WO1999034459A1 - Separateur de pile - Google Patents
Separateur de pile Download PDFInfo
- Publication number
- WO1999034459A1 WO1999034459A1 PCT/US1998/026488 US9826488W WO9934459A1 WO 1999034459 A1 WO1999034459 A1 WO 1999034459A1 US 9826488 W US9826488 W US 9826488W WO 9934459 A1 WO9934459 A1 WO 9934459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrochemical cell
- battery
- cell according
- materials
- cathode
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 82
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 20
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 20
- 239000012528 membrane Substances 0.000 claims abstract description 18
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- 239000000835 fiber Substances 0.000 claims abstract description 17
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 59
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 52
- 239000008151 electrolyte solution Substances 0.000 claims description 42
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 37
- 229910052725 zinc Inorganic materials 0.000 claims description 37
- 239000011701 zinc Substances 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 11
- 239000000945 filler Substances 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 229940068984 polyvinyl alcohol Drugs 0.000 claims 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 16
- 238000000034 method Methods 0.000 description 11
- 239000008188 pellet Substances 0.000 description 9
- 239000003349 gelling agent Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 101710177347 50S ribosomal protein L15, chloroplastic Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
Definitions
- the invention relates to batteries.
- alkaline batteries are commonly used as energy sources.
- alkaline batteries have a cathode, an anode, a separator and an electrolytic solution.
- the cathode is typically formed of manganese dioxide, carbon particles and a binder.
- the anode can be formed of a gel including zinc particles.
- the separator is usually disposed between the cathode and the anode.
- the electrolytic solution which is dispersed throughout the battery, can be a hydroxide solution.
- the invention relates to batteries, such as alkaline batteries, having separators that do not include a layer of a membrane material. These batteries have good performance characteristics.
- the batteries can exhibit high energy output at a high discharge rate, such as a discharge rate equal to at least the battery's capacity (in units of Ampere-hours) discharged in one hour.
- the batteries can have a variety of industry standard sizes, such as A A, AAA, AAAA, C or D.
- Membrane materials have an average pore size of at most about 0.5 microns, whereas “non-membrane materials” have an average pore size of at least about 5 microns.
- the invention features a battery separator that includes first and second nonwoven, non-membrane materials.
- the first material is devoid of any filler, and the second material is disposed along a surface of the first material.
- the battery separator is devoid of a membrane material.
- the invention features an electrochemical cell that has a long axis and at least short axis which is perpendicular to the short axis.
- the electrochemical cell includes an anode, a cathode and a separator disposed between the anode .and the cathode.
- the separator includes first and second nonwoven, non-membrane materials.
- the second material is disposed along a surface of the first material. At least about 60% of the fiberlength direction of the first material is within about 10 degrees of parallel to the long axis of the electrochemical cell.
- the fiber- length direction of a nonwoven material refers to the axis along which the fibers of the nonwoven material are generally oriented. It is to be noted, however, that the individual fibers of these nonwoven materials can be oriented in any direction.
- the first and second materials can absorb a similar amount of an electrolytic solution.
- the first material can absorb from about 1.1 to about 0.9 times the amount of electrolytic solution that the second material can absorb.
- the cathode can include manganese dioxide and nonsynthetic, nonexpanded graphite particles having an average particle size of less than about 20 microns as measured by a Sympatec HELIOS analyzer.
- the average particle size is the particle size for which half the volume of the sample has a smaller particle size.
- Nonsynthetic graphite particles refer to graphite particles that are prepared by a process that does not include industrial or laboratory graphitization.
- Nonexpanded graphite particles refer to graphite particles that have undergone no industrial or laboratory expansion process.
- the battery can have a relatively small amount of manganese dioxide and/or zinc particles compared to the amount of electrolytic solution.
- the weight ratio of manganese dioxide to electrolytic solution can be from about 2.2 to about 2.9, and the weight ratio of zinc particles to electrolytic solution can be from about 0.9 to about 1.25. This is calculated based on the amount of electrolytic solution dispersed throughout the battery.
- the cathode can have a porosity of from about 21% to about 28%.
- the cathode porosity corresponds to the amount of the cathode that is not taken up by solid material, such as, for example, manganese dioxide, carbon particles and binder.
- the anode can have a porosity of from about 2 grams of zinc to about 2.45 grams of zinc per cubic centimeter of anode volume that is taken up by liquid or solid material.
- the batteries can be AA or AAA batteries that demonstrate good results when tested according to the cc photo test, the 1 Watt continuous test, the half Watt continuous test, the pulsed test, the half Watt rm test and/or the quarter Watt rm test. These tests are described below.
- Fig. 1 is a cross-sectional view of a battery
- Fig. 2 is a cross-sectional view of a separator
- Fig. 3 is an elevational view of a nonwoven material.
- the preferred batteries are alkaline batteries that have a separator that does not include a layer of membrane material.
- Fig. 1 shows such a battery 10 that has a cathode 12, an anode 14, a separator 16, an outer wall 18 that contacts the outer diameter of cathode 12 and an insulating layer 26.
- Battery 10 further includes an anode collector 20 that passes through a seal member 22 and into anode 14.
- anode collector 20 is connected to a negative end cap 24 which serves as the negative external terminal of battery 10.
- Layer 26 can be formed of an electrically nonconducting material, such as a heat shrinkable plastic.
- an electrolytic solution is dispersed throughout cathode 12, anode 14 and separator 16.
- separator 16 includes a layer of non-membrane material 16a and a layer of non-membrane material 16b which is disposed along a surface of layer 16a.
- Layers 16a and 16b can be a single sheet of material which is folded over on itself or wound around itself. Alternatively, layers 16a and 16b can be formed of separate sheets of material.
- layer 16a can be formed of the same or different material as layer 16b.
- layer 16a can absorb a similar amount of electrolyte as layer 16b.
- layer 16a should be able to absorb from about 1.1 to about 0.9 times the amount of electrolytic solution that layer 16b can absorb.
- layer 16a can absorb from about 1.05 to about 0.95 times the amount of electrolytic solution that layer 16b can absorb.
- layers 16a and 16b can include any of the conventional non-membrane materials used in separators. Generally, these materials do not include fillers such as, for example, inorganic particles.
- layer 16a and/or layer 16b can be formed of a woven material. Such materials can be formed from, for example, cellulose, polyvinyl alcohol (PVA), polyamides, polysulfones and mixtures thereof.
- layer 16a and/or 16b can be formed of a nonwoven material. Examples of nonwoven materials include cellulose, PVA, polyamides, polysulfones and mixtures thereof.
- layer 16a and 16b can each be nonwoven layers formed of a matrix of PVA fibers, PVA binder and cellulose fibers, such as Tencel fibers (Courtaulds), Lyocel fibers (Courtaulds) or rayon fibers.
- the cellulose fibers can be about 1.5 denier at 6 millimeters long, and the PVA fiber can be about 0.5 denier at 6 millimeters long.
- layers 16a and 16b can each be nonwoven layers formed of from about 20 weight percent to about 40 weight percent rayon fibers, from about 55 weight percent to about 65 weight percent PVA fibers and from about 5 weight percent to about 15 weight percent PVA binder. In one embodiment, layer 16a and 16b are each nonwoven layers formed of about 57 weight percent PVA fibers, about 30 weight percent cellulose fibers and 13 about weight percent PVA binder. If separator 16 is too thin, there can be shorting between cathode 12 and anode 14. Separator 16 should not be too thick, however, because this can decrease the volume of battery 10 that is available for cathode 12, anode 14 and the electrolytic solution which reduces the energy capacity of battery 10.
- layers 16a and 16b are each preferably at least about 4 mils thick, more preferably from about 4 mils to about 6 mils thick, and most preferably about 5.4 mils thick.
- layers 16a and 16b are each preferably at least about 8 mils thick, more preferably from about 8 mils to about 12 mils thick, and most preferably about 10 mils thick.
- layers 16a and 16b are each preferably formed of a material having a basis weight of at least about 20 grams per square meter, more preferably from about 40 grams per square meter to about 60 grams per square meter and most preferably about 54 grams per square meter.
- Separator 16 can be placed within battery 10 using any of the conventional processes.
- separator 16 is placed within battery 10 using a cross-placing technique.
- cathode 12 is formed within battery 10
- layer 16b is placed on a surface of layer 16a such that the fiber-length direction of layer 16b is approximately perpendicular to the fiber-length direction of layer 16a.
- Layers 16a and 16b are then pressed into battery 10 such that a portion of the surface of layer 16a is disposed along the inner circumference of cathode 12.
- the individual fibers can usually be oriented in any direction. However, as shown in Fig. 3, during the manufacturing process, some nonwoven materials can develop a general orientation along one axis, referred to herein as the fiber-length direction.
- layers 16a and 16b are formed of nonwoven materials and the cross-placing technique is used, preferably at least about 60%) of layers 16a and 16b have their fiber-length direction within about 10 degrees of parallel to the longest axis of battery 10, more preferably at least about 85%o of layers 16a and 16b are within about 10 degrees of parallel to the longest axis of battery 10, and most preferably about 90%> of layers 16a and 16b have their fiber-length direction within about 10 degrees of parallel with the longest axis of battery 10.
- Cathode 12 can be formed of any of the standard materials used in battery cathodes. Typically, cathode 12 is formed of a mixture of manganese dioxide, carbon particles and optionally a binder.
- Cathode 12 can include other additives. Examples of these additives are disclosed in U.S. Patent No. 5,342,712, which is hereby incorporated by reference. In some embodiments, cathode 12 preferably includes from about 0.2 weight percent to about 2 weight percent Ti0 2 , more preferably about 0.8 weight percent Ti0 2 .
- cathode 12 can be a single pellet of material.
- cathode 12 can be formed of a number of pellets that are stacked on top of each other.
- the cathode pellets can be made by first mixing the manganese dioxide, carbon particles and optionally a binder.
- the mixture can be pressed to form the pellets.
- the pellet(s) are fit within battery 10 using standard processes. For example, in one process, a core rod is placed in the central cavity of battery 10, and a punch is then used to pressurize the top most pellet.
- the interior of wall 18 can have one or more vertical ridges that are spaced circumferentially around wall 18.
- cathode 12 can be placed directly within battery 10.
- a retaining ring can be set in place, and an extrusion rod can pass through the ring, densifying the powder and forming cathode 12.
- a layer of a conductive material can be disposed between wall 18 and the outer circumference of cathode 12. This layer can be disposed along the inner surface of wall 18, along the outer circumference of cathode 12 or both.
- this conductive layer is formed of a carbonaceous material.
- Such materials include LB 1000 (Timcal), Eccocoat 257 (W.R. Grace & Co.), Electrodag 109 (Acheson Industries, Inc.), Electrodag 112 (Acheson) and EB005 (Acheson). Methods of applying the electrolytic material are disclosed in Canadian Patent No. 1,263,697, which is hereby incorporated by reference.
- cathode 12 preferably has a porosity of from about 21%> to about 28%o, more preferably from about 25%) to about 27%>, and most preferably about 26%o.
- cathode 12 can have from about 8.9 grams of manganese dioxide to about 9.8 grams of manganese dioxide. In these embodiments, cathode 12 preferably has from about 9.3 grams to about 9.75 grams of manganese dioxide, more preferably from about 9.4 grams to about 9.65 grams of manganese dioxide, and most preferably from about 9.45 grams to about 9.6 grams of manganese dioxide.
- cathode 12 preferably has from about 4 grams to about 4.3 grams of manganese dioxide, more preferably from about 4.05 grams to about 4.25 grams of manganese dioxide, and most preferably from about 4.1 grams to about 4.2 grams of manganese dioxide.
- the average particle size of the carbon particles is limited only by the dimensions of cathode 12.
- the carbon particles can be nonsynthetic or synthetic and expanded or nonexpanded.
- the carbon particles are formed of nonsynthetic, nonexpanded graphite particles which preferably have an average particle size of less than about 20 microns, more preferably from about 2 microns to about 12 microns and most preferably from about 5 microns to about 9 microns as measured using a Sympatec HELIOS analyzer.
- Nonsynthetic, nonexpanded graphite particles are available from, for example, Brazilian Nacional de Grafite, located in Itapecirica, MG Brazil.
- cathode 12 The amount of carbon particles disposed within cathode 12 should be high enough to improve the conductivity of cathode 12 while having minimal impact on the energy capacity of battery 10.
- cathode 12 is from about 4 weight percent to about 10 weight percent carbon particles, more preferably from about 5 weight percent to about 9 weight percent carbon particles, and most preferably from about 6 weight percent to about 8 weight percent carbon particles. These weight percentages correspond to when the electrolytic solution is not dispersed within cathode 12.
- cathode 12 may further include a binder.
- binders include polyethylene powders, polyacrylamides, Portland cement and fluorocarbon resins, such as PVDF and PTFE.
- cathode 12 includes a binder sold under the tradename coathylene HA- 1861 (Hoescht).
- the binder preferably makes up at most about 1 weight percent of cathode 12, more preferably from about 0.1 weight percent to about 0.5 weight percent of cathode 12, and most preferably about 0.3 weight percent of cathode 12. These weight percentages correspond to when cathode 12 does not include the electrolytic solution.
- Anode 14 can be formed of any of the standard zinc materials used in anodes. Often, anode 14 is formed of a zinc gel that includes zinc metal particles, a gelling agent and minor amounts of additives, such as gassing inhibitors. In addition, a portion of the electrolytic solution is dispersed within anode 14.
- anode 14 has a porosity of from about 2 grams of zinc particles to about 2.45 grams of zinc particles per cubic centimeter of anode volume, more preferably from about 2.1 grams of zinc particles to about 2.35 grams of zinc particles per cubic centimeter of anode volume, and most preferably from about 2.15 grams of zinc particles to about 2.3 grams of zinc particles per cubic centimeter of anode volume.
- anode 14 preferably has from about 3.7 grams to about 4.25 grams of zinc particles, more preferably from about 3.8 grams to about 4.15 grams of zinc particles, and most preferably from about 3.9 grams to about 4.05 grams of zinc particles. In other embodiments, anode 14 preferably has from about 1.5 grams to about 1.9 grams of zinc particles, more preferably from about 1.55 grams to about 1.85 grams of zinc particles, and most preferably from about 1.65 grams to about 1J5 grams of zinc particles.
- anode 14 preferably includes from about 64 weight percent to about 76 weight percent zinc particles, more preferably from about 66 weight percent to about 74 weight percent zinc particles, and most preferably from about 68 weight percent to about 72 weight percent zinc particles. These weight percentages correspond to when the electrolytic solution is dispersed within anode 14.
- Gelling agents that can be used in anode 14 include polyacrylic acids, grafted starch materials, polyacrylates, salts of polyacrylic acids, carboxymethylcellulose and mixtures thereof. Examples of polyacrylic acids are Carbopol 940 (B.F. Goodrich) and Polygel 4P (3V), and an example of a grafted starch material is Waterlock A221 (Grain Processing Corporation, Muscatine, IA).
- anode 14 preferably includes from about 0.2 weight percent to about 1 weight percent total gelling agent, more preferably from about 0.4 weight percent to about 0.7 weight percent total gelling agent, and most preferably from about 0.5 weight percent to about 0.6 weight percent gelling agent. These weight percentages correspond to when the electrolytic solution is dispersed within anode 14.
- Gassing inhibitors can be inorganic materials, such as bismuth, tin, lead and indium.
- gassing inhibitors can be organic compounds, such as phosphate esters, ionic surfactants or nonionic surfactants. Examples of ionic surfactants are disclosed in, for examples, U.S. Patent No. 4,777,100, which is hereby incorporated by reference.
- the electrolytic solution dispersed throughout battery 10 can be any of the conventional electrolytic solutions used in batteries.
- the electrolytic solution is an aqueous hydroxide solution.
- aqueous hydroxide solutions include, for example, potassium hydroxide solutions and sodium hydroxide solutions.
- the electrolytic solution is an aqueous potassium hydroxide solution including from about 33 weight percent to about 38 weight percent potassium hydroxide.
- battery 10 preferably includes from about 3.4 grams to about 3.9 grams of electrolytic solution, more preferably from about 3.45 grams to about 3.65 grams of electrolytic solution, and most preferably from about 3.5 grams to about 3.6 grams of electrolytic solution. In other embodiments, battery 10 preferably includes from about 1.6 grams to about 1.9 grams of electrolytic solution, more preferably from about 1.65 grams to about 1.85 grams of electrolytic solution, and most preferably from about 1J grams to about 1.8 grams of electrolytic solution.
- the weight ratio of manganese dioxide to electrolytic solution can be from about 2.2 to about 2.9, and the weight ratio of zinc particles to electrolytic solution can be from about 0.9 to about 1.25. In some embodiments, the weight ratio of manganese dioxide to electrolytic solution is preferably from about 2.5 to about 2.9, and the weight ratio of zinc particles to electrolytic solution is preferably from about 1.1 to about 1.25. In other embodiments, the weight ratio of manganese dioxide to electrolytic solution is preferably from about 2.5 to about 2.65, and the weight ratio of zinc particles to electrolytic solution is preferably from about 0.9 to about 1.2.
- the batteries can be AA or AAA batteries that demonstrate good results when tested according to the cc photo test, the 1 Watt continuous test, the half Watt continuous test, the pulsed test, the half Watt rm test and/or the quarter Watt rm test. These tests are described below.
- Battery 10 can be a AA battery that exhibits excellent performance when tested according to the 1 Watt continuous test (described below). For example, when discharged to 1 Volt according to the 1 Watt continuous test, the AA battery can give at least about 0.6 hours, at least about 0.65 hours, at least about 0.7 hours or at least about 0.75 hours.
- the AA battery When discharged to 0.9 Volts according to the 1 Watt continuous test, the AA battery can give at least about 0.95 hours, at least about 1 hour, at least about 1.05 hours or at least about 1.1 hours.
- Battery 10 can be a AA battery that exhibits excellent performance when tested according to the pulsed test (described below). For example, when discharged to 1 Volt according to the pulsed test, the AA battery can give at least about 1.6 hours, at least about 1J5 hours, at least about 2 hours or at least about 2.15 hours. When discharged to 0.9 Volts according to the pulsed test, the AA battery can give at least about 2.75 hours, at least about 3 hours, at least about 3.25 hours or at least about 3.3 hours.
- Battery 10 can be a AA battery that exhibits excellent performance when tested according to the half Watt rm test (described below). For example, when discharged to 1 Volt according to the half Watt rm test, the AA battery can give at least about 1.5 hours, at least about 2 hours, at least about 2.5 hours or at least about 2.65 hours. When discharged to 0.8 Volts according to the half Watt rm test, the AA battery can give at least about 2.9 hours, at least about 3 hours, at least about 3.25 hours or at least about 3.4 hours.
- Battery 10 can be a AA battery that offers excellent performance according to the half Watt rm test (described below). For example, when discharged to 1.1 Volts according to the half Watt rm test, the AA battery can give at least about 1.5 hours, at least about 2 hours, at least about 2.5 hours or at least about 2.65 hours. When discharged to 0.8 Volts according to the half Watt rm test, the AA battery can give at least 2.9 hours, at least about 3 hours, at least about 3.25 hours or at least about 3.4 hours.
- Battery 10 can be a AAA battery that offers excellent performance according to the half Watt continuous test (described below). For example, when discharged to 1 Volt according to the half Watt continuous test, the AAA battery can give at least about 0.65 hours, at least about 0.7 hours, at least about 0.75 hours or at least about 0.8 hours. When discharged to 0.9 Volts according to the half Watt continuous test, the AAA battery can give at least 0.9 hours, at least about 0.95 hours, at least about 1.0 hour or at least about 1.05 hours.
- Battery 10 can be a AAA battery that offers excellent performance according to the pulsed test (described below). For example, when discharged to 1 Volt according to the pulsed test, the AAA battery can give at least about 0.35 hours, at least about 0.4 hours, at least about 0.45 hours or at least about 0.5 hours. When discharged to 0.9 Volts according to the pulsed test, the AAA battery can give at least 0.65 hours, at least about 0.7 hours, at least about 0.75 hours or at least about 0.8 hours. Battery 10 can be a AAA battery that offers excellent performance according to the half Watt rm test (described below).
- the AAA battery when discharged to 1.1 Volts according to the half Watt rm test, can give at least about 0.4 hours, at least about 0.45 hours, at least about 0.5 hours or at least about 0.55 hours.
- the AAA battery when discharged to 0.9 Volts according to the half Watt rm test, can give at least 0.9 hours, at least about 0.95 hours, at least about 1 hour or at least about 1.05 hours.
- Battery 10 can be a AAA battery that offers excellent performance according to the quarter Watt rm test (described below). For example, when discharged to 1.1 Volts according to the quarter Watt rm test, the AAA battery can give at least about 2 hours, at least about 2.1 hours, at least about 2.2 hours or at least about 2.3 hours. When discharged to 0.9 Volts according to the quarter Watt rm test, the AAA battery can give at least 3.1 hours, at least about 3.25 hours, at least about 3.4 hours or at least about 3.5 hours.
- Example I A batteries were prepared with the following components.
- the cathode included about 9.487 grams of manganese dioxide (Kerr-McGee, Co.), about 0.806 grams of nonsynthetic, nonexpanded graphite having an average particle size of about 7 microns (Brazilian Nacional de Grafite) and about 0.3 weight percent of coathylene HA- 1681.
- the anode included about 3.976 grams of zinc particles, about 50 ppm surfactant (RM 510, Rhone Poulenc) relative to zinc, and about 0.5 weight percent total gelling agent (Carbopol 940 and A221).
- the porosity of the cathode was about 26%>, .and the porosity of the anode was about 2.173 grams of zinc per cubic centimeter of anode.
- the separator was a two-layer structure with each layer formed of a nonwoven material including about 57 weight percent PVA fibers (about 0.5 denier at 6 millimeters), about 30 weight percent rayon fibers (about 1.5 denier at 6 millimeters) and about 13 weight percent PVA binder. Each layer was about 5.4 mils thick when dry and about 10 mils thick when wet. Each layer had a basis weight of about 54 grams per square meter.
- the separator did not include an adhesive, and the layers were substantially devoid of any filler.
- the battery also included about 3.598 grams of an aqueous potassium hydroxide (about 35.5 weight percent potassium hydroxide) solution.
- a thin coating of EB005 (Acheson) was disposed between the outer wall of the battery and the outer periphery of the cathode.
- the AA batteries were stored at a temperature of from about 20.1°C to about 22.1°C for five days.
- the AA batteries were then stored according to the following procedure. Each battery is visually examined for leakage or material damage and identified such that battery identification can be maintained throughout the test program.
- the batteries are oriented on their sides in holding trays such that the batteries are not in physical contact with each other.
- the holding trays are made to be resistant to heat and electrolytes.
- the trays are stored for 1 day at ambient conditions, after which the trays are placed in a preheated chamber.
- the trays are spaced so that there is at least about 5 cm (2 inches) of space between the chamber wall, and the tray above, below, or adjacent to each tray.
- the following 24 hour test sequence, shown in Table I is repeated for 14 days.
- the trays are removed from the chamber and each battery is visually examined for leakage and material damage.
- a AA battery was discharged from an open circuit voltage of about 1.6 Volts under constant current conditions of ten seconds per minute for one hour per day ("the cc photo test"). The AA battery reached 1 Volt after 203 pulses, and the AA battery reached 0.8 Volts after 443 pulses.
- a AA battery was continuously discharged from an open circuit voltage of about 1.6 Volts at 1 Watt ("the 1 Watt continuous test"). The AA battery reached 1 Volt after about 0.75 hours, and the AA battery reached 0.8 Volts after about 1.00 hours.
- a AA battery was continuously discharged from an open circuit voltage of about 1.6 Volts at a rate that alternated between 1 Watt (3 second pulses) .and 0.1 Watt (7 second pulses) ("the pulsed test"). The AA battery reached 1 Volt after about 2.16 hours, and the AA battery reached 0.8 Volts after about 3.72 hours.
- a AA battery was discharged from an open circuit voltage of about 1.6 Volts at 0.5 Watts for 15 minutes per hour ("the half Watt rm test"). The AA battery reached 1.1 Volts after about 1.87 hours, and the AA battery reached 0.9 Volts after about 3.34 hours.
- Example II A AAA battery was prepared.
- the cathode 12 included about 4.155 grams of manganese dioxide (Kerr McGee, Co.), about 0.353 grams of non- synthetic, nonexpanded graphite having an average particle size of about 7 microns (Brazilian Nacional de Grafite) and about 0.3 weight percent of coathylene HA- 1681.
- the anode 14 included about 1.668 grams of zinc particles, about 50 ppm surfactant (RM 510, Rhone Poulenc), and about 0.5 weight percent total gelling agent (Carbopol 940 and A221). The porosity of the cathode was about 26%), and the porosity of the anode was about 2.266 grams of zinc per cubic centimeter of anode 14.
- the separator included two layers of nonwoven material.
- the separator was a two layer structure with each layer formed of a non woven material including about 57 weight present PVA fibers (about 0.5 denier at (millimeters), about 30 weight percent cellulose fibers (about 1.5 denier at 6 millimeters) and about 13 weight percent PVA binder.
- Each layer was about 5.4 mils thick when dry and about 10 mils thick when wet.
- Each layer had a boxes weight of about 54 grams per square meter.
- the separator did not include an adhesive, and the layer were substantially devoid of any filler.
- the battery also included about 1.72 grams of an aqueous potassium hydroxide (about 35.5 weight percent) solution.
- a thin coating of EB005 was disposed between the outer wall of the battery and the outer periphery of the cathode.
- the AAA batteries were stored as described in Example I. Each AAA battery was discharged from an open circuit voltage of about 1.6 Volts, and the tests were conducted within the temperature range described in Example I. A AAA battery was continuously discharged from an open circuit voltage of about 1.6 Volts at one half Watt ("the half Watt continuous test"). The AAA battery reached 1 Volt after about 0.76 hours, and the AAA battery reached 0.8 Volts after about 0.96 hours.
- a AAA battery was discharged from an open circuit voltage of about 1.6 Volts at 0.25 Watts for 15 minutes per hour ("the quarter Watt rm test"). The AAA battery reached 1.1 Volts after about 2.4 hours, and the AAA battery reached 0.9 Volts after about 3.65 hours. Other embodiments are within the claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Primary Cells (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU19130/99A AU1913099A (en) | 1997-12-31 | 1998-12-14 | Battery separator |
EP98963895A EP1074055A4 (fr) | 1997-12-31 | 1998-12-14 | Separateur de pile |
CA002313645A CA2313645A1 (fr) | 1997-12-31 | 1998-12-14 | Separateur de pile |
JP2000526983A JP2002500416A (ja) | 1997-12-31 | 1998-12-14 | バッテリセパレータ |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US182097A | 1997-12-31 | 1997-12-31 | |
US09/001,820 | 1997-12-31 | ||
US5504198A | 1998-04-03 | 1998-04-03 | |
US09/055,041 | 1998-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999034459A1 true WO1999034459A1 (fr) | 1999-07-08 |
Family
ID=26669514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/026488 WO1999034459A1 (fr) | 1997-12-31 | 1998-12-14 | Separateur de pile |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1074055A4 (fr) |
JP (1) | JP2002500416A (fr) |
CN (1) | CN1285958A (fr) |
AR (1) | AR014203A1 (fr) |
AU (1) | AU1913099A (fr) |
CA (1) | CA2313645A1 (fr) |
TW (1) | TW393795B (fr) |
WO (1) | WO1999034459A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003043103A3 (fr) * | 2001-11-12 | 2003-11-13 | Eveready Battery Inc | Separateur non tisse pour cellule electrochimique |
WO2006047320A1 (fr) | 2004-10-21 | 2006-05-04 | Gillette Company, The | Cathodes de piles |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6929884B2 (en) * | 2001-04-19 | 2005-08-16 | Zinc Matrix Power, Inc. | Method for manufacture of films containing insoluble solids embedded in cellulose-based films |
EP1862585B1 (fr) * | 2005-03-25 | 2011-12-14 | Kuraray Co., Ltd. | Support textile pour dentelle chimique son procede de fabrication |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2578534A (en) * | 1945-01-06 | 1951-12-11 | Tilo Roofing Company Inc | Separator for electric storage batteries |
US2930829A (en) * | 1956-05-05 | 1960-03-29 | Accumulateurs Fixes | Gas tight electrolytic cells and gas tight alkaline storage cells and separators therefor |
US2994728A (en) * | 1957-02-20 | 1961-08-01 | Accumulateurs Fixes | Alkaline storage batteries |
US4746586A (en) * | 1985-12-27 | 1988-05-24 | Kuraray Company Limited | Separators for alkaline dry batteries |
US5366832A (en) * | 1992-06-01 | 1994-11-22 | Kuraray Co., Ltd. | Separator for alkaline batteries |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1299615A (fr) * | 1961-06-12 | 1962-07-27 | Accumulateurs Fixes | Nouveaux séparateurs capillaires pour accumulateurs électriques, cellules électrolytiques et tous autres usages appropriés |
US3894889A (en) * | 1970-08-03 | 1975-07-15 | Gates Rubber Co | Method of making separators for alkaline batteries |
JPS60170159A (ja) * | 1984-02-14 | 1985-09-03 | Matsushita Electric Ind Co Ltd | 密閉形アルカリ蓄電池 |
US5667911A (en) * | 1994-11-17 | 1997-09-16 | Hoechst Celanese Corporation | Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby |
FR2751469A1 (fr) * | 1996-07-18 | 1998-01-23 | Accumulateurs Fixes | Separateur pour accumulateur ni-mh |
-
1998
- 1998-12-14 JP JP2000526983A patent/JP2002500416A/ja active Pending
- 1998-12-14 AU AU19130/99A patent/AU1913099A/en not_active Abandoned
- 1998-12-14 WO PCT/US1998/026488 patent/WO1999034459A1/fr active Application Filing
- 1998-12-14 CN CN98812837A patent/CN1285958A/zh active Pending
- 1998-12-14 CA CA002313645A patent/CA2313645A1/fr not_active Abandoned
- 1998-12-14 EP EP98963895A patent/EP1074055A4/fr not_active Withdrawn
- 1998-12-29 AR ARP980106709A patent/AR014203A1/es unknown
- 1998-12-30 TW TW087121899A patent/TW393795B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2578534A (en) * | 1945-01-06 | 1951-12-11 | Tilo Roofing Company Inc | Separator for electric storage batteries |
US2930829A (en) * | 1956-05-05 | 1960-03-29 | Accumulateurs Fixes | Gas tight electrolytic cells and gas tight alkaline storage cells and separators therefor |
US2994728A (en) * | 1957-02-20 | 1961-08-01 | Accumulateurs Fixes | Alkaline storage batteries |
US4746586A (en) * | 1985-12-27 | 1988-05-24 | Kuraray Company Limited | Separators for alkaline dry batteries |
US5366832A (en) * | 1992-06-01 | 1994-11-22 | Kuraray Co., Ltd. | Separator for alkaline batteries |
Non-Patent Citations (1)
Title |
---|
See also references of EP1074055A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003043103A3 (fr) * | 2001-11-12 | 2003-11-13 | Eveready Battery Inc | Separateur non tisse pour cellule electrochimique |
KR100941663B1 (ko) * | 2001-11-12 | 2010-02-11 | 에버레디 배터리 컴퍼니, 인크. | 전기 화학적 셀용 부직포 분리막 |
WO2006047320A1 (fr) | 2004-10-21 | 2006-05-04 | Gillette Company, The | Cathodes de piles |
US8721743B2 (en) | 2004-10-21 | 2014-05-13 | The Gillette Company | Battery cathodes |
Also Published As
Publication number | Publication date |
---|---|
AU1913099A (en) | 1999-07-19 |
CA2313645A1 (fr) | 1999-07-08 |
EP1074055A1 (fr) | 2001-02-07 |
EP1074055A4 (fr) | 2005-07-13 |
TW393795B (en) | 2000-06-11 |
AR014203A1 (es) | 2001-02-07 |
CN1285958A (zh) | 2001-02-28 |
JP2002500416A (ja) | 2002-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6159634A (en) | Battery separator | |
US6342317B1 (en) | Battery | |
WO2000024071A9 (fr) | Additifs au titane pour cellule electrochimique a cathode a base de dioxyde de manganese | |
US6451486B1 (en) | Battery cathode including a mixture of manganese dioxide with carbon particles of expanded and non-expanded graphite | |
US6833217B2 (en) | Battery cathode | |
US6444364B1 (en) | High performance battery | |
EP1060527B1 (fr) | Pile poreuse alcaline a oxyde de manganese/zinc | |
EP1042828B1 (fr) | Cellule électrochimique alcaline équilibrée en matériaux actifs | |
EP1074055A1 (fr) | Separateur de pile | |
WO1999034462A1 (fr) | Cathode de pile | |
MXPA00006492A (en) | Battery separator | |
MXPA00006494A (en) | Electrochemical cell balance | |
MXPA00006483A (en) | Porous alkaline zinc/manganese oxide battery | |
MXPA00006486A (en) | Battery cathode | |
MXPA00010036A (en) | Battery separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 98812837.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2313645 Country of ref document: CA Ref document number: 2313645 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998963895 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: IN/PCT/2000/00128/MU Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2000/006492 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2000 526983 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1998963895 Country of ref document: EP |