WO1999034435A1 - Circuit board, manufacture thereof, and electronic device using circuit board - Google Patents
Circuit board, manufacture thereof, and electronic device using circuit board Download PDFInfo
- Publication number
- WO1999034435A1 WO1999034435A1 PCT/JP1998/005865 JP9805865W WO9934435A1 WO 1999034435 A1 WO1999034435 A1 WO 1999034435A1 JP 9805865 W JP9805865 W JP 9805865W WO 9934435 A1 WO9934435 A1 WO 9934435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- connection
- circuit board
- electrode
- lsi
- wiring board
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/4007—Surface contacts, e.g. bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0347—Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0364—Conductor shape
- H05K2201/0367—Metallic bump or raised conductor not used as solder bump
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0502—Patterning and lithography
- H05K2203/054—Continuous temporary metal layer over resist, e.g. for selective electroplating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0562—Details of resist
- H05K2203/0577—Double layer of resist having the same pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0562—Details of resist
- H05K2203/0597—Resist applied over the edges or sides of conductors, e.g. for protection during etching or plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
- H05K3/3473—Plating of solder
Definitions
- the present invention relates to a structure of a wiring board (circuit board) and a method of manufacturing the same for electronic devices in which an LSI is mounted on a substrate and functions, and is particularly suitable for an electronic device requiring reliability.
- the present invention relates to a structure of a wiring board and a manufacturing method thereof.
- connection electrodes of the LSI and the connection electrodes on the wiring board are connected by flexible wiring, the thermal expansion of the LSI and the wiring board in the connection and in the heating process after the connection is performed. There was almost no failure such as disconnection due to the coefficient difference. This is because in the case of the WB method, ultrafine wires of metal such as Au, A1, and Cu are flexibly deformed. In the case of the TAB method, connection terminals are formed on a flexible resin sheet together with wiring. The reason is that the connection part can be prevented from being broken by flexible deformation in response to external force. However, in these connection methods, connection terminals have to be arranged only on four sides of the LSI device due to the connection method itself.
- connection there is a drawback that it is not possible to respond sufficiently.
- connection (.C4) a connection method that combines the arrangement of the array and the connection by solder balls. It is called connection (.C4) and is applied only to limited products such as large computers, and has a proven track record.
- connection (.C4) a connection method that combines the arrangement of the array and the connection by solder balls.
- connection (.C4) is applied only to limited products such as large computers, and has a proven track record.
- this connection method the connection terminals of the board and the LSI are directly connected with only minute solder balls, so if there is a difference in the coefficient of thermal expansion between the LSI and the wiring board, the heat Due to thermal stress in the process, the connection is broken after connection.
- a resin is poured between the LSI and the board, and the overall adhesion of the resin is reduced.
- a connection method has been proposed to prevent thermal stress from concentrating only on the connection terminals by fixing it to the substrate, and some have begun to be put into practical use.
- This resin is called an underfill material, and this has expanded the application range of the interconnection of the LSI and the electrodes of the wiring board by the arrangement of the rear array.
- connection process since bonding is performed to the plating film 5 that has a dotted surface on the surface of the flexible resin layer 3, ultrasonic bonding is difficult, and heat is directly applied to the resin layer 3. As a result, it is not possible to raise the temperature to a sufficiently high level, and thermocompression bonding is virtually unsatisfactory. Therefore, there is a problem in the connection method in this example. In order to reduce the stress, it is necessary that the resin layer 3 is in a state where it can easily move in the direction in which the shear force acts, that is, in the direction parallel to the surface of the substrate 2.
- the present invention has been made in view of the above-mentioned problems of the related art, and has as its object to connect a wiring board and an LSI by heating, and to provide an auxiliary board such as a chip carrier. It is an object of the present invention to provide a substrate structure that can be connected with high reliability without using such a method and a method of manufacturing the same. Disclosure of the invention
- connection using conductive resin or conductive adhesive has begun to be applied to mass production.
- this also requires heating, although not as much as C4, to cure the resin or adhesive.
- C4 heating, although not as much as C4.
- a shear stress is generated at the connection portion after cooling due to a difference in thermal expansion coefficient between the substrate and the LSI. It is widely known that when the difference in the coefficient of thermal expansion is large, the connection is broken immediately after the connection due to the shearing force, and the breakage proceeds over a period of time. To avoid this, it is necessary to reduce the shear force in some way.
- the thickness of the connection pad on the substrate surface or the LSI surface is set to a specific thickness or more, and the electrode itself is easily deformed using the thickness of the electrode.
- the effect of the shearing force on the surface is suppressed. It is necessary to suppress the easily deformed part to the deformation below the breaking limit, which determines the conditions regarding the electrode thickness (height).
- the ease with which the electrodes themselves are deformed depends not only on the height but also on the electrode area as described above, but as described above, the number of connection terminals of the LSI necessarily increases.
- the flexibility of the electrodes tends to increase because it leads to a smaller area. If the original electrode area does not provide enough flexibility, The flexibility is improved by increasing the thickness of only part of the electrode and apparently reducing the area of the connection electrode.
- FIG. 1 is a cross-sectional view showing a layout of a connection portion between a substrate and an LSI.
- FIG. 2 is a cross-sectional view schematically showing a deformation of a connection portion between the substrate and the LSI.
- FIG. 4 is a cross-sectional view for explaining a deformation model of a connection portion
- FIG. 4 is a process explanatory view of a method of manufacturing a wiring board according to an embodiment of the present invention
- FIG. 6 is an explanatory diagram of a method of manufacturing a wiring board according to one embodiment of the present invention.
- FIG. 6 is an explanatory diagram of steps of a method of manufacturing a wiring board according to one embodiment of the present invention.
- FIG. 1 is a cross-sectional view showing a layout of a connection portion between a substrate and an LSI.
- FIG. 2 is a cross-sectional view schematically showing a deformation of a connection portion between the substrate and the LSI.
- FIG. 4 is
- FIG. 8 is a process explanatory view of a method of manufacturing a wiring board according to one embodiment of the present invention.
- FIG. 8 is a process explanatory view of a method of manufacturing a wiring board according to one embodiment of the present invention.
- FIG. 9 is a process explanatory view of a method for manufacturing a wiring board according to an embodiment of the present invention.
- FIG. 10 is a view illustrating an embodiment of the present invention.
- FIG. 11 is a process explanatory view of a method of manufacturing a wiring board
- FIG. 11 is a process explanatory view of a method of manufacturing a wiring board according to an embodiment of the present invention
- FIG. FIG. 13 is a process explanatory view of a method of manufacturing a wiring board according to the embodiment, FIG.
- FIG. 13 is a process explanatory view of a method of manufacturing a wiring board according to an embodiment of the present invention
- FIG. FIG. 15 is a process explanatory view of a method for manufacturing a wiring board according to an embodiment of the present invention.
- FIG. 15 is a cross-sectional view of the wiring board that allows electrode layout change according to the present invention.
- FIG. 6 is a cross-sectional view of a circuit board when the wiring board according to the present invention is applied to solder connection.
- FIG. 17 is a cross-sectional view of a connection portion when the present invention is applied to both a wiring board and an LSI.
- FIG. 18 is a cross-sectional view showing an example of a connection structure according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
- the coefficient of thermal expansion of the substrate 2 is a l
- the coefficient of thermal expansion of the LSI is ct 2
- the size of the LSI chip is a
- the connection temperature is T l
- the room temperature is ⁇ 2
- the LSI 6 and the substrate connected by heating A distortion is generated between the two due to the difference in the coefficient of thermal expansion.
- Fig. 1 considering the cross section of the LSI 6 and the substrate 2, and assuming that the distortion is the largest, and assuming that the connection electrodes 1 are provided at both ends of the LSI 6, when the connection is made at a high temperature,
- the side surface of the columnar medium 7 is modeled and approximated by two arcs 8, 8 '.
- the length of the lower half of the side surface before deformation is defined as hZ2, and this is the circumference of the lower half arc after deformation. If stretched to the length, the elongation strain £ is expressed by the following equation.
- ⁇ (2 (arctan (x / h)) ((x2 + h2) / 4) ( ⁇ T (x2 + h2) / x) -h / 2) / (h / 2)
- the elongation at break is about 30 to 40% even if it is not particularly pure, so based on the above calculation, if the elongation is 40%, then the size of the LSI is In the case of a 10 mm square, a thickness of about 10 ⁇ m is sufficient.
- FIG. 4 An embodiment of a method of manufacturing a wiring board having a thick electrode as described above will be described with reference to FIGS. 4 to 14.
- FIG. 4 An embodiment of a method of manufacturing a wiring board having a thick electrode as described above will be described with reference to FIGS. 4 to 14.
- FIG. 4 An embodiment of a method of manufacturing a wiring board having a thick electrode as described above will be described with reference to FIGS. 4 to 14.
- a resin layer 11 is formed on the entire surface of the wafer or the substrate.
- the resin layer 11 may be formed by a process of applying a varnish and performing beta treatment, or may be formed by attaching a resin sheet coated with a heat-resistant adhesive.
- the thickness of the resin layer 11 is preferably 1 m or more, which is good.
- the upper limit is preferably about 50 m in consideration of the subsequent steps, but is not strictly limited to this range.
- a hole is formed in the resin layer 11 to expose the connection electrode 1 on the surface of the wafer or the wiring board. If the thickness of the resin layer 11 exceeds 1 Q ⁇ m, dry etching or laser processing is appropriate, but if the resin layer 11 is thinner, wet etching can also be used. . At the time of processing, selectivity for the processing is required between the resin layer 11 and the base of the hole. If the protective layer 10 formed on the surface of the wafer or wiring board is inorganic, the resin layer 11 The hole can be made larger than the size of the window of the protective layer 10. Protective layer 1 ⁇ is organic In this case, since selectivity cannot be expected, it is better to form the hole smaller than the window of the protective layer 10 in terms of process stability.
- the surface of the electrode 1 is cleaned, and then, as shown in FIG. 7, Cr or Ti is formed on the entire surface of the wafer or the wiring substrate, and then Cu is formed. Is formed. Since this two-layer film is used as a plating seed film 12 in a later step, it must have excellent adhesion to the surfaces of the resin layer 11 and the electrode 1. Although the two-layer film can be formed by electroless metal plating, it is preferable to form a thin film using Cr or Ti as an adhesive layer from the viewpoint of adhesiveness. When these thin films are formed, the sputtering method is most desirable in consideration of the adhesion of the resin layer 11 into the holes, and the film thickness of Cr or Ti is about 0.1 lm. 0 11 is about 1 / ⁇ 111 which is good.
- a resin layer 13 having a predetermined thickness is formed on the plating seed film 12 on the entire surface of the wafer or substrate, as shown in FIG.
- the thickness of the resin layer 13 determines the final thickness of the electrode described later.
- the resin layer 13 is formed by attaching a resin sheet coated with a heat-resistant adhesive, but a varnish-like resin is applied. ⁇ It can also be formed by beta. Thereafter, as shown in FIG. 9, a hole is formed in the resin layer 13 on the electrode 1.
- the thickness of the resin layer 13 is as thick as several tens to several hundreds of ⁇ m, dry etching or laser processing is considered in consideration of prevention of side etching. Good.
- an ultraviolet laser can be used to form holes with a diameter of 50 ⁇ m and a depth of 250 m or more in polyimide sheets. If so, laser processing is optimal. In these processes, the holes are stopped by the metal layer, which is the seed film 12 of the plating, and the selectivity is reduced. Is good.
- the diameter of this hole may be larger or smaller than the diameter of the lower hole. Further, as described above, the smaller the hole diameter, the better the flexibility of the electrode.
- the position of the hole may be such that the exposed area of the surface of the electrode 1 can be secured as long as the resistance of the connection portion can be tolerated. May be out of range.
- a hole is formed in advance by an appropriate means, and the hole is aligned with the electrode 1 on the wafer or the wiring board, and then bonded. It is also possible to take.
- the metal film already formed is used as the seed film 12 and electroplating is performed, and the resin layer 1 is removed.
- Cu plating is optimal for electrical plating, in which case a copper sulfate plating solution is better in terms of plating speed, stability, solution management, and the like.
- the plated film 14 needs to completely fill the hole, and if it is about several ⁇ m, it may be raised from the hole. If the thickness variation is large, plating is performed on at least the entire surface of the wafer or wiring board until the holes in the resin layer 13 are completely filled, and then the part that has become too thick using a method such as tape polishing. Should be removed.
- a thin resin film 15 is formed, and a portion corresponding to the upper surface of the plating film is formed. Open the window.
- the process is long.
- the electrodes on the surface of the wafer or the wiring board may be corroded, the process of covering the interface with the resin film 15 is simple. Further, as shown in FIG.
- a protective metal film 16 for protecting the plating film 14 at the time of connection and improving the connection reliability is provided on the plated film 14 in which the holes are filled.
- a film is formed by electric plating.
- the material of this metal film 16 differs depending on how the wafer or wiring board is connected. For example, when using solder, two layers of Ni plating film and Au plating film are used. good c also, if connection with something like conductive adhesive can be applied alone a u film.
- the electrodes are separated so that they can move easily when an external force is applied to the electrodes.
- the removal of the unnecessary portion is preferably performed by dry etching or laser processing, similarly to the above-described hole processing.
- the processing is completed when the metal film as the seed film 12 of the plating is finally exposed.
- the resin layer 13 left around the plating film 14 does not need to be left for the purpose of the present invention. Rather, the remaining resin film adversely affects the deformation of the thickly stacked plating film due to external force. However, in order to protect the plating film 14 from the environment, it is desirable that the thickness of 5 ⁇ m or more remains to cover the plating film side surface.
- the metal film of the plating seed film 12 exposed at the bottom of the portion from which the resin layer 13 was removed by the above separation step was removed by wet etching as shown in FIG. Separate the electrodes.
- the Cr, Cu, and Ti described above as the metal film 12 damage the protective metal film 16 because they have etching selectivity with respect to the Au film formed to protect the plating film 14. Can be removed without any problem.
- the wiring board according to the present invention is completed.
- solder balls 20 are fixed to the electrode surface.
- the wafer is positioned and placed at a predetermined position on the wiring board. After that, the connection is completed by performing normal reflow. Basically, this part of the process is no different from a traditional connection.
- solder When solder is used for the connection, the deformation of the solder occurs in addition to the deformation of the electrodes, so that the effect of alleviating the shearing force is greater and the reliability can be further improved.
- connection portion is cut off from the outside air, and the occurrence of connection failure due to oxidation and corrosion can be prevented. It becomes possible.
- the present invention it is possible to directly connect an LSI to a substrate having a different thermal expansion coefficient from Si, which has been difficult in the past, for example, a substrate such as a printed wiring board.
- a substrate such as a printed wiring board.
- sufficient connection reliability can be ensured.
- the connection can be made without the use of the conventional auxiliary substrate, the effective connection distance is shortened, and it is possible to sufficiently cope with future high-speed driving of the LSI.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Wire Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
A method of manufacturing a low-cost circuit board having a structure capable of preventing defective connections due to thermal stresses appearing in thermal bonding when a circuit board is connected with another through their corresponding terminals. The circuit board includes connection electrodes formed on it to make external connections. Each of the connection electrodes has a portion raised more than 10 νm above the upper level of wiring conductors, and the raised portion is used for external connections.
Description
明 細 書 回路基板とその製造方法及びこれを用いた電子機器 技術分野 Description: Circuit board, method of manufacturing the same, and electronic equipment using the same
この発明は、 L S I を基板上に搭載して機能させる電子機器全般に関 する配線基板 (回路基板) の構造及びその製造方法に係リ、 特に、 信頼 性を要求される電子機器に最適な、 配線基板の構造及びその製造方法に 関する。 背景技術 The present invention relates to a structure of a wiring board (circuit board) and a method of manufacturing the same for electronic devices in which an LSI is mounted on a substrate and functions, and is particularly suitable for an electronic device requiring reliability. The present invention relates to a structure of a wiring board and a manufacturing method thereof. Background art
従来の L S I を配線基板上に接続する方法と しては、 L S I の接続端 子数がそれほど多くないこと、 及び、 接続ピッチもそれほど狭くないた めに、 ワイヤーボンディング (W B ) 又はテープオー トメ一テッ ドボン デイング (T A B ) で接続する方法が主流であった。 Conventional methods for connecting an LSI on a wiring board include wire bonding (WB) or tape auto-measurement because the number of LSI connection terminals is not so large and the connection pitch is not so narrow. The main method was to connect with Dobong Ding (TAB).
これらの方法は、 L S I の接続電極と配線基板上の接続電極の間を柔 軟性のある配線で接続していたために、 接続時及び接続後の熱工程にお ける L S I と配線基板との熱膨張係数差による断線等の不良発生は、 殆 どなかった。 これは、 W B方法の場合、 A u , A 1 , C u等の金属の極 細線が柔軟に変形すること、 また、 T A B方法の場合、 接続端子は配線 と共に柔軟な樹脂シート上に形成されていることにょリ、 やはリ外力に 対して柔軟に変形することで、 接続部の破壊を防ぐことができたためで ある。 しかしながら、 これらの接続方法は、 その接続法そのものに起因 して、 接続端子は L S Iデバイスの 4辺にのみ配設せざるを得ず、 近年 の端子数の増加による端子の狭ピッチ化に対して、 十分な対応ができな いという欠点がある。
これに対応できる接続方法として、 ェリァアレイ配設とはんだボール による接続を組み合わせた接続法がぁリ、 従来よリコン トロールド · コ ラブス ' ボンディ ング ( C C B ) 、 又はコン ト口ール ド ' コラプス · チ ップ ' コネクショ ン (.C 4 ) と呼ばれ、 大形計算機等の限られた製品に のみ適用され、 実績もある。 しカゝし、 この接続法は、 基板及び L S Iの 接続端子を微小なはんだボールだけで直接接続するため、 L S I と配線 基板間に熱膨張係数の差がある場合は、 はんだ接続のための熱工程にお ける熱応力のため、 接続後に接続部分が破壊される。 これを防ぐために、 基板の熱膨張係数が L S I の熱膨張係数に合うように基板の材料を選定 する必要がぁリ、 基板の製造コス トを大きく増加させ、 さらにはプロセ スが難しくなるために、 歩留まリが下がる等の弊害がぁリ、 高価格且つ 生産数量が少ない製品のみに適用されていた。 In these methods, since the connection electrodes of the LSI and the connection electrodes on the wiring board are connected by flexible wiring, the thermal expansion of the LSI and the wiring board in the connection and in the heating process after the connection is performed. There was almost no failure such as disconnection due to the coefficient difference. This is because in the case of the WB method, ultrafine wires of metal such as Au, A1, and Cu are flexibly deformed. In the case of the TAB method, connection terminals are formed on a flexible resin sheet together with wiring. The reason is that the connection part can be prevented from being broken by flexible deformation in response to external force. However, in these connection methods, connection terminals have to be arranged only on four sides of the LSI device due to the connection method itself. However, there is a drawback that it is not possible to respond sufficiently. As a connection method that can cope with this, there is a connection method that combines the arrangement of the array and the connection by solder balls. It is called connection (.C4) and is applied only to limited products such as large computers, and has a proven track record. However, in this connection method, the connection terminals of the board and the LSI are directly connected with only minute solder balls, so if there is a difference in the coefficient of thermal expansion between the LSI and the wiring board, the heat Due to thermal stress in the process, the connection is broken after connection. In order to prevent this, it is necessary to select a material for the substrate so that the thermal expansion coefficient of the substrate matches the thermal expansion coefficient of the LSI, which significantly increases the manufacturing cost of the substrate and makes the process more difficult. However, it was only applied to products with high price and low production volume due to adverse effects such as reduced yield.
上記のよ うな欠点を克服し、 エリアァレイ配設による L S I及び配線 基板の電極の相互接続を行うために、 L S I と基板の間に樹脂を流し込— み、 この樹脂の接着性にょリ L S I全体を基板に対して固定することで、 熱応力が接続端子にだけ集中することを防ぐ接続法が提案され、 一部で は実用化が始まっている。 この樹脂はアンダーフィル材と呼ばれ、 これ によリエリァアレイ配設による L S I及び配線基板の電極の相互接続の 適用範囲が広がった。 しかし、 この方法でも、 極端に膨張係数が異なる 場合、 例えばプリント配線基板上に L S I を直接接続する等の場合は、 熱応力の分散効果が不足するため、 熱応力が比較的小さい小型の L S I にのみ適用されておリ、 未だ十分とは言えない。 In order to overcome the drawbacks mentioned above and to interconnect the LSI and the wiring board electrodes by arranging the area array, a resin is poured between the LSI and the board, and the overall adhesion of the resin is reduced. A connection method has been proposed to prevent thermal stress from concentrating only on the connection terminals by fixing it to the substrate, and some have begun to be put into practical use. This resin is called an underfill material, and this has expanded the application range of the interconnection of the LSI and the electrodes of the wiring board by the arrangement of the rear array. However, even in this method, when the expansion coefficient is extremely different, for example, when the LSI is directly connected to a printed wiring board, the effect of dispersing the thermal stress is insufficient, so that a small LSI having a relatively small thermal stress can be obtained. Only applied, not yet enough.
近年は、 L S I の集積度が急速に向上してぉリ、 これに伴い L S I の 大きさも大きくなる傾向にある。 特にロジック L S I においては、 この 傾向が顕著でぁリ、 最先端のロジック L S Iでは 1 0 m m角を越えるよ うになつて来た。 この傾向は今後も続き、 2 0 m m角程度の L S I の出
現も予想されている。 このような状況に対処するため、 L S I と配線基 板との間に、 熱膨張係数が両者の中間のチップキャリアをいれ、 L S I は一旦チップキヤリァの上部電極にはんだ接続され、 チップキャリアの 下部電極を基板の接続電極にはんだ接続する方法が提案されている。 こ の方法と上記アンダーフィルとの組み合わせによリ、 エリアアレイ配設 による L S I及び配線基板の電極の相互接続の適用対象が、 かなリ広が つてきた。 しかし、 この方法は特定の熱膨張係数のチップキャリアが別 個に必要となる上に、 接続工程も 2回に増える等、 コス ト面及び接続技 術の面でかなリ不利となるため、 一般的に広がるには至っていない。 In recent years, the degree of integration of LSI has rapidly increased, and the size of LSI has tended to increase accordingly. In particular, this tendency is remarkable in logic LSIs, and the state-of-the-art logic LSIs are now exceeding 10 mm square. This trend will continue in the future. It is currently expected. To cope with such a situation, a chip carrier having a thermal expansion coefficient intermediate between the two is placed between the LSI and the wiring board, and the LSI is temporarily soldered to the upper electrode of the chip carrier, and the lower electrode of the chip carrier is connected to the chip carrier. A method of solder connection to a connection electrode of a substrate has been proposed. The combination of this method and the underfill described above has broadened the scope of application of the interconnection of LSI and wiring substrate electrodes by area array arrangement. However, this method requires a separate chip carrier with a specific coefficient of thermal expansion and also requires two connection steps, which is disadvantageous in terms of cost and connection technology. It has not yet spread.
このような欠点を克服するために、 第 1 8図に示した特開昭 6 4 - 6 8 9 3 5号公報に開示された技術のように、 接続電極 1を含めた基板 2 上に感光性の樹脂層 3を被覆し、 接続電極 1上に微小な樹脂の穴 4を多 数形成し、 この微小な穴 4をめつき膜 5で埋め込み、 樹脂層 3上に突き 出た部分を利用して熱圧着法又は超音波ボンディング法によリ、 L S I を接続する方法が考案されている。 この例では、 接続に寄与するのは微 小な穴に充填された微細なめつき膜 5のみであるため、 接続面積が小さ く接続抵抗が高い上に、 接続強度が低いという欠点がある。 また、 接続 工程においても、 柔軟な樹脂層 3の表面に点々と顔を出しているめつき 膜 5に接着を行うため、 超音波ボンディングが困難であることや、 樹脂 層 3にも熱が直接かかるために十分に高温にできず、 熱圧着も事実上う まく ゆかない。 従って、 この例では接続法にも問題がある。 また、 応力 を緩和するためには、 剪断力が働く方向、 つまリ基板 2の表面と平行な 方向に対して動きやすい状態になっている必要があるが、 この例では樹 脂層 3が電極 1上及びその周辺の広い面積を覆っているため、 樹脂及び 微細化されためっき膜は柔らかく とも、 広い面積にわたる樹脂層 3全体 を動かす必要があるために変形抵抗が大きくなつてしまい、 容易に変形
しない。 従って、 接続部分に柔軟性を付与して応力を緩和するためには. 更に工夫が必要であることが判った。 In order to overcome such a drawback, as shown in FIG. 18, as shown in FIG. Covering the conductive resin layer 3 and forming a large number of minute resin holes 4 on the connection electrode 1, filling these minute holes 4 with the plating film 5, and using the protruding part on the resin layer 3 Then, a method of connecting LSIs by a thermocompression bonding method or an ultrasonic bonding method has been devised. In this example, since only the fine plating film 5 filled in the fine holes contributes to the connection, there are disadvantages that the connection area is small, the connection resistance is high, and the connection strength is low. Also, in the connection process, since bonding is performed to the plating film 5 that has a dotted surface on the surface of the flexible resin layer 3, ultrasonic bonding is difficult, and heat is directly applied to the resin layer 3. As a result, it is not possible to raise the temperature to a sufficiently high level, and thermocompression bonding is virtually unsatisfactory. Therefore, there is a problem in the connection method in this example. In order to reduce the stress, it is necessary that the resin layer 3 is in a state where it can easily move in the direction in which the shear force acts, that is, in the direction parallel to the surface of the substrate 2. 1 Because it covers a large area on and around it, the resin and the miniaturized plating film are soft, but the entire resin layer 3 needs to be moved over a large area. Deformation do not do. Therefore, it was found that further contrivance is required to impart flexibility to the connection portion and reduce the stress.
本発明は、 上述した従来技術のもつ問題点に鑑みてなされたもので、 その目的とするところは、 加熱することで配線基板と L S I を接続する にあたリ、 チップキャリア等の補助的基板などを使わずに、 信頼性良く 接続できる基板構造及びその製造方法を提供することにある。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to connect a wiring board and an LSI by heating, and to provide an auxiliary board such as a chip carrier. It is an object of the present invention to provide a substrate structure that can be connected with high reliability without using such a method and a method of manufacturing the same. Disclosure of the invention
加熱することで基板と L 3 I を接続する方法として、 前記のはんだボ —ルを用いた方法に加え、 最近では、 導電性樹脂又は導電性接着剤を用 いた接続が量産に適用され始めているが、 これも樹脂又は接着剤を硬化 させるために、 C 4ほどではないものの加熱を必要とする。 このよ うに, 接続する際に加熱を行う方法においては、 冷却後に基板と L S I との熱 膨張率の差に起因して、 接続部に剪断応力が発生する。 この熱膨張率の 差が大きい場合は、 剪断力によって接続部が接続直後に破壊されたリ、 ある程度の時間をかけて破壊が進むことが広く知られている。 これを避 けるためには、 何らかの方法で剪断力を低減することが必要である。 本発明においては、 基板表面又は L S I表面の接続用のパッ ドの厚さ を特定の厚さ以上にし、 電極の厚さを利用して電極自身を変形し易くす ることで、 他の構成部分への剪断力の影響を抑制するものである。 変形 し易く した部分は、 破断限界以下の変形に抑制する必要がぁリ、 このこ とから電極の厚さ (高さ) に関する条件が決まってく る。 また、 電極自 身の変形のし易さは、 高さだけでなく、 前述のように電極面積にも依存 するが、 前述のように L S I の接続端子数の増加は必然的に接続端子の 電極面積を小さくすることにつながるため、 電極の柔軟性は増加する傾 向にある。 また、 本来の電極面積では十分な柔軟性が得られない場合は、
電極の一部のみを厚く し、 見かけ上接続電極面積を減らすことで柔軟性 を向上させる。 図面の簡単な説明 As a method of connecting the board and L3I by heating, in addition to the above-mentioned method using solder balls, recently, connection using conductive resin or conductive adhesive has begun to be applied to mass production. However, this also requires heating, although not as much as C4, to cure the resin or adhesive. As described above, in the method of heating at the time of connection, a shear stress is generated at the connection portion after cooling due to a difference in thermal expansion coefficient between the substrate and the LSI. It is widely known that when the difference in the coefficient of thermal expansion is large, the connection is broken immediately after the connection due to the shearing force, and the breakage proceeds over a period of time. To avoid this, it is necessary to reduce the shear force in some way. In the present invention, the thickness of the connection pad on the substrate surface or the LSI surface is set to a specific thickness or more, and the electrode itself is easily deformed using the thickness of the electrode. The effect of the shearing force on the surface is suppressed. It is necessary to suppress the easily deformed part to the deformation below the breaking limit, which determines the conditions regarding the electrode thickness (height). In addition, the ease with which the electrodes themselves are deformed depends not only on the height but also on the electrode area as described above, but as described above, the number of connection terminals of the LSI necessarily increases. The flexibility of the electrodes tends to increase because it leads to a smaller area. If the original electrode area does not provide enough flexibility, The flexibility is improved by increasing the thickness of only part of the electrode and apparently reducing the area of the connection electrode. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 基板と L S I の接続部分のレイアウ トを示す断面図であ利. 第 2図は、 基板と L S I との接続部分の変形を模擬的に示した断面図で あり、 第 3図は、 接続部分の変形モデルを説明するための断面図でぁリ , 第 4図は、 本発明の一実施形態に係る配線基板の製造方法の工程説明図 であリ、 第 5図は、 本発明の一実施形態に係る配線基板の製造方法のェ 程説明図であり、 第 6図は、 本発明の一実施形態に係る配線基板の製造 方法の工程説明図でぁリ、 第 7図は、 本発明の一実施形態に係る配線基 板の製造方法の工程説明図であり、 第 8図は、 本発明の一実施形態に係 る配線基板の製造方法の工程説明図でぁリ、 第 9図は、 本発明の一実施 形態に係る配線基板の製造方法の工程説明図でぁリ、 第 1 0図は、 本発 明の一実施形態に係る配線基板の製造方法の工程説明図でぁリ、 第 1 1 図は、 本発明の一実施形態に係る配線基板の製造方法の工程説明図であ リ、 第 1 2図は、 本発明の一実施形態に係る配線基板の製造方法の工程 説明図でぁリ、 第 1 3図は、 本発明の一実施形態に係る配線基板の製造 方法の工程説明図でぁリ、 第 1 4図は、 本発明の一実施形態に係る配線 基板の製造方法の工程説明図でぁリ、 第 1 5図は、 本発明による電極レ ィアウ ト変更を可能とした配線基板の断面図でぁリ、 第 1 6図は、 本発 明による配線基板をはんだ接続に適用する場合の基板断面図であリ、 第 1 7図は、 本発明を配線基板および L S I の両者に適応した場合の接続 部分の断面図でぁリ、 第 1 8図は、 従来技術による接続構造の一例を示 す断面図である。
発明を実施するための最良の形態 FIG. 1 is a cross-sectional view showing a layout of a connection portion between a substrate and an LSI. FIG. 2 is a cross-sectional view schematically showing a deformation of a connection portion between the substrate and the LSI. FIG. 4 is a cross-sectional view for explaining a deformation model of a connection portion, FIG. 4 is a process explanatory view of a method of manufacturing a wiring board according to an embodiment of the present invention, and FIG. FIG. 6 is an explanatory diagram of a method of manufacturing a wiring board according to one embodiment of the present invention. FIG. 6 is an explanatory diagram of steps of a method of manufacturing a wiring board according to one embodiment of the present invention. FIG. 8 is a process explanatory view of a method of manufacturing a wiring board according to one embodiment of the present invention. FIG. 8 is a process explanatory view of a method of manufacturing a wiring board according to one embodiment of the present invention. FIG. 9 is a process explanatory view of a method for manufacturing a wiring board according to an embodiment of the present invention. FIG. 10 is a view illustrating an embodiment of the present invention. FIG. 11 is a process explanatory view of a method of manufacturing a wiring board, FIG. 11 is a process explanatory view of a method of manufacturing a wiring board according to an embodiment of the present invention, and FIG. FIG. 13 is a process explanatory view of a method of manufacturing a wiring board according to the embodiment, FIG. 13 is a process explanatory view of a method of manufacturing a wiring board according to an embodiment of the present invention, FIG. FIG. 15 is a process explanatory view of a method for manufacturing a wiring board according to an embodiment of the present invention. FIG. 15 is a cross-sectional view of the wiring board that allows electrode layout change according to the present invention. FIG. 6 is a cross-sectional view of a circuit board when the wiring board according to the present invention is applied to solder connection. FIG. 17 is a cross-sectional view of a connection portion when the present invention is applied to both a wiring board and an LSI. FIG. 18 is a cross-sectional view showing an example of a connection structure according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよリ詳細に説述するために、 添付の図面に従ってこれを説明 する。 The present invention will be described in more detail with reference to the accompanying drawings.
基板 2の熱膨張率を a l 、 L S I の熱膨張率を ct 2、 L S Iチップの 大きさを a、 接続温度を T l、 室温を Τ 2とすると、 加熱による接続を 行った L S I 6及び基板 2 との間には、 熱膨張率の差に基づく歪みが生 じる。 第 1図に示すように、 L S I 6 と基板 2の断面を考え、 最も歪み が大きくなる場合を想定して、 L S I 6の両端に接続用電極 1があると 仮定すると、 高温で接続した時点で対向していた部分は、 冷却後には、 変位 Χ = ( ひ 1 — ひ 2 ) ( Τ 1 — Τ 2 ) aノ 2 Assuming that the coefficient of thermal expansion of the substrate 2 is a l, the coefficient of thermal expansion of the LSI is ct 2, the size of the LSI chip is a, the connection temperature is T l, and the room temperature is Τ2, the LSI 6 and the substrate connected by heating A distortion is generated between the two due to the difference in the coefficient of thermal expansion. As shown in Fig. 1, considering the cross section of the LSI 6 and the substrate 2, and assuming that the distortion is the largest, and assuming that the connection electrodes 1 are provided at both ends of the LSI 6, when the connection is made at a high temperature, The opposite part, after cooling, has a displacement Χ = (1 — 2 2) (Τ 1 — Τ 2) a
を生じる。 実際には、 両者が接続されているために互いに変形を拘束し 合って、 変位はこの値よリも必ず小さくなる。 互いを拘束し合う力は全 て接続部分を通じて伝わってぉリ、 接続部分は大きな力に晒されること になる。 Is generated. Actually, the displacement is always smaller than this value because the two are connected and restrain each other's deformation. All forces constraining each other are transmitted through the joints, and the joints are exposed to large forces.
基板 2と L S I 6 との間の接続を単純化して、 柱状の媒体 7で接続し た場合を考え、 理論的に最大の変位 Xを生じたと考える。 この最大変位 を生じるということは、 両基板の変形拘束が起こっていないということ になリ、 接続電極部分には力がかかっていない状態である。 このような 状態になるためには、 第 2図に示す如く、 上記 L S I の変位 8に応じて. 破線で示した柱状媒体 7は変形し、 実線で示す 7 ' のようになる。 この 変形を考えると、 本来は複雑な曲線で表されるような変形をしておリ、 曲線の外側に位置する部分の表面が、 最も大きな力がかかって伸ばされ ている。 従って、 この部分の歪みが、 この柱状媒体 7の材料特性である 破断歪み ε f を越えれば、 この部分からこの媒体 7の破壊が始まること になる。 よって、 この部分の歪みを、 少なく とも破断歪み以下、 できれ ば弹性限界以下に抑制することで、 信頼性良く接続を行うことが可能と
なる。 Consider the case where the connection between the substrate 2 and the LSI 6 is simplified and the connection is made with the columnar medium 7, and the maximum displacement X theoretically occurs. The occurrence of this maximum displacement means that no deformation constraint has occurred between the two substrates, and no force is applied to the connection electrode portion. In order to achieve such a state, as shown in FIG. 2, the columnar medium 7 shown by the broken line is deformed to become 7 'shown by the solid line according to the displacement 8 of the LSI. Considering this deformation, it is originally deformed as represented by a complicated curve, and the surface of the part located outside the curve is stretched with the greatest force. Therefore, if the strain in this portion exceeds the breaking strain ε f which is a material characteristic of the columnar medium 7, the breakage of the medium 7 starts from this portion. Therefore, it is possible to achieve a reliable connection by suppressing the strain in this part at least below the breaking strain, and preferably below the limit of elasticity. Become.
第 3図に示す如く、 柱状媒体 7の側面をモデル化して 2つの円弧 8、 8 ' で近似してみる。 この場合、 力の加わり方は、 上半分と下半分は点 対'称で等価であるから、 変形前の側面の下半分の長さを hZ 2として、 変形後にこれが下半分の円弧の円周の長さまで伸ばされたとすれば、 そ の伸び歪み £ は次式で表される。 As shown in Fig. 3, the side surface of the columnar medium 7 is modeled and approximated by two arcs 8, 8 '. In this case, since the upper half and the lower half are equivalent to each other in a point-pair manner, the length of the lower half of the side surface before deformation is defined as hZ2, and this is the circumference of the lower half arc after deformation. If stretched to the length, the elongation strain £ is expressed by the following equation.
ε = (2(arctan(x/h)) ( (x2+h2)/4) (^T (x2+h2) /x) -h/2) / (h/2) ε = (2 (arctan (x / h)) ((x2 + h2) / 4) (^ T (x2 + h2) / x) -h / 2) / (h / 2)
= ((x2+h2) arctan (x/h))/hx - 1 = ((x2 + h2) arctan (x / h)) / hx-1
この式をもとに、 具体的な場合を想定して見ると、 f を電極として良 く用いられる材料である C uの破断歪みとして考えると、 比較的純度が 高いものは 2 0 %以上であることから、 £ = 0. 2、 また、 C uの弾性 限界の歪み量と して金属学の分野で耐力として用いられる 0. 2 %とい う数値を当てはめれば、 ε = 0. 0 0 2となる。 Assuming a specific case based on this equation and assuming that f is the breaking strain of Cu, which is a material often used as an electrode, those with relatively high purity are more than 20%. Therefore, if we apply the numerical value of 0.2%, which is used as the proof stress in the field of metallurgy as the amount of strain at the elastic limit of Cu, £ = 0.2, ε = 0.00 It becomes 2.
変位量 Xを具体的に見積もってみると、 基板の熱膨張率を通常のプリ ント基板を想定すれば、 α 1=1 7 X l O—5 、 L S I の熱膨張率の大き さはひ 2 = 4 X 1 0— 6、 L S Iチップの大きさは a = 2 0 mm、 接続温 度は錫と鉛の合金系の共晶はんだのはんだ付けを想定して凝固温度 T 1 = 1 9 0 °C, 室温を T 2 = 2 0°Cとすれば、 X= 2 2 mである。 これ らの値を上式に当てはめれば、 柱状の媒体 7の高さ hは、 When the displacement X is specifically estimated, assuming that the thermal expansion coefficient of the substrate is a normal printed substrate, α 1 = 17 X l O— 5 , and the magnitude of the thermal expansion coefficient of the LSI is 2 = 4 X 10 — 6 , LSI chip size a = 20 mm, connection temperature solidification temperature T 1 = 190 °, assuming soldering of eutectic solder based on tin-lead alloy C, if the room temperature is T 2 = 20 ° C, X = 22 m. If these values are applied to the above equation, the height h of the columnar medium 7 is
h = 3 9 μ m (歪み 2 0 %の場合)、 h = 39 μm (for 20% strain),
h = 3 9 3 m (歪み 0. 2%の場合) h = 3 9 3 m (for a distortion of 0.2%)
また、 チップサイズを a = 1 0 mmとすれば Also, if the chip size is a = 10 mm,
h = 2 2 μ m (チップサイズ 1 0 mm, 歪み 2 0。/。の場合) h = 22 μm (for chip size 10 mm, distortion 20./.)
となる。 Becomes
従って、 上記例では、 厚さが約 4 0 μ m以上の C uが電極と して形成 できれば、 接続直後に接続部が破断するという ことを防ぐことができる c
更に、 約 4 0 0 mの厚さで形成できれば、 信頼性の点からも全く問題 が無い接続とすることができる。 Therefore, in the above example, if Cu having a thickness of about 40 μm or more can be formed as an electrode, it is possible to prevent the connection portion from breaking immediately after connection c Furthermore, if it can be formed with a thickness of about 400 m, a connection having no problem from the viewpoint of reliability can be obtained.
電極材料が A 1 の場合は、 特に高純度でなく とも破断伸びが 3 0から 4 0 %程度はあるので、 上記の計算に基づけば、 伸びを 4 0 %とすれば. L S I の大きさが 1 0 m m角,の場合で約 1 0 μ mの厚さがあれば良いこ とになる。 If the electrode material is A1, the elongation at break is about 30 to 40% even if it is not particularly pure, so based on the above calculation, if the elongation is 40%, then the size of the LSI is In the case of a 10 mm square, a thickness of about 10 μm is sufficient.
次に、 上述したような、 厚い電極を有した配線基板の製造方法の一実 施形態について、 第 4図〜第 1 4図を用いて説明する。 Next, an embodiment of a method of manufacturing a wiring board having a thick electrode as described above will be described with reference to FIGS. 4 to 14. FIG.
まず、 第 4図に示すように、 前工程の終わったウェハ又は配線形成が 終わった配線基板 2において、 外部との接続のための電極 1だけが保護 層 1 Qに形成された窓から露出し、 他の配線は全て保護層 1 0に覆われ ている状態とする。 First, as shown in Fig. 4, only the electrode 1 for connection to the outside is exposed from the window formed on the protective layer 1Q on the wafer after the previous process or the wiring board 2 on which the wiring has been formed. All the other wirings are covered with the protective layer 10.
この状態で、 第 5図に示すように、 ウェハ又は基板全面に樹脂層 1 1 を形成する。 この樹脂層 1 1の形成は、 ワニスを塗布してベータするよ うなプロセスでも良いが、 耐熱性のある接着剤が塗布された樹脂シート を貼リ付けて形成しても良い。 樹脂層 1 1の厚さは 1 m以上が良好で ぁリ、 上限は後の工程を考慮すると 5 0 m程度が望ましいが、 厳密に この範囲に限定されるものではない。 In this state, as shown in FIG. 5, a resin layer 11 is formed on the entire surface of the wafer or the substrate. The resin layer 11 may be formed by a process of applying a varnish and performing beta treatment, or may be formed by attaching a resin sheet coated with a heat-resistant adhesive. The thickness of the resin layer 11 is preferably 1 m or more, which is good. The upper limit is preferably about 50 m in consideration of the subsequent steps, but is not strictly limited to this range.
次に、 第 6図に示すように、 樹脂層 1 1に対して穴開け加工を実施し. ウェハ又は配線基板表面の接続用電極 1を露出させる。 加工は、 樹脂層 1 1 の厚さが 1 Q μ mを越える場合は、 ドライエッチ又はレーザー加工 が適当であるが、 樹脂層 1 1がこれよリ薄ければ、 ウエッ トエッチング でも可能である。 加工に際しては、 樹脂層 1 1 と穴の下地との間に加工 プロセスに対する選択性が必要でぁリ、 ウェハ又は配線基板表面に形成 された保護層 1 0が無機物であれば、 樹脂層 1 1の穴は保護層 1 0の窓 の大きさよリ大きくすることが可能である。 保護層 1 ◦が有機物である
場合は、 選択性が期待できないので、 穴は保護層 1 0の窓よ リ小さく形 成する方がプロセスの安定性の点で良好である。 Next, as shown in FIG. 6, a hole is formed in the resin layer 11 to expose the connection electrode 1 on the surface of the wafer or the wiring board. If the thickness of the resin layer 11 exceeds 1 Q μm, dry etching or laser processing is appropriate, but if the resin layer 11 is thinner, wet etching can also be used. . At the time of processing, selectivity for the processing is required between the resin layer 11 and the base of the hole. If the protective layer 10 formed on the surface of the wafer or wiring board is inorganic, the resin layer 11 The hole can be made larger than the size of the window of the protective layer 10. Protective layer 1 ◦ is organic In this case, since selectivity cannot be expected, it is better to form the hole smaller than the window of the protective layer 10 in terms of process stability.
穴開け加工終了後、 電極 1の表面のク リーニング処理を行い、 然る後. 第 7図に示すように、 ウェハ又は配線基板の全面に C r又は T i を成膜 し、 続けて C uを成膜する。 この 2層膜は、 後の工程でめっきの種膜 1 2として用いるものであるので、 樹脂層 1 1及び電極 1の表面との接着 性に優れている必要がある。 この 2層膜は、 無電解の金属めつきでも形 成可能であるが、 接着性の観点から C r又は T i を接着層と した薄膜を 形成する方が望ましい。 また、 これらの薄膜を成膜する場合、 樹脂層 1 1の穴の中への付着性を考慮すれば、 スパッタ リ ング法が最も望ましく, 膜厚は C r又は T i が 0 . l m程度、 0 11は 1 /^ 111程度で良ぃ。 After the drilling process is completed, the surface of the electrode 1 is cleaned, and then, as shown in FIG. 7, Cr or Ti is formed on the entire surface of the wafer or the wiring substrate, and then Cu is formed. Is formed. Since this two-layer film is used as a plating seed film 12 in a later step, it must have excellent adhesion to the surfaces of the resin layer 11 and the electrode 1. Although the two-layer film can be formed by electroless metal plating, it is preferable to form a thin film using Cr or Ti as an adhesive layer from the viewpoint of adhesiveness. When these thin films are formed, the sputtering method is most desirable in consideration of the adhesion of the resin layer 11 into the holes, and the film thickness of Cr or Ti is about 0.1 lm. 0 11 is about 1 / ^ 111 which is good.
めっきの種膜 1 2の成膜が完了した後、 第 8図に示すように、 ウェハ 又は基板全面のめっきの種膜 1 2上に、 所定の厚さの樹脂層 1 3を形成 する。 この樹脂層 1 3の厚みが後述する電極の最終的な厚さを決めるこ とになる。 膜厚の分布の点を考慮すれば、 この樹脂層 1 3は、 耐熱性の ある接着剤が塗布された樹脂シートを貼リ付けて形成する方法が望まし いが、 ワニス状の樹脂を塗布 ·ベータすることで形成することも可能で その後、 第 9図に示すように、 電極 1上の樹脂層 1 3に対して穴開け 加工を行う。 この場合、 穴開け加工プロセスとしては、 樹脂層 1 3の厚 さが数十〜数百 μ mと厚いことから、 サイ ドエッチングの防止の点を考 慮して、 ドライエッチ加工又はレーザー加工が良好である。 特にレーザ 一加工では、 紫外レーザーを用いることで、 5 0 μ ΐ の径で 2 5 0 m 以上の深さの穴をポリィ ミ ドのシ一トに形成できることは確認されてお リ、 深い穴であればレーザー加工が最適である。 これらの加工において は、 穴は前述のめっきの種膜 1 2である金属層で加工が止ま リ、 選択性
は良好である。 この穴の径は、 下層の穴の径に対して大きくても小さく ても良い。 更に、 前述のように穴径が小さい方が電極の柔軟性が良好で あるため、 電気抵抗の制約の範囲内で穴径を小さくすることは、 本発明 の効果を表しやすくする。 また、 穴の位置も、 接続部の抵抗が許容でき る範囲で、 電極 1の表面の露出面積が確保できていれば良く、 部分的に 保護層 1 0の窓及び下層樹脂層 1 1の穴から外れていても良い。 After the formation of the plating seed film 12 is completed, a resin layer 13 having a predetermined thickness is formed on the plating seed film 12 on the entire surface of the wafer or substrate, as shown in FIG. The thickness of the resin layer 13 determines the final thickness of the electrode described later. Considering the distribution of the film thickness, it is preferable that the resin layer 13 is formed by attaching a resin sheet coated with a heat-resistant adhesive, but a varnish-like resin is applied. · It can also be formed by beta. Thereafter, as shown in FIG. 9, a hole is formed in the resin layer 13 on the electrode 1. In this case, as the drilling process, since the thickness of the resin layer 13 is as thick as several tens to several hundreds of μm, dry etching or laser processing is considered in consideration of prevention of side etching. Good. In particular, it has been confirmed that in laser processing, an ultraviolet laser can be used to form holes with a diameter of 50 μm and a depth of 250 m or more in polyimide sheets. If so, laser processing is optimal. In these processes, the holes are stopped by the metal layer, which is the seed film 12 of the plating, and the selectivity is reduced. Is good. The diameter of this hole may be larger or smaller than the diameter of the lower hole. Further, as described above, the smaller the hole diameter, the better the flexibility of the electrode. Therefore, reducing the hole diameter within the range of the restriction of the electric resistance facilitates the effect of the present invention. In addition, the position of the hole may be such that the exposed area of the surface of the electrode 1 can be secured as long as the resistance of the connection portion can be tolerated. May be out of range.
更に、 樹脂層 1 3 として接着剤の付いた樹脂シートを用いる場合は、 予め穴を適当な手段で開けておき、 これをゥェハ又は配線基板上の電極 1に位置合せして貼リ付けるという工程を採ることも可能である。 Further, when a resin sheet with an adhesive is used as the resin layer 13, a hole is formed in advance by an appropriate means, and the hole is aligned with the electrode 1 on the wafer or the wiring board, and then bonded. It is also possible to take.
穴加工後、 穴の底をク リ一二ング処理した後に、 第 1 0図に示すよう に、 既に形成してある金属膜を種膜 1 2として、 電気めつきを行い、 樹 脂層 1 1及び 1 3の穴をめつき膜 1 4で充填する。 電気めつきと しては C uめっきが最適でぁリ、 その場合は、 硫酸銅系のめっき液がめっき速 度、 安定性、 液管理等の点から良好である。 めっき膜 1 4は、 穴を完全 に埋めることが必要で、 数 μ m程度であれば穴から盛リ上がる状態にな つても良い。 厚さばらつきが大きい場合は、 ウェハ又は配線基板全面で 少なく とも樹脂層 1 3の穴が完全に埋め込まれるまでめっきを行い、 そ の後、 テープ研磨のような手法で、 厚くなリすぎた部分を削リ落とすと 良い。 After drilling, the bottom of the hole is cleaned, and as shown in Fig. 10, the metal film already formed is used as the seed film 12 and electroplating is performed, and the resin layer 1 is removed. Fill holes 1 and 13 with membrane 14. Cu plating is optimal for electrical plating, in which case a copper sulfate plating solution is better in terms of plating speed, stability, solution management, and the like. The plated film 14 needs to completely fill the hole, and if it is about several μm, it may be raised from the hole. If the thickness variation is large, plating is performed on at least the entire surface of the wafer or wiring board until the holes in the resin layer 13 are completely filled, and then the part that has become too thick using a method such as tape polishing. Should be removed.
その後、 めっき膜 1 4 と樹脂層 1 3の界面が外部に露出するのを防止 するために、 第 1 1図に示すように、 薄い樹脂膜 1 5を形成し、 めっき 膜上面に相当する部分に窓を開ける。 めっき膜 1 4 と樹脂層 1 3の界面 は、 めっき前に樹脂層 1 3の穴の側面に対し化学処理をすることで、 接 着性を付与することは可能であるが、 工程が長い上に、 ウェハ又は配線 基板表面の電極を腐食する恐れもあるため、 樹脂膜 1 5で界面を覆う方 力 工程と しては簡単である。
更に、 第 1 2図に示すように、 穴埋めを行っためっき膜 1 4上に、 接 続時にこのめつき膜 1 4を保護して接続信頼性を向上させるための保護 金属膜 1 6を、 同じく電気めつきで成膜する。 この金属膜 1 6は、 ゥェ ハ又は配線基板をどのような方法で接続するかによリ、 材料が異なるが. 例えばはんだを使う場合は、 N i めっき膜と A uめっき膜の 2層が良い c また、 導電性接着剤のようなもので接続するのであれば、 A u膜だけで も適用可能である。 Thereafter, in order to prevent the interface between the plating film 14 and the resin layer 13 from being exposed to the outside, as shown in FIG. 11, a thin resin film 15 is formed, and a portion corresponding to the upper surface of the plating film is formed. Open the window. At the interface between the plating film 14 and the resin layer 13, it is possible to impart adhesion by performing chemical treatment on the side surface of the hole of the resin layer 13 before plating, but the process is long. In addition, since the electrodes on the surface of the wafer or the wiring board may be corroded, the process of covering the interface with the resin film 15 is simple. Further, as shown in FIG. 12, a protective metal film 16 for protecting the plating film 14 at the time of connection and improving the connection reliability is provided on the plated film 14 in which the holes are filled. Similarly, a film is formed by electric plating. The material of this metal film 16 differs depending on how the wafer or wiring board is connected. For example, when using solder, two layers of Ni plating film and Au plating film are used. good c also, if connection with something like conductive adhesive can be applied alone a u film.
次に、 第 1 3図に示すように、 電極の周囲の樹脂層 1 3を除去するこ とにょ リ、 電極に外力が加わった場合に容易に動けるように電極を分離 する。 不要部分の除去は、 前述の穴加工と同様に、 ドライエッチ加工又 はレーザー加工が好適である。 加工は、 最終的にメ ツキの種膜 1 2 と し ての金属膜が露出した時点で完了する。 めっき膜 1 4の周囲に残す樹脂 層 1 3は、 本発明の目的から言えば残す必要はなく、 むしろ、 樹脂膜が 残ることで厚く積んだめっき膜の外力による変形を妨げるという悪影響 が現れる。 しかし、 めっき膜 1 4を環境から保護するという意味では、 5 μ m以上の厚さでめっき膜側面を覆う程度に残ることが望ましい。 最後に、 上記の分離工程によって、 樹脂層 1 3を除去した部分の底に 露出しためっきの種膜 1 2の金属膜を、 第 1 4図に示すように、 ゥエツ トエッチングで除去し、 電気的にこの電極を分離する。 金属膜 1 2 と し て上述した C r, C u, T i は、 めっき膜 1 4の保護として形成する A u膜との間でエッチングの選択性があるので、 保護金属膜 1 6を損なう ことなく餘去することができる。 電気的な分離が終わることで、 本発明 による配線基板が完成する。 Next, as shown in FIG. 13, by removing the resin layer 13 around the electrodes, the electrodes are separated so that they can move easily when an external force is applied to the electrodes. The removal of the unnecessary portion is preferably performed by dry etching or laser processing, similarly to the above-described hole processing. The processing is completed when the metal film as the seed film 12 of the plating is finally exposed. The resin layer 13 left around the plating film 14 does not need to be left for the purpose of the present invention. Rather, the remaining resin film adversely affects the deformation of the thickly stacked plating film due to external force. However, in order to protect the plating film 14 from the environment, it is desirable that the thickness of 5 μm or more remains to cover the plating film side surface. Finally, the metal film of the plating seed film 12 exposed at the bottom of the portion from which the resin layer 13 was removed by the above separation step was removed by wet etching as shown in FIG. Separate the electrodes. The Cr, Cu, and Ti described above as the metal film 12 damage the protective metal film 16 because they have etching selectivity with respect to the Au film formed to protect the plating film 14. Can be removed without any problem. When the electrical separation is completed, the wiring board according to the present invention is completed.
ここで、 ウェハ上に厚い電極を形成する際に、 L S Iの電極配列を基 板側に合わせて変換する必要がある場合には、 第 1 5図に示すように、 L S I表面の接続電極 1上に絶緣層 1 7を形成し、 この上に配線 1 8を
形成して所定の配線パターンを形成し、 この配線 1 8に設けた接続電極 に対して、 上述した工程を適用して厚い電極を形成する。 この構造によ れば、 L S I の周辺配列電極のよ うな微小ピッチで厚い電極を形成する ことに伴うプロセス上の困難を避けるよう、 例えばェリアアレイの電極 配列に変換することが可能となる。 Here, when it is necessary to convert the electrode arrangement of the LSI to match the substrate side when forming a thick electrode on the wafer, as shown in FIG. Insulation layer 17 is formed on this, and wiring 18 is formed on this Then, a predetermined wiring pattern is formed, and a thick electrode is formed by applying the above-described process to the connection electrode provided on the wiring 18. According to this structure, it is possible to convert to an electrode array of, for example, an area array so as to avoid processing difficulties associated with forming a thick electrode at a fine pitch such as the peripheral array electrodes of an LSI.
次に、 本発明による配線基板を実際に接続を行うに際し、 はんだを用 いて接続する例を、 第 1 6図を用いて説明する。 Next, an example in which a wiring board according to the present invention is actually connected by using solder will be described with reference to FIG.
例えば、 第 4図〜第 1 4図の工程に基づいて形成したウェハに対して. 個々の電極に対してはんだボール 2 0を供給した後、 一旦はんだを溶解 させて、 第 1 6図に示すように、 はんだボール 2 0を電極表面に固着さ せる。 次に、 このウェハを配線基板の所定の位置に位置決めして置く。 この後、 通常のリフローを行うことで接続は完了する。 基本的には、 こ の部分のプロセスは、 従来の接続となんら変わることはない。 For example, for a wafer formed based on the process shown in Figs. 4 to 14. After supplying the solder balls 20 to the individual electrodes, the solder is once melted, and is shown in Fig. 16. Thus, the solder balls 20 are fixed to the electrode surface. Next, the wafer is positioned and placed at a predetermined position on the wiring board. After that, the connection is completed by performing normal reflow. Basically, this part of the process is no different from a traditional connection.
なお、 接続にはんだを使う場合は、 電極の変形に加えてはんだの変形 も生じるために、 剪断力の緩和効果がより大きくなリ、 信頼性を一層向 上させることができる。 When solder is used for the connection, the deformation of the solder occurs in addition to the deformation of the electrodes, so that the effect of alleviating the shearing force is greater and the reliability can be further improved.
更に、 はんだ接続後に、 前述したアンダーフィル材を接続部の空隙に 充填するようになすと、 接続部が外気から遮断されることになリ、 酸化 及び腐食等による接続不良の発生を防ぐことが可能となる。 Furthermore, if the above-mentioned underfill material is filled into the voids of the connection portion after the solder connection, the connection portion is cut off from the outside air, and the occurrence of connection failure due to oxidation and corrosion can be prevented. It becomes possible.
なお、 電極を前述のような数値まで厚く形成するのが困難な場合には. 第 1 7図に示す如く、 基板側と L S I側の双方に厚い電極を形成し、 こ れをはんだ 2 0を用いて接続する。 このよ うにすることで、 電極の厚さ は、 個々の厚さではなく双方の厚さを足した分の応力緩和効果が得られ る。 従って、 前述したような 4 0 0 m近い厚さの電極でなく、 個々の 基板では 2 0 0 m程度の厚さの電極形成で済む。 また、 間にはんだが 入ることで、 はんだによる応力緩和効果があることから、 実際には 1 5
0 m程度でも十分となる。 この厚さ低減の効果にょリ、 めっき工程で の基板へのダメージ、 及び厚い樹脂層の除去工程での技術的な困難さを, 軽減できることになる。 産業上の利用可能性 In the case where it is difficult to form the electrodes as thick as described above, as shown in FIG. 17, thick electrodes are formed on both the substrate side and the LSI side, and this is soldered. Connect using In this way, the thickness of the electrode can provide a stress relaxation effect that is not the individual thickness but the sum of both thicknesses. Therefore, an electrode having a thickness of about 200 m can be formed on each substrate instead of the electrode having a thickness of about 400 m as described above. In addition, since the solder has a stress relaxation effect due to the solder in between, About 0 m is enough. This effect of reducing the thickness can reduce damage to the substrate in the plating step and technical difficulty in the step of removing the thick resin layer. Industrial applicability
上述のように、 本発明によれば、 従来は困難であった S i と熱膨張係 数の異なる基板、 例えばプリ ント配線板のような基板に、 直接 L S I を 接続することが可能となる上、 接続信頼性も十分確保できる。 更に、 従 来のような補助的な基板を介することなく接続ができるため、 実効的な 接続距離が短くなリ、 今後の L S Iの高速駆動に対しても十分対応がで きる。 As described above, according to the present invention, it is possible to directly connect an LSI to a substrate having a different thermal expansion coefficient from Si, which has been difficult in the past, for example, a substrate such as a printed wiring board. However, sufficient connection reliability can be ensured. Furthermore, since the connection can be made without the use of the conventional auxiliary substrate, the effective connection distance is shortened, and it is possible to sufficiently cope with future high-speed driving of the LSI.
また、 接続にあたっては特別な技術や設備が不要で、 従来のものがそ のまま使用できるため、 付加的なコス トも殆ど増えず、 L S I を基板上 に搭載して機能させる電子機器全般に関する配線基板 (回路基板) に適 用が可能である。
In addition, no special technology or equipment is required for connection, and conventional equipment can be used as it is, so there is almost no increase in additional cost, and wiring for all electronic devices that function by mounting an LSI on a board It can be applied to substrates (circuit boards).
Claims
1 . 外部回路と接続するために回路基板上に形成する接続用電極におけ る実際に接続する部分を、 これにつながる配線の上面よリ も 1 0 μ m 以上厚く形成し、 外部回路との接続をこの厚く形成した電極の上面で 行うように構成したことを特徴とする回路基板。 1. The connection part of the connection electrode formed on the circuit board for connection to the external circuit should be formed at least 10 μm thicker than the upper surface of the wiring connected to it, A circuit board characterized in that connection is made on the upper surface of the thickly formed electrode.
2 . 請求の範囲 1項記載の回路基板において、 前記厚く形成した電極の 側面を、 電気的絶縁物で被覆したことを特徴とする回路基板。 2. The circuit board according to claim 1, wherein a side surface of the thickly formed electrode is covered with an electrical insulator.
3 . 請求の範囲 1項記載の回路基板において、 前記厚く形成した電極の 側面を、 電極材料とは異種の金属で被覆したことを特徴とする回路基 板。 3. The circuit board according to claim 1, wherein a side surface of the thickly formed electrode is covered with a metal different from an electrode material.
4 . 請求の範囲 1項ないし 3項いずれかに記載の回路基板において、 前 記厚く形成した電極の上面を、 外部回路との接続に好適な金属膜で被 覆したことを特徴とする回路基板。 4. The circuit board according to any one of claims 1 to 3, wherein an upper surface of the thick electrode is covered with a metal film suitable for connection to an external circuit. .
5 . 請求の範囲 1項記載の回路基板において、 前記厚く形成する電極部 分の材料を、 C u, A l, A uの何れかとしたことを特徴とする回路 基板。 5. The circuit board according to claim 1, wherein a material of the thickly formed electrode portion is any one of Cu, Al, and Au.
6 . 外部回路と接続するために回路基板上に形成する接続用電極におけ る実際に接続する部分を、 これにつながる配線の上面よリ も 1 0 μ m 以上厚く電気めつき法を用いて形成したことを特徴とする回路基板の 製造方法。 6. For the connection electrodes on the circuit board to be connected to the external circuit, use the electroplating method to make the connection area more than 10 μm thicker than the upper surface of the wiring connected to it. A method for manufacturing a circuit board, characterized by being formed.
7 . 請求の範囲 1項乃至 5項の何れか 1つに記載の回路基板を、 他の回 路基板と接続するにあたリ、 はんだ又は導電性の樹脂で接続するよう にしたことを特徴とする電.子機器。 7. The circuit board according to any one of claims 1 to 5, wherein the circuit board is connected to another circuit board by a solder, a conductive resin, or the like. And electronic equipment.
8 . 請求の範囲 7項記載の電子機器において、 接続された回路基板間の 空隙を、 有機樹脂で充填したことを特徴とする電子機器。
8. The electronic device according to claim 7, wherein a gap between the connected circuit boards is filled with an organic resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35760097A JPH11186335A (en) | 1997-12-25 | 1997-12-25 | Circuit board, method of manufacturing the same, and electronic device using the same |
JP9/357600 | 1997-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999034435A1 true WO1999034435A1 (en) | 1999-07-08 |
Family
ID=18454957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/005865 WO1999034435A1 (en) | 1997-12-25 | 1998-12-24 | Circuit board, manufacture thereof, and electronic device using circuit board |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH11186335A (en) |
WO (1) | WO1999034435A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008114434A1 (en) * | 2007-03-20 | 2008-09-25 | Fujitsu Limited | Mount substrate, process for producing the same, semiconductor device and process for producing the same |
JP5445167B2 (en) * | 2010-01-25 | 2014-03-19 | パナソニック株式会社 | Semiconductor device and manufacturing method thereof |
JP6197420B2 (en) * | 2013-07-11 | 2017-09-20 | 凸版印刷株式会社 | Wiring board |
JP6368635B2 (en) * | 2014-12-10 | 2018-08-01 | 新光電気工業株式会社 | WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63236339A (en) * | 1987-03-24 | 1988-10-03 | Nec Corp | Semiconductor integrated circuit device |
JPH01187948A (en) * | 1988-01-22 | 1989-07-27 | Nec Corp | Semiconductor device |
JPH01238044A (en) * | 1988-03-17 | 1989-09-22 | Nec Corp | Semiconductor device |
JPH04151843A (en) * | 1990-10-16 | 1992-05-25 | Casio Comput Co Ltd | IC chip bonding method |
JPH05343471A (en) * | 1990-10-12 | 1993-12-24 | Toshiba Corp | Semiconductor device |
JPH07211722A (en) * | 1994-01-26 | 1995-08-11 | Toshiba Corp | Semiconductor device and its packaging structure |
JPH08288336A (en) * | 1995-04-14 | 1996-11-01 | Citizen Watch Co Ltd | Semiconductor device |
-
1997
- 1997-12-25 JP JP35760097A patent/JPH11186335A/en active Pending
-
1998
- 1998-12-24 WO PCT/JP1998/005865 patent/WO1999034435A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63236339A (en) * | 1987-03-24 | 1988-10-03 | Nec Corp | Semiconductor integrated circuit device |
JPH01187948A (en) * | 1988-01-22 | 1989-07-27 | Nec Corp | Semiconductor device |
JPH01238044A (en) * | 1988-03-17 | 1989-09-22 | Nec Corp | Semiconductor device |
JPH05343471A (en) * | 1990-10-12 | 1993-12-24 | Toshiba Corp | Semiconductor device |
JPH04151843A (en) * | 1990-10-16 | 1992-05-25 | Casio Comput Co Ltd | IC chip bonding method |
JPH07211722A (en) * | 1994-01-26 | 1995-08-11 | Toshiba Corp | Semiconductor device and its packaging structure |
JPH08288336A (en) * | 1995-04-14 | 1996-11-01 | Citizen Watch Co Ltd | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH11186335A (en) | 1999-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6828668B2 (en) | Flexible lead structures and methods of making same | |
JP4345808B2 (en) | Manufacturing method of semiconductor device | |
KR100437436B1 (en) | Semiconductor package manufacturing method and semiconductor package | |
US6117694A (en) | Flexible lead structures and methods of making same | |
US6232147B1 (en) | Method for manufacturing semiconductor device with pad structure | |
US5597470A (en) | Method for making a flexible lead for a microelectronic device | |
WO1996005613A1 (en) | Semiconductor device | |
JP2003522401A (en) | Stacked integrated circuit package | |
WO2007102358A1 (en) | Electronic device package, module and electronic device | |
US7923835B2 (en) | Package, electronic device, substrate having a separation region and a wiring layers, and method for manufacturing | |
JP4322189B2 (en) | Semiconductor device | |
WO1999034435A1 (en) | Circuit board, manufacture thereof, and electronic device using circuit board | |
JP3424523B2 (en) | TAB tape carrier and method of manufacturing the same | |
JPH0982751A (en) | Mounting structure for device | |
US20120225521A1 (en) | Board on chip package substrate and manufacturing method thereof | |
JP3417292B2 (en) | Semiconductor device | |
JP3351312B2 (en) | Method of manufacturing TAB tape for T-BGA | |
JP3279225B2 (en) | Electronic component having bump and its mounting structure | |
JP3337911B2 (en) | Semiconductor device and manufacturing method thereof | |
TW200941681A (en) | Package substrate with high heat dissipation capability and method of fabricating the same | |
JP2001053194A (en) | Two-layer wiring TAB tape and manufacturing method thereof | |
JP2757594B2 (en) | Film carrier equipment | |
JP2001156097A (en) | Electronic circuit, LSI chip mounting structure, and method of manufacturing semiconductor device | |
JP3028413B1 (en) | Electronic circuit device | |
JP3705896B2 (en) | SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
122 | Ep: pct application non-entry in european phase |