocation signal of the evening mouth to each base station via the digital transmission line 114. The time slot assignment signal includes an identifier indicating one of the shared radio frequencies and an identifier indicating the time slot.
( 1 5 ) タイムスロッ ト割当信号を受信した基地局は、 この基地局 制御装置 101のタイムス口ッ ト割当信号により指定された共有無線周波 数、 及びそのタイムスロッ 卜に基づいて、 移動局にタイムスロッ 卜の割 当信号を送る。  (15) The base station that has received the time slot assignment signal sends a time slot to the mobile station based on the shared radio frequency specified by the time slot assignment signal of the base station controller 101 and the time slot. Send an assignment signal of.
( 1 6 ) 第 3図において、 移動局のアンテナ 300で受信された基地 局からの信号は、 受信部 306へ送られ、 ここで復調されてスィッチ 304 を経由し、 ヒューマンインタフヱース部 303内で画像あるいは音声等の 処理が行われユーザとの情報のやり取りを行う。 ここで、 制御部 304は. 送受信部 301、 スィッチ部 302、 ヒューマンインタフヱ一ス部 303の制 御を行なう。  (16) In FIG. 3, the signal from the base station received by the antenna 300 of the mobile station is sent to the receiving section 306, where it is demodulated and passed through the switch 304 to the human interface section 303. Processing such as images or voices is performed within the system to exchange information with the user. Here, the control unit 304 controls the transmission / reception unit 301, the switch unit 302, and the human interface unit 303.
実施例をもとに本発明を詳細に説明したが、 本発明はこの実施例のみ に限定されるものではない。 例えば、 実施例では、 各基地局でタイムス ロッ ト利用率を測定したが、 基地局制御装置側で一括して測定してもよ い。 また、 本例では TDMA多重数は 64であるが、 必ずしも 64である必 要はない。 また、 各タイ厶スロッ ト内で符号分割多重を行なう TD - CDMA 方式に適用することも可能である。 The present invention has been described in detail based on the embodiments. However, the present invention is not limited to this. For example, in the embodiment, the time slot utilization rate is measured in each base station, but may be collectively measured in the base station controller. In this example, the number of TDMA multiplexes is 64, but it is not necessary to be 64. It can also be applied to the TD-CDMA system that performs code division multiplexing within each time slot.
第 9図に本発明を適用した場合のタイムス口ッ ト数と無線周波数の数 との関係を示す。 従来は 1つのセルに固定的に無線リソースを割り当て ていたために、 多くの空きタイムスロッ 卜が発生していた。 例えば、 第 1 2図の例では、 63 タイムス口ッ 卜が空きタイムス口ッ トとなり周波 数の利用効率が低下していた。  FIG. 9 shows the relationship between the number of time slots and the number of radio frequencies when the present invention is applied. In the past, radio resources were fixedly allocated to one cell, which caused many idle time slots. For example, in the example shown in Fig. 12, 63 timeslots became empty timeslots, and the efficiency of frequency utilization was reduced.
本発明によれば、 共有無線周波数の無線リソースを複数の基地局で共 有するため、 セル C 1 で使用されない空きタイムス口ッ トをサ一ビスェ リア内の他のセル C2、 C3 に割り当てることで空きタイムス口ッ トを低 減できる。 この効果は、 共有セル数が増えるに従い増加する。 例えば、 共有無線周波数を 1 0 セルで共有すれば、 空きタイムスロ ッ トを 1 / 1 0 へ低減できる。 即ち、 第 1 2図の例では、 63 タイムスロッ 卜の空きタ ィムス口ッ トを平均 6タイムスロッ 卜に抑制できる。 これにより、 課題 が解決でき、 その結果として、 無線リ ソースの有効利用を促進し、 トラ ヒック容量を上げることが可能となる。 産業上の利用可能性  According to the present invention, since the radio resource of the shared radio frequency is shared by a plurality of base stations, an empty time slot not used in the cell C 1 is allocated to the other cells C 2 and C 3 in the service area. Free time slot can be reduced. This effect increases as the number of shared cells increases. For example, if the shared radio frequency is shared by 10 cells, the idle time slot can be reduced to 1/10. That is, in the example of FIG. 12, the empty timeslot of 63 timeslots can be suppressed to an average of 6 timeslots. As a result, the problem can be solved, and as a result, it is possible to promote effective use of wireless resources and increase traffic capacity. Industrial applicability
本発明は、 1無線周波数内のタイムスロッ 卜数が比較的多い T D M A 移動通信システムにおいて、 各セルのトラヒックの変動に応じて、 既存 の占有周波数と干渉しない共有無線周波数のタイムス口ッ トを複数のセ ルに割り当てることにより、 空きタイムスロッ 卜及び周波数の有効利用 を促進できる。  In a TDMA mobile communication system in which the number of time slots within one radio frequency is relatively large, the present invention uses a plurality of timeslots of a shared radio frequency that does not interfere with the existing occupied frequency in accordance with the traffic fluctuation of each cell. By allocating to cells, it is possible to promote effective use of available time slots and frequencies.

Claims

請 求 の 範 囲 The scope of the claims
1. サービスエリアを複数のセルに分割し、 前記セルに少なく とも一"" 3 づっ配置される無線基地局と、 前記無線基地局を制御する基地局制御装 δ 置とからなる TDM A移動体通信システムにおいて、 1. A TDMA mobile unit comprising: a radio base station, which divides a service area into a plurality of cells, and is arranged at least one "" 3 in the cell; and a base station control device δ controlling the radio base station. In communication systems,
隣接するセル間で重複しない占有周波数を前記無線基地局に固定的に 割当て、  An occupied frequency that does not overlap between adjacent cells is fixedly assigned to the radio base station,
前記無線基地局は、 自己に割り当てられた占有周波数のタイムスロッ 卜の利用率を算出し、 算出された前記タイムスロッ 卜利用率を、 前記基0 地局制御装置に送信し、  The radio base station calculates a time slot utilization rate of the occupied frequency assigned to the radio base station, and transmits the calculated time slot utilization rate to the base station controller.
前記基地局制御装置は各無線基地局から受信した前記タイムスロッ ト 利用率としきい値とを比較し、 タイムスロッ 卜の割り当てが必要と判断 すると、 複数のセル間で共有する共有無線周波数のタイムスロッ トの少 なく とも一つを前記タイムスロッ トの割当が必要と判断された無線基地5 局に対し補充することを特徴とする TDM A移動体通信システム。  The base station controller compares the time slot utilization rate received from each radio base station with a threshold value, and determines that time slot allocation is necessary, and determines the time slot of a shared radio frequency shared by a plurality of cells. A TDMA mobile communication system, characterized in that at least one of them is supplemented to the five radio base stations determined to require the time slot allocation.
2. 請求の範囲第 1項記載の TDMA移動体通信システムにおいて、 前記タイムスロッ ト利用率は、 前記無線基地局に割り当てられた占有周 波数のタイムス口ッ 卜が前記無線基地局と通信する移動局に使用されて いるものの割合により算出することを特徴とする T DM A移動体通信シ0 ステム。  2. The TDMA mobile communication system according to claim 1, wherein the time slot utilization rate is a mobile station in which a time slot of an occupied frequency allocated to the radio base station communicates with the radio base station. TDMA mobile communication system, characterized in that it is calculated based on the ratio of those used for mobile communication.
3. 請求の範囲第 1項記載の TDMA移動体通信システムにおいて、 前記基地局制御装置は、 前記無線基地局を示す識別子と、 前記無線基地 局に対応するタイムスロッ ト利用率とを記憶するデータベースを有する ことを特徴とする TDMA移動体通信システム。 3. The TDMA mobile communication system according to claim 1, wherein the base station control device has a database storing an identifier indicating the radio base station and a time slot utilization rate corresponding to the radio base station. A TDMA mobile communication system, comprising:
5 4. サービスエリアを複数のセルに分割し、 前記セルに少なく とも一つ づっ配置される無線基地局と、 前記無線基地局を制御する基地局制御装 置とからなる T D M A移動体通信システムにおいて、 5 4. A service area is divided into a plurality of cells, and at least one radio base station is arranged in the cell, and a base station control device that controls the radio base station. In a TDMA mobile communication system comprising
隣接するセル間で重複しない占有周波数を前記無線基地局に固定的に 割当て、  An occupied frequency that does not overlap between adjacent cells is fixedly assigned to the radio base station,
前記無線基地局は、 自己に割り当てられた占有周波数のタイムス口ッ δ 卜の利用率を算出し、 算出した前記タイムスロッ ト利用率を前記基地局 制御装置に送信し、  The radio base station calculates a utilization rate of a time slot of an occupied frequency assigned to the radio base station, and transmits the calculated time slot utilization rate to the base station control device.
前記基地局制御装置は、 複数の前記無線基地局から受信した各々タイ ムスロッ 卜利用率に基づいて、 複数のセル間で共有する共有無線周波数 のタイムスロッ トを前記無線基地局に対し補充することを特徴とする Τ0 D M A移動体通信システム。  The base station control device may supplement the radio base station with a time slot of a shared radio frequency shared by a plurality of cells based on the respective time slot utilization rates received from the plurality of radio base stations. Features # 0 DMA mobile communication system.
5 . 請求の範囲第 4項記載の T D M A移動体通信システムにおいて、 前記基地局制御装置は、 複数の前記無線基地局から受信した各々タイ ムスロッ 卜利用率に比例して、 前記共有無線周波数のタイムスロッ 卜を 補充することを特徴とする T D M A移動体通信システム。 5. The TDMA mobile communication system according to claim 4, wherein the base station control device performs a time slot of the shared radio frequency in proportion to a time slot utilization rate received from each of the plurality of radio base stations. A TDMA mobile communication system characterized by replenishing data.
5 6 . 請求の範囲第 4項記載の T D M A移動体通信システムにおいて、 前記無線基地局は、 自己に割り当てられた共有無線周波数のタイムス ロッ 卜の利用率を算出し、 算出された前記共有無線周波数のタイムス ロッ 卜利用率を、 前記基地局制御装置に送信し、 56. The TDMA mobile communication system according to claim 4, wherein the radio base station calculates a time slot utilization rate of a shared radio frequency allocated to itself, and calculates the calculated shared radio frequency. Transmitting the time slot utilization rate to the base station controller,
前記基地局制御装置は各無線基地局から受信した前記共有無線周波数0 のタイムスロッ ト利用率としきい値とを比較し、 さらなる共有無線周波 数のタイムスロッ 卜の割り当てが必要と判断すると、 他の共有無線周波 数のタイムス口ッ 卜の少なく とも一つを前記無線基地局に対し補充する ことを特徴とする T D M A移動体通信システム。  The base station control device compares the time slot utilization rate of the shared radio frequency 0 received from each radio base station with a threshold value, and when it determines that it is necessary to allocate a further time slot of the shared radio frequency, the other shared radio frequency slot is used. A TDMA mobile communication system, wherein at least one of radio frequency time slots is supplemented to the radio base station.
7 . サービスェリァを複数のセルに分割し隣接するセル間で重複しない5 占有周波数を固定的に割り当てられた無線基地局と、 複数の前記無線基 地局を制御する基地局制御装置とからなる T D M A移動体通信システム において、 7. TDMA consisting of a radio base station that divides the servicer into a plurality of cells and does not overlap between adjacent cells 5 a radio base station to which an occupied frequency is fixedly allocated and a base station controller that controls the radio base stations Mobile communication system At
前記無線基地局は、 自己に割り当てられた占有周波数のタイムス口ッ 卜の利用率を算出す算出装置と、 前記算出装置により算出された前記夕 ィムスロッ 卜利用率を前記基地局制御装置に送信する送信装置を備え、 前記基地局制御装置は、 各無線基地局から受信した前記タイムス口ッ ト利用率としきい値とを比較し、 タイムスロッ 卜の補充が必要と判断す ると、 前記タイムスロッ 卜の割当が必要と判断された無線基地局に対し 複数のセル間で共有する共有無線周波数のタイムスロッ 卜の少なく とも 一つを割当てる割当装置とを備えることを特徴とする T D M Α移動体通 信システム。  The wireless base station transmits to the base station control device a calculating device that calculates the time slot utilization rate of the occupied frequency allocated to itself, and the evening slot usage ratio calculated by the calculating device. The base station controller compares the time slot utilization rate received from each wireless base station with a threshold value, and determines that the time slot needs to be replenished. A TDM / mobile communication system, comprising: an allocation device that allocates at least one time slot of a shared radio frequency shared by a plurality of cells to a radio base station determined to need to be allocated.
8 . サービスエリァを複数のセルに分割し隣接するセル間で重複しない 占有周波数を固定的に割り当てられた無線基地局と、 複数の前記無線基 地局を制御する基地局制御装置とからなる T D M A移動体通信システム において、  8. A radio base station, which divides a service area into a plurality of cells and does not overlap between adjacent cells, is fixedly assigned an occupied frequency, and includes a base station control device that controls the plurality of radio base stations. In TDMA mobile communication systems,
前記無線基地局は、 自己に割り当てられた占有周波数のタイムス口ッ 卜の利用率を算出する算出装置と、 前記算出装置が算出した前記タイム スロッ ト利用率を前記基地局制御装置に送信する送信装置とを備え、 前記基地局制御装置は、 複数の前記無線基地局から受信した各々タイ ムスロッ ト利用率に基づいて複数のセル間で共有する共有無線周波数の タイムスロッ トを前記無線基地局に対し補充するよう制御することを特 徴とする T D M A移動体通信システム。  The radio base station includes: a calculating device that calculates a time slot utilization rate of an occupied frequency allocated to the radio base station; and a transmission device that transmits the time slot utilization ratio calculated by the calculating device to the base station control device. The base station control device transmits a time slot of a shared radio frequency shared by a plurality of cells to the radio base station based on the time slot utilization rate received from each of the plurality of radio base stations. TDMA mobile communication system characterized by control of replenishment.
9 . 請求の範囲第 8項記載の T D M A移動体通信システムにおいて、 前記算出装置は、 共有無線周波数のタイムスロッ 卜の利用率を算出し 前記送信装置は、 算出された前記共有無線周波数のタイムスロッ 卜利用δ 率を前記基地局制御装置に送信し、 前記基地局制御装置は各無線基地局 から受信した前記共有無線周波数のタイムス口ッ ト利用率としきい値と を比較し、 さらなる共有無線周波数のタイムスロッ 卜の割り当てが必要 と判断すると、 他の共有無線周波数のタイムスロッ 卜の少なく とも一つ を前記無線基地局に対し補充することを特徴とする T D M A移動体通信 システム。 9. The TDMA mobile communication system according to claim 8, wherein the calculating device calculates a usage rate of a time slot of a shared radio frequency, and the transmitting device uses the calculated time slot of the shared radio frequency. δ rate is transmitted to the base station controller, and the base station controller receives a time slot utilization rate and a threshold value of the shared radio frequency received from each radio base station. TDMA mobile communication characterized by replenishing at least one of the time slots of other shared radio frequencies to the radio base station when it is determined that it is necessary to further allocate time slots of the shared radio frequency. system.
PCT/JP1999/000085 1998-01-14 1999-01-13 Tdma mobile communication system WO1999037110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP536798 1998-01-14
JP10/5367 1998-01-14

Publications (1)

Publication Number Publication Date
WO1999037110A1 true WO1999037110A1 (en) 1999-07-22

Family

ID=11609209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000085 WO1999037110A1 (en) 1998-01-14 1999-01-13 Tdma mobile communication system

Country Status (1)

Country Link
WO (1) WO1999037110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274725B2 (en) 2000-12-28 2007-09-25 Siemens Communications, Inc. System and method for adaptive carrier occupancy in a frequency hopping spread spectrum system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175828A (en) * 1989-12-05 1991-07-30 Nec Corp Frequency allocation system for moving body communication
JPH04306924A (en) * 1991-04-03 1992-10-29 Toshiba Corp Mobile radio communication system
JPH0530021A (en) * 1991-04-18 1993-02-05 Mitsubishi Electric Corp Speech channel allocation method for mobile body communication
JPH05316039A (en) * 1992-05-12 1993-11-26 Nec Corp Mobile radio telephone exchange system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175828A (en) * 1989-12-05 1991-07-30 Nec Corp Frequency allocation system for moving body communication
JPH04306924A (en) * 1991-04-03 1992-10-29 Toshiba Corp Mobile radio communication system
JPH0530021A (en) * 1991-04-18 1993-02-05 Mitsubishi Electric Corp Speech channel allocation method for mobile body communication
JPH05316039A (en) * 1992-05-12 1993-11-26 Nec Corp Mobile radio telephone exchange system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274725B2 (en) 2000-12-28 2007-09-25 Siemens Communications, Inc. System and method for adaptive carrier occupancy in a frequency hopping spread spectrum system

Similar Documents

Publication Publication Date Title
CA2135950C (en) Method of multiple access
CA2250646C (en) Adaptive frequency channel assignment based on battery power level in wireless access protocols
US5598417A (en) Dynamic control of a data channel in a TDM wireless communication system
US6198728B1 (en) Medium access control (MAC) protocol for wireless ATM
US4831373A (en) Method for dynamically allocating data channels on a trunked communication system
US8325660B2 (en) Communication resource management device
JP2777841B2 (en) Multiple control slot TDM / FDM communication system
CN1764088B (en) Method and base station system for configuring radio interface between mobile station and base station
US6898195B1 (en) Method and apparatus for sustaining conversational services in a packet switched radio access network
JP2003046437A (en) Mobile communication system, base station device, and control method for the mobile communication system
RU2216100C2 (en) Method for planning readings of variable blocks with aid of status flag of ascending communication line in burst data transmission system
EP0781495A1 (en) Transmission of control messages in digital telephony
JP5861060B2 (en) Wireless base station, wireless communication terminal, wireless communication system and method
US6600731B2 (en) Method and base station system for calling mobile stations for the transmission of packet data
CN102119565A (en) Near companion mode in a wireless communication system
KR101498414B1 (en) Allocating traffic channels in a communications system
KR100273979B1 (en) System and methods for optimizing communicationl
KR20020043162A (en) Supplemental channel sharing algorithm
WO1999037110A1 (en) Tdma mobile communication system
JPH11266478A (en) TDMA mobile communication system
GB2399991A (en) Sharing resource access based on location classes
JP2003199147A (en) Resource assignment controller, resource assignment control method, and resource assignment control system
EP1018811B1 (en) Transmission control without limitation by the number of users
JPH0833020A (en) Radio packet channel setting method
JP3242709B2 (en) Mobile communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载