WO1999036171A1 - Procede de modification chimique selective de l'interieur d'une matiere inorganique et matiere inorganique dont l'interieur est chimiquement modifie de façon selective - Google Patents
Procede de modification chimique selective de l'interieur d'une matiere inorganique et matiere inorganique dont l'interieur est chimiquement modifie de façon selective Download PDFInfo
- Publication number
- WO1999036171A1 WO1999036171A1 PCT/JP1998/005676 JP9805676W WO9936171A1 WO 1999036171 A1 WO1999036171 A1 WO 1999036171A1 JP 9805676 W JP9805676 W JP 9805676W WO 9936171 A1 WO9936171 A1 WO 9936171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic material
- ions
- transition metal
- laser beam
- ion
- Prior art date
Links
- 229910010272 inorganic material Inorganic materials 0.000 title claims abstract description 62
- 239000011147 inorganic material Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 11
- 150000002500 ions Chemical class 0.000 claims abstract description 48
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 28
- 229910001428 transition metal ion Inorganic materials 0.000 claims abstract description 27
- -1 rare-earth ions Chemical class 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000011521 glass Substances 0.000 claims abstract description 7
- 150000004770 chalcogenides Chemical class 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 150000004820 halides Chemical class 0.000 claims abstract description 5
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 3
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 229910052771 Terbium Inorganic materials 0.000 claims abstract 4
- 229910052684 Cerium Inorganic materials 0.000 claims abstract 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract 2
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract 2
- 229910052775 Thulium Inorganic materials 0.000 claims abstract 2
- 230000008859 change Effects 0.000 abstract description 19
- 230000003287 optical effect Effects 0.000 abstract description 13
- 230000015654 memory Effects 0.000 abstract description 3
- 150000002910 rare earth metals Chemical class 0.000 abstract description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 7
- 239000005383 fluoride glass Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910016655 EuF 3 Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/0025—Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/121—Coherent waves, e.g. laser beams
Definitions
- the present invention relates to a method for selectively modifying the inside of an inorganic material by focused irradiation of a pulsed laser beam, and to an inorganic material having a selectively modified inside.
- Redox of inorganic materials containing rare earth ions and transition metal ions, or irradiation of X-rays and ultraviolet rays changes the valence of rare earth ions and transition metal ions.
- E u 2+ ions have been reported to Heni spoon in E u 3+ [J. Q iueta l ., App l Phys. Lett. 71 (1997) 759].
- Mn 2+ changes to Mn 3+ when ultraviolet light is irradiated on a Mn 2+ -containing oxide material [WA Wey 1, Coloured Glasse s. Society of Glass Technology. ogy (1951)].
- a light-shielding mask is provided on the inorganic material in a predetermined pattern, and the inorganic material is selectively irradiated. I do. Thereby, the valence of ions in the inorganic material is partially changed according to a required pattern.
- the oxidation-reduction method using an atmosphere can change the valence of the rare-earth ion / transition metal ion distributed throughout the inorganic material, but selectively changes the valence of the rare-earth ion / transition metal ion present in the inorganic material. It is difficult to change to.
- the change in valence of ions due to X-rays or ultraviolet rays is a reaction due to a one-photon process. It is difficult to change the valence selectively.
- the present invention has been devised in order to solve such a problem.
- concentrating and irradiating a pulsed laser beam onto an inorganic material containing rare earth ions and / or transition metal ions the inside of the inorganic material can be identified. It is an object of the present invention to provide an inorganic material having enhanced functionality by selectively changing the valence of rare earth ions and / or transition metal ions in a region.
- the present invention focuses and irradiates an inorganic material with a pulse laser beam whose focus is adjusted inside an inorganic material containing a rare earth ion and Z or a transition metal ion. It is characterized in that the valence of rare earth ions and Z or transition metal ions is changed only in the vicinity of the light spot.
- the inorganic material a glass or a crystal containing one or more of oxides, halides, and chalcogenides is used.
- Rare earth ions include Ce ion, Nd ion, Pr ion, Sm ion, Eu ion, Tb ion, Dy ion, Tm ion, Tb ion and the like.
- Transition metal ions include Ti, Mn, Cr, V, Fe, Cu, Mo, and Ru ions.
- FIG. 1 shows a state in which an inorganic material is condensed and irradiated by a pulsed laser beam whose focal point is adjusted inside the inorganic material.
- FIG. 2 shows the confocal optics used to measure the region of change in ion valence.
- FIG. 3 is a graph showing that the valence of the rare earth ion has changed by the focused irradiation of the pulsed laser light.
- the wavelength of the pulsed laser beam used in the present invention including the absorption wavelength of rare-earth ion-transition metal ions contained in the inorganic material, preferably does not overlap with the intrinsic absorption wavelength of the target inorganic material. New As long as pulse energy of 50% or more of the irradiation energy can be obtained at the focal point, it is possible to change the ion valence only at the focal point.
- the pulse width of the pulse laser beam is preferably 1 picosecond or less. Since the peak power of a pulsed laser beam decreases as the pulse width increases, it is necessary to increase the peak energy of the laser pulse to obtain the same peak power density.
- the peak power of a pulsed laser beam is expressed as the power (unit: W) obtained by dividing the output energy (J) per pulse by the pulse width (sec), and the peak power density is defined as the peak power per unit area (cm 2 ). W / cm 2 ).
- the pulse width is shorter than 100 femtoseconds, since the inorganic material itself is a dispersed material, the pulse width inside the inorganic material changes significantly depending on the position of the focal point in the depth direction, and the ion value It becomes difficult to control the size of the number change area. Conversely, if the pulse width is longer than 500 femtoseconds, cracks will occur in the material due to thermal shock when pulsed laser light with the peak energy required for changing the valence of ions is focused and irradiated inside the inorganic material. The fear increases.
- the pulse laser beam 1 is converged by the condenser lens 4 so that the focal point 2 is located inside the inorganic material 3 as shown in FIG.
- the electric field intensity of the pulsed laser beam 1 at the focal point 2 exceeds the threshold for the valence change of the rare-earth ion-transition metal ion contained in the inorganic material 3, the rare-earth element existing at and near the focal point 2
- the valence of the ion-transition metal ion changes.
- the electric field strength is weak at a position distant from the focal point 2, and the valence of the rare earth ion to the transition metal ion does not change.
- the valence change of the rare-earth ion or the transition metal ion occurs only at or near the focal point 2 and the inside of the inorganic material 3 is selectively modified.
- the valence changing region can be formed in a predetermined pattern by relatively moving the focal point 2 or the inorganic material 3.
- the focusing point 2 is moved in three directions of X, ⁇ , and Z by operating the optical system, or the inorganic material 3 itself is moved in three directions of X, ⁇ , and Z, and the movement of both is combined.
- a necessary valence change region of a two-dimensional or three-dimensional pattern is formed inside the inorganic material 3.
- the inorganic material modified according to the present invention takes advantage of this valence difference. It can be used for various optical memories, light-emitting devices, amplifier devices, etc.
- the raw materials were weighed and placed in platinum rutupo. The raw material was melted at 1450 ° C for 30 minutes and cooled to around room temperature. The obtained glass was placed in a carbon crucible and subjected to a reduction treatment at 1450 ° C for 60 minutes in a 5% by volume H 2 —N 2 gas atmosphere. Then, the glass melt was quenched together with the crucible to near room temperature. A 2 + -containing oxide glass was obtained. A sample having a thickness of 5 mm was cut out from the Sm 2+ -containing oxide glass, and the presence of Eu 2+ was confirmed by measuring the absorption spectrum after optically polishing the two planes.
- the pulse laser beam 1 was condensed by the condenser lens 4 so that the focal point 2 was located inside the fabricated sample 3 (Fig. 1), and the sample 3 was focused and irradiated.
- the pulse laser beam 1 is a pulse laser beam emitted from an argon laser-excited Ti-sapphire laser with a pulse width of 300 fs, a repetition period of 1 ⁇ 112, and a wavelength of 800 111, and a peak energy density of 10 9 to 10 15 Irradiation was performed for 1 second at the focal point 3 with WZcm 2 .
- the sample with the laser beam focused and irradiated was focused and irradiated with light at a wavelength of 40 Onm at the same location as the focal point 3 in Fig. 1.
- the laser beam 1 whose diffraction is minimized passes through the tube lens 5 and the objective lens 6 and is condensed on the surface and inside of the sample 3.
- the focusing surface 7 is adjusted inside the sample 3
- the light emitted from the focusing surface 7 passes through the objective lens 6 and the tube lens 5, and is converged on the confocal pinhole 9 by the beam splitter 8. Is imaged.
- the image formation is performed based on the fluorescence spectrum detected by the photodetector 10. That is, the valence change of the rare-earth ion / transition metal ion is understood.
- the proportion of cations is Al3 + : 35 mol%, Mg2 + : 10 mol%, Ca2 + : 20 mol%, Sr2 + : 10 mol%, Baz + : 10 mol%, Y3 + : 14
- a 1 F 3 , Mg F z , CaF 2 , SrF 2 so as to obtain a fluoride glass having a composition of mol%, Sm 3+ : 1 mol%, and the proportion of yin: F ⁇ : 100 mol% BaF 2 , YF 3 and EuF 3 raw materials were weighed and blended.
- the raw material mixture was placed in a carbon crucible, reduced and melted in a 5% by volume H 2 —N 2 gas atmosphere at 1000 ° C. for 60 minutes, and then the glass melt was quenched to room temperature.
- a sample with a thickness of 5 mm was cut out from the obtained fluoride glass, and after optically polishing two planes, the absorption spectrum was measured.It was confirmed that Sm 2+ was present in the fluoride glass.
- a pulse energy of 10 8 to 10 15 WZcm 2 was obtained in the same manner as in Example 1 using a pulse laser beam 1 having a pulse width of 120 fs, a repetition period of 200 kHz, and a wavelength of 11 OO nm.
- the inside of the sample 3 was condensed and irradiated.
- the sample 3 was moved perpendicularly to the optical axis of the laser beam 1 at a speed of 20 m / sec.
- the fluorescence spectrum in the pulse laser beam irradiation region and the non-irradiation region was excited with 515 nm light and measured. As a result, it was confirmed that the valence of the Sm ion only at the locus of the focal point of the pulsed laser changed from divalent to trivalent.
- a 1 F 3 : Sr F 2 : L i F 1: 1: 1 (molar ratio) single crystal containing 1 mol% of Ce 3+ is processed into 10 x 10 5 mm and optically polished sample is prepared. did.
- the pulse width was 120 femtoseconds, the repetition period was 200 kHz, and the wavelength was 550 nm in the same manner as in Example 1.
- the inner portion of the sample 2 was irradiated condensing in the peak energy density 1 0 8 ⁇ 1 0 15 WZc m 2 by using a pulsed laser beam. In this example, in this state, the sample 2 was moved perpendicularly to the optical axis of the laser beam 1 at a speed of 20 m / sec.
- the inorganic material containing rare earth ions or transition metal ions is focused and irradiated with pulsed laser light whose focusing point has been adjusted, so that the inside of the inorganic material is Changes the valence of ions only at the focal point and near the focal point.
- the treated inorganic material is used as a functional material such as a memory material and a light-emitting element utilizing these optical characteristics because the optical characteristics are selectively changed in a specific region inside the material.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Glass Compositions (AREA)
- Luminescent Compositions (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/600,195 US6729161B1 (en) | 1998-01-13 | 1998-12-16 | Method of selectively reforming an inner part of an inorganic body |
EP98961357A EP1055453A4 (en) | 1998-01-13 | 1998-12-16 | METHOD FOR SELECTIVELY CHEMICALLY CHANGING THE INTERIOR OF AN INORGANIC MATERIAL AND INORGANIC MATERIAL WITH A SELECTIVELY CHANGED INTERIOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10004416A JPH11197498A (ja) | 1998-01-13 | 1998-01-13 | 無機材料内部の選択的改質方法及び内部が選択的に改質された無機材料 |
JP10/4416 | 1998-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999036171A1 true WO1999036171A1 (fr) | 1999-07-22 |
Family
ID=11583699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/005676 WO1999036171A1 (fr) | 1998-01-13 | 1998-12-16 | Procede de modification chimique selective de l'interieur d'une matiere inorganique et matiere inorganique dont l'interieur est chimiquement modifie de façon selective |
Country Status (4)
Country | Link |
---|---|
US (1) | US6729161B1 (ja) |
EP (1) | EP1055453A4 (ja) |
JP (1) | JPH11197498A (ja) |
WO (1) | WO1999036171A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08301695A (ja) * | 1995-05-08 | 1996-11-19 | Nippon Telegr & Teleph Corp <Ntt> | 光学材料及びその製造方法 |
EP1122724A3 (en) * | 2000-01-31 | 2002-09-04 | Central Glass Company, Limited | Three-dimensional optical memory medium and process for producing the same |
JP3412726B2 (ja) | 1995-04-19 | 2003-06-03 | 日本電信電話株式会社 | 光学材料の製造方法 |
US7524783B2 (en) * | 2001-10-05 | 2009-04-28 | Nippon Sheet Glass Co., Ltd. | Glass for laser processing |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002068783A (ja) * | 2000-08-31 | 2002-03-08 | Yuichi Watanabe | ガラス中に発光中心を形成させる方法 |
EP1378496A3 (en) * | 2002-07-03 | 2004-03-24 | Nihon Yamamura Glass Co. Ltd. | Locally crystallized glass |
JP2004295066A (ja) * | 2002-08-27 | 2004-10-21 | Fujikura Ltd | 光導波路の製造方法 |
JP4525345B2 (ja) * | 2004-12-28 | 2010-08-18 | ソニー株式会社 | 光記録方法及び光記録装置 |
EP1979089A1 (de) * | 2006-01-16 | 2008-10-15 | Basf Se | Verfahren zur synthese von produktmolekülen |
WO2007091483A1 (ja) * | 2006-02-09 | 2007-08-16 | Nagaoka University Of Technology | 光部品及びその製造方法 |
DE102006045852B3 (de) | 2006-09-18 | 2008-04-10 | Schott Ag | Speichermedium zur permanenten Datenspeicherung und Verwendung eines solchen Speichermediums |
CA2770122C (en) | 2009-08-07 | 2021-06-29 | Innovative Processing Technologies Inc. | Methods and systems for processing materials, including shape memory materials |
WO2013179329A1 (ja) | 2012-05-28 | 2013-12-05 | 株式会社日立製作所 | 光記録媒体及び光情報再生方法 |
WO2014079478A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
US9701564B2 (en) | 2013-01-15 | 2017-07-11 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
EP2754524B1 (de) | 2013-01-15 | 2015-11-25 | Corning Laser Technologies GmbH | Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie |
EP2781296B1 (de) | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser |
US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US10442719B2 (en) | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
US20150165560A1 (en) | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser processing of slots and holes |
US9687936B2 (en) | 2013-12-17 | 2017-06-27 | Corning Incorporated | Transparent material cutting with ultrafast laser and beam optics |
US9850160B2 (en) * | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
EP3166895B1 (en) | 2014-07-08 | 2021-11-24 | Corning Incorporated | Methods and apparatuses for laser processing materials |
WO2016010954A2 (en) | 2014-07-14 | 2016-01-21 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
WO2016010991A1 (en) | 2014-07-14 | 2016-01-21 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
EP3169635B1 (en) | 2014-07-14 | 2022-11-23 | Corning Incorporated | Method and system for forming perforations |
EP3536440A1 (en) | 2014-07-14 | 2019-09-11 | Corning Incorporated | Glass article with a defect pattern |
US9617180B2 (en) | 2014-07-14 | 2017-04-11 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
KR20170105562A (ko) | 2015-01-12 | 2017-09-19 | 코닝 인코포레이티드 | 다중 광자 흡수 방법을 사용한 열적 템퍼링된 기판의 레이저 절단 |
HUE055461T2 (hu) | 2015-03-24 | 2021-11-29 | Corning Inc | Kijelzõ üveg kompozíciók lézeres vágása és feldolgozása |
KR20170131638A (ko) | 2015-03-27 | 2017-11-29 | 코닝 인코포레이티드 | 가스 투과성 유리창 및 이의 제작방법 |
KR102499697B1 (ko) | 2015-07-10 | 2023-02-14 | 코닝 인코포레이티드 | 유연한 기판 시트에서의 홀의 연속 제조 방법 및 이에 관한 물품 |
US11111170B2 (en) | 2016-05-06 | 2021-09-07 | Corning Incorporated | Laser cutting and removal of contoured shapes from transparent substrates |
US10410883B2 (en) | 2016-06-01 | 2019-09-10 | Corning Incorporated | Articles and methods of forming vias in substrates |
US10794679B2 (en) | 2016-06-29 | 2020-10-06 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
EP3490945B1 (en) | 2016-07-29 | 2020-10-14 | Corning Incorporated | Methods for laser processing |
JP2019532908A (ja) | 2016-08-30 | 2019-11-14 | コーニング インコーポレイテッド | 強度マッピング光学システムによる材料のレーザー切断 |
CN109803786B (zh) | 2016-09-30 | 2021-05-07 | 康宁股份有限公司 | 使用非轴对称束斑对透明工件进行激光加工的设备和方法 |
US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
KR101880077B1 (ko) * | 2016-11-24 | 2018-07-20 | 한국기계연구원 | 내장형 메타 구조체 제조방법 |
US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
US10580725B2 (en) | 2017-05-25 | 2020-03-03 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
US12180108B2 (en) | 2017-12-19 | 2024-12-31 | Corning Incorporated | Methods for etching vias in glass-based articles employing positive charge organic molecules |
US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191024A (ja) * | 1984-03-12 | 1985-09-28 | Toshiba Corp | 部分結晶化非晶質磁性材料の製造方法 |
JPH0689999A (ja) * | 1992-09-07 | 1994-03-29 | Nippon Telegr & Teleph Corp <Ntt> | 複合半導体装置の製法 |
JPH08288582A (ja) * | 1995-04-19 | 1996-11-01 | Nippon Telegr & Teleph Corp <Ntt> | 光学材料の製造方法 |
JPH08301695A (ja) * | 1995-05-08 | 1996-11-19 | Nippon Telegr & Teleph Corp <Ntt> | 光学材料及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5764403A (en) * | 1995-05-08 | 1998-06-09 | Downing; Elizabeth A. | Panel display using two-frequency upconversion fluorescence |
US5684621A (en) * | 1995-05-08 | 1997-11-04 | Downing; Elizabeth Anne | Method and system for three-dimensional display of information based on two-photon upconversion |
JPH08334641A (ja) * | 1995-06-09 | 1996-12-17 | Fujikura Ltd | 光導波路作製方法 |
JP3649835B2 (ja) * | 1996-03-18 | 2005-05-18 | 独立行政法人科学技術振興機構 | 光導波路の作製方法 |
JP3432993B2 (ja) * | 1996-03-29 | 2003-08-04 | 日本碍子株式会社 | 光導波路デバイスの製造方法 |
JP3349422B2 (ja) * | 1998-02-12 | 2002-11-25 | 科学技術振興事業団 | 光導波路アレイ及びその製造方法 |
US6327074B1 (en) * | 1998-11-25 | 2001-12-04 | University Of Central Florida | Display medium using emitting particles dispersed in a transparent host |
-
1998
- 1998-01-13 JP JP10004416A patent/JPH11197498A/ja active Pending
- 1998-12-16 EP EP98961357A patent/EP1055453A4/en not_active Withdrawn
- 1998-12-16 WO PCT/JP1998/005676 patent/WO1999036171A1/ja not_active Application Discontinuation
- 1998-12-16 US US09/600,195 patent/US6729161B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191024A (ja) * | 1984-03-12 | 1985-09-28 | Toshiba Corp | 部分結晶化非晶質磁性材料の製造方法 |
JPH0689999A (ja) * | 1992-09-07 | 1994-03-29 | Nippon Telegr & Teleph Corp <Ntt> | 複合半導体装置の製法 |
JPH08288582A (ja) * | 1995-04-19 | 1996-11-01 | Nippon Telegr & Teleph Corp <Ntt> | 光学材料の製造方法 |
JPH08301695A (ja) * | 1995-05-08 | 1996-11-19 | Nippon Telegr & Teleph Corp <Ntt> | 光学材料及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1055453A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3412726B2 (ja) | 1995-04-19 | 2003-06-03 | 日本電信電話株式会社 | 光学材料の製造方法 |
JPH08301695A (ja) * | 1995-05-08 | 1996-11-19 | Nippon Telegr & Teleph Corp <Ntt> | 光学材料及びその製造方法 |
JP3456557B2 (ja) | 1995-05-08 | 2003-10-14 | 日本電信電話株式会社 | 光学材料及びその製造方法 |
EP1122724A3 (en) * | 2000-01-31 | 2002-09-04 | Central Glass Company, Limited | Three-dimensional optical memory medium and process for producing the same |
US6728154B2 (en) | 2000-01-31 | 2004-04-27 | Central Glass Company, Limited | Three-dimensional optical memory medium and process for producing same |
US7524783B2 (en) * | 2001-10-05 | 2009-04-28 | Nippon Sheet Glass Co., Ltd. | Glass for laser processing |
Also Published As
Publication number | Publication date |
---|---|
EP1055453A4 (en) | 2002-07-17 |
US6729161B1 (en) | 2004-05-04 |
JPH11197498A (ja) | 1999-07-27 |
EP1055453A1 (en) | 2000-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999036171A1 (fr) | Procede de modification chimique selective de l'interieur d'une matiere inorganique et matiere inorganique dont l'interieur est chimiquement modifie de façon selective | |
US8201421B2 (en) | Optical component and method for its production | |
US6970414B1 (en) | Three-dimensional optical memory with fluorescent photosensitive material | |
JP4041298B2 (ja) | レーザ光照射によるガラスの加工方法 | |
WO1999041625A1 (fr) | Reseau de guide d'onde optique et procede de fabrication | |
Imanieh et al. | Upconversion emission of a novel glass ceramic containing Er3+, Yb3+: Sr1− xYxF2+ x nano-crystals | |
JP4495675B2 (ja) | レーザ加工用ガラス | |
JP3468450B2 (ja) | 固体材料内部の選択的改質方法及び内部が選択的に改質された固体材料 | |
CN1242950C (zh) | 无色透明玻璃内部多色立体图案的形成方法 | |
Imanieh et al. | Effect of alumina content and heat treatment on microstructure and upconversion emission of Er3+ ions in oxyfluoride glass-ceramics | |
Tsuta et al. | Effect of laser fluence and charge compensation defects on photoreduction of Eu ions in KSrPO4 crystal using a UV laser | |
JP4405761B2 (ja) | レーザ加工用ガラス | |
RU2640606C1 (ru) | Способ локальной нанокристаллизации бариевотитаносиликатных стекол | |
JP3950947B2 (ja) | ガラス内部に選択的に長残光を発生させる方法 | |
Qiu et al. | Rare-earth containing nanocrystal precipitation and up-conversion luminescence in oxyfluoride glasses | |
Honma et al. | Synthesis of LaF3 nanocrystals by laser-induced Nd3+ atom heat processing in oxyfluoride glasses | |
JP2005255512A (ja) | 希土類元素含有機能性ガラスとその製造方法 | |
JP2001216649A (ja) | 三次元光メモリー媒体及びその記録方法 | |
JP2003019863A (ja) | 紫外線照射を受けた際に周囲とは異なる挙動を示す任意形状の異質部分を形成させ得る透明無機材料及びその製造方法 | |
RU2710387C1 (ru) | Способ записи информации в кварцевом стекле | |
JP2004133329A (ja) | 非線形光学薄膜及びそれを用いた非線形光学素子並びにそれを用いた光スイッチ | |
Qiu | External electromagnetic field induced electronic structures and novel optical functions of rare-earth-ion-doped glasses | |
JP4525345B2 (ja) | 光記録方法及び光記録装置 | |
RU2783108C1 (ru) | Способ лазерного модифицирования стекла для записи информации | |
JP5256455B2 (ja) | 網目形成体が内部に析出したガラスとその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09600195 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998961357 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998961357 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998961357 Country of ref document: EP |