WO1999034018A1 - Methods of using chemical libraries to search for new kinase inhibitors - Google Patents
Methods of using chemical libraries to search for new kinase inhibitors Download PDFInfo
- Publication number
- WO1999034018A1 WO1999034018A1 PCT/US1998/027405 US9827405W WO9934018A1 WO 1999034018 A1 WO1999034018 A1 WO 1999034018A1 US 9827405 W US9827405 W US 9827405W WO 9934018 A1 WO9934018 A1 WO 9934018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mrna transcripts
- compounds
- chain
- cell
- oligonucleotides
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 70
- 239000000126 substance Substances 0.000 title claims description 26
- 229940043355 kinase inhibitor Drugs 0.000 title description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 128
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 60
- 108020004999 messenger RNA Proteins 0.000 claims abstract description 56
- 239000003112 inhibitor Substances 0.000 claims abstract description 41
- 239000003814 drug Substances 0.000 claims abstract description 27
- 102000004169 proteins and genes Human genes 0.000 claims description 36
- 102000003903 Cyclin-dependent kinases Human genes 0.000 claims description 33
- 108090000266 Cyclin-dependent kinases Proteins 0.000 claims description 33
- 108091034117 Oligonucleotide Proteins 0.000 claims description 33
- 108091007914 CDKs Proteins 0.000 claims description 31
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 24
- 125000003118 aryl group Chemical group 0.000 claims description 22
- 229940079593 drug Drugs 0.000 claims description 22
- 230000004663 cell proliferation Effects 0.000 claims description 19
- 150000007523 nucleic acids Chemical group 0.000 claims description 19
- 125000003729 nucleotide group Chemical group 0.000 claims description 19
- 239000002773 nucleotide Substances 0.000 claims description 18
- 229920006395 saturated elastomer Polymers 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 16
- 125000003107 substituted aryl group Chemical group 0.000 claims description 15
- 238000009396 hybridization Methods 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 11
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 11
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 claims description 10
- 230000002068 genetic effect Effects 0.000 claims description 7
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 claims description 4
- 206010059866 Drug resistance Diseases 0.000 claims description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 claims 3
- -1 2,6,9-trisubstituted purines Chemical class 0.000 abstract description 46
- 230000027455 binding Effects 0.000 abstract description 32
- 229950010817 alvocidib Drugs 0.000 abstract description 29
- BIIVYFLTOXDAOV-YVEFUNNKSA-N alvocidib Chemical compound O[C@@H]1CN(C)CC[C@@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O BIIVYFLTOXDAOV-YVEFUNNKSA-N 0.000 abstract description 28
- ZKDXRFMOHZVXSG-HNNXBMFYSA-N purvalanol B Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)C(C)C)=NC=1NC1=CC=C(C(O)=O)C(Cl)=C1 ZKDXRFMOHZVXSG-HNNXBMFYSA-N 0.000 abstract description 19
- 102000001253 Protein Kinase Human genes 0.000 abstract description 15
- 108060006633 protein kinase Proteins 0.000 abstract description 15
- 230000001413 cellular effect Effects 0.000 abstract description 14
- 240000004808 Saccharomyces cerevisiae Species 0.000 abstract description 9
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 abstract description 9
- 230000003389 potentiating effect Effects 0.000 abstract description 9
- 101000715854 Homo sapiens Cyclin-dependent kinase 2 Proteins 0.000 abstract description 5
- 230000014509 gene expression Effects 0.000 abstract description 5
- 102000054634 human CDK2 Human genes 0.000 abstract description 5
- 229940124639 Selective inhibitor Drugs 0.000 abstract description 4
- 238000013459 approach Methods 0.000 abstract description 4
- 230000019491 signal transduction Effects 0.000 abstract description 4
- 108020005187 Oligonucleotide Probes Proteins 0.000 abstract description 3
- 239000002751 oligonucleotide probe Substances 0.000 abstract description 3
- 102000000578 Cyclin-Dependent Kinase Inhibitor p21 Human genes 0.000 abstract description 2
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 abstract description 2
- 238000003491 array Methods 0.000 abstract description 2
- 238000011161 development Methods 0.000 abstract description 2
- 229940124597 therapeutic agent Drugs 0.000 abstract description 2
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000003909 protein kinase inhibitor Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 64
- 125000000561 purinyl group Chemical class N1=C(N=C2N=CNC2=C1)* 0.000 description 50
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical group N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 40
- 230000000694 effects Effects 0.000 description 32
- 239000000243 solution Substances 0.000 description 29
- 239000000203 mixture Substances 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 27
- 239000000758 substrate Substances 0.000 description 25
- 108091000080 Phosphotransferase Proteins 0.000 description 24
- 125000000217 alkyl group Chemical group 0.000 description 24
- 102000020233 phosphotransferase Human genes 0.000 description 24
- 229920000642 polymer Polymers 0.000 description 22
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 108020003175 receptors Proteins 0.000 description 20
- 102000005962 receptors Human genes 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 19
- 230000005764 inhibitory process Effects 0.000 description 19
- 239000000178 monomer Substances 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- 125000000524 functional group Chemical group 0.000 description 18
- 102000039446 nucleic acids Human genes 0.000 description 17
- 108020004707 nucleic acids Proteins 0.000 description 17
- 238000003556 assay Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 230000001105 regulatory effect Effects 0.000 description 15
- 230000022131 cell cycle Effects 0.000 description 14
- 239000013078 crystal Substances 0.000 description 14
- 238000012216 screening Methods 0.000 description 14
- 102000016736 Cyclin Human genes 0.000 description 13
- 108050006400 Cyclin Proteins 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- 238000004113 cell culture Methods 0.000 description 12
- GTVPOLSIJWJJNY-UHFFFAOYSA-N olomoucine Chemical compound N1=C(NCCO)N=C2N(C)C=NC2=C1NCC1=CC=CC=C1 GTVPOLSIJWJJNY-UHFFFAOYSA-N 0.000 description 12
- 125000006239 protecting group Chemical group 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 108010033040 Histones Proteins 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- PMXCMJLOPOFPBT-HNNXBMFYSA-N purvalanol A Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)C(C)C)=NC=1NC1=CC=CC(Cl)=C1 PMXCMJLOPOFPBT-HNNXBMFYSA-N 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 9
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 230000009036 growth inhibition Effects 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 125000000623 heterocyclic group Chemical group 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 239000002246 antineoplastic agent Substances 0.000 description 7
- 125000003710 aryl alkyl group Chemical group 0.000 description 7
- 239000002775 capsule Substances 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 125000005647 linker group Chemical group 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000008194 pharmaceutical composition Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000007995 HEPES buffer Substances 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 230000029936 alkylation Effects 0.000 description 6
- 238000005804 alkylation reaction Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229940093476 ethylene glycol Drugs 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 102000002554 Cyclin A Human genes 0.000 description 5
- 108010068192 Cyclin A Proteins 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000033077 cellular process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000008298 dragée Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229940083251 peripheral vasodilators purine derivative Drugs 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- BTIHMVBBUGXLCJ-OAHLLOKOSA-N seliciclib Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)CC)=NC=1NCC1=CC=CC=C1 BTIHMVBBUGXLCJ-OAHLLOKOSA-N 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 5
- 229960004528 vincristine Drugs 0.000 description 5
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 101150047144 CDC28 gene Proteins 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 241000514744 Cyclina Species 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 125000003282 alkyl amino group Chemical group 0.000 description 4
- 229940041181 antineoplastic drug Drugs 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229940049706 benzodiazepine Drugs 0.000 description 4
- 125000003310 benzodiazepinyl group Chemical class N1N=C(C=CC2=C1C=CC=C2)* 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- 238000010511 deprotection reaction Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 101150012716 CDK1 gene Proteins 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 3
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 102000030782 GTP binding Human genes 0.000 description 3
- 108091000058 GTP-Binding Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006751 Mitsunobu reaction Methods 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102000002278 Ribosomal Proteins Human genes 0.000 description 3
- 108010000605 Ribosomal Proteins Proteins 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 3
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 125000004442 acylamino group Chemical group 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005284 basis set Methods 0.000 description 3
- 125000000440 benzylamino group Chemical group [H]N(*)C([H])([H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000001851 biosynthetic effect Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000006369 cell cycle progression Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 108010072268 cyclin-dependent kinase-activating kinase Proteins 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 231100000518 lethal Toxicity 0.000 description 3
- 230000001665 lethal effect Effects 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000011278 mitosis Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004770 neurodegeneration Effects 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000003566 phosphorylation assay Methods 0.000 description 3
- 230000035790 physiological processes and functions Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000000225 tumor suppressor protein Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- NWYYWIJOWOLJNR-UHFFFAOYSA-N 2-Amino-3-methyl-1-butanol Chemical compound CC(C)C(N)CO NWYYWIJOWOLJNR-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- PNPCRKVUWYDDST-UHFFFAOYSA-N 3-chloroaniline Chemical compound NC1=CC=CC(Cl)=C1 PNPCRKVUWYDDST-UHFFFAOYSA-N 0.000 description 2
- UNRIYCIDCQDGQE-UHFFFAOYSA-N 6-chloro-2-fluoro-7h-purine Chemical group FC1=NC(Cl)=C2NC=NC2=N1 UNRIYCIDCQDGQE-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 101001031348 Arabidopsis thaliana Probable histone H2A.3 Proteins 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 102000003909 Cyclin E Human genes 0.000 description 2
- 108090000257 Cyclin E Proteins 0.000 description 2
- 108010025468 Cyclin-Dependent Kinase 6 Proteins 0.000 description 2
- 102100036329 Cyclin-dependent kinase 3 Human genes 0.000 description 2
- 102100026804 Cyclin-dependent kinase 6 Human genes 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- 101100166522 Dictyostelium discoideum cycB gene Proteins 0.000 description 2
- 101150108911 EGT2 gene Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Chemical group 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 108091007911 GSKs Proteins 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- 102000004103 Glycogen Synthase Kinases Human genes 0.000 description 2
- 101000715946 Homo sapiens Cyclin-dependent kinase 3 Proteins 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 108050004064 Major facilitator superfamily Proteins 0.000 description 2
- 102000015841 Major facilitator superfamily Human genes 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 101100439280 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CLB1 gene Proteins 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229940122803 Vinca alkaloid Drugs 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000005576 amination reaction Methods 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 230000000118 anti-neoplastic effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000004110 gluconeogenesis Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000000021 kinase assay Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 230000021121 meiosis Effects 0.000 description 2
- 102000006240 membrane receptors Human genes 0.000 description 2
- 108020004084 membrane receptors Proteins 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- MRYOPOLDIBINKJ-OAHLLOKOSA-N (2r)-2-[6-(3-chloroanilino)-9-propan-2-ylpurin-2-yl]-3-methylbutan-1-ol Chemical compound C=12N=CN(C(C)C)C2=NC([C@H](CO)C(C)C)=NC=1NC1=CC=CC(Cl)=C1 MRYOPOLDIBINKJ-OAHLLOKOSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- 0 *c1nc(N)nc2c1nc[n]2* Chemical compound *c1nc(N)nc2c1nc[n]2* 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WYXSYVWAUAUWLD-SHUUEZRQSA-N 6-azauridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=N1 WYXSYVWAUAUWLD-SHUUEZRQSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 206010065040 AIDS dementia complex Diseases 0.000 description 1
- 101150076082 ALD5 gene Proteins 0.000 description 1
- 102000021527 ATP binding proteins Human genes 0.000 description 1
- 108091011108 ATP binding proteins Proteins 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 102100039160 Amiloride-sensitive amine oxidase [copper-containing] Human genes 0.000 description 1
- 101100054297 Arabidopsis thaliana ABCG38 gene Proteins 0.000 description 1
- 101100107598 Arabidopsis thaliana ABCG43 gene Proteins 0.000 description 1
- 101000872124 Arabidopsis thaliana Histone H2A.6 Proteins 0.000 description 1
- 101001084702 Arabidopsis thaliana Histone H2B.10 Proteins 0.000 description 1
- 101100202556 Arabidopsis thaliana SCPL8 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000258957 Asteroidea Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 101150033539 CLB2 gene Proteins 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 101100208421 Candida albicans (strain SC5314 / ATCC MYA-2876) TMP1 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 229940123587 Cell cycle inhibitor Drugs 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- 102000002427 Cyclin B Human genes 0.000 description 1
- 108010068150 Cyclin B Proteins 0.000 description 1
- 108010058545 Cyclin D3 Proteins 0.000 description 1
- 108010025454 Cyclin-Dependent Kinase 5 Proteins 0.000 description 1
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 1
- 102100026805 Cyclin-dependent-like kinase 5 Human genes 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 108050000190 Cytosine permeases Proteins 0.000 description 1
- 102100025698 Cytosolic carboxypeptidase 4 Human genes 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000012746 DNA damage checkpoint Effects 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 208000004986 Diffuse Cerebral Sclerosis of Schilder Diseases 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 101710167313 Drebrin-like protein Proteins 0.000 description 1
- 101150083626 ECM3 gene Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100037859 G1/S-specific cyclin-D3 Human genes 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101150105462 HIS6 gene Proteins 0.000 description 1
- 101150068227 HSP104 gene Proteins 0.000 description 1
- 101150007068 HSP81-1 gene Proteins 0.000 description 1
- 101150087422 HSP82 gene Proteins 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 102100038145 Homeobox protein goosecoid-2 Human genes 0.000 description 1
- 101000980932 Homo sapiens Cyclin-dependent kinase inhibitor 2A Proteins 0.000 description 1
- 101000932590 Homo sapiens Cytosolic carboxypeptidase 4 Proteins 0.000 description 1
- 101001032616 Homo sapiens Homeobox protein goosecoid-2 Proteins 0.000 description 1
- 101100182720 Homo sapiens LY6E gene Proteins 0.000 description 1
- 101001033820 Homo sapiens Malate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000734572 Homo sapiens Phosphoenolpyruvate carboxykinase, cytosolic [GTP] Proteins 0.000 description 1
- 101001072903 Homo sapiens Phosphoglucomutase-2 Proteins 0.000 description 1
- 101000733249 Homo sapiens Tumor suppressor ARF Proteins 0.000 description 1
- 101150028525 Hsp83 gene Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000012825 JNK inhibitor Substances 0.000 description 1
- 101150110580 KIN28 gene Proteins 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 102000006835 Lamins Human genes 0.000 description 1
- 108010047294 Lamins Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 208000006136 Leigh Disease Diseases 0.000 description 1
- 208000017507 Leigh syndrome Diseases 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- 102100032131 Lymphocyte antigen 6E Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000015439 Lysosomal storage disease Diseases 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 102100039742 Malate dehydrogenase, mitochondrial Human genes 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 101001033003 Mus musculus Granzyme F Proteins 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 101100409482 Neosartorya fumigata mcsA gene Proteins 0.000 description 1
- 101100395023 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) his-7 gene Proteins 0.000 description 1
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 241000283283 Orcinus orca Species 0.000 description 1
- 101100054289 Oryza sativa subsp. japonica ABCG34 gene Proteins 0.000 description 1
- 101100054298 Oryza sativa subsp. japonica ABCG38 gene Proteins 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108700005081 Overlapping Genes Proteins 0.000 description 1
- 101150055094 PMC1 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 102100034796 Phosphoenolpyruvate carboxykinase, cytosolic [GTP] Human genes 0.000 description 1
- 102100036629 Phosphoglucomutase-2 Human genes 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 102100031243 Polypyrimidine tract-binding protein 3 Human genes 0.000 description 1
- 101710132760 Polypyrimidine tract-binding protein 3 Proteins 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 101150050551 RPL26B gene Proteins 0.000 description 1
- 101150047642 RPL4A gene Proteins 0.000 description 1
- 101150099850 RPS24A gene Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108700025701 Retinoblastoma Genes Proteins 0.000 description 1
- 101100055265 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ALD2 gene Proteins 0.000 description 1
- 101100055268 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ALD3 gene Proteins 0.000 description 1
- 101100055270 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ALD4 gene Proteins 0.000 description 1
- 101100067993 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ASC1 gene Proteins 0.000 description 1
- 101100171237 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DSK2 gene Proteins 0.000 description 1
- 101100225703 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ENB1 gene Proteins 0.000 description 1
- 101100392278 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GDB1 gene Proteins 0.000 description 1
- 101100507954 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HXT5 gene Proteins 0.000 description 1
- 101100082596 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PDC5 gene Proteins 0.000 description 1
- 101100519252 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PDR10 gene Proteins 0.000 description 1
- 101100519255 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PDR15 gene Proteins 0.000 description 1
- 101100489708 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PFK26 gene Proteins 0.000 description 1
- 101100416212 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RLM1 gene Proteins 0.000 description 1
- 101100472045 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RPL8A gene Proteins 0.000 description 1
- 101100307841 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RPS22A gene Proteins 0.000 description 1
- 101100149742 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SNG1 gene Proteins 0.000 description 1
- 101100285899 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SSE2 gene Proteins 0.000 description 1
- 101100213974 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YPT53 gene Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 101100400958 Schizosaccharomyces pombe (strain 972 / ATCC 24843) med14 gene Proteins 0.000 description 1
- 101100527652 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rpl402 gene Proteins 0.000 description 1
- 101100147073 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rps2401 gene Proteins 0.000 description 1
- 101100153788 Schizosaccharomyces pombe (strain 972 / ATCC 24843) tpx1 gene Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 101150048440 TSA1 gene Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010044688 Trisomy 21 Diseases 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- GELXFVQAWNTGPQ-UHFFFAOYSA-N [N].C1=CNC=N1 Chemical compound [N].C1=CNC=N1 GELXFVQAWNTGPQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002927 anti-mitotic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- NOFOAYPPHIUXJR-APNQCZIXSA-N aphidicolin Chemical compound C1[C@@]23[C@@]4(C)CC[C@@H](O)[C@@](C)(CO)[C@@H]4CC[C@H]3C[C@H]1[C@](CO)(O)CC2 NOFOAYPPHIUXJR-APNQCZIXSA-N 0.000 description 1
- SEKZNWAQALMJNH-YZUCACDQSA-N aphidicolin Natural products C[C@]1(CO)CC[C@]23C[C@H]1C[C@@H]2CC[C@H]4[C@](C)(CO)[C@H](O)CC[C@]34C SEKZNWAQALMJNH-YZUCACDQSA-N 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001908 autoinhibitory effect Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- QQOBRRFOVWGIMD-OJAKKHQRSA-N azaribine Chemical compound CC(=O)O[C@@H]1[C@H](OC(C)=O)[C@@H](COC(=O)C)O[C@H]1N1C(=O)NC(=O)C=N1 QQOBRRFOVWGIMD-OJAKKHQRSA-N 0.000 description 1
- 229950010054 azaribine Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 108700021031 cdc Genes Proteins 0.000 description 1
- 101150073031 cdk2 gene Proteins 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 101150091051 cit-1 gene Proteins 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000030944 contact inhibition Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229920005565 cyclic polymer Polymers 0.000 description 1
- BMFYCFSWWDXEPB-UHFFFAOYSA-N cyclohexyl(phenyl)methanone Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1 BMFYCFSWWDXEPB-UHFFFAOYSA-N 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 101150050623 erg-6 gene Proteins 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 101150072994 hsp30 gene Proteins 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000005191 hydroxyalkylamino group Chemical group 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 108091006086 inhibitor proteins Proteins 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical class C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 210000005053 lamin Anatomy 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZFIFHAKCBWOSRN-UHFFFAOYSA-N naphthalene-1-sulfonamide Chemical class C1=CC=C2C(S(=O)(=O)N)=CC=CC2=C1 ZFIFHAKCBWOSRN-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000001301 oxygen Chemical group 0.000 description 1
- 229910052760 oxygen Chemical group 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 108010087864 purine permease Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 101150036383 rad16 gene Proteins 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000006354 stress signaling Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 125000004953 trihalomethyl group Chemical group 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002435 venom Substances 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- 210000001048 venom Anatomy 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/02—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
- C07D473/16—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- Phosphorylation of serine, threonine and tyrosine residues by protein kinases represents one of the most common post-translational regulatory modifications of proteins. More than 200 protein kinases have been described, following either purification to homogeneity or molecular cloning (see, Hunter, T. (1991), Methods Enzymol, 200:3-37; Hanks, S.K., et al. (1991), Methods Enzymol, 200:38-81 ; Hanks, S.K. 1991), Curr. Opin. Struct. Biol, 1 :369-383; and Hubbard, M.J., et al. (1993) Trends Biochem. Sci., 18:172-177).
- CDK Cyclin-dependent kinases
- CDKl also known as CDC2
- CDK3 for which the regulatory cyclin has not yet been identified, all these CDKs proteins are regulated by the transient association with one member of the cyclin family, i.e., cyclin A (CDC2, CDK2), B1-B3 (CDC2), D1-D3 (CDK2, CDK4, CDK5, CDK6), E (CDK2).
- cyclin A CDC2, CDK2
- B1-B3 CDC2
- D1-D3 CDK2, CDK4, CDK5, CDK6
- E CDK2
- CDK complexes CDK complexes: d/S transition (CDK2/cyclin E, CDK3/unknown cyclin, CDK4/cyclin Dl- D3, CDK6/cyclin D3), S phase (CDK2/cyclin A), G 2 (CDC2/cyclin A), G 2 /M transition (CDC2/cyclins B).
- CDKs are able to phosphorylate many proteins involved in cell cycle events, including histones, lamins and tumor suppressor proteins, such as the retinoblastoma gene product pRb (see, Norbury, C, et al., supra, Matsushime, H., et al. (1992), Cell, 71:323-334, Nigg, E.E. (1993), Curr. Opin. Cell. Biol, 5:187-193).
- enzyme activity is tightly controlled by multiple mechanisms.
- Thr-161 in CDC2 requires complex formation with regulatory cyclin proteins as described above, followed by an activating phosphorylation on Thr-161 in CDC2 or the corresponding Thr in the other CDKs (see, e.g., Gould, K.L., et al. (1991), EMBO J, 10:3297-3309; Desai, D., et al. (1992), Mol. Biol. Cell, 3:571-582; Solomon, M.J., et al. (1992), Mol. Biol. Cell, 3:13-27).
- enzyme activity is negatively regulated by phosphorylations at Tyr-15 and/or Thr- 14 (see, e.g., Solomon, M.J., et al, supra; Gu, Y., et al. (1992), EMBO J., 11:3995-4005; Krek, W., et al. (1991), EMBOJ., 10:3331-3341; Norbury, C., et ⁇ /. (1991), EMSO J, 10:3321-3329; Parker, L.L., et al. (1992), Proc. Nat 7. Acad. Sci. U.S.A., 89:2917-2921; McGowan, C.H., et al.
- CDKs are a promising target for developing inhibitors with antineoplastic effects and for the treatment of cell-pro liferative diseases.
- the purine ring system is a key structural element of the substrates and ligands of many biosynthetic, regulatory and signal transduction proteins including cellular kinases, G proteins and polymerases. As such, the purine ring system has been a good starting point in the search for inhibitors of many biomedically significant processes.
- a relatively selective inhibitor, olomoucine (Figure 1), was identified that competitively inhibited CDK2/cyclin A with an IC 50 of 7 ⁇ M (see, Vesely, J., et al, (1994) Eur. J. Biochem., 224:771-786).
- the present invention provides for methods of identifying compounds which modulate cell proliferation.
- the methods comprise the steps of (i) treating at least one cell with at least one compound, (ii) isolating a plurality of mRNA transcripts from said cell, and (iii) comparing a plurality of mRNA transcripts from a cell not treated with the compound to the mRNA transcripts from the treated cell, whereby a decrease in the number of mRNA transcripts indicates an inhibition of cell proliferation.
- the compounds are inhibitors of cyclin-dependent kinases.
- the mRNA transcripts are converted to cRNA.
- the mRNA transcripts encode proteins associated with cell proliferation.
- the mRNA is isolated by hybridization under stringent conditions to oligonucleotide probes of about 15 to about 50 nucleotides complementary to nucleic acids which encode proteins associated with cell proliferation.
- the oligonucleotides are linked to a solid support in a high density array.
- a method of determining the identity of proteins that modulate cell proliferation during or after exposure to chemical or genetic challenges comprises the steps of (i) isolating mRNA transcripts generated from cells after exposure to compounds known to modulate cellular proliferation, (ii) isolating mRNA transcripts generated from cells not exposed to said compounds, (iii) comparing the total number of mRNA transcripts from both treated and untreated cells, and (iv) determining which proteins are encoded by mRNA transcripts present in differing amounts in treated or untreated cells.
- the compounds are cyclin-dependent kinase inhibitors.
- the mRNA transcripts are converted to cRNA.
- the mRNA is isolated by hybridization under stringent conditions to oligonucleotides of about 15 to about 50 nucleotides in length which are complementary to nucleic acids that encode proteins associated with cell proliferation.
- the oligonucleotides are linked to a solid supporte in a high density array.
- a method of determining proteins associated with increased drug resistance comprises the steps of (i) isolating mRNA transcripts generated from drug-resistant cells after exposure to drugs known to inhibit cellular proliferation, (ii) isolating mRNA transcripts generated from non-drug resistant cells exposed to said drugs, (iii) comparing the total number of mRNA transcripts from both drug-resistant and non-resistant cells, and (iv) determining which proteins are encoded by mRNA transcripts present in increased amounts in the drug- resistant cells.
- the compounds are cyclin-dependent kinase inhibitors.
- the mRNA transcripts are converted to cRNA.
- the mRNA is isolated by hybridization under stringent conditions to oligonucleotides of about 15 to about 50 nucleotides in length which are complementary to nucleic acids that encode proteins associated with cell proliferation.
- the oligonucleotides are linked to a solid supporte in a high density array.
- Figure 1 sets forth the structure of olomoucine and the numbering scheme for the purine nucleus.
- FIGS. 2 and 3 illustrate the IC 50 for representative compounds from Table 1.
- Figure 4 A provides a scheme for the combinatorial synthesis of 2,6,9- trisubstituted purines from a 2, 6, or 9 linked purine scaffold using amination and alkylation chemistries.
- Figure 5 shows schematic drawing of CDK2 -purvalanol B interactions.
- Protein side chain contacts are indicated by lines connecting the respective residue box while interactions to main chain atoms are shown as lines to the specific main chain atoms.
- Van der Waals contacts are indicated by thin dotted lines, and hydrogen bonds by dashed lines. For hydrogen bonds the distances between the non-hydrogen atoms are indicated in angstroms.
- Figure 6 shows representative transcripts observed to change more than two fold for triplicate hybridizations for each of two independent experiments: (A) names of the genes whose mRNA levels change in common to compound 52 and flavopiridol and (B) transcript changes that may result from Pho85p kinase inhibition observed in either the compound 52 or flavopiridol profiles; and (C) transcripts that change for cdc28- 4, cdc28-4 and compound 52, cdc28-4 and flavopiridol, and compound 52.
- the present invention provides a combinatorial approach to modifying the purine scaffold to better aid in the search for potent and specific inhibitors of various purine-utilizing enzymes.
- CDKs cyclin-dependent kinases
- CDK/cyclin complexes are negatively regulated in response to a variety of antiproliferative signals including myogenic (Parker, Science 59:66 (1994)), myeloid (Liu, et al, Genes Dev. 10, 142-153 (1996)), contact inhibition, and DNA damage checkpoints ( El-Deiry, Cell 75, 817-825 (1993)).
- ATP binding site was targeted by screening combinatorial libraries of 2, 6, 9-trisubstituted purines.
- R groups e.g., R 1 , R 2 , R 4 and R 3
- R 1 , R 2 and R 3 can be identical or different (e.g., R 1 , R 2 and R 3 may all be substituted alkyls or R 1 and R 2 may be a substituted alkyl and R 3 may be an aryl, etc.).
- R group will generally have the structure which is recognized in the art as corresponding to R groups having that name.
- representative R groups as enumerated above are defined herein. These definitions are intended to supplement and illustrate, not preclude, the definitions known to those of skill in the art.
- alkyl is used herein to refer to a branched or unbranched, saturated or unsaturated, monovalent hydrocarbon radical having from 1-12 carbons and preferably, from 1-6 carbons. When the alkyl group has from 1-6 carbon atoms, it is referred to as a "lower alkyl.”
- Suitable alkyl radicals include, for example, methyl, ethyl, w-propyl, z ' -propyl, 2-propenyl (or allyl), n-butyl, t-butyl, /-butyl (or 2-methylpropyl), etc.
- Substituted alkyl refers to alkyl as just described including one or more functional groups such as lower alkyl, aryl, acyl, halogen (i.e., alkylhalos, e.g., CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalkyl, mercapto, both saturated and unsaturated cyclic hydrocarbons, heterocycles and the like. These groups may be attached to any carbon of the alkyl moiety.
- aryl is used herein to refer to an aromatic substituent which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety.
- the common linking group may also be a carbonyl as in benzophenone.
- the aromatic ring(s) may include phenyl, naphthyl, biphenyl, diphenylmethyl and benzophenone among others.
- arylalkyl is used herein to refer to a subset of “aryl” in which the aryl group is attached through an alkyl group as defined herein.
- Substituted aryl refers to an aryl as just described and including one or more functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g., CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto and both saturated and unsaturated cyclic hydrocarbons fused to the aromatic ring(s), linked covalently or linked to a common group such as a methylene or ethylene moiety.
- the linking group may also be a carbonyl such as in cyclohexyl phenyl ketone.
- substituted aryl encompasses "substituted arylalkyl.”
- Substituted arylalkyl defines a subset of "substituted aryl” wherein the substituted aryl group is attached through an alkyl group as defined herein.
- halogen is used herein to refer to fluorine, bromine, chlorine and iodine atoms.
- hydroxy is used herein to refer to the group COH.
- amino is used herein to refer to the group CNRRN, where R and RN may independently be hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl or acyl.
- alkoxy is used herein to refer to the COR group, where R is a lower alkyl, substituted lower alkyl, aryl, substituted aryl, arylalkyl or substituted arylalkyl wherein the alkyl, aryl, substituted aryl, arylalkyl and substituted arylalkyl groups are as described herein.
- Suitable alkoxy radicals include, for example, methoxy, ethoxy, phenoxy, substituted phenoxy, benzyloxy, phenethyloxy, t-butoxy, etc.
- alkylamino denotes secondary and tertiary amines wherein the alkyl groups may be either the same or different and may consist of straight or branched, saturated or unsaturated hydrocarbons.
- heterocyclic is used herein to describe a monovalent group having a single ring or multiple condensed rings from 1-12 carbon atoms and from 1-4 heteroatoms selected from nitrogen, sulfur or oxygen within the ring.
- heterocycles are, for example, tetrahydrofuran, morpholine, piperidine, pyrrolidine, thiophene, pyridine, isoxazole, phthalimide, pyrazole, indole, furan, benzo-fused analogs of these rings, etc.
- substituted heterocyclic as used herein describes a subset of “heterocyclic” wherein the heterocycle nucleus is substituted with one or more functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g., CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto, etc.
- functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g., CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto, etc.
- pharmaceutically acceptable salt refers to those salts of compounds which retain the biological effectiveness and properties of the free bases and which are obtained by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, ⁇ -toluenesulfonic acid, salicylic acid and the like.
- Pharmaceutically acceptable salts include, for example, alkali metal salts, such as sodium and potassium, alkaline earth salts and ammonium salts.
- purine compounds of present invention can be “administered” by any conventional method such as, for example, parenteral, oral, topical and inhalation routes as described herein.
- An amount sufficient or “an effective amount” is that amount of a given purine analog which exhibits the binding/inhibitory activity of interest or, which provides either a subjective relief of a symptom(s) or an objectively identifiable improvement as noted by the clinician or other qualified observer.
- “Complementary” refers to the topological compatibility or matching together of interacting surfaces of a ligand molecule and its receptor.
- the receptor and its ligand can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other.
- a "ligand” is a molecule that is recognized by a particular receptor.
- ligands that can be investigated by this invention include, but are not restricted to, cRNA, mRNA and other oligonucleotides, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, (e.g., opiates, etc.), lectins, sugars, oligosaccharides, proteins, and monoclonal antibodies.
- Nucleic acids include DNA and RNA, as well as individual nucleotides and oligonucleotides.
- RNA is mRNA.
- cRNA The complement of mRNA. Its preparation is well known to those of skill and is described in Gray, et al, Science 281:533 (1998) which is hereby incorporated in its entirety for all purposes.
- cRNA is used synonymously with mRNA.
- stringent hybridization conditions or “stringency” refers to conditions in a range from about 5°C to about 20°C or 25°C below the melting temperature (Tm) of the target sequence and a probe with exact or nearly exact complementarity to the target.
- Tm melting temperature
- the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half-dissociated into single strands.
- Tm 81.5 + 0.41 (% G + C), when a nucleic acid is in aqueous solution at 1 M NaCl (see e.g., Anderson and Young, Quantitative Filter
- stringent hybridization conditions are salt concentrations less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion at pH 7.0 to 8.3, and temperatures at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 65°C for long probes (e.g., greater than 50 nucleotides).
- stringent conditions may also be achieved with the addition of destabilizing agents such as formamide, in which case lower temperatures may be employed.
- genetic challenge refers to an aberration in the DNA of the cell.
- An example of a genetic challenge is a mutation, either a single nucleotide exchange, an addition of one or more nucleotides, or a deletion of one or more nucleotides. Mutations are induced by techniques well known in the art, e.g., UV irradiation, and exposure to compounds known to cause knicks and cuts in either one or both strands of DNA.
- Chemical challenges are the addition of compounds which, in addition to causing mutations in DNA also cause aberrations in cell proliferation, metabolism and catabolism.
- Such compounds include, but are not limited to, the purine analogs of this invention.
- a "receptor” is a molecule that has an affinity for a given ligand.
- Receptors may be naturally-occurring or manmade molecules. Also, they can be employed in their unaltered state or as aggregates with other species.
- Receptors may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance.
- Examples of receptors which can be employed by this invention include, but are not restricted to, oligonucleotides, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, sugars, polysaccharides, cells, cellular membranes, and organelles.
- Receptors are sometimes referred to in the art as anti-ligands. As the term receptors is used herein, no difference in meaning is intended.
- a "ligand receptor pair" is formed when two macromolecules have combined through molecular recognition to form a complex.
- “Monomer” is a member of the set of small molecules which can be joined together to form a polymer.
- the set of monomers includes but is not restricted to, for example, the set of common nucleotides, the set of synthetic nucleotides, the set of nucleotide analogs and the set of pentoses and hexoses.
- monomers refers to any member of a basis set for synthesis of a polymer. For example, dimers of nucleotides form a basis set of 400 monomers for synthesis of polypeptides. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer.
- Random energy is energy which may be selectively applied including energy having a wavelength of between 10 " and 10 4 meters including, for example, electron beam radiation, gamma radiation, x-ray radiation, ultraviolet radiation, visible light, infrared radiation, microwave radiation, and radio waves.
- Irradiation refers to the application of radiation to a surface.
- substrate refers to a material having a rigid or semi-rigid surface.
- at least one surface of the substrate will be substantially flat, although in some embodiments it may be desirable to physically separate synthesis regions for different polymers with, for example, wells, raised regions, etched trenches, or the like. According to other embodiments, small beads may be provided on the surface which may be released upon completion of the synthesis.
- protective group refers to a material which is bound to a monomer unit and which may be spatially removed upon selective exposure to an activator such as electromagnetic radiation.
- an activator such as electromagnetic radiation.
- protective groups with utility herein include nitroveratryloxy carbonyl, nitrobenzyloxy carbonyl, dimethyl dimethoxybenzyloxy carbonyl, 5-bromo-7-nitroindolinyl, o-hydroxy- alpha -methyl cinnamoyl, and 2-oxymethylene anthraquinone.
- Other examples of activators include ion beams, electric fields, magnetic fields, electron beams, x-ray, and the like.
- predefined region refers to a predefined region is a localized area on a surface which is, was, or is intended to be activated for formation of a polymer.
- the predefined region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc.
- predefined regions are sometimes referred to simply as “regions.”
- substantially pure refers to a polymer that is considered to be “substantially pure” within a predefined region of a substrate when it exhibits characteristics that distinguish it from other predefined regions. Typically, purity will be measured in terms of biological activity or function as a result of uniform sequence. Such characteristics will typically be measured by way of binding with a selected ligand or receptor.
- the purine ring is a key structural element of the substrates and ligands of many biosynthetic, regulatory and signal transduction proteins including cellular protein kinases, G proteins and polymerases.
- the present invention provides purine analogs which can be used to inhibit such proteins and, thus, many biomedically important processes. More particularly, the present invention provides purine analogs that inhibit, inter alia, protein kinases and other cellular processes. As such, the purine analogs of the present invention can be used to block cell-cycle progression, cellular proliferation, and apoptosis as well as other cellular processes.
- the purine analogs of the present invention are active in the subnanomolar and submicromolar ranges.
- the present invention provides for methods of screening purine analogs having the generally formula:
- R 1 , R 2 , R 4 and R 5 are independently selected and are functional groups including, but not limited to, H, C ⁇ -C 8 straight-chain, branched-chain, saturated and unsaturated alkyl, CpC 8 straight-chain, branched-chain, saturated and unsaturated substituted alkyl, aryl and substituted aryl.
- R 1 and R 2 are independently selected and are functional groups including, but not limited to, H, aryl, substituted aryl, C ⁇ -C 8 straight-chain, saturated alkyl substituted with aryl and C ⁇ -C 8 straight-chain, saturated alkyl substituted with substituted aryl;
- R 3 is a functional group including, but not limited to, -Cs branched-chain saturated alkyl and C ⁇ -C 8 branched-chain unsaturated alkyl;
- R 4 and R 5 are independently selected and are functional groups including, but not limited to, H, C ⁇ -C 8 straight-chain, branched-chain, saturated and unsaturated alkyl, C ⁇ -C 8 straight- chain, branched-chain, saturated and unsaturated substituted alkyl, aryl and substituted aryl.
- R 1 and R 2 are independently selected and are functional groups including, but not limited to, H, unsubstituted aryl and substituted aryl; R 3 is isopropyl; and R 4 and R 3 are independently selected and are functional groups including, but not limited to, H, C ⁇ -C 8 saturated and unsaturated branched-chain alkyl and C ⁇ -C 8 saturated and unsaturated branched-chain substituted alkyl.
- R 5 are independently selected and are functional groups including, but not limited to, H, and
- X is a member selected from the group consisting of H, OH, CH 2 OH, C(O)NH2, SH, COOH or a pharmaceutically acceptable salt thereof, and COOR 7 , wherein R 7 is lower alkyl; and R 6 is a member selected from the group consisting of H, C ⁇ -C 8 straight - chain alkyl, C ⁇ -C 8 branched-chain alkyl, CpC 8 straight-chain substituted alkyl, CpC branched-chain substituted alkyl.
- R and R are independently selected and are functional groups including, but not limited to, H and aryl substituted in at least one of positions 3, 4, or 5 with a member independently selected from the group consisting of halogen, alkoxy, trihalomethyl, amino, hydroxyl, thiol, sulfonic acid, sulfonic acid, amide, ester and carboxylic acid.
- Table 1 sets forth purine compounds in accordance with the present invention which are particularly preferred. The compounds in this table and throughout this specification are refened to by code numbers, which are used for convenience only, and are strictly arbitrary for purposes of this invention.
- IC 50 S can be compared with other known small molecule inhibitors of CDK2 (see, Figures 2 and 3). It will be readily appreciated by those of skill in the art that depending on the substituents, the purine analogs of the present invention can be a racemic mixture or either of a pair of diastereomers or enantiomers.
- the purine analogs of the present invention can be synthesized in a variety of ways, using conventional synthetic chemistry techniques.
- the compounds of the present invention are prepared according to Scheme I, wherein R 1 , R 2 , R 3 R 4 , and R 3 are as defined above.
- the use of appropriate organic solvents, temperature and time conditions for running the reactions are within the level of skill in the art. Reactions of this type are generally described by Norman, et al, J. Am. Chem. Soc. 118:7430-7431 (1996); and Gray, et al, Tetrahedron Letters 38:1161-1164 (1997), the teachings of which are incorporated herein by reference.
- suitable synthesis reactions are illustrated herein by the representative examples. Necessary starting materials can be obtained by standard procedures of organic chemistry.
- a purine derivative with a halogen at the 2-position is alkylated at the 9-position with an alcohol using the Mitsonubo alkylation. Following the alkylation, the purine derivative is aminated at the 6-position with an amine.
- the purine analogs can be purified (e.g., by TLC), characterized (e.g., by Reverse Phase HPLC) and analyzed (e.g., by high resolution spectroscopy using, for example, 1H NMR or FAB-MS).
- a combinatorial chemical library is a collection of diverse chemical compounds generated by combining a number of chemical "building blocks" such as reagents.
- the "building blocks” can be combined either through chemical or biological synthesis.
- a linear combinatorial chemical library such as an oligonucleotide library is formed by combining a set of chemical building blocks called nucleotides in every possible way for a given compound length (i.e., the number of nucleotides in a nucleic acid compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.
- combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, (1991) Int. J. Pept. Prot. Res. 37: 487-493, Houghton, et al. (1991) Nature 354: 84-88).
- Peptide synthesis is by no means the only approach envisioned.
- Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to; peptoids (PCT Publication No WO 91/19735, 26 Dec.
- nucleic acid libraries see, e.g., Strategene, Corp.
- peptide nucleic acid libraries see, e.g,, U.S. Patent 5,539,083 antibody libraries (see, e.g., Vaughn, et al. (1996) Nature Biotechnology 14(3): 309-314), and PCT/US96/10287)
- carbohydrate libraries see, e.g., Liang, et al. (1996) Science 274:1520-1522, and U.S. Patent 5,593,853
- small organic molecule libraries see, e.g., benzodiazepines: Baum (1993) C&EN, Jan 18, page 33; isoprenoids: U.S.
- Patent 5,569,588; thiazolidinones and metathiazanones U.S. Patent 5,549,974; pyrrolidines: U.S. Patents 5,525,735 and 5,519,134; morpholino compounds: U.S. Patent 5,506,337; benzodiazepines: 5,288,514; and the like).
- a number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate 11 , Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif) which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.
- a typical starting point is a 2-fluoro-6- chloropurine framework ( Figure 4A).
- Substitution chemistry is then used to install amines or other functional groups at the 2- and 6-positions and, in a preferred embodiment, a Mitsunobu reaction is employed to alkylate the N-9 position of the purine core. See, Mitsonobu, Synthesis 1-28 (1981); and Toyota, et al, Heterocycles 36:1625- 1630 (1993).
- This type of substitution chemistry allows introduction of a wide range of primary and secondary functional groups, while the Mitsunobu reaction tolerates primary and secondary alcohols lacking additional acidic hydrogens.
- Newly appended groups are then modified combinatorially in subsequent steps using a variety of chemistries including acylation, reductive animation, and Suzuki coupling reactions (Backes, et al, J. Am. Chem. Soc. 116:11171-11172 (1994)).
- a variety of chemistries including acylation, reductive animation, and Suzuki coupling reactions (Backes, et al, J. Am. Chem. Soc. 116:11171-11172 (1994)).
- one position of the purine ring is held invariant to allow attachment to a solid support.
- Libraries are then synthesized in a spatially-separated format using either a pin apparatus (Geysen, et al, Immunol. Methods 102:(1987) or a polystyrene resin, and then screened for activity.
- the compounds are screened for kinase inhibitory activity.
- the most basic type of screen for inhibition of activity is to assay for binding to the target compound, in the instant invention, protein kinases. From the ability to bind to the target, one can predict whether the compound being assayed will inhibit the kinase by competing for the enzyme's natural substrate. However, this type of assay is not fool-proof and some measure of functional activity is desired.
- Purine analogs suitable for use in the methods of the present invention can readily be identified using in vitro and in vivo activity screening assays. Such assays may screen for the ability of a particular compound to inhibit malignant tumor cell growth or to abolish tumorigenicity of malignant cells in vitro or in vivo.
- tumor cell lines can be exposed to varying concentrations of a purine analog of interest, and the viability of the cells can be measured at set time points using the Alamar BlueTM assay (commercially available from BioSource, International of Camarillo, California).
- Alamar BlueTM dye When Alamar BlueTM dye is added to the culture medium, the dye is reduced by cellular mitochondrial enzymes and yields a soluble product with substantially enhanced fluorescence. This fluorescence is then measured with a fiuorimeter, whereby the signal is directly proportional to the cell number. Using this information, IC 5 o values 1 for the compounds of interest can be readily be calculated.
- MDA MB 231 (breast), MCF-7 (breast), MDA MB 468 (breast), Siha (squamous cell carcinoma), A549 (non-small cell lung), HL-60 (leukemia) Ovcar-3
- IC 50 is the concentration of compound lethal to 50% of a cell culture as compared to a control culture. (ovarian), etc.
- the purine analogs of the present invention can be screened on the National Cancer Institute panel of 60 human tumor cell lines (see, Appendix I).
- other in vitro and/or in vivo assays to screen for anti-tumor and/or anti-cancer activity known to and used by the skilled artisan can also be employed to identify effective purine analogs useful in the methods of the present invention.
- the effect on mRNA transcription in the presence of the compounds of this invention is measured.
- the compounds are added to cells in culture. After an incubation for a suitable time, the cells are solubilized in a chaotropic agent, such as guanidine hydrochloride (see, Sambrook, et al. MOLECULAR CLONING: A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989) (“Sambrook”) or CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, F. Ausubel, et al, ed. Greene Publishing and Wiley-Interscience, New York (1987) ("Ausubel”).
- a chaotropic agent such as guanidine hydrochloride
- mRNA is then isolated by techniques well known in the art (see, Sambrook, supra) and quantified. Quantification of mRNA can be done by agarose gel electrophoresis, UN. absorption, northern blotting, and other techniques that are standard in the field of molecular biology.
- oligonucleotides present in the mR ⁇ A of a cell are screened for hybridization with oligonucleotides provided in a solid phase array. This technique provides the artisan with known oligonucleotides which represent known mR ⁇ A.
- the present invention provides methods and apparatus for the preparation and use of a substrate having a plurality of polymer sequences in predefined regions. These polymer sequences are then used as a screen for purine analog activity.
- the invention is described herein primarily with regard to the preparation of molecules containing sequences of nucleotides, but could readily be applied in the preparation of other polymers.
- Such polymers include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure.
- the invention herein is used in the screening of Saccharomyces cerevesiae cRNA binding.
- the invention preferably provides for the use of a substrate "S” with a surface.
- Linker molecules "L” are optionally provided on a surface of the substrate.
- the purpose of the linker molecules is to facilitate receptor recognition of the synthesized polymers.
- the linker molecules may be chemically protected for storage purposes.
- a chemical storage protective group such as t-BOC (t-butoxycarbonyl) may be used in some embodiments, particularly when assembling peptides on the substrate.
- Such chemical protective groups would be chemically removed upon exposure to, for example, acidic solution and would serve to protect the surface during storage and be removed prior to polymer preparation.
- a functional group with a protective group P 0 is provided on the substrate or a distal end of the linker molecules.
- the protective group P 0 may be removed upon exposure to radiation, electric fields, electric cunents, or other activators to expose the functional group.
- the radiation is ultraviolet (UV), infrared (IR), or visible light.
- the protective group may alternatively be an electrochemically-sensitive group which may be removed in the presence of an electric field.
- ion beams, electron beams, or the like may be used for deprotection.
- the exposed regions and, therefore, the area upon which each distinct polymer sequence is synthesized are smaller than about 1 cm or less than 1 mm .
- the exposed area is less than about 10,000 ⁇ m" or, more preferably, less than 100 ⁇ m 2 and may, in some embodiments, encompass the binding site for as few as a single molecule.
- each polymer is preferably synthesized in a substantially pure form.
- the surface is contacted with a first monomer unit Mi which reacts with the functional group which has been exposed by the deprotection step.
- the first monomer includes a protective group Pi. Pi may or may not be the same as P 0 .
- known first regions of the surface may comprise the sequence:
- second regions of the surface (which may include the first region) are exposed to light and contacted with a second monomer M 2 (which may or may not be the same as Mi) having a protective group P 2 .
- P 2 may or may not be the same as Po and Pi.
- different regions of the substrate may comprise one or more of the following sequences:
- the above process is repeated until the substrate includes desired polymers of desired lengths.
- the location of each sequence will be known.
- the protective groups are removed from some or all of the substrate and the sequences are, optionally, capped with a capping unit C.
- the process results in a substrate having a surface with a plurality of polymers of the following general formula:
- a plurality of locations on the substrate polymers contain a common monomer subsequence. For example, it may be desired to synthesize a sequence S-M 1 -M2-M 3 at first locations and a sequence S-M -M 2 -M 3 at second locations. The process would commence with irradiation of the first locations followed by contacting with Mi-P, resulting in the sequence S-Mj-P at the first location. The second locations would then be irradiated and contacted with M 4 -P, resulting in the sequence S- M 4 -P at the second locations.
- both the first and second locations would be irradiated and contacted with the dimer M2-M 3 , resulting in the sequence S-M 1 -M 2 -M 3 at the first locations and S-M -M 2 -M 3 at the second locations.
- common subsequences of any length could be utilized including those in a range of 2 or more monomers, 2 to 100 monomers, 2 to 20 monomers, and a most preferred range of 2 to 3 monomers.
- a set of masks is used for the first monomer layer and, thereafter, varied light wavelengths are used for selective deprotection.
- first regions are first exposed through a mask and reacted with a first monomer having a first protective group Pi, which is removable upon exposure to a first wavelength of light (e.g., IR).
- Second regions are masked and reacted with a second monomer having a second protective group P 2 , which is removable upon exposure to a second wavelength of light (e.g., UN).
- a second wavelength of light e.g., UN
- the polymers prepared on a substrate according to the above methods will have a variety of uses including, for example, screening for biological activity.
- the substrate containing the sequences is exposed to an unlabeled or labeled drug, oligonucleotide, including mRNA or cRNA, receptor such as an antibody, receptor on a cell, phospholipid vesicle, and/or any one of a variety of other receptors.
- the hybridization under stringent conditions of nucleic acid, such as mRNA or cRNA to oligonucleotides on the surface of the anay is desired.
- Hybridization under stringent conditions is defined as maintaining hybridization in 0.2X SSC at 65°C for 15 minutes.
- the positions of the hybridized nucleic acids is determined. This can be done by a variety of techniques well known to one of skill, but in a preferred embodiment is through biotin labeling, of the nucleic acid. From the location of the bound nucleic acid, the identity of the oligonucleotide is discovered and thus the identity of the nucleic acid hybridized to the oligonucleotide.
- the receptor molecules may bind with one or more polymers on the substrate.
- the presence of the labeled receptor and, therefore, the presence of a sequence which binds with the receptor is detected in a preferred embodiment through the use of autoradiography, detection of fluorescence with a charge-coupled device, fluorescence microscopy, or the like.
- the sequence of the polymer at the locations where the receptor binding is detected may be used to determine all or part of a sequence which is complementary to the receptor.
- the compounds of the present invention are useful for treating a wide variety of cancers.
- cancers include, by way of example and not limitation, carcinomas such as pharynx, colon, rectal, pancreatic, stomach, liver, lung, breast, skin, prostate, ovary, cervical, uterine and bladder cancers; leukemias; lymphomas; gliomas; retinoblastomas; and sarcomas.
- mammalian subjects include, but are not limited to, humans, laboratory animals, domestic pets and farm animals.
- the purine analogs of the present invention are used to treat a neurodegenerative disease, the method comprising administering to a mammal having such a disease, a therapeutically effective amount of a compound having the general formula: or a pharmaceutically acceptable salt thereof.
- Neurodegenerative diseases which can be treated using the purine analog compounds of the present invention include, but are not limited to, neurodegenerative pathologies involving multiple neuronal systems and or brainstem including Alzheimer's disease, AIDS-related dementia, Leigh's disease, diffuse Lewy body disease, epilepsy, multiple system atrophy, Guillain-Barre syndrome, lysosomal storage disorders such as lipofuscmosis, late-degenerative stages of Down's syndrome, Alper's disease, vertigo as result of CNS degeneration, etc.
- Other neurodegenerative diseases which can be treated using the purine analogs of the present invention will be readily apparent to those of skill in the art.
- the purine analogs of the present invention can be used to inhibit undesirable proliferation, including, as described above, cancer, psoriasis, growth of fungi, parasites, viruses, plants, etc.
- the purine analogs of the present invention have apoptosis- inducing effects in actively dividing cells and, thus, can be advantageously used to treat various disease states associated with undesirable proliferation.
- Such uses are described, for example, in Meijer, L., Trends in Cell Biology (1986) 6:393-397, the teachings of which are incorporated herein by reference for all purposes.
- the purine analogs of the present invention can be used in vitro as molecular tools and probes.
- CDK inhibitors arrest cells both in Gi and late G 2 /early prophase, they can be used to synchronize cells when used preferably in combination with another synchronizing agent/method (e.g., when used in combination with aphidicolin).
- immobilized CDK inhibitors can be used for affinity purification depletion of CDKs from cellular extracts.
- Such purine analogs will be particularly useful for massive purification of expressed CDKs (for crystallography or screening purposes).
- such purine analogs are useful for comparative analysis of CDKs extracted from cells at difference developmental or cell- cycle stages (variation of concentration, kinase activity, post-translational modifications, etc.).
- the compounds, i.e., purine analogs, of the present invention can be administered to a mammal, e.g., a human patient, alone, in the form of a pharmaceutically acceptable salt, or in the form of a pharmaceutical composition where the compound is mixed with suitable carriers or excipient(s) in a therapeutically effective amount, e.g., at doses effective to inhibit a protein kinase or a cellular process or achieve amelioration of symptoms of a disease associated with a protein kinase.
- the compounds of this invention can be incorporated into a variety of formulations for therapeutic administration. More particularly, the compounds of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, pills, powders, granules, dragees, gels, slurries, ointments, solutions, suppositories, injections, inhalants and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.
- the compound can be administered in a local rather than systemic manner, for example via injection of the compound directly into a solid tumor, often in a depot or sustained release formulation.
- the compounds can be administered in a targeted drug delivery system, for example, in a liposome coated with tumor-specific antibody. Such liposomes will be targeted to and taken up selectively by the tumor.
- the purine analogs of the present invention can be administered alone, in combination with each other, or they can be used in combination with other known compounds (e.g., other drugs, such as anti-cancer drugs, anti-mitotics, anti- inflammatories, antibiotics, corticosteroids, vitamins, etc.). More particularly, the compound of the present invention can be used in conjunctive therapy with other known chemotherapeutic or antineoplastic agents (e.g., vinca alkaloids, antibiotics, antimetabolites, platinum coordination complexes, etc.).
- other drugs such as anti-cancer drugs, anti-mitotics, anti- inflammatories, antibiotics, corticosteroids, vitamins, etc.
- chemotherapeutic or antineoplastic agents e.g., vinca alkaloids, antibiotics, antimetabolites, platinum coordination complexes, etc.
- the compounds of the present invention can be used in conjunctive therapy with a vinca alkaloid compound, such as vinblastine, vincristine, taxol, etc.; an antibiotic, such as adriamycin (doxorubicin), dactinomycin (actinomycin D), daunorubicin (daunomycin, rubidomycin), bleomycin, plicamycin (mithramycin) and mitomycin (mitomycin C), etc.; an antimetabolite, such as methotrexate, cytarabine (AraC), azauridine, azaribine, fluorodeoxyuridine, deoxycoformycin, mercaptopurine, etc.
- a vinca alkaloid compound such as vinblastine, vincristine, taxol, etc.
- an antibiotic such as adriamycin (doxorubicin), dactinomycin (actinomycin D), daunorubicin (daunomycin
- the compounds of the present invention can be used in conjunctive therapy with other known chemotherapeutic or antineoplastic compounds.
- the compounds may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination with other pharmaceutically active compounds.
- compositions described herein can be manufactured in a manner that is known to those of skill in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
- the following methods and excipients are merely exemplary and are in no way limiting.
- the compounds can be formulated into preparations by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- the compounds of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
- penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- the compounds can be formulated readily by combining with pharmaceutically acceptable carriers that are well known in the art.
- Such carriers enable the compounds to be formulated as tablets, pills, dragees, capsules, emulsions, lipophilic and hydrophilic suspensions, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
- Pharmaceutical preparations for oral use can be obtained by mixing the compounds with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl- cellulose, sodium carboxymethylcellulose, and or polyvinylpyrrolidone (PVP).
- disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
- Dragee cores are provided with suitable coatings.
- suitable coatings For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pynolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
- compositions which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
- the compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoro ethane, carbon dioxide or other suitable gas, or from propellant-free, dry-powder inhalers.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoro ethane, carbon dioxide or other suitable gas, or from propellant-free, dry-powder inhalers.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoro ethane, carbon dioxide or other suitable gas
- propellant-free, dry-powder inhalers e
- the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, carbowaxes, polyethylene glycols or other glycerides, all of which melt at body temperature, yet are solid at room temperature.
- rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, carbowaxes, polyethylene glycols or other glycerides, all of which melt at body temperature, yet are solid at room temperature.
- the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
- the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- hydrophobic pharmaceutical compounds may be employed.
- Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs.
- Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity.
- the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
- sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days.
- compositions also may comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in a therapeutically effective amount.
- the amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician. Determination of an effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
- a therapeutically effective dose can be estimated initially from cell culture assays.
- a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC50 as determined in cell culture, or the IC 100 as determined in cell culture (i.e., the concentration of compound that is lethal to 100% of a cell culture). Such information can be used to more accurately determine useful doses in humans.
- Initial dosages can also be estimated from in vitro or in vivo data.
- Initial dosages can also be formulated by comparing the effectiveness of the compounds described herein in cell culture assays with the effectiveness of known drugs. For instance, when used as anticancer agents, initial dosages can be formulated by comparing the effectiveness of the compounds described herein in cell culture assays with the effectiveness of known anti-cancer drugs such as vincristine. In this method, an initial dosage can be obtained by multiplying the ratio of effective concentrations obtained in cell culture assay for the a compound of the present invention and a known anti-cancer drug by the effective dosage of the known anti-cancer drug.
- an initial effective dosage of the compound of the present invention would be one -half the known dosage for vincristine.
- toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD 50 , (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effect is the therapeutic index and can be expressed as the ratio between LD 50 and ED 50 .
- Compounds which exhibit high therapeutic indices are preferred.
- the data obtained from these cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in human.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g., Fingl et al, 1975, In: The Pharmacological Basis of Therapeutics, Ch. 1, p. 1). Dosage amount and interval may be adjusted individually to provide plasma levels of the active compound which are sufficient to maintain therapeutic effect. Usual patient dosages for oral administration range from about 50-2000 mg/kg/day, commonly from about 100-1000 mg/kg/day, preferably from about 150-700 mg/kg/day and most preferably from about 250-500 mg/kg/day. Preferably, therapeutically effective serum levels will be achieved by administering multiple doses each day. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration. One having skill in the art will be able to optimize therapeutically effective local dosages without undue experimentation.
- Example 1 illustrates a general synthetic scheme for producing the purine derivatives of the invention on a solid support.
- the solid-phase synthesis strategy exemplified by Scheme 2 involves attaching the growing compound to the solid-support
- Example 2 illustrates a generalized synthetic route to purine derivatives on a solid support.
- the solid-phase synthesis strategy exemplified by Scheme 3 involves attaching the growing compound to the solid-support via the side-chain at position 9 of the purine ring structure.
- Example 3 illustrates a general route to purine derivatives synthesized on a solid support.
- the route exemplified by Scheme 4 involves attaching the growing compound to the solid-support via the substituent at the 6-position of the purine ring.
- Example 4 details the alkylation of position 9 of a purine nucleus.
- the synthetic route is summarized in Scheme 5.
- the reaction was quenched by adding water (500 ⁇ L) to the reaction mixture.
- the solvent was removed in vacuo to yield a viscous yellow oil.
- the oil was azeotroped with CH2CI 2 (2 x 10 mL) to remove trace THF.
- Purification was effected by column chromatography on silica gel eluted with CH 2 CI 2 .
- the CH 2 CI 2 was removed from the desired fraction.
- the desired product was isolated in 57% yield as a white powder.
- Example 5 illustrates the synthetic route to animation of the 6-position of the purine ring system. The synthetic route is illustrated in Scheme 6.
- Example 6 details the amination of the 2-position of the purine ring system.
- the synthetic route is illustrated in Scheme 7.
- This example illustrates a CDK2/cyclinA microtiter protein kinase assay which can be used to screen the purine analogs of the present invention for inhibitory activity.
- Buffer A 80 mM Tris (pH-7.2) mM MgCl 2
- Stepwise Description of Assay a. Prepare solutions of inhibitors at three times the desired final assay concentration in ddH 2 O with 15% DMSO by volume. b. Dispense 20 ⁇ L of inhibitors to the well of a microtiter-formatted assay tray. c. Thaw Histone HI solution (1 mL aliquot), ATP solution (1 mL aliquot) and CDK2 solution (192 ⁇ L aliquot). d. Dilute 192 ⁇ L of CDK2 solution into 2.1 mL of buffer A. Swirl to mix. Dispense 20 ⁇ L of this solution to each well using a multichannel pipetman.
- ii) Load the nitrocellulose paper onto the dot blot apparatus. Load 100 ⁇ L of water into each well of the dot blot to rehydrate the membrane. Apply a weak vacuum to remove the excess water, but do not dry out the membrane. iii) Add 35 ⁇ L of 10% TC A to each well of the dot blot. g. Using the multichannel pipetman, transfer 35 ⁇ L of the reaction mixtures to each well of the dot blot in the same fashion as the ATP was dispensed (to insure equal reaction times). h. Add an additional 35 ⁇ L of 10% TCA and apply a weak vacuum until the wells are free of liquid.
- Example 8 demonstrates the identification of a CDK2 inhibitor from a purine library.
- Substitution chemistry was used to install amines at the 2- and 6- positions and a Mitsunobu (Mitsonobu, Synthesis 1-28 (1981) and Toyota, et al, Heterocycles 36, 1625-1630 (1993)) reaction was employed to alkylate the N-9 position of the purine core.
- the substitution chemistry allowed introduction of primary and secondary amines bearing a wide range of functional groups, while the Mitsunobu reaction tolerated primary and secondary alcohols lacking additional acidic hydrogens.
- Newly appended groups were modified combinatorially in subsequent steps using a variety of chemistries including acylation, reductive amination, and Suzuki coupling reactions (Backes, et al, J. Am. Chem. Soc.
- Inhibitor (20 ⁇ L, 15% DMSO in H 2 O) was introduced to a solution containing CAK activated CDK2/cyclinA (20 ⁇ L, 0.3 mg/ml, 80 mM Tris, pH 7.2, 40 mM MgCl 2 ) in a 96-well microtiter array.
- the kinase reaction was initiated by the addition of substrate histone HI, ATP mixture (20 ⁇ L, 0.22 mg/mL histone HI, 10 mM HEPES, pH 7.2, 45 ⁇ M ATP, 150 ⁇ g/mL BSA, 1.5 mM DTT, 0.1 vol % ⁇ - 32 P-ATP, 10 ⁇ Ci/mL).
- reaction mixtures were transferced to 96-well dot-blot apparatus and quenched by the addition 35 ⁇ L of 10% TCA.
- the phosphorylated histone HI was immobilized onto a nitrocellulose membrane, washed with 10% TCA followed by H 2 O and quantitated by densitometry on a phosphoimager.
- Table 2 IC50 values for Purvalanol A and B for a variety of purified kinases.
- IC 0 data for these series of compounds indicated that the inhibitory effects of these substituents are approximately additive.
- the most potent inhibitor found was 2- (lR-isopropyl-2-hydroxyethyl)-6-(3-chloroanilino)-9-isopropylpurine (purvalanol A, Fig. 4D) or its water soluble 6-(3-chloro-4-carboxyanilino) analog (purvalanol B, Fig. 4D).
- These inhibitors have IC 0 's against CDK2/cyclinA of 70 and 6 nM, respectively. This conesponds to a 1000-fold improvement over olomoucine and a 30-fold improvement over flavopiridol (Fig.
- purvalanol A was tested on the NCI's panel of 60 human tumor cell lines (leukemia, non-small cell lung cancer, colon cancer, renal cancer, prostate cancer, and breast cancer). See Appendix I.
- the average GI 50 (50% growth inhibition) of 2 ⁇ M is substantially higher than that observed for flavopiridol, which uniformly inhibited cell lines with an average GI 50 of 72 nM. This result may reflect poorer bioavailability of purvalanol A or the possibility that flavopiridol's mode of action involves inhibition of additional targets.
- Example 9 details the structural analysis of the CDK2 -purvalanol complex.
- the crystal structure of the human CDK2 -purvalanol B complex was determined to 2 05 A resolution and compared to CDK2-hgand complexes containing bound olomoucine (Schulze-Gahmen, et al Proteins Structure, Function, and Genetics 22 378-391 (1995)), roscovitme (De Azevedo, et al , Eur J Biochem 243 518-526 (1997)), flavopindol (De Azevedo, et al , Proc Nat ' I Acad Sci USA 93 2735-2740 (1996)) and ATP (Schultze-Gahmen, et al , J Med Chem 39 4540-4546 (1996)) (Fig 5)
- CDK2-purvalanol B complex Refinement of the CDK2-purvalanol B complex was started from the coordinates of the highly refined CDK2-ATP model All refinement steps were earned out using the program X-PLOR (A T Brunger, Yale Univ Press, Version 3 0, 1991) Molecular replacement followed by ngid body refinement was necessary to successivefully reonent and reposition the CDK2 molecule m the unit cell of the frozen crystal
- the CDK2 model was further refined using several rounds of conjugated- gradient energy minimization At this stage the electron density corresponding to purvalanol B was clearly visible from 2Fo-Fc and Fo-Fc Founer maps and the inhibitor could be added to the model Several rounds of both X-ray restrained energy minimization and molecular dynamics in the resolution range 7-2.05 A, alternated with model building using the program O, where necessary to improve the model.
- the overall geometry of purvalanol B bound to CDK2 resembled that of the related adenine-substituted inhibitors in the CDK2-olomoucine and CDK2 -roscovitine complexes, with the purine ring and its C2, N6 and N9 substituents occupying similar binding pockets.
- the purine ring made mostly hydrophobic and van der Waals contacts with CDK2 residues and a pair of conserved hydrogen bonds from the N7 imidazole nitrogen to the backbone NH of Leu83 and between the N6 amino group and the backbone carbonyl of Leu83.
- the C2-side chain of purvalanol B bound in the ATP ribose binding pocket, with the R-isopropyl group closely packed against backbone atoms of the glycine- rich loop and the hydroxyl group making a hydrogen bond with the backbone carbonyl of Glnl31.
- the R-isopropyl side chain of purvalanol B led to a significant repositioning of the C2 substituent relative to the R-ethyl substituent of roscovitine. This repositioning left open a pocket in the active site lined by the polar side chains of Lys33, Asnl32 and Aspl45. Some electron density was visible in this region, most likely due to the binding of an ethyleneglycol molecule.
- the 3- chloroanilino group at N6 of purvalanol B pointed towards the outside of the ATP- binding pocket and occupied a region not occupied by any parts of the ATP in the CDK2- ATP complex. Interactions in this region were largely responsible for the increased affinity and selectivity of the inhibitors compared to ATP, as was further demonstrated by the binding of flavopiridol, whose phenyl ring is also bound here.
- the 3-chloroanilino group of the inhibitor is bound at a slighly different position compared to the benzylamino groups in CDK2-olomoucine and CDK2- roscovitine, allowing for an optimized packing of the phenyl ring against the side chains of He 10 and Phe82. Further stabilization of the binding of the 3-chloroanilino group came from a hydrogen bond with the side chain of Asp86, which existed in about two thirds of the molecules in the CDK2 -purvalanol B crystals. In the other conformation, the phenyl ring of the 3-chloroanilino group was flipped approximately 160 degrees with the chlorine atom located at the opposite site, away from the carboxylate group of Asp86.
- N9 substituents of the three adenine-substitued inhibitors bound in a small hydrophobic pocket formed by the side chains of Vail 8, Ala31, Phe80, Leul34 and Alal44. Binding was most favorable for the isopropyl group of purvalanol B and roscovitine, whereas the methyl group of olomoucine was found to be too small to occupy the pocket completely.
- Example 10 shows cellular effects of inhibition by purines and flavopiridol.
- the cellular effects of the compounds were determined by measuring changes in mRNA levels in yeast following treatment with compounds. mRNA transcript profiles were obtained in Saccharomyces cerevisiae because of the availability of high density oligonucleotide expression anays (Lockhart, et al, Nat. Biotech. 14:1675-1680 (1996); and Wodicka, et al, Nat. Biotech. 15:1359-1367 (1997)), and because the yeast cyclin dependent kinase (CDC28) is highly homologous to human CDK2.
- a strain was employed with three drug sensitizing deletions (ergo, pdr5, snq2). This strain showed 50% growth inhibition (GI 50 ) for compound 52 and flavopiridol at concentrations of 20 ⁇ M and 7 ⁇ M, respectively.
- Three cultures (1 lOmL, YPD) were inoculated with single colonies of YRP1 (MATa, erg6::LEU2, pdr5::TRPl, snq2::HIS6) and grown at 30°C with constant agitation in a water bath incubator.
- Yeast cultures were grown to late log phase and treated with 25 ⁇ M concentrations of the inhibitors for two hours after which cellular poly (A)+ mRNA was isolated and converted to biotin-labeled cRNA.
- the labeled cRNA was then hybridized to a set of four anays containing more than 260,000 25-mer oligonucleotides.
- the identities of open reading frames (ORFs) were obtained from the following public databases: Yeast Protein Database (quest7.proteome.edu) and Saccharomyces Genome Database (genome- www, stanford.edu). Transcripts that showed a significant and reproducible change in concentration (two to three-fold) in cells treated with the two compounds between three independent hybridizations were examined further.
- CDK activity has been implicated in transcriptional regulation of histone genes such as HTA2 and HTB2 (Van Wijnen, et al, Proc. Nat 7 Acad. Sci. USA 91:12882-12886 (1994)) and EGT2, a gene involved in the timing of cell- separation after cytokinesis.
- HTA2 and HTB2 Van Wijnen, et al, Proc. Nat 7 Acad. Sci. USA 91:12882-12886 (1994)
- EGT2 a gene involved in the timing of cell- separation after cytokinesis.
- Other genes involved in cell cycle progression such as YDR247 (a putative negative regulator of meiosis), RAD16 (involved in G 2 repair of inactive genes), YBR214 (similar to the mocl protein of S.
- pombe which is involved in meiosis and mitosis and RLM1 (a target of Mpklp which is regulated by Cdc28p kinase activity) were induced.
- the changes in expression levels of these genes are consistent with predominant Gj/S inhibition, in accord with FACS determined DNA content measurements previously reported for analogous purine derivatives (Brooks, et al, J. Biol. Chem. 272:29207-29211 (1997)).
- Compound 52 and flavopiridol also had similar effects on the transcript levels of many genes involved in cellular metabolism.
- genes that are involved in glycolysis PDC5, PFK26, YAL061 W, an alcohol dehydrogenase), the citric acid cycle (ALD4, ALD5), glycogen metabolism (PGM2, YPR184W, a putative debranching enzyme), gluconeogenesis (PCK1) and a probable sugar transporter (HXT5) were induced.
- cdc28p was the intended target of both compound 52 and flavopiridol, more than half of the changes in transcript levels that resulted from exposure to the two compounds were distinct. For example, of the approximately fifty genes whose transcript levels were decreased at least three-fold in response to compound 52, fourteen were ribosomal proteins (including RPL4A, RPL26B, RPS24A). This was found to be consistent with the observed up regulation of protein kinase A, which has an established role in modulating ribosomal protein synthesis (Griffioen, et al., FEMS Microbiol Lett. 123: 137-44 (1994)). In contrast, no ribosomal protein transcript levels decreased more than three-fold for flavopiridol.
- Compound 52 also uniquely affected YMR116C (a determinant of cell size), a cytosine/purine permease and CLB2 (G 2 /M- phase specific cyclin).
- YMR276W which encodes a ubiquitin like protein involved in duplication of the spindle pole body
- CLN2 which encodes a Gj/S specific cyclin.
- the differential effects of the two compounds resulted from different cellular bioavailability or their effects on other cellular targets not specifically examined in vitro such as the additional yeast CDKs KIN28 (involved in mRNA transcription) and PH085 (phosphate regulation).
- transcripts induced in cdc28-4 were ones involved in stress signaling (Ruis & Schuller, BioEssays 17:959-965 (1995)): heat shock elements (HSEs), stress response elements (STREs), and members of the major facilitator superfamily (MFSs).
- HSEs heat shock elements
- STREs stress response elements
- MFSs major facilitator superfamily
- the cdc28-13 strain contains an arginine to asparagine mutation at residue 283 near the C-terminus which does not significantly affect kinase activity at the permissive temperature but does cause cell cycle anest when switched to the nonpermissive temperature (LoRincz & Reed, Mol. Cell Biol. 6:4099-4103 (1986)).
- the cdc28-13 strain showed very few changes in mRNA transcripts when compared to wild type at the permissive temperature. The levels of only 11 mRNAs changed by more than two-fold, consistent with the observation that this mutant possesses essentially wildtype kinase activity at 25°C.
- the nearly identical gene expression patterns obtained for the cdc28-13 and isogenic wildtype CDC28 strain demonstrate the reproducibility of these experiments.
- CDC28 Since CDC28 is an essential gene, the transcript profile of two cdc28 temperature sensitive strains (cdc28-4 and cdc28-13) and their isogenic wild-type (wt) strains were measured under permissive growth conditions (25°C). Under these conditions cdc28-4 grew at essentially wild type rates which approximated the small degree of growth inhibition observed for the two hour compound treatments used to prepare the inhibitor profiles.
- the cdc28-4 strain contains a single histidine to tyrosine mutation at position 128 which when mapped onto the human CDK2 crystal structure is located adjacent to the ATP binding site.
- Cdc28p specific kinase activity is greatly reduced as measured by an immunoprecipitation phosphorylation assay (Reed, et al, Proc. Nat 'I Acad. Sci. USA 82:4055-4059 (1985)).
- the cdc28-4 mutant When switched to the nonpermissive temperature, the cdc28-4 mutant anests early in the cell cycle as large unbudded cells. Since Cdc28p activity is high during S phase and mitosis, the mutation in cdc28-4 might be expected to simulate the effects of chemically inhibiting the kinase during these two key points in the cell cycle.
- the specific mechanism of Cdc28p inactivation may differ significantly from that resulting from a competitive active site inhibitor.
- Example 11 demonstrates screening purine libraries against other cellular targets.
- the recombinant JNK-his6 fusion was produced in E. coli and purified by Ni-agarose chromatography.
- a 30 ⁇ L kinase reaction contained 20 mM MgCl , 20 mM Tris/HCl pH 7.6, 20 ⁇ M ATP (cold), 66 nM JNK, 0.5 ⁇ L ⁇ - 32 P-ATP, 1 ⁇ g GSTc-Jun(l- 79), and the indicated concentrations of inhibitors.
- the reaction was carried out at 30°C for 30 min.
- the phosphorylated GSTc-Jun was separated by SDS-PAG ⁇ , and phosphorylated bands were quantified by phosphoimager analysis.
- V5C D- 706230 -Y / I I E2c ⁇ je ⁇ ment ID: 9809NS65 ⁇ 5 i Test Type: 08 [ Units; Molar
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98964881A EP1042509A1 (en) | 1997-12-24 | 1998-12-23 | Methods of using oligonucleotide arrays to search for new kinase inhibitors |
AU20103/99A AU2010399A (en) | 1997-12-24 | 1998-12-23 | Methods of using chemical libraries to search for new kinase inhibitors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6879897P | 1997-12-24 | 1997-12-24 | |
US60/068,798 | 1997-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999034018A1 true WO1999034018A1 (en) | 1999-07-08 |
Family
ID=22084771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/027405 WO1999034018A1 (en) | 1997-12-24 | 1998-12-23 | Methods of using chemical libraries to search for new kinase inhibitors |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1042509A1 (en) |
AU (1) | AU2010399A (en) |
WO (1) | WO1999034018A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077073A (en) * | 2000-01-31 | 2001-08-17 | 박호군 | C-2,6,9 substituted isopropylpurine derivatives and a preparation thereof |
EP1147214A1 (en) * | 1999-01-13 | 2001-10-24 | The Research Foundation Of State University Of New York | A novel method for designing protein kinase inhibitors |
WO2003002565A1 (en) * | 2001-06-27 | 2003-01-09 | Cyclacel Limited | 2,6,9-substituted purine derivatives and their use n the treatment of proliferative disorders |
EP1277478A1 (en) * | 2000-04-28 | 2003-01-22 | Yamanouchi Pharmaceutical Co. Ltd. | Medicinal compositions for suppressing beta-amyloid production |
WO2004046130A1 (en) * | 2002-11-19 | 2004-06-03 | Aventis Pharma S.A. | Pyridazinone derivatives as cdk2-inhibitors |
EP1578722A2 (en) * | 2001-10-12 | 2005-09-28 | Irm Llc | Kinase inhibitor scaffolds and methods for their preparation |
WO2006105386A1 (en) * | 2005-03-30 | 2006-10-05 | Genentech, Inc. | Cdk2 inhibitors |
US7544689B2 (en) | 2002-08-15 | 2009-06-09 | Cyclacel Limited | Purine derivatives |
US7582642B2 (en) | 2002-08-15 | 2009-09-01 | Cyclacel Limited | Purine derivatives |
US20090269772A1 (en) * | 2008-04-29 | 2009-10-29 | Andrea Califano | Systems and methods for identifying combinations of compounds of therapeutic interest |
US7772216B2 (en) | 2001-10-22 | 2010-08-10 | The Research Foundation Of State University Of New York | Protein kinase and phosphatase inhibitors and methods for designing them |
US7932213B2 (en) | 1999-05-11 | 2011-04-26 | President And Fellows Of Harvard College | Small molecule printing |
EP2330908A1 (en) * | 2008-08-15 | 2011-06-15 | Georgetown University | Fluorescent cdk inhibitors for treatment of cancer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0534640A1 (en) * | 1991-09-23 | 1993-03-31 | Pfizer Inc. | Process for detecting specific mRNA and DNA in cells |
WO1995028169A1 (en) * | 1994-04-14 | 1995-10-26 | The Regents Of The University Of California | Tumor suppressor gene and methods for detection of cancer, monitoring of tumor progression and cancer treatment |
WO1997016447A1 (en) * | 1995-10-31 | 1997-05-09 | Mitotix, Inc. | Inhibitors of cyclin-dependent kinases |
WO1997027317A1 (en) * | 1996-01-23 | 1997-07-31 | Affymetrix, Inc. | Nucleic acid analysis techniques |
WO1997042949A1 (en) * | 1996-05-10 | 1997-11-20 | Bristol-Myers Squibb Company | 2-thio or 2-oxo flavopiridol analogs |
-
1998
- 1998-12-23 AU AU20103/99A patent/AU2010399A/en not_active Abandoned
- 1998-12-23 EP EP98964881A patent/EP1042509A1/en not_active Withdrawn
- 1998-12-23 WO PCT/US1998/027405 patent/WO1999034018A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0534640A1 (en) * | 1991-09-23 | 1993-03-31 | Pfizer Inc. | Process for detecting specific mRNA and DNA in cells |
WO1995028169A1 (en) * | 1994-04-14 | 1995-10-26 | The Regents Of The University Of California | Tumor suppressor gene and methods for detection of cancer, monitoring of tumor progression and cancer treatment |
WO1997016447A1 (en) * | 1995-10-31 | 1997-05-09 | Mitotix, Inc. | Inhibitors of cyclin-dependent kinases |
WO1997027317A1 (en) * | 1996-01-23 | 1997-07-31 | Affymetrix, Inc. | Nucleic acid analysis techniques |
WO1997042949A1 (en) * | 1996-05-10 | 1997-11-20 | Bristol-Myers Squibb Company | 2-thio or 2-oxo flavopiridol analogs |
Non-Patent Citations (2)
Title |
---|
HAVLICEK L ET AL: "Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of olomoucine and related compounds", JOURNAL OF MEDICINAL CHEMISTRY, vol. 4, no. 40, 14 February 1997 (1997-02-14), pages 408 408, XP002079219 * |
VESELY J ET AL: "INHIBITION OF CYCLIN-DEPENDENT KINASES BY PURINE ANALOGUES", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 224, no. 2, 1 September 1994 (1994-09-01), pages 771 - 786, XP002009709 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1147214A1 (en) * | 1999-01-13 | 2001-10-24 | The Research Foundation Of State University Of New York | A novel method for designing protein kinase inhibitors |
US7901894B2 (en) | 1999-01-13 | 2011-03-08 | The Research Foundation Of State University Of New York | Kinase inhibitors |
EP1147214A4 (en) * | 1999-01-13 | 2008-08-27 | Univ New York State Res Found | NEW METHOD FOR CREATING PROTEIN KINASE INHIBITORS |
US7932213B2 (en) | 1999-05-11 | 2011-04-26 | President And Fellows Of Harvard College | Small molecule printing |
KR20010077073A (en) * | 2000-01-31 | 2001-08-17 | 박호군 | C-2,6,9 substituted isopropylpurine derivatives and a preparation thereof |
EP1277478A4 (en) * | 2000-04-28 | 2007-09-26 | Astellas Pharma Inc | Medicinal compositions for suppressing beta-amyloid production |
EP1277478A1 (en) * | 2000-04-28 | 2003-01-22 | Yamanouchi Pharmaceutical Co. Ltd. | Medicinal compositions for suppressing beta-amyloid production |
WO2003002565A1 (en) * | 2001-06-27 | 2003-01-09 | Cyclacel Limited | 2,6,9-substituted purine derivatives and their use n the treatment of proliferative disorders |
US7612079B2 (en) | 2001-06-27 | 2009-11-03 | Cyclacel Limited | 2,6,9-substituted purine derivatives and their use in the treatment of proliferative disorders |
EP1578722A2 (en) * | 2001-10-12 | 2005-09-28 | Irm Llc | Kinase inhibitor scaffolds and methods for their preparation |
US7176312B2 (en) | 2001-10-12 | 2007-02-13 | The Scripps Research Institute | Kinase inhibitor scaffolds and methods for their preparation |
EP1578722A4 (en) * | 2001-10-12 | 2006-09-06 | Irm Llc | KINASE INHIBITOR SKELETERS AND METHODS OF PREPARING THE SAME |
US8088768B2 (en) | 2001-10-22 | 2012-01-03 | The Research Foundation Of The State University Of New York | Protein kinase and phosphatase inhibitors |
US7772216B2 (en) | 2001-10-22 | 2010-08-10 | The Research Foundation Of State University Of New York | Protein kinase and phosphatase inhibitors and methods for designing them |
US7544689B2 (en) | 2002-08-15 | 2009-06-09 | Cyclacel Limited | Purine derivatives |
US7582642B2 (en) | 2002-08-15 | 2009-09-01 | Cyclacel Limited | Purine derivatives |
US8846696B2 (en) | 2002-08-15 | 2014-09-30 | Cyclacel Limited | Purine derivatives |
WO2004046130A1 (en) * | 2002-11-19 | 2004-06-03 | Aventis Pharma S.A. | Pyridazinone derivatives as cdk2-inhibitors |
WO2006105386A1 (en) * | 2005-03-30 | 2006-10-05 | Genentech, Inc. | Cdk2 inhibitors |
US20090269772A1 (en) * | 2008-04-29 | 2009-10-29 | Andrea Califano | Systems and methods for identifying combinations of compounds of therapeutic interest |
EP2330908A4 (en) * | 2008-08-15 | 2011-11-23 | Univ Georgetown | FLUORESCENT CDK INHIBITORS FOR THE TREATMENT OF CANCER |
EP2330908A1 (en) * | 2008-08-15 | 2011-06-15 | Georgetown University | Fluorescent cdk inhibitors for treatment of cancer |
US9408848B2 (en) | 2008-08-15 | 2016-08-09 | Georgetown University | Fluorescent CDK inhibitors for treatment of cancer |
Also Published As
Publication number | Publication date |
---|---|
EP1042509A1 (en) | 2000-10-11 |
AU2010399A (en) | 1999-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6573044B1 (en) | Methods of using chemical libraries to search for new kinase inhibitors | |
AU2021201960B2 (en) | Quinoline derivatives for the treatment of inflammatory diseases | |
US6803371B2 (en) | Purine inhibitors of protein kinases, G proteins and polymerases | |
EP1040204B1 (en) | Exploiting genomics in the search for new drugs | |
Karnani et al. | The effect of the intra-S-phase checkpoint on origins of replication in human cells | |
US8703736B2 (en) | Therapeutic target for pancreatic cancer cells | |
EP1042509A1 (en) | Methods of using oligonucleotide arrays to search for new kinase inhibitors | |
CN103261890A (en) | Inhibitors of human ezh2, and methods of use thereof | |
Wright | A Conserved DNA Rereplication Response in Adaptation to Environmental Stress | |
Ferdoush | Regulation of Nuclear Phase of Eukaryotic Gene Expression by Ubiquitin-Proteasome System | |
US20050019806A1 (en) | Nucleic acids and polypeptides required for cell survival in the absence of Rb | |
CA2519491A1 (en) | Markers for roscovitine | |
Davidson | Characterization of the Role of Elg1-RFC in Suppression of Genome Instability | |
EP1418244A1 (en) | Exploiting genomics in the search for new drugs | |
Manser | The GTPase Cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998964881 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998964881 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998964881 Country of ref document: EP |