+

WO1999035772A1 - Parallel transmission method - Google Patents

Parallel transmission method Download PDF

Info

Publication number
WO1999035772A1
WO1999035772A1 PCT/JP1999/000022 JP9900022W WO9935772A1 WO 1999035772 A1 WO1999035772 A1 WO 1999035772A1 JP 9900022 W JP9900022 W JP 9900022W WO 9935772 A1 WO9935772 A1 WO 9935772A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission method
parallel transmission
carriers
carrier
spectrum
Prior art date
Application number
PCT/JP1999/000022
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunori Suzuki
Toshio Nojima
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to CA002285198A priority Critical patent/CA2285198C/en
Publication of WO1999035772A1 publication Critical patent/WO1999035772A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]

Definitions

  • the present invention relates to parallel transmission when performing wireless communication of a plurality of different baseband signals using a plurality of carriers, and particularly to a parallel transmission method suitable for land mobile communication.
  • adaptive modulation scheme for selecting an optimum modulation scheme in accordance with the situation of the transmission line broadband CD MA, such as applying force? OFDM scheme being considered is known as digital broadcasting.
  • the high-speed and high-quality transmission systems described above use a single spectrum that is divided into multiple carriers, or a wideband single carrier that uses error correction technology and diversity reception technology.
  • a radio circuit having the required frequency characteristics over a wide band and a processor for performing advanced digital signal processing were required.
  • wireless circuits such as filters and transmission power amplifiers and processors such as error correction decoders.
  • This wireless circuit technology includes, in particular, the out-of-band attenuation characteristics of the filter and the transmission. Improving the linearity of the system is essential.
  • Advanced circuit technology was required to realize high-speed transmission and high-quality transmission, and to realize a wireless communication system with high frequency use efficiency.
  • the modulation is QPSK: and the roll-off filter coefficient is 0.5 in order to transmit 10 Mbps information
  • the frequency bandwidth is required to be 7.5 MHz. If this is transmitted on a single carrier, the passband (3 dB bandwidth) of the receive filter used in the radio is 4.6 MHz. If the mobile station needs an adjacent channel attenuation of 80 dB so as not to receive the adjacent channel interference with the adjacent carrier, the reception filter needs a wide pass bandwidth and a steep attenuation characteristic. If a small and lightweight radio is to be made, it will be necessary to develop a small filter with higher performance than before.
  • a single spectrum is divided into a plurality of carriers, and error correction technology and diversity reception technology are combined into a wideband single carrier.
  • error correction technology and diversity reception technology are combined into a wideband single carrier.
  • a radio circuit with wideband frequency characteristics and a processor that performs advanced digital signal processing were required.
  • an object of the present invention is to solve the above-mentioned problem, and using an existing circuit technology, the frequency of each of a plurality of carriers is adjusted so that the frequency interval is equal to or greater than or close to a coherent bandwidth.
  • the parallel transmission method of the present invention is a parallel transmission method for performing wireless communication of M (integral with M> 1) different baseband signals using M carrier waves, wherein each of the M carrier waves is The communication is performed by setting the interval between these frequencies to be equal to or greater than the coherent bandwidth or near the coherent bandwidth.
  • M or less different modulation methods can be used for the M carrier waves.
  • the M or less different modulation methods may be a combination including at least one of PSK :, QAM, or FSK.
  • the combination of these PSK :, QAM and FSK modulation methods may be each combination or a combination of different multi-level numbers of each modulation method.
  • the M or less different modulation schemes can be selected from QAM, PSK, FSK and their respective multi-level numbers.
  • the parallel transmission method of the present invention by using the existing circuit technology, communication is performed by setting the interval between the frequencies of a plurality of carriers to be equal to or more than the coherent bandwidth.
  • a parallel transmission method capable of realizing high-speed transmission and high-quality transmission that does not require a radio circuit having wideband frequency characteristics and a processor that performs advanced digital signal processing.
  • FIG. 1 is a diagram showing an embodiment in which the frequency interval is set to be equal to or more than the coherent bandwidth. It is.
  • FIG. 2 is a diagram showing an embodiment in which the frequency interval is set near the coherent bandwidth.
  • FIG. 3 is a diagram showing an embodiment using a plurality of modulation methods.
  • FIG. 4 is a diagram showing another embodiment using a plurality of modulation methods.
  • FIG. 5 is a diagram showing an embodiment using carriers at frequency intervals standardized by PDC.
  • FIG. 6 is a diagram showing an embodiment in which the present invention is applied to broadcast communication.
  • FIG. 7 is a diagram showing an embodiment when voice and data transmission coexist.
  • FIG. 8 is a diagram illustrating a configuration example of a transmitter used in the present invention.
  • FIG. 9 is a diagram showing another configuration example of the transmitter used in the present invention.
  • FIG. 10 is a diagram showing a configuration example of a receiver used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the frequency correlation value between each carrier used is set to a certain fixed value or less.
  • the frequency correlation value between the carrier waves is set to a frequency interval equal to or more than the coherent band in which the carrier waves can be regarded as substantially uncorrelated.
  • the frequency correlation value p ( ⁇ ) is expressed as ⁇ 1 and ⁇ 1 + ⁇ for the frequencies of the two fading received waves, ⁇ It is known that if the length of the shortest propagation path is ⁇ 0 and the speed of light is c, equation (1) is obtained.
  • the frequency interval ⁇ at which I p ( ⁇ ) I is 0.5 is defined as the coherent bandwidth.
  • the frequency interval Omega regarded substantially uncorrelated typically are force? Known to be a p ( ⁇ ) ⁇ 0. 5 ⁇ .
  • the parallel transmission method of the present invention even if some carriers do not have a predetermined line quality due to fluctuations in propagation paths such as fusing, deterioration of the line quality of the entire wireless line can be avoided. For this reason, the parallel transmission method of the present invention maintains the transmission capacity while maintaining the transmission capacity as compared with the conventional parallel transmission method in which a plurality of carriers are made into a single spectrum such as the conventional frequency division multiplexing (FDM). Less affected by the degradation of line quality on the transmission line.
  • FDM frequency division multiplexing
  • a radio circuit embodying the present invention can be realized by having a plurality of radio circuits having different local oscillation frequencies. This eliminates the need for a filter with a wide passband, which was required in the conventional parallel transmission method.
  • the linearity of the radio circuit need only be achieved for each independent radio circuit, and does not require the wideband linearity required in conventional radio circuits for parallel transmission methods.
  • Processors that perform digital signal processing can also use processors with lower processing power by using almost independent narrowband carriers. This contributes to lower power consumption of digital circuits.
  • FIG. 8 shows a configuration example of a transmitter used in the parallel transmission method of the present invention.
  • baseband signals processed by a plurality of baseband processing units 800, 805,..., 810 are DZA-converted by 07-oct converters 820, 825,.
  • the orthogonal transform is performed by the devices 840, 845,.
  • the intervals of the respective frequencies ff 2 ,..., F N are set so as to be substantially equal to each other or equal to or less than the coherent bandwidth.
  • Parallel transmission method Fi by the controller 8 8 0 by law, f 2, ⁇ , intervals of the frequency f N is Kohi -.. Is set to more than Les cement bandwidth.
  • the signal is multiplexed by a signal multiplexer 890, amplified by a transmission power amplifier 895, and transmitted via an antenna 899.
  • FIG. 9 shows another configuration example of the transmitter used in the parallel transmission method of the present invention.
  • ff 2,... Approximately equal intervals between the frequency of the I New, had been set below the coherent bandwidth
  • the controller 9 2 With 0, the intervals of the frequencies f ⁇ , f 2,..., F N are set to be equal to or greater than the coherent bandwidth.
  • FIG. 10 shows a configuration example of a receiver used in the parallel transmission method of the present invention.
  • the radio waves received by antennas 100 and 105 are transmitted to the receiving amplifiers 100 and 125 detected by the level detectors 111 and 115.
  • the output is switched to the higher reception level ANT 1 00 0, 1 0 5 by the controller 1 1 0 0, and the frequency fi, f by the controller 1 04 0 by the frequency converter 1 3 0, 1 3 5 Converted to 2.
  • the bandpass filters BPF
  • the automatic gain control Automatic Gain Control: AGO 1 0 60, 1 065
  • the detector 1 0 7 0, Detector 1 0 7 5 A / D conversion by AZD converters 1 0 8 0, 1 0 8 5, Judgment 1 0 9 5 Is input to
  • FIG. 1 shows an embodiment in which the frequency interval is set to be equal to or larger than the coherent bandwidth, in which the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110.
  • the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110.
  • Fig. 1 A parallel transmission method including the transceiver shown as an example and transmitting three different pieces of information between the radio station 130 and the radio station 140 using three carriers will be described.
  • the frequency intervals 120 and 125 of the spectra 11 1, 1 12 and 113 by three carriers are set to be equal to or larger than the coherent bandwidth (1 15).
  • the spectrums 111, 112, and 113 of the three carriers in FIG. 1 undergo fusing almost uncorrelated with each other. Therefore, even if the spectrum 1 12 due to the second carrier is fuzzed during a call and the line quality is degraded, the spectra 1 1 1 and 3 due to the remaining 1st carrier are obtained. It is possible to continue the call by spectrum 113 with the th carrier. In other words, on the receiver side, as shown in FIG.
  • the spectrum 11 1 of the first carrier and the spectrum 113 of the third carrier are synchronously detected, and after the detection by the detectors 1070 and 1075, Combine at maximum ratio. At this time, since each carrier can be regarded as almost independent, diversity reception of 2-branch maximum ratio combining is possible.
  • FIG. 2 shows an embodiment in which the frequency interval is set near the coherent bandwidth, in which the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110.
  • FIG. 2 illustrates a parallel transmission method for transmitting three different pieces of information between the wireless station 130 and the wireless station 140 using three carriers.
  • the frequency intervals 220, 225 of the spectrums 211, 212, 213 by the three carriers in FIG. 2 are set near the coherent bandwidth (215).
  • this setting (2 15) the spectrums 211, 212, and 213 of the three carriers in FIG. 2 undergo fusing almost uncorrelated with each other. Therefore, even if the spectrum 212 due to the second carrier is fading during a call and the line quality is degraded, the spectrum 2111 due to the remaining first carrier and the spectrum due to the third carrier are used. Call 2 13 allows you to continue the call.
  • the spectrum with the first carrier and the spectrum with the third carrier are used. Synchronous detection of spectrum 2 13 is performed, and maximum ratio combining is performed after detection by detectors 1070 and 1075. At this time, since the carrier waves can be regarded as almost independent, diversity reception of 2-branch maximum ratio combining is possible.
  • FIG. 3 shows an embodiment using a plurality of modulation methods, in which the vertical axis is spectrum axis 100 and the horizontal axis is frequency axis 110.
  • FIG. 3 illustrates a parallel transmission method for transmitting three different pieces of information between a wireless station 130 and a wireless station 140 using three carriers.
  • the modulation schemes of the spectrums 311, 312, and 313 using three carriers are QP SK, 16 QAM, and FSK.
  • the frequency intervals 320, 325 of the spectra 311, 312, 313 by three carriers are set to be equal to or greater than the coherent bandwidth (315). With this setting (3 15), the spectra 311, 312, and 313 of the three carriers in FIG. 3 receive almost uncorrelated fusing.
  • the spectrum 3 11 due to the first carrier and the spectrum 3 13 due to the second carrier 2 allows the call to continue.
  • Information to be originally transmitted in the vector 3 13 by the third carrier can be distributed to the spectrum 3 12 by the second carrier.
  • the spectrum 312 using the second carrier uses 16 QAM.
  • FIG. 4 shows an embodiment using a plurality of modulation methods, in which the vertical axis is spectrum axis 100 and the horizontal axis is frequency axis 110.
  • FIG. 4 illustrates a parallel transmission method for transmitting three different pieces of information between the wireless station 130 and the wireless station 140 using three carriers.
  • the modulation schemes of the spectrums 4 11, 4 12, and 4 13 using three carriers are QP SK, 16 QAM, and 16 QAM.
  • Spectrum with four carriers 411, 412, and 413 frequency intervals 420 and 425 are coherent bands Set near the width (4 1 5). With this setting (4 15), the spectra 4 11 1, 4 12 and 4 13 of the three carriers in FIG. 4 undergo almost uncorrelated fading.
  • the modulation schemes of P SK :, 0 8] ⁇ 1 and 3 used in the above embodiment may be a combination of each, or a combination of multi-valued numbers of the respective modulation schemes.
  • multi-level numbers may be used for each carrier.
  • 16QAM QP SK, and 4F SK.
  • 256 QAM, 16 QPS :, or 64 QAM.
  • FIG. 5 shows an embodiment using carriers with frequency intervals standardized by PDC, in which the vertical axis is the spectrum axis 500 and the horizontal axis is the frequency axis 510.
  • Figure 5 has four times the transmission capacity of PDC. If the spectrum per carrier is 11.2 kbps, a transmission capacity of 44.8 kbps can be obtained. As described above, the parallel transmission method using the present invention is effective for high-speed transmission.
  • FIG. 6 shows an embodiment in which the parallel transmission method of the present invention is applied to a broadcast service, in which the vertical axis is a spectrum axis 600 and the horizontal axis is a frequency axis 610.
  • FIG. 6 illustrates a parallel transmission method between a wireless station 630 and a wireless station 640 using spectra 611, 612, 613, and 614 with four different carriers.
  • the modulation scheme of the channels 612, 613, and 614 used in the downlink 650 may be the modulation scheme of the voice channel or another modulation scheme.
  • a user can receive a broadcast service through downlink 650 while performing voice communication, for example, a PDC call, using his or her mobile device.
  • voice communication for example, a PDC call
  • you can receive services similar to the Intelligent Tutoring System (ITS) represented by power navigation, etc. (for example, traffic jam information, weather forecasts, various news services, etc.).
  • ITS Intelligent Tutoring System
  • different line capacities and reliability can be set for the upstream 655 and downstream 650.
  • FIG. 7 shows an embodiment in which voice and data transmission coexist, in which the vertical axis represents the spectrum axis 700 and the horizontal axis represents the frequency axis 710.
  • FIG. 7 illustrates a parallel transmission method between a wireless station 730 and a wireless station 740 using spectra 711, 712, and 713 with three different carriers.
  • the modulation scheme of each channel is QPSK for channel 711, s'l6 QAM for channel 712, and FSK for channel 713.
  • the modulation scheme of each channel is 16 QAM for channel 751, QPSK for channel 752, and FSK for channel 753.
  • PDC for voice and to perform overnight transmission using 16 QAM modulation.
  • the parallel transmission method of the present invention can flexibly realize services with different required line qualities, such as voice and data transmission, using the same transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The intervals (120, 125) between the spectra (111, 112, 113) of carrier waves are greater than or around the coherent bandwidth, and hence the carrier waves can receive mutual correlative phasing. Therefore, even if the spectrum (112) receives phasing by a specific carrier wave during call and consequently the line quality degrades, the call can be continued by the other spectra (111, 113). In this case, the other received signals are synchronously detected and combined by a maximum ratio composite method, and carriers can be regarded as independent of each other. Therefore, diversity reception by a maximum ratio composite method of branches, the number of which is equal to the number of carriers used for communcation, is possible. Since the intervals between the frequencies are so set by using existing circuit techniques that the carriers are almost mutually in correlation, no radio circuit having frequency characteristics of wide band nor processor for high-degree digital signal processing is needed.

Description

明 細 書 並列伝送方法 技術分野  Description Parallel transmission method Technical field
本発明は、 複数の異なるベースバンド信号を複数の搬送波を用いて無線通信を 行う場合の並列伝送に関し、 特に陸上移動通信に好適な並列伝送方法に関する。 背景技術  The present invention relates to parallel transmission when performing wireless communication of a plurality of different baseband signals using a plurality of carriers, and particularly to a parallel transmission method suitable for land mobile communication. Background art
近年、 高速伝送、 高品質伝送が要求される陸上移動通信などに代表される無線 通信において、 高品質伝送および高速伝送の実現を目的として、 種々の無線通信 方式が提案されてきた。 例えば、 符号分割多元接続 (Code Division Multiple Access: C D MA) 方式、 適応変調方式 (Adaptive Modification) 、 1 6 Q AM (Quadrature amplitude Modification) 一 4マルチキヤリャ伝送方式、 直交周波数分割多重 ( Orthogonal Frequency Division Multiplexing: O F D M) 方式など力 ?提案されてきた。 これらの無線伝送方式での所要伝送品質を確保する方法は、 これまで第 2世代 移動通信方式、 例えば、 P D C (Personal Digital Cellular) 、 G S M (Global System for Mobile communication) 、 I S (interim Standard) ― 9 5などに用レ、られてレ、る 誤り訂正技術や固定マイク口波回線に用いられている周波数ダイバ一シチ受信、 空間ダイバ一シチ受信、 偏波ダイバーシチ受信などのダイバ一シチ受信技術を適 用する方法である。 In recent years, various wireless communication schemes have been proposed for realizing high quality transmission and high speed transmission in wireless communication typified by land mobile communication requiring high speed transmission and high quality transmission. For example, Code Division Multiple Access (CD MA), Adaptive Modification, 16 Q AM (Quadrature amplitude Modification) 14 Multi-carrier transmission, Orthogonal Frequency Division Multiplexing: OFDM) systems such as power? have been proposed. Methods for ensuring the required transmission quality in these wireless transmission systems have been developed using second-generation mobile communication systems such as PDC (Personal Digital Cellular), GSM (Global System for Mobile communication), and IS (interim Standard). For example, error correction techniques such as frequency diversity reception, spatial diversity reception, and polarization diversity reception used for fixed microphone mouth-wave lines are suitable. It is a method to use.
また高速伝送では、 伝送路の状況に応じて最適な変調方式を選択する適応変調 方式、 広帯域 C D MA、 ディジタル放送として適用力 ?検討されている O F D M方 式などが知られている。 Also in high-speed transmission, adaptive modulation scheme for selecting an optimum modulation scheme in accordance with the situation of the transmission line, broadband CD MA, such as applying force? OFDM scheme being considered is known as digital broadcasting.
上述の高速伝送および高品質伝送のシステムは、 単一スぺク トラムを複数の搬 送波で分割したり、 広帯域の単一搬送波に誤り訂正技術やダイバーシチ受信技術 を用いていた。 これらシステムに用いる無線機を実現するには、 広帯域にわたつ て所要の周波数特性をもつ無線回路と高度なディジタル信号処理を行うプロセッ サを必要としていた。 例えば、 フィルタ、 送信電力増幅器などの無線回線と誤り 訂正用復号器などのプロセッサなどである。 The high-speed and high-quality transmission systems described above use a single spectrum that is divided into multiple carriers, or a wideband single carrier that uses error correction technology and diversity reception technology. Was used. To implement the radio equipment used in these systems, a radio circuit having the required frequency characteristics over a wide band and a processor for performing advanced digital signal processing were required. For example, wireless circuits such as filters and transmission power amplifiers and processors such as error correction decoders.
周波数利用効率の高い無線通信システムを構築するには、 無線チャネル間のガ 一ド ·バンドをより少なくする回路技術が必須であり、 この無線回路技術として、 特に、 フィルタの帯域外減衰特性と送信系の線形性の改善が必須となる。  In order to build a wireless communication system with high frequency utilization efficiency, circuit technology that reduces the guard band between wireless channels is indispensable. This wireless circuit technology includes, in particular, the out-of-band attenuation characteristics of the filter and the transmission. Improving the linearity of the system is essential.
高速伝送および高品質伝送を可能にし、 周波数利用効率の高い無線通信システ ムを実現するためには、 高度な回路技術を必要としていた。 例えば、 1 0 M b p sの情報を伝送するために、 変調を Q P S K:、 ロールオフフィルタ係数 0 . 5と すれば、 周波数帯域幅が 7 . 5 MH z必要である。 これを単一搬送波で伝送する 場合、 無線機で用いられる受信フィルタの通過帯域幅 (3 d B帯域幅) は 4 . 6 MH zとなる。 移動機が隣接搬送波との隣接チャネル干渉を受けないために、 隣 接チャネル減衰量 8 0 d B必要とすれば、 前記受信フィルタは広い通過帯域幅と 急峻な減衰特性を必要とする。 もし、 小型軽量の無線機を作るなら、 従来よりも 高性能の小型フィルタの開発を必要とする。  Advanced circuit technology was required to realize high-speed transmission and high-quality transmission, and to realize a wireless communication system with high frequency use efficiency. For example, if the modulation is QPSK: and the roll-off filter coefficient is 0.5 in order to transmit 10 Mbps information, the frequency bandwidth is required to be 7.5 MHz. If this is transmitted on a single carrier, the passband (3 dB bandwidth) of the receive filter used in the radio is 4.6 MHz. If the mobile station needs an adjacent channel attenuation of 80 dB so as not to receive the adjacent channel interference with the adjacent carrier, the reception filter needs a wide pass bandwidth and a steep attenuation characteristic. If a small and lightweight radio is to be made, it will be necessary to develop a small filter with higher performance than before.
このように、 上述のような従来の高速伝送および高品質伝送のシステムでは、 単一スぺク トラムを複数の搬送波で分割したり、 広帯域の単一搬送波に誤り訂正 技術やダイバ一シチ受信技術を用いていた。 これらシステムに用いる無線機を実 現するには、 広帯域の周波数特性をもつ無線回路と高度なディジタル信号処理を 行うプロセッサを必要としていた。  As described above, in the conventional high-speed transmission and high-quality transmission systems as described above, a single spectrum is divided into a plurality of carriers, and error correction technology and diversity reception technology are combined into a wideband single carrier. Was used. In order to implement the radio equipment used in these systems, a radio circuit with wideband frequency characteristics and a processor that performs advanced digital signal processing were required.
そこで、 本発明の目的は、 上記課題を解決するためになされたものであり、 既 存の回路技術を用いて、 複数の搬送波の各々の周波数間隔がコヒーレント帯域幅 以上または付近になるように周波数間隔を設定して通信を行うことにより、 広帯 域の周波数特性をもつ無線回路と高度なディジタル信号処理を行うプロセッサを 必要としない高速伝送および高品質伝送を実現できる並列伝送方法を提供するこ とにある。 発明の開示 Therefore, an object of the present invention is to solve the above-mentioned problem, and using an existing circuit technology, the frequency of each of a plurality of carriers is adjusted so that the frequency interval is equal to or greater than or close to a coherent bandwidth. To provide a parallel transmission method capable of realizing high-speed transmission and high-quality transmission that does not require a radio circuit having a wide-band frequency characteristic and a processor that performs advanced digital signal processing by performing communication by setting an interval. And there. Disclosure of the invention
本発明の並列伝送方法は、 M個 (M>1である整数) の異なるベースバン ド信 号を M個の搬送波を用いて無線通信を行う並列伝送方法において、 前記 M個の搬 送波の各々の周波数間の間隔をコヒーレン ト帯域幅以上、 またはコヒ一レント帯 域幅付近に設定して通信を行うことを特徴とする。  The parallel transmission method of the present invention is a parallel transmission method for performing wireless communication of M (integral with M> 1) different baseband signals using M carrier waves, wherein each of the M carrier waves is The communication is performed by setting the interval between these frequencies to be equal to or greater than the coherent bandwidth or near the coherent bandwidth.
周波数間の間隔をこのように設定された並列伝送方法においては、 前記 M個の 搬送波に M個以下の複数の異なる変調方法を用いることができる。  In the parallel transmission method in which the interval between frequencies is set as described above, M or less different modulation methods can be used for the M carrier waves.
そしてこのような前記 M個以下の異なる変調方法は、 PSK:、 QAMまたは F S Kの少なくとも一つを含む組み合わせであってもよい。  The M or less different modulation methods may be a combination including at least one of PSK :, QAM, or FSK.
さらに、 これら P SK:、 Q AMおよび F S Kの変調方法の組み合わせは、 それ ぞれの組み合わせでもよいし、 各変調方式の異なる多値数の組み合わせでもよレ、。 換言すれば、 これは 16QAM、 QP SK、 4 F S Kを用いた 3搬送波無線通信 の場合でもよいし、 256 QAM、 16QP SK、 64 Q AMを用いた場合でも よいことを意味している。  Furthermore, the combination of these PSK :, QAM and FSK modulation methods may be each combination or a combination of different multi-level numbers of each modulation method. In other words, this means that three-carrier wireless communication using 16QAM, QPSK, and 4FSK may be used, or that 256QAM, 16QPSK, and 64QAM may be used.
従って、 M個以下の異なる変調方式とは、 QAM、 PSK, FSKおよびそれ ぞれの多値数から選択され得る。  Therefore, the M or less different modulation schemes can be selected from QAM, PSK, FSK and their respective multi-level numbers.
このように、 本発明の並列伝送方法によれば、 既存の回路技術を用いて、 複数 の搬送波の各々の周波数間の間隔をコヒ一レント帯域幅以上または付近に設定し て通信を行うことにより、 広帯域の周波数特性をもつ無線回路と高度なディジタ ル信号処理を行うプロセッサを必要としない高速伝送および高品質伝送を実現で きる並列伝送方法を提供することが可能である。 図面の簡単な説明  As described above, according to the parallel transmission method of the present invention, by using the existing circuit technology, communication is performed by setting the interval between the frequencies of a plurality of carriers to be equal to or more than the coherent bandwidth. In addition, it is possible to provide a parallel transmission method capable of realizing high-speed transmission and high-quality transmission that does not require a radio circuit having wideband frequency characteristics and a processor that performs advanced digital signal processing. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 周波数間隔をコヒ一レント帯域幅以上に設定した実施の形態を示す図 である。 FIG. 1 is a diagram showing an embodiment in which the frequency interval is set to be equal to or more than the coherent bandwidth. It is.
図 2は、 周波数間隔をコヒーレン ト帯域幅付近に設定した実施の形態を示す図 である。  FIG. 2 is a diagram showing an embodiment in which the frequency interval is set near the coherent bandwidth.
図 3は、 複数の変調方法を用いた実施の形態を示す図である。  FIG. 3 is a diagram showing an embodiment using a plurality of modulation methods.
図 4は、 複数の変調方法を用いた他の実施の形態を示す図である。  FIG. 4 is a diagram showing another embodiment using a plurality of modulation methods.
図 5は、 P D Cで規格化されている周波数間隔の搬送波を用いた実施の形態を 示す図である。  FIG. 5 is a diagram showing an embodiment using carriers at frequency intervals standardized by PDC.
図 6は、 本発明を同報通信に適用した実施の形態を示す図である。  FIG. 6 is a diagram showing an embodiment in which the present invention is applied to broadcast communication.
図 7は、 音声とデータ伝送が混在している場合の実施の形態を示す図である。 図 8は、 本発明において使用される送信機の一構成例を示す図である。  FIG. 7 is a diagram showing an embodiment when voice and data transmission coexist. FIG. 8 is a diagram illustrating a configuration example of a transmitter used in the present invention.
図 9は、 本発明において使用される送信機の他の構成例を示す図である。  FIG. 9 is a diagram showing another configuration example of the transmitter used in the present invention.
図 1 0は、 本発明において使用される受信機の一構成例を示す図である。 発明を実施するための最良の形態  FIG. 10 is a diagram showing a configuration example of a receiver used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
まず本発明の並列伝送方法の概略を説明する。 本発明の並列伝送方法では、 高 速伝送を可能にするマルチキヤリァ無線通信方法において、 使用する各搬送波間 の周波数相関値をある一定値以下に設定する。 例えば搬送波間の周波数相関値は、 各搬送波間をほぼ無相関にみなせるコヒ一レン ト帯域以上の周波数間隔に設定す る。 ここで周波数相関値 p ( Ω) は、 2つのフヱージング受信波の周波数を ί 1 と ί 1 + Ω、 受信局に到来する素波の強度が同程度で伝搬路の長さの広がりを ΔΖ、 最短の伝搬路の長さを Ζ0、 光速を cとすれば、 (1 ) 式となることが知られ ている。 First, the outline of the parallel transmission method of the present invention will be described. According to the parallel transmission method of the present invention, in the multi-carrier wireless communication method that enables high-speed transmission, the frequency correlation value between each carrier used is set to a certain fixed value or less. For example, the frequency correlation value between the carrier waves is set to a frequency interval equal to or more than the coherent band in which the carrier waves can be regarded as substantially uncorrelated. Here, the frequency correlation value p (Ω) is expressed as ί 1 and ί 1 + Ω for the frequencies of the two fading received waves, ΔΖ It is known that if the length of the shortest propagation path is Ζ 0 and the speed of light is c, equation (1) is obtained.
( 1 )(1)
Figure imgf000006_0001
I p (Ω) Iが 0. 5となる周波数間隔 Ωをコヒ一レント帯域幅と定義すること が知られている。 一般にほぼ無相関にみなせる周波数間隔 Ωとは、 p (Ω) ≤ 0. 5となる Ωであること力 ?知られている。
Figure imgf000006_0001
It is known that the frequency interval Ω at which I p (Ω) I is 0.5 is defined as the coherent bandwidth. The frequency interval Omega regarded substantially uncorrelated typically are force? Known to be a p (Ω) ≤ 0. 5 Ω .
本発明の並列伝送方法では、 仮にいくつかの搬送波がフユージング等の伝搬路 の変動により所定の回線品質が得られなくても、 無線回線全体の回線品質の劣化 を回避できる。 このため、 たとえば従来の周波数分割多重 (Frequency Division Multiple: F DM) のように複数の搬送波を単一スぺクトルにする並列伝送方法と 比べて、 本発明の並列伝送方法は伝送容量を保ちつつ伝送路での回線品質の劣化 の影響を受けにくレ、。  According to the parallel transmission method of the present invention, even if some carriers do not have a predetermined line quality due to fluctuations in propagation paths such as fusing, deterioration of the line quality of the entire wireless line can be avoided. For this reason, the parallel transmission method of the present invention maintains the transmission capacity while maintaining the transmission capacity as compared with the conventional parallel transmission method in which a plurality of carriers are made into a single spectrum such as the conventional frequency division multiplexing (FDM). Less affected by the degradation of line quality on the transmission line.
各搬送波の周波数間隔がほぼ無相関とみなせる程度に離れているために、 本発 明を具現化する無線回路は、 局部発振周波数の異なる複数の無線回路をもつこと により実現できる。 従来の並列伝送方法で必要としていた広帯域の通過帯域幅を もつフィルタ力不要となる。 無線回路の線形性は各独立した無線回路毎に達成す ればよく、 従来の並列伝送方法用の無線回路で要求される広帯域の線形性を必要 としない。 ディジタル信号処理を行うプロセッサについてもほぼ独立な狭帯域の 搬送波を用いることにより、 より処理能力の低いプロセッサを使用できる。 これ は、 ディジタル回路の消費電力の低下に貢献する。  Since the frequency intervals of the carrier waves are so far as to be regarded as almost uncorrelated, a radio circuit embodying the present invention can be realized by having a plurality of radio circuits having different local oscillation frequencies. This eliminates the need for a filter with a wide passband, which was required in the conventional parallel transmission method. The linearity of the radio circuit need only be achieved for each independent radio circuit, and does not require the wideband linearity required in conventional radio circuits for parallel transmission methods. Processors that perform digital signal processing can also use processors with lower processing power by using almost independent narrowband carriers. This contributes to lower power consumption of digital circuits.
以下、 図面を参照して本発明の実施の形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 8は、 本発明の並列伝送方法に用いられる送信機の一構成例を示す。  FIG. 8 shows a configuration example of a transmitter used in the parallel transmission method of the present invention.
図 8において、 複数のベースバンド処理部 800、 805、 . . . 、 810で 処理されたベースバンド信号は、 各々07八変換器820、 825、 . . . 、 8 30で DZA変換されて直交変調器 840、 845、 . . . 、 850で直交変換 される。 その後各々周波数変換器 860、 865 870で制御器 88 In FIG. 8, baseband signals processed by a plurality of baseband processing units 800, 805,..., 810 are DZA-converted by 07-oct converters 820, 825,. The orthogonal transform is performed by the devices 840, 845,. After that, the frequency converter 860, 865 870 and the controller 88
0により f i、 f 2、 . . . 、 fNに周波数変換される。 ここで、 従来の並列伝送 方法では、 f f 2、 . . . , fNの各周波数の間隔がほぼ等しいかまたは各々 がコヒ一レント帯域幅以下であるように設定されていたが、 本発明の並列伝送方 法では制御器 8 8 0により f i、 f 2、 . · . , f Nの各周波数の間隔がコヒ—レ ント帯域幅以上に設定される。 この後、 信号多重器 8 9 0で多重され、 送信電力 増幅器 8 9 5で電力増幅され、 アンテナ 8 9 7を介して送信される。 0 by fi, f 2,... , Is frequency-converted to f N. Here, in the conventional parallel transmission method, the intervals of the respective frequencies ff 2 ,..., F N are set so as to be substantially equal to each other or equal to or less than the coherent bandwidth. Parallel transmission method Fi by the controller 8 8 0 by law, f 2, ·, intervals of the frequency f N is Kohi -.. Is set to more than Les cement bandwidth. Thereafter, the signal is multiplexed by a signal multiplexer 890, amplified by a transmission power amplifier 895, and transmitted via an antenna 899.
図 9は、 本発明の並列伝送方法に用いられる送信機の別の構成例を示す。  FIG. 9 shows another configuration example of the transmitter used in the parallel transmission method of the present invention.
図 9において、 複数のベースバンド処理部 9 0 0、 9 0 5、 . . . 、 9 1 0で 処理されたべ—スパンド信号は、 制御器 9 2 0により信号多重器 9 1 5で周波数 を上記の f 1、 f 2、 . . . , f Nのようにずらして多重され、 A変換器 9 2 5で D/A変換されて、 直交変調器 9 3 0で直交変換される。 その後周波数変換 器 9 3 5で周波数変換され、 送信電力増幅器 94 0で電力増幅され、 アンテナ 9 45を介して送信される。 ここで、 従来の並列伝送方法では、 f f 2、 . . . , ίΝの各周波数の間隔がほぼ等しい、 コヒーレント帯域幅以下に設定されていたが、 本発明の並列伝送方法では制御器 9 2 0により f ι、 f 2、 . . . , fNの各周波 数の間隔がコヒ一レント帯域幅以上に設定される。 In FIG. 9, a base span signal processed by a plurality of baseband processing sections 900, 905,... , F N , and are shifted as in f 1, f 2 ,..., F N. Thereafter, the frequency is converted by a frequency converter 935, the power is amplified by a transmission power amplifier 940, and transmitted via an antenna 945. Here, in the conventional parallel transmission method, ff 2,..., Approximately equal intervals between the frequency of the I New, had been set below the coherent bandwidth, in the parallel transmission method according to the present invention the controller 9 2 With 0, the intervals of the frequencies f ι, f 2,..., F N are set to be equal to or greater than the coherent bandwidth.
図 1 0は、 本発明の並列伝送方法に用いられる受信機の一構成例を示す。  FIG. 10 shows a configuration example of a receiver used in the parallel transmission method of the present invention.
図 1 0において、 アンテナ 1 0 0 0、 1 0 0 5で受信された電波は、 レベル検 出器 1 1 1 0、 1 1 1 5で検出した受信増幅器 1 0 2 0、 1 0 2 5の出力が制御 器 1 1 0 0で受信レベルの大きい方の ANT 1 00 0、 1 0 0 5に切り替えられ、 周波数変換器 1 0 3 0、 1 03 5で制御器 1 04 0により周波数 f i、 f 2に変 換される。 この後、 帯域通過フィルタ(BandPass Filter: B P F) 1 0 5 0と 1 0 5 5、 自動利得制御器 (Automatic Gain Control: AGO 1 06 0、 1 06 5を介して、 検波器 1 0 7 0、 1 0 7 5で検波され、 AZD変換器 1 0 8 0、 1 0 8 5で A/ D変換され、 同相合成器 1 0 9 0で位相を合わせて、 符号を判定する判定器 1 0 9 5に入力される。  In FIG. 10, the radio waves received by antennas 100 and 105 are transmitted to the receiving amplifiers 100 and 125 detected by the level detectors 111 and 115. The output is switched to the higher reception level ANT 1 00 0, 1 0 5 by the controller 1 1 0 0, and the frequency fi, f by the controller 1 04 0 by the frequency converter 1 3 0, 1 3 5 Converted to 2. After this, the bandpass filters (BandPass Filter: BPF) 1 0 5 0 and 1 0 5 5, the automatic gain control (Automatic Gain Control: AGO 1 0 60, 1 065), the detector 1 0 7 0, Detector 1 0 7 5, A / D conversion by AZD converters 1 0 8 0, 1 0 8 5, Judgment 1 0 9 5 Is input to
(実施の形態 1 )  (Embodiment 1)
図 1は、 周波数間隔をコヒーレント帯域幅以上に設定した実施の形態を、 縦軸 をスぺクトル軸 1 0 0、 横軸を周波数軸 1 1 0として示す。 図 1では、 上記一構 成例として示した送受信機を具え、 3つの異なる情報を 3つの搬送波を用いる無 線局 130と無線局 140との間で伝送する並列伝送方法を説明する。 FIG. 1 shows an embodiment in which the frequency interval is set to be equal to or larger than the coherent bandwidth, in which the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110. In Fig. 1, A parallel transmission method including the transceiver shown as an example and transmitting three different pieces of information between the radio station 130 and the radio station 140 using three carriers will be described.
図 1において、 3つの搬送波によるスペク トル 1 1 1、 1 12、 1 13の周波 数間隔 120、 125は、 コヒーレント帯域幅以上に設定 (1 1 5) する。 この 設定 1 15により、 図 1の 3つの搬送波によるスぺク トル 1 1 1、 1 12、 1 1 3は互いにほぼ無相関なフヱ一ジングを受ける。 従って、 通話中に 2番目の搬送 波によるスぺク トル 1 12がフヱ一ジングを受けて回線品質の劣化が生じても残 りの 1番目の搬送波によるスぺク トル 1 1 1と 3番目の搬送波によるスぺク トル 1 13により通話を続けることが可能である。 つまり、 受信機側においては、 図 10に示すように、 1番目の搬送波によるスぺクトル 1 1 1と 3番目の搬送波に よるスペク トル 1 13を同期検波し、 検波器 1070、 1075による検波後に 最大比合成する。 このとき、 各搬送波間をほぼ独立とみなせるので、 2ブランチ 最大比合成のダィバーシチ受信が可能である。  In FIG. 1, the frequency intervals 120 and 125 of the spectra 11 1, 1 12 and 113 by three carriers are set to be equal to or larger than the coherent bandwidth (1 15). With this setting 115, the spectrums 111, 112, and 113 of the three carriers in FIG. 1 undergo fusing almost uncorrelated with each other. Therefore, even if the spectrum 1 12 due to the second carrier is fuzzed during a call and the line quality is degraded, the spectra 1 1 1 and 3 due to the remaining 1st carrier are obtained. It is possible to continue the call by spectrum 113 with the th carrier. In other words, on the receiver side, as shown in FIG. 10, the spectrum 11 1 of the first carrier and the spectrum 113 of the third carrier are synchronously detected, and after the detection by the detectors 1070 and 1075, Combine at maximum ratio. At this time, since each carrier can be regarded as almost independent, diversity reception of 2-branch maximum ratio combining is possible.
(実施の形態 2 )  (Embodiment 2)
図 2は、 周波数間隔をコヒ一レント帯域幅付近に設定した実施の形態を、 縦軸 をスぺク トル軸 100、 横軸を周波数軸 1 10として示す。 図 2では、 3つの異 なる情報を 3つの搬送波を用いる前述した無線局 130と無線局 140との間で 伝送する並列伝送方法を説明する。  FIG. 2 shows an embodiment in which the frequency interval is set near the coherent bandwidth, in which the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110. FIG. 2 illustrates a parallel transmission method for transmitting three different pieces of information between the wireless station 130 and the wireless station 140 using three carriers.
図 2の 3つの搬送波によるスぺク トル 2 1 1、 212、 2 13の周波数間隔 2 20、 225は、 コヒ一レント帯域幅付近に設定 (215) する。 この設定 (2 1 5) により、 図 2の 3つの搬送波によるスぺク トル 21 1、 2 1 2、 213は 互いにほぼ無相関なフヱ一ジングを受ける。 従って、 通話中に 2番目の搬送波に よるスペク トル 2 12がフェージングを受けて回線品質の劣化が生じても残りの 1番目の搬送波によるスぺク トル 2 1 1と 3番目の搬送波によるスぺク トル 2 1 3により通話を続けることが可能である。 つまり、 受信機側においては、 図 10 に示すように、 1番目の搬送波によるスぺクトル 2 1 1と 3番目の搬送波による スぺクトル 2 1 3を同期検波し、 検波器 1 070、 1 075による検波後に最大 比合成する。 このとき、 各搬送波間をほぼ独立とみなせるので、 2ブランチ最大 比合成のダィバ一シチ受信が可能である。 The frequency intervals 220, 225 of the spectrums 211, 212, 213 by the three carriers in FIG. 2 are set near the coherent bandwidth (215). With this setting (2 15), the spectrums 211, 212, and 213 of the three carriers in FIG. 2 undergo fusing almost uncorrelated with each other. Therefore, even if the spectrum 212 due to the second carrier is fading during a call and the line quality is degraded, the spectrum 2111 due to the remaining first carrier and the spectrum due to the third carrier are used. Call 2 13 allows you to continue the call. In other words, on the receiver side, as shown in Fig. 10, the spectrum with the first carrier and the spectrum with the third carrier are used. Synchronous detection of spectrum 2 13 is performed, and maximum ratio combining is performed after detection by detectors 1070 and 1075. At this time, since the carrier waves can be regarded as almost independent, diversity reception of 2-branch maximum ratio combining is possible.
(実施の形態 3 )  (Embodiment 3)
図 3は、 複数の変調方法を用いた実施の形態を、 縦軸をスぺク トル軸 1 00、 横軸を周波数軸 1 1 0として示す。 図 3では、 3つの異なる情報を 3つの搬送波 を用いる無線局 130と無線局 140との間で伝送する並列伝送方法を説明する。 図 3において、 3つの搬送波によるスペク トル 3 1 1、 3 1 2、 3 1 3の各変 調方式を QP SK、 1 6 QAM, FSKとした。 3つの搬送波によるスペク トル 3 1 1、 3 1 2、 3 1 3の周波数間隔 320、 32 5は、 コヒ一レント帯域幅以 上に設定 (3 1 5) する。 この設定 (3 1 5) により、 図 3の 3つの搬送波によ るスペクトル 3 1 1、 3 1 2、 3 1 3は互いにほぼ無相関なフエ一ジングを受け る。 ここで、 3番目の搬送波によるスペクトル 3 1 3がフェージングを受けて回 線品質の劣化が生じても、 1番目の搬送波によるスペク トル 3 1 1と 2番目の搬 送波によるスぺクトル 3 1 2により通話を連続できる。 3番目の搬送波によるス ベク トル 3 1 3で本来伝送するべき情報を 2番の搬送波によるスぺク トル 3 1 2 に振り分けることもできる。 ここで、 2番目の搬送波によるスぺク トル 3 1 2は 1 6 QAMを用いる。 これにより、 本発明による並列伝送方法は、 フヱ一ジング による影響を受けても帯域幅を拡大することなく所定の伝送容量を常に保てる。 (実施の形態 4)  FIG. 3 shows an embodiment using a plurality of modulation methods, in which the vertical axis is spectrum axis 100 and the horizontal axis is frequency axis 110. FIG. 3 illustrates a parallel transmission method for transmitting three different pieces of information between a wireless station 130 and a wireless station 140 using three carriers. In FIG. 3, the modulation schemes of the spectrums 311, 312, and 313 using three carriers are QP SK, 16 QAM, and FSK. The frequency intervals 320, 325 of the spectra 311, 312, 313 by three carriers are set to be equal to or greater than the coherent bandwidth (315). With this setting (3 15), the spectra 311, 312, and 313 of the three carriers in FIG. 3 receive almost uncorrelated fusing. Here, even if the spectrum 3 13 due to the third carrier undergoes fading and the line quality deteriorates, the spectrum 3 11 due to the first carrier and the spectrum 3 13 due to the second carrier 2 allows the call to continue. Information to be originally transmitted in the vector 3 13 by the third carrier can be distributed to the spectrum 3 12 by the second carrier. Here, the spectrum 312 using the second carrier uses 16 QAM. As a result, the parallel transmission method according to the present invention can always maintain a predetermined transmission capacity without increasing the bandwidth even if it is affected by fusing. (Embodiment 4)
図 4は複数の変調方法を用いた実施の形態を、 縦軸をスペク トル軸 1 00、 横 軸を周波数軸 1 1 0として示す。 図 4では、 3つの異なる情報を 3つの搬送波を 用いる無線局 1 30と無線局 140との間で伝送する並列伝送方法を説明する。 図 4において、 3つの搬送波によるスペク トル 4 1 1、 4 1 2、 4 1 3の各変 調方式を QP SK、 1 6 QAM, 1 6 QAMとした。 3つの搬送波によるスぺク トル 4 1 1、 4 1 2、 4 1 3の周波数間隔 420、 425は、 コヒ一レント帯域 幅付近に設定 (4 1 5) する。 この設定 (4 1 5) により、 図 4の 3つの搬送波 によるスペク トル 4 1 1、 4 1 2、 4 1 3は互いにほぼ無相関なフェージングを 受ける。 ここで、 例えば 3番の搬送波によるスぺクトル 4 1 3がフエ一ジングを 受けて回線品質の劣化が生じたとしても、 1番目の搬送波によるスぺクトル 4 1 1と 2番目の搬送波によるスぺクトル 4 1 2により通話を連続できる。 3番目の 搬送波によるスぺク トル 4 1 3で本来伝送するべき情報を 2番目の搬送波による スペク トル 4 1 2に振り分ける。 ここで、 2番目の搬送波によるスぺク トル 4 1 2は 1 6 QAMを用いる。 これにより、 本発明の並列伝送方法は、 フヱ一ジング による影響を受けても帯域幅を拡大することなく所定の伝送容量を常に保てる。 このように搬送波の数 (ここでは 3) と異なる数 (ここでは 2) の変調方法を用 いることもできる。 FIG. 4 shows an embodiment using a plurality of modulation methods, in which the vertical axis is spectrum axis 100 and the horizontal axis is frequency axis 110. FIG. 4 illustrates a parallel transmission method for transmitting three different pieces of information between the wireless station 130 and the wireless station 140 using three carriers. In FIG. 4, the modulation schemes of the spectrums 4 11, 4 12, and 4 13 using three carriers are QP SK, 16 QAM, and 16 QAM. Spectrum with four carriers 411, 412, and 413 frequency intervals 420 and 425 are coherent bands Set near the width (4 1 5). With this setting (4 15), the spectra 4 11 1, 4 12 and 4 13 of the three carriers in FIG. 4 undergo almost uncorrelated fading. Here, for example, even if spectrum 4 13 due to the third carrier is subjected to faging and the line quality is degraded, spectrum 4 11 due to the first carrier and spectrum due to the second carrier are obtained. Calls can be continued with Vector 4 1 2. Information to be transmitted originally in spectrum 4 13 by the third carrier is allocated to spectrum 4 12 by the second carrier. Here, the spectrum 4 12 by the second carrier uses 16 QAM. As a result, the parallel transmission method of the present invention can always maintain a predetermined transmission capacity without expanding the bandwidth even if it is affected by fusing. Thus, it is possible to use a different number of modulation methods (here, 2) than the number of carrier waves (here, 3).
なお、 上記実施形態において使用するこれら P SK:、 0八]^1ぉょび 3 の変 調方式は、 それぞれの組み合わせでもよいし、 またそれぞれの変調方式の多値数 の組み合わせでもよい。  The modulation schemes of P SK :, 0 8] ^ 1 and 3 used in the above embodiment may be a combination of each, or a combination of multi-valued numbers of the respective modulation schemes.
換言すれば、 無線通信方式の設計に応じて、 それぞれの搬送波で異なる多値数 を用いてもよいということであり、 例えば、 1 6QAM、 QP SK、 4 F SKを 用いた 3搬送波無線通信の場合でもよいし、 2 56 QAM、 1 6 QP S :、 64 Q AMを用いた場合でもよいことを意味している。  In other words, depending on the design of the wireless communication system, different multi-level numbers may be used for each carrier.For example, for three-carrier wireless communication using 16QAM, QP SK, and 4F SK. Or 256 QAM, 16 QPS :, or 64 QAM.
(実施の形態 5 )  (Embodiment 5)
図 5は、 P DCで規格化されている周波数間隔の搬送波を用いた実施の形態を、 縦軸をスぺクトル軸 500、 横軸を周波数軸 5 1 0として示す。 図 5では、 4つ の異なる情報を 4つの異なる搬送波によるスペク トル 5 1 1、 5 1 2、 5 1 3、 5 14を用いる無線局 530と無線局 54 0との間で伝送する並列伝送方法を説 明する。  FIG. 5 shows an embodiment using carriers with frequency intervals standardized by PDC, in which the vertical axis is the spectrum axis 500 and the horizontal axis is the frequency axis 510. In Figure 5, a parallel transmission method for transmitting four different pieces of information between radio station 530 and radio station 540 using spectrums 511, 512, 513, 514 with four different carriers. Explain.
図 5において、 各搬送波によるスぺク トル 5 1 1、 5 1 2、 5 1 3、 5 1 4は ほぼ独立である。 各搬送波によるスペクトル 5 1 1、 5 1 2、 5 1 3、 5 1 4を 用いる場合、 図 5は PDCの 4倍の伝送容量になる。 1搬送波によるスペク トル あたり 1 1. 2 k b p sとすれば 44. 8 k b p sの伝送容量力'得られる。 この ように、 本発明を用いた並列伝送方法は高速伝送に有効である。 In FIG. 5, the spectrums 511, 512, 513, and 514 by each carrier are almost independent. Spectrum 5 11 1, 5 1 2, 5 1 3, 5 1 4 by each carrier If used, Figure 5 has four times the transmission capacity of PDC. If the spectrum per carrier is 11.2 kbps, a transmission capacity of 44.8 kbps can be obtained. As described above, the parallel transmission method using the present invention is effective for high-speed transmission.
(実施の形態 6)  (Embodiment 6)
図 6は、 本発明の並列伝送方法を同報サービスに適用した場合の実施の形態を、 縦軸をスぺク トル軸 600、 横軸を周波数軸 610として示す。 図 6では、 4つ の異なる搬送波によるスペク トル 61 1、 612、 613、 6 14を用いる無線 局 630と無線局 640との間の並列伝送方法を説明する。  FIG. 6 shows an embodiment in which the parallel transmission method of the present invention is applied to a broadcast service, in which the vertical axis is a spectrum axis 600 and the horizontal axis is a frequency axis 610. FIG. 6 illustrates a parallel transmission method between a wireless station 630 and a wireless station 640 using spectra 611, 612, 613, and 614 with four different carriers.
下り回線 650において、 通話チャネル 61 1の他に同報サービスを提供する チャネル 612、 613、 6 14に割り当てる。 上り回線 655において、 通話 チャネル 651のみ用いるとすると、 この下り回線 650で用いられるチャネル 612、 613、 6 14の変調方式は、 音声チャネルの変調方式でもよいし他の 変調方式でもよい。  On the down link 650, in addition to the communication channel 611, it is allocated to channels 612, 613, and 614 that provide a broadcast service. Assuming that only the communication channel 651 is used in the uplink 655, the modulation scheme of the channels 612, 613, and 614 used in the downlink 650 may be the modulation scheme of the voice channel or another modulation scheme.
本実施の形態により利用者は各自の移動機を用いて、 音声通信、 たとえば PD Cによる通話をしながら下り回線 650を通して同報サービスを受けることがで きる。 同報サービスとして、 力一ナビゲ一シヨンなどに代表される I T S (Intelligent Tutoring System)と類似のサービス (例えば渋滞情報、 天気予報、 各種 ニュースサービスなど) を受けることができる。 このように、 上り 655と下り 650で異なる回線容量と信頼性を設定できる。  According to the present embodiment, a user can receive a broadcast service through downlink 650 while performing voice communication, for example, a PDC call, using his or her mobile device. As a broadcast service, you can receive services similar to the Intelligent Tutoring System (ITS) represented by power navigation, etc. (for example, traffic jam information, weather forecasts, various news services, etc.). In this way, different line capacities and reliability can be set for the upstream 655 and downstream 650.
(実施の形態 7 )  (Embodiment 7)
図 7は音声とデータ伝送が混在している場合の実施の形態を、 縦軸をスぺクト ル軸 700、 横軸を周波数軸 71 0として示す。 図 7では、 3つの異なる搬送波 によるスペクトル 71 1、 712、 713を用いる無線局 730と無線局 740 との間の並列伝送方法を説明する。  FIG. 7 shows an embodiment in which voice and data transmission coexist, in which the vertical axis represents the spectrum axis 700 and the horizontal axis represents the frequency axis 710. FIG. 7 illustrates a parallel transmission method between a wireless station 730 and a wireless station 740 using spectra 711, 712, and 713 with three different carriers.
下り回線 750において、 各チャネルの変調方式はチャネル 71 1が QPSK、 チャネル 712力 s'l 6 QAM、 チャネル 713が FSKである。 上り回線 755 において、 各チャネルの変調方式はチャネル 751が 16 QAM、 チャネル 75 2が QPSK:、 チャネル 753が F S Kである。 本実施の形態により、 同一の帯 域幅であれば、 各搬送波によるスぺクトル 71 1、 712、 7 13の変調方式に 制限はない。 これは、 音声に PDCを用いて、 16 QAM変調を用いたデ一夕伝 送も可能である。 このように、 本発明の並列伝送方法は、 音声やデータ伝送等の 所要回線品質の異なるサービスを同一の伝送方式で柔軟に実現できる。 In the downlink 750, the modulation scheme of each channel is QPSK for channel 711, s'l6 QAM for channel 712, and FSK for channel 713. Uplink 755 , The modulation scheme of each channel is 16 QAM for channel 751, QPSK for channel 752, and FSK for channel 753. According to the present embodiment, as long as the bandwidth is the same, there is no limitation on the modulation scheme of spectrums 711, 712, and 713 by each carrier. It is also possible to use PDC for voice and to perform overnight transmission using 16 QAM modulation. As described above, the parallel transmission method of the present invention can flexibly realize services with different required line qualities, such as voice and data transmission, using the same transmission method.

Claims

請 求 の 範 囲 The scope of the claims
1. M個 (M> 1である整数) の異なるベースバン ド信号を M個の搬送波を用い て無線通信を行う並列伝送方法において、 1. In a parallel transmission method for performing wireless communication of M different baseband signals (an integer with M> 1) using M carrier waves,
前記 M個の搬送波の各々の周波数間の間隔をコヒーレント帯域幅以上に設定し て、 通信を行うことを特徴とする並列伝送方法。  A parallel transmission method, wherein communication is performed by setting an interval between frequencies of the M carrier waves to be equal to or greater than a coherent bandwidth.
2. 前記 M個の搬送波を M個以下の複数の異なる変調方式により変調することを 特徴とする請求項 1に記載の並列伝送方法。 2. The parallel transmission method according to claim 1, wherein the M carriers are modulated by a plurality of M or less different modulation schemes.
3. 前記 M個以下の複数の異なる変調方法は、 PSK、 QAMおよび FSKの少 なくともいずれか一つを含む組み合わせであることを特徴とする請求項 2に記載 の並列伝送方法。 3. The parallel transmission method according to claim 2, wherein the M or less different modulation methods are a combination including at least one of PSK, QAM, and FSK.
4. 前記 PSK:、 Q AMおよび F S Kの変調方法の組み合わせは、 該変調方法の それぞれの多値数の組み合わせを含むことを特徴とする請求項 3に記載の並列伝 送方法。 4. The parallel transmission method according to claim 3, wherein the combination of the PSK :, QAM, and FSK modulation methods includes a combination of respective multi-level numbers of the modulation methods.
5. M個 (M〉 lである整数) の異なるベースバン ド信号を M個の搬送波を用い て無線通信を行う並列伝送方法において、 5. In a parallel transmission method in which M (integer where M> l) different baseband signals are wirelessly communicated using M carrier waves,
前記 M個の搬送波の各々の周波数間の間隔をコヒーレン ト帯域幅付近に設定し て、 通信を行うことを特徴とする並列伝送方法。  A parallel transmission method characterized in that communication is performed by setting an interval between frequencies of the M carrier waves near a coherent bandwidth.
6. 前記 M個の搬送波に M個以下の複数の異なる変調方式により変調することを 特徴とする請求項 5に記載の並列伝送方法。 6. The parallel transmission method according to claim 5, wherein the M carrier waves are modulated by a plurality of M or less different modulation schemes.
7. 前記 M個以下の複数の異なる変調方法は、 PSK:、 0八1^ぉょび?51^の少 なくともいずれか一つを含む組み合わせであることを特徴とする請求項 6に記載 の並列伝送方法。 7. The M or less different modulation methods are: PSK: 081? 7. The parallel transmission method according to claim 6, wherein the combination includes at least one of 51 ^.
8. 前記 P SK、 QAMおよび F S Kの変調方法の組み合わせは、 該変調方法の それぞれの多値数の組み合わせを含むことを特徴とする請求項 7に記載の並列伝 送方法。 8. The parallel transmission method according to claim 7, wherein the combination of the PSK, QAM, and FSK modulation methods includes a combination of respective multi-level numbers of the modulation methods.
PCT/JP1999/000022 1998-01-09 1999-01-07 Parallel transmission method WO1999035772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002285198A CA2285198C (en) 1998-01-09 1999-01-07 Parallel transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP00352598A JP3507683B2 (en) 1998-01-09 1998-01-09 Parallel transmission method
JP10/3525 1998-01-09

Publications (1)

Publication Number Publication Date
WO1999035772A1 true WO1999035772A1 (en) 1999-07-15

Family

ID=11559805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000022 WO1999035772A1 (en) 1998-01-09 1999-01-07 Parallel transmission method

Country Status (3)

Country Link
JP (1) JP3507683B2 (en)
CA (1) CA2285198C (en)
WO (1) WO1999035772A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463255B2 (en) 1999-12-20 2013-06-11 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
US6545990B1 (en) * 1999-12-20 2003-04-08 Tantivy Communications, Inc. Method and apparatus for a spectrally compliant cellular communication system
US6660226B1 (en) * 2000-08-07 2003-12-09 Murata Manufacturing Co., Ltd. Lead free solder and soldered article
US8311146B2 (en) * 2007-03-06 2012-11-13 Mitsubishi Electric Corporation Radio communication system
JP5348042B2 (en) * 2010-03-26 2013-11-20 富士通株式会社 Multi-carrier communication method, multi-carrier communication system and base station used therefor
JP6424168B2 (en) * 2012-12-21 2018-11-14 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting and receiving signals in a communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110489A (en) * 1991-10-16 1993-04-30 Canon Inc Radio communication equipment
JPH10190609A (en) * 1996-12-24 1998-07-21 Sharp Corp Orthogonal frequency multiplex modulated signal demodulating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110489A (en) * 1991-10-16 1993-04-30 Canon Inc Radio communication equipment
JPH10190609A (en) * 1996-12-24 1998-07-21 Sharp Corp Orthogonal frequency multiplex modulated signal demodulating method

Also Published As

Publication number Publication date
JP3507683B2 (en) 2004-03-15
CA2285198C (en) 2006-03-21
CA2285198A1 (en) 1999-07-15
JPH11205260A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
KR101641441B1 (en) Method and system using relays with aggregated spectrum
US7460839B2 (en) Non-simultaneous frequency diversity in radio communication systems
US5640385A (en) Method and apparatus for simultaneous wideband and narrowband wireless communication
US7881741B2 (en) Mobile station apparatus and wireless communication method
RU2405258C2 (en) Device and method of signal transmission via superior-to-subordinate communication channel
US7227906B2 (en) Radio communication method and apparatus for multiplex transmission of plural signals in the same frequency band
JP5160524B2 (en) Distributed wireless architecture using microcast
KR100883942B1 (en) Multiplexing of Real-time and Non-Real-Time Services of OPDM System
US8289835B2 (en) Dual mode communication systems and methods
US6396823B1 (en) Base station transceiver for frequency hopping code division multiple access system
US7280504B2 (en) OFDM transmitting and receiving apparatus
US6385190B1 (en) Mobile communications system which uses TDMA for speech data and OFDM for control/extended data
US20070293164A1 (en) Multi-connection, non-simultaneous frequency diversity in radio communication systems
US8165615B2 (en) Cellular network system
KR20030036145A (en) High efficiency, high performance communications system employing multi-carrier modulation
JP2000224139A (en) Diversity receiver
JP4245330B2 (en) Wireless transmission apparatus and wireless communication method
US7751430B2 (en) Self optimization of time division duplex (TDD) timing and adaptive modulation thresholds
US6917803B2 (en) Wireless communications equipment
US20140226618A1 (en) Simulcasting mimo communication system
WO1999035772A1 (en) Parallel transmission method
JP2000261405A (en) Diversity transmitter-receiver
US20080046949A1 (en) Spectrum sharing between broadcasting and multiple-access networks
JP4611842B2 (en) Repeater device
AT&T Paper Title (use style: paper title)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

ENP Entry into the national phase

Ref document number: 2285198

Country of ref document: CA

Ref country code: CA

Ref document number: 2285198

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09380926

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载