+

WO1999033876A1 - Novel seven-pass transmembrane receptor protein - Google Patents

Novel seven-pass transmembrane receptor protein Download PDF

Info

Publication number
WO1999033876A1
WO1999033876A1 PCT/JP1998/005886 JP9805886W WO9933876A1 WO 1999033876 A1 WO1999033876 A1 WO 1999033876A1 JP 9805886 W JP9805886 W JP 9805886W WO 9933876 A1 WO9933876 A1 WO 9933876A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dna
transmembrane receptor
receptor protein
seq
Prior art date
Application number
PCT/JP1998/005886
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ohno
Takehiro Koshio
Hiroshi Ishimaru
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to AU16888/99A priority Critical patent/AU1688899A/en
Publication of WO1999033876A1 publication Critical patent/WO1999033876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4713Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel seven-transmembrane receptor protein present on leukocytes and a DNA encoding the same. More specifically, the present invention relates to a human-derived seven-transmembrane receptor protein comprising the amino acid sequence of SEQ ID NO: 2, and a DNA encoding the same.
  • the use of the seven-transmembrane receptor protein and the DNA encoding the protein of the present invention makes it possible to screen for substances useful for treating or preventing diseases involving leukocyte functions such as autoimmune diseases. And diagnostic methods and agents for such diseases.
  • the present invention provides a replicable recombinant DNA obtained by incorporating the above DNA into a replicable expression vector; a microorganism or a cell transformed with the above replicable recombinant vector; A seven-transmembrane receptor protein produced on the cell membrane surface of the transformant; a ligand for the above-mentioned seven-transmembrane protein and a substance that inhibits the binding of the ligand to the seven-transmembrane protein A screening method; and an antibody capable of binding to the seven-transmembrane receptor protein.
  • the present invention relates to a mouse-derived seven-transmembrane receptor protein fragment comprising the amino acid sequence of SEQ ID NO: 4, and a DNA encoding the same.
  • Conventional technology
  • Leukocytes are a kind of blood cells and are cells that control various functions such as immunity and inflammation.
  • leukocytes protect the body through beneficial immune and inflammatory response mechanisms (translated by Yoshio Aso, at-a-glance immunology, published by Metigull 'Science' International, 4 8-61, 1993 (Japan)].
  • beneficial immune and inflammatory response mechanisms translated by Yoshio Aso, at-a-glance immunology, published by Metigull 'Science' International, 4 8-61, 1993 (Japan)].
  • it also causes unwanted immunity and inflammatory effects such as autoimmunity [translated by Yoshio Aso, immunology at a glance, published by Medical Sciences International, 62-73, 199 3 years (japan)].
  • Finding ways to control the function of leukocytes could help cure infections and tumors with a beneficial immune response, or treat autoimmune diseases with a diminished harmful immune response. Have been.
  • leukocytes that is, their proliferation, differentiation, activation, chemotaxis, etc.
  • Receptors are extracellular events that occur on the cell surface and bind with high affinity to specific substances (signal molecules) present on the surface of other cells or in body fluids. Is a protein that converts cells into intracellular signals and triggers cell responses [Keiko Nakamura and Kenichi Matsubara, Molecular Biology of Cells (2nd ed.), Kyoikusha, p. 936, 1990 (Japan) )]
  • Substances that bind to receptors are generally called ligands.
  • leukocyte receptors such as the family of cytokine receptors, the family of EGF (Epiderma 1 Growth Factor) receptors, and the family of seven transmembrane receptors.
  • EGF Epiderma 1 Growth Factor
  • the seven-transmembrane receptor protein family is one of such receptor families, G-protein-coupled receptor, rhodopsin-type receptor. It is also called the body. Studies of seven transmembrane receptor proteins in leukocytes have been relatively recently started, and it is believed that there are still many unknown seven transmembrane receptor proteins.
  • Receptors identified to date as seven-transmembrane receptor proteins present on leukocytes include receptors that bind to anaphylatoxin, receptors that bind to chemokines, and PAF (platelet activation Factors) and other receptors.
  • the receptor for anaphylatoxin is neutrophils and macrophages. It is involved in the function of phage, for example, the production of reactive oxygen species, the chemotaxis, and the activation of cell adhesion [Bouley, F. et al., Biochemistry 30, 2993-2999, (1991)].
  • administration of an inflammation-inducing substance intraperitoneally to mice deficient in IL-8 (interleukin 8) receptor homolog one of the receptors that bind to chemokines, caused neutrophil infiltration.
  • IL-8 and MCP-1 Monocyte Chemotactic Protein 1
  • IL-18 mutants those that may be considered as therapeutic agents for diseases.
  • IL-18 mutants those that may be considered as therapeutic agents for diseases.
  • the receptor In seven transmembrane receptors, the receptor often binds to multiple signal molecules, and the signal molecule also binds to multiple receptors. Therefore, knowing the signal molecule is not enough when considering the treatment of a disease.
  • serotonin for a single signal molecule called serotonin, in addition to a seven-transmembrane receptor, an ion channel receptor A total of 14 types of receptors, including receptors for completely different signal transduction pathways, are known, and compounds that specifically bind to individual receptors are also known [1996]. Scientifically, Recept or lon, Hannell Nomenclature supplement, Trends Pharmacol. Sc, (1996)], and the application of each receptor to treatment of different diseases is also considered.
  • chemokines In the case of chemokines, a single signal molecule (a kind of chemokine) reacts with many receptors, while a single receptor becomes a large number of signal molecules (multiple kinds of chemokines). Many examples are known [A. Power et al., Trends Pharmaco 1. Sc i. 17, 209-213, (1996)].
  • the receptor expressed in the cell is specified rather than the signal molecule that acts on the cell. This is important.
  • the signal molecule RANT ILS (Regulated on Activation, Norma 1 T cell ex pressed and secreted) acting on leukocytes Because of the variety of leukocytes that react, it is not possible to identify leukocytes that are reactive with RANTES.
  • eosinophils a type of leukocyte, specifically express CCR3, one of the chemokine receptors, so using the receptor CCR3 specifically regulates eosinophils.
  • CCR3 a type of leukocyte
  • receptors are known to act as receptors during viral infection [see, for example, Choe H. et al., Ce 1185, 1135-1148, (1996), It is also known that molecules that bind to such receptors prevent virus infection (eg, B 1 eu 1
  • chemokines there are more new chemokines in the chemokine group [Howard, OMZ et al., TIBTECH, 14, 46-51, (1996)].
  • the receptor is expected to be present. As described above, not all receptors for molecules acting on leukocytes have been understood, and it is considered that leukocytes have more seven-transmembrane receptor proteins. It is thought that identifying a substance (signal molecule) that alters the action of such a receptor will provide a method for controlling the function of leukocytes and, consequently, a disease.
  • autoimmune diseases such as rheumatoid arthritis and multiple sclerosis are characterized by refractory chronic inflammation that is systemic or organ-specific.
  • inadequacies such as the low therapeutic effect of the drug used for the treatment, or the strong side effect even if the therapeutic effect is high.
  • drugs that clarify the pathogenesis of autoimmune diseases and that specifically inhibit only those mechanisms are needed.
  • the pathogenesis of autoimmune diseases is thought to involve genetic factors and infection in addition to acquired immune abnormalities, and the details have not yet been elucidated.
  • animal models have recently shown that cellular immunity is involved in the induction and exacerbation of chronic inflammation in autoimmune diseases. It became clear.
  • the reaction between a type of leukocyte, a self-reactive T cell, and an autoantigen on an antigen-presenting cell triggers the secretion of cytokins and chemokines, the migration of cells to it, and other reactions.
  • the cascade of reactions begins to move, creating inflammation with the infiltration of more self-reactive T cells and another leukocyte, a mononuclear cell, which is thought to trigger an autoimmune disease I have. Therefore, suppressing the activation of autoreactive T cells is thought to suppress various subsequent reactions and lead to the treatment of autoimmune diseases.
  • Multiple sclerosis is an autoimmune disease of the central nervous system, and its pathological model is experimental allergic encephalomyelitis of the mouse (EA £, experiment al al ergic encepha l omye litis). Is a pathological model whose analysis of the pathogenesis is advanced. This disease model is based on the myelin basic protein found in the nerve myelin.
  • MBP myelin basic protein
  • autoreactive T cells that respond to proteolipid apoproteins are known to be induced, and cloned T cells are also available. It has been established at the research institute of Tsutsuji [eg, J. Neuro immuno 1.58, 167-176 (1995)]. However, no receptor that controls the function of these cells, especially the seven-transmembrane receptor protein, has been reported so far. Thus, not all molecules and their receptors that act on leukocytes, especially on autoreactive T cells, have been understood, nor have they been known on autoreactive T cells. The presence of a transmembrane receptor protein is expected. By identifying substances that alter the actions of these various novel receptors, it is necessary to control the function of autoreactive T cells and, consequently, establish a method for controlling autoimmune diseases. Be expected.
  • various substances are known for various receptors.
  • glutamate-dopamine which is a physiological amide, binds to glutamate receptors and dopamine receptors, respectively.
  • the neural peptide Yendocerin which is a peptide, binds to the neuropeptide Y receptor group and the endocrine receptor group, respectively.
  • Steve Arkinstall The G-protein 1 in kedrefactors Book, Academic Press Inc., (1994)).
  • leukocytes such as the chemokine group and PAF, and substances that do not act on leukocytes.
  • the substance that activates the seven-transmembrane receptor protein as described above, whether natural or non-natural, is the substance, the seven-transmembrane receptor protein itself, or a cell that expresses the receptor.
  • various intracellular signal molecules fluctuate. Fluctuations in the signal molecule include, for example, reactions such as an increase or decrease in intracellular cAMP concentration, an increase in inositol phosphate concentration, and an increase in intracellular calcium concentration (Watson, S. and St.
  • an object of the present invention is to find a novel seven-transmembrane receptor protein present in leukocytes and a cDNA encoding the protein, and to use the same for searching for a drug that controls the function of leukocytes.
  • the present inventors have made intensive studies to solve the above-mentioned problems, and as a result, thought that the seven-transmembrane receptor protein present in leukocytes would be useful for searching for a drug that regulates the function of leukocytes.
  • EAE-causing autoreactive mouse T cells 4R312 strain as research material and used that RNA to express a known seven-transmembrane receptor expressed on leukocytes.
  • a mouse cDNA fragment similar to the protein gene sequence was obtained.
  • mice cDNA fragments having homology to the obtained cDNA fragments were found on a publicly known database, and based on these sequences, a novel seven-transmembrane receptor protein ( Hereinafter, the gene fragment of ET240 is often successfully linked to the cDNA library of the mouse 4R312 strain described above.
  • the present inventors searched a known database using the ET240 cDNA fragment obtained from the mouse T cell 4R312 strain and found that the homologous to the mouse ET240 described above. CDNA fragments derived from two independent humans were discovered.
  • the two arrays obtained from the database are Based on the full-length cDNA coding region of a novel seven-transmembrane receptor protein derived from human, which has a high homology (84.4%) with a mouse-type ET240 fragment.
  • the cloned mouse and human cDNAs were translated into amino acid sequences to obtain novel mouse ET240 protein fragments and full-length human ET240 proteins.
  • the present invention was completed by establishing an expression system for human ET240 and producing an antibody capable of specifically binding to human ET240. .
  • one main object of the present invention is to provide a human-derived seven-transmembrane receptor protein useful for the search for a drug that controls the function of leukocytes.
  • Another object of the present invention is to provide a DNA encoding the above seven-transmembrane receptor protein, a recombinant DNA obtained by incorporating this DNA into an expression vector, and this recombinant DNA A microorganism or cell transformed by the method described above.
  • Another object of the present invention is to provide a method for screening a ligand that binds to a seven-transmembrane receptor protein, and a seven-transmembrane receptor protein and a ligand for the protein. It is intended to provide a method for screening a substance that inhibits the binding to a metal.
  • Another object of the present invention is to provide an antibody that can bind to a seven-transmembrane receptor protein.
  • Another object of the present invention is to provide a mouse seven-transmembrane receptor protein fragment and a DNA encoding the same.
  • sequence of SEQ ID NO: 5 is a primer for cloning a mouse ET240 fragment based on the sequence of a known seven-transmembrane receptor protein expressed in leukocytes.
  • the sequence of SEQ ID NO: 6 is a primer for cloning a mouse ET240 fragment based on the sequence of a known seven-transmembrane receptor protein expressed in leukocytes.
  • SEQ ID NO: 7 is a primer for subcloning human ET240 based on GenBank entry H67224.
  • SEQ ID NO: 8 is a primer for subcloning of human ET240 based on GenBank entry AA2155707.
  • SEQ ID NO: 9 is a primer for subcloning of human ET240 based on the sequence of a known vector ATrip1Ex arm.
  • SEQ ID NO: 10 is a primer for subcloning of human ET240 based on the trapping of GenBank entry H67224.
  • SEQ ID NO: 11 is the phase of the GenBank entry H67224. Primer for subcloning of human ET240 based on the complementary chain.
  • SEQ ID NO: 12 is a primer for subcloning of human ET240 based on the sequence of a known vector Trip1Ex.
  • SEQ ID NO: 13 is a primer for subcloning of human ET240 based on GenBank entry AA2155707.
  • SEQ ID NO: 14 is a primer for subcloning of human ET240 based on the GenBank entry AA2155707.
  • SEQ ID NO: 15 is a primer for the analysis of mouse ET240 based on SEQ ID NO: 3.
  • SEQ ID NO: 16 is a primer for the analysis of mouse ET240 based on SEQ ID NO: 3.
  • SEQ ID NO: 17 is a primer for subcloning human ET240 based on SEQ ID NO: 1.
  • SEQ ID NO: 18 is a primer for subcloning human ET240 based on SEQ ID NO: 1.
  • SEQ ID NO: 19 is a partial sequence of a guinea pig-derived myelin basic protein used to induce EAE (experimental allergic encephalomyelitis) in mice.
  • a substantially pure human-derived seven-transmembrane receptor protein having the amino acid sequence of SEQ ID NO: 2. .
  • a substantially pure peptide characterized by being a partial sequence consisting of at least five amino acids of the amino acid sequence of SEQ ID NO: 2.
  • a DNA or derivative thereof comprising at least 12 bases in the base sequence according to claim 3 or 4.
  • RNA consisting of at least 12 bases in the RNA complementary to the base sequence according to claim 3 or 4, or a derivative thereof.
  • a replicable recombinant DNA comprising the DNA according to any one of the above items 3 to 7 incorporated into a replicable expression vector.
  • the method of screening for a ligand that binds to a 1.7-transmembrane receptor protein includes the use of the protein described in 1 or 10 above or the peptide described in 2 above.
  • the left and right ends of the amino acid sequence described in the sequence listing are the amino terminal (hereinafter referred to as N terminal) and the carboxyl terminal (hereinafter referred to as C terminal), respectively.
  • the left and right ends of the nucleotide sequence are the 5 'end and the 3' end, respectively.
  • a in the DNA base sequence indicates adenine
  • C indicates cytosine
  • G indicates guanine
  • T indicates thymine
  • A1a in the amino acid sequence is alanine, Arg is arginine, A sn is asnolagin, Asp is asanoraginate, Cys Is cystine, G1n is glutamine, G1u is glutamic acid, G1y is glycine, His is histidine, I1e is isoleucine, and Leu is royin.
  • Lys is lysine, Met is methionine, Phe is phenylalanine, Pro is proline, Ser is serine, Thr is threonine, Trp is tolane.
  • Rip fan, T yr is Ciro Shin, V a1 is valine.
  • the term “seven-transmembrane receptor protein” in the present invention is a seven-transmembrane receptor present on leukocytes, particularly autoreactive T cells, and was first discovered by the present inventors. Protein.
  • the protein of the present invention is a protein having a specific ligand-binding activity for a receptor and a signal transmission activity present downstream in a signal transduction pathway.
  • One such protein is human ET240 having the amino acid sequence of SEQ ID NO: 2, but the protein of the present invention is limited to the amino acid sequence of SEQ ID NO: 2. It is not. If the polypeptide has the above-mentioned properties as a receptor, a variant (i.e., one or more mutations) caused by a mutation, such as intra-species mutation or allelic mutation, which is known to occur in nature.
  • the present invention also includes amino acid sequences in which several amino acids have been deleted, substituted, or added (amino acid sequences).
  • the protein of the present invention may be modified after translation.
  • the amino acid sequence of SEQ ID NO: 2 there is a portion expected to add a sugar chain.
  • the sixth Asn (Asn-Gln-Ser) of SEQ ID NO: 2 is considered to be Asn of N-glycosidic consensus sequence Asn-X-Ser / Thr, and N-g It may have been modified by the risk.
  • a portion where serine or threonine residues frequently appear may be considered as a portion for estimating the 0-glycosidic bond of N-acetyl-D-galactosamine.
  • the protein of the present invention contains N-daricoside or N-acetyl, such as N-acetyl-D-gnorecosamine or N-acetyl-D-galactosamine, in the amino acid sequence of SEQ ID NO: 2. It also includes a protein containing a sugar chain having a dalicoside bond.
  • the protein of the present invention may have a known tag sequence such as an antigen epitope.
  • tags such as FLAG (DY DDDDK) T 7 (MASMTGGQQMG), HSV (SQP EL AP EDP ED), S (ETAAAKFERQH DS), Myc (EQKLISEEDL), His (HHHHHHHH), HA (YP YDVPDYA), etc. It may have a system ij (all sequences in kazuko are one-letter notation of amino acid). Since the tag sequence is present at the C-terminus or N-terminus of the ET240 protein, the protein of the present invention can be obtained by a method such as flow cytometry or Western blotting. And can be easily detected.
  • a natural cDNA sequence derived from human of the present invention which encodes a protein consisting of the amino acid sequence of SEQ ID NO: 2, is described in SEQ ID NO: 1 together with the amino acid sequence.
  • the base sequence of DNA is often mutated without changing the amino acid sequence encoded by the DNA due to the degeneracy of the genetic code. Is recognized.
  • the human natural cDNA library was used.
  • the amino acid at position A which is the 678th base of SEQ ID NO: 1 has become G. Due to this mutation, the codon changes from ACA to ACG, and both codify for amino acid as Thr (threonine).
  • the resulting amino acid sequence does not change.
  • a DNA sequence containing such a mutation is also included in the DNA of the present invention.
  • the nucleotide sequence of the untranslated region is easily mutated.
  • the nucleotide sequence obtained by such mutation or degeneracy of the genetic code is also included in the DNA of the present invention.
  • a fragment of a seven-transmembrane receptor protein derived from a mouse refers to a seven-transmembrane receptor of a mouse corresponding to the seven-transmembrane receptor derived from human. It is a fragment of the body. Specifically, it is a polypeptide having the amino acid sequence shown in SEQ ID NO: 4 from the second transmembrane region of the receptor to the C-terminal.
  • the fragment of the seven-transmembrane receptor protein is not limited to the amino acid sequence shown in the sequence listing, but may be mutated. Thus, the resulting variants are also included in the present invention. Further, it may have a known tag sequence such as post-translational modification or antigen epitope.
  • the natural cDNA sequence derived from the mouse of the present invention encoding a seven-transmembrane receptor fragment consisting of the amino acid sequence of SEQ ID NO: 4 has amino acid sequence of SEQ ID NO: 3 Described along with the sequence Was.
  • the mouse cDNA also has a nucleotide sequence obtained by mutation of the nucleotide sequence without a change in amino acid after translation and degeneracy of the genetic code. Included in the DNA of the invention.
  • cDNA necessary for the genetic manipulation described in the present invention, examination of expression by Northern plot, screening by hybridization, production of recombinant DNA, nucleotide sequence of DNA
  • a series of molecular biology techniques such as determination of DNA library and preparation of a cDNA library can be performed by a method described in an ordinary experimental book. More specifically, Molecular cloning, Almanatory manual, (1989), Sambrook, J., Fritsch, E.F., and Maniatis, T. Eds., Cold Spr. ing Harbor Laorator Press, etc. can be referred to.
  • a primer designed based on the nucleotide sequence of a known seven-transmembrane receptor protein known to be expressed in leukocytes for the purpose of closing a novel seven-transmembrane receptor protein Using Nos. 5 and 6), a gene fragment was amplified from a mouse EAE-causing T cell 4R312 strain cDNA library. When the amplified DNA sequence was searched on the mouse EST database, two EST fragments were found. Using the mouse DNA sequence cloned by the present inventors and the EST fragment obtained from the database, a novel seven-transmembrane mouse derived from the mouse described in SEQ ID NOs: 3 and 4 in the sequence listing A fragment of the type receptor protein was obtained.
  • mice-derived T cells This novel protein was named ⁇ 240 because of its ability to be the first receptor protein found in EAE-causing T cells (abbreviated as “ET”) (hereinafter often referred to as mouse-derived T cells).
  • EAE-causing T cells abbreviated as “ET”
  • mouse-derived T cells The 7-times transmembrane receptor protein is called “mouse type ⁇ ⁇ 240”.
  • the fact that the mouse-type ⁇ 240 fragment was cloned into ⁇ ⁇ pathogenetic mouse ⁇ cells means that ⁇ -240 mRNA was expressed in EAE-onset mouse T cells. It suggests and.
  • native mRNA for mouse ET240 was detected in mouse lung, heart, and liver tissues, as well as in mouse tongue and intestinal lymphocytes.
  • ET240 of the present invention is expressed systemically, especially lymphocytes of the mucosal system. It was presumed to be expressed in leukocytes. Because mRNA is translated into proteins by cellular mechanisms, detection of ET240 native mRNA in these tissues is considered equivalent to the presence of ET240 protein. Can be
  • the seven-transmembrane receptor protein ET240 of the present invention comprises a full-length human ET240 represented by SEQ ID NO: 2 in the sequence listing and a mouse ET240 represented by SEQ ID NO: 4. This is a fragment peptide.
  • the present inventors used Gene X-Mac / DB Ver. 37.0 (Software Development Co., Ltd.) and prepared the amino acid sequences of SEQ ID NOS: 2 and 4 and the database (GenBank CDS ( Re 1.100 Apr il 1 997; a sub-database of Primates, Rodent, MammaIs, Vertebrate, and Patent)). The results are shown in Tables 1 and 2.
  • Table 1 shows that among the amino acid sequences registered in GenBank CDS, the top 10 proteins with high homology to the mouse ET240 fragment (SEQ ID NO: 4) of the present invention and their homology showed that.
  • the proteins determined to be highly homologous in comparison with the mouse ET240 fragment of the present invention were all seven-transmembrane receptor proteins. No sequences were found to be identical. Therefore, the present inventors confirmed that mouse-type ET240, a part of which was cloned, had a novel sequence.
  • Table 2 shows that among the amino acid sequences registered in GenBank CDS, the top 10 proteins with high homology to human ET240 (SEQ ID NO: 2) of the present invention and their homology Showed sex.
  • the protein determined to have high homology as compared with the human ET240 of the present invention was a transmembrane receptor protein having a seven-fold translocation, but the human ET240 of the present invention was the same. No sequence that could be judged to be the same as 0 was found. Therefore, the present inventors confirmed that human-type ET240 whose full-length had been cloned was a novel sequence.
  • the sequence having the highest homology with the mouse type ET240 fragment (SEQ ID NO: 4) and the human type ET240 (SEQ ID NO: 2) of the present invention is a seven-transmembrane receptor protein PPR derived from Escherichia coli.
  • the homology with mouse ET240 and human ET240 was 84.0% and 86.0%, respectively.
  • PPR 1 is from tongue
  • the possibility of a neuropeptide receptor has been discussed, and strong expression in the lung has been reported (Biochem. Biophys. Res. Comm. 194, 504-511 (1993).
  • PPR1 regulates the function of leukocytes, particularly autoreactive T cells, and thus regulates disease.
  • amino acid sequence of the human ET240 of SEQ ID NO: 2 and the amino acid sequence of the mouse ET240 fragment of SEQ ID NO: 4 were respectively changed to the Swiss Prot [Release 34.0]. , October, (1996)) and the amino acid sequence registered in the patent database (DGENE Derwent Information Lt d .; 971130 UP) ⁇ . It was confirmed that the sequence was correct.
  • ET240 is a protein belonging to the seven-transmembrane receptor.
  • the present inventors have made the hydrophobic part and the hydrophilic part of the amino acid sequence of SEQ ID NO: 2 in accordance with the method of Kyte-Doo 1 itt 1 e UM.B'ioL 157: 105, (1982)]. Analyzed. As a result, the present invention It has been clarified that ET240, a seven-transmembrane receptor protein derived from G, is expressed on the cell surface as a cell membrane protein having seven cell membrane translocating parts. With respect to the amino acid sequence of SEQ ID NO: 4, analysis of the hydrophobic portion and the hydrophilic portion was carried out in the same manner as described above, according to the method of Kyte-Doolyle U.
  • sequence of SEQ ID NO: 4 consists of a hydrophobic portion and a hydrophilic portion (ie, a C-terminal portion from the middle of the second transmembrane portion) almost corresponding to the latter half of the sequence of SEQ ID NO: 2. And was predicted to be a fragment constituting a part of a cell membrane protein having seven cell membrane transit portions.
  • the present inventors encoded the human ET240 described in SEQ ID NO: 1.
  • the nucleotide sequence of the DNA to be encoded and the nucleotide sequence of the DNA encoding the mouse ET240 fragment described in SEQ ID NO: 3 were analyzed.
  • the present inventors used Genetyx-Mac / DB Ver. (Re: 100 April 1997; a sub-database of Primates, Rodent, Mammals, Vertebrate, and Patent)]. The results are shown in Tables 3 and 4.
  • Table 4 Results of GenBank search for mouse ET240c DNA
  • Table 3 shows the top 10 cDNAs with high homology to the gene encoding the mouse ET240 fragment of the present invention among the cDNA sequences registered in GenBank. Indicated.
  • the cDNAs with high homology compared to the gene encoding the mouse ET240 fragment of the present invention were all cDNAs of the seven-transmembrane receptor protein. None of the nucleotide sequences determined to be the same as the mouse type ET240 of the present invention was found. Therefore, mouse ET240 was confirmed to be a novel sequence.
  • Table 4 shows that among the cDNA sequences registered in GenBank, the top 10 cDNAs with high homology to the gene encoding the full length human ET240 of the present invention and their homology showed that.
  • the cDNAs that were found to have a high degree of homology with the gene encoding human ET240 of the present invention were all cDNAs of the seven-transmembrane receptor protein. None of the nucleotide sequences determined to be the same as human ET240 of the present invention was found. Therefore, human ET240 was confirmed to be a novel sequence.
  • the nucleotide sequence having the highest homology with the gene of the seven-transmembrane receptor protein ET240 of the present invention is a seven-transmembrane type protein derived from Escherichia coli.
  • the homology between the cDNA of the receptor protein PPR1 and the mouse and human ET240 was 82.0% and 88.4%, respectively.
  • PPR1 has a completely different sequence from the protein and DNA of the present invention.
  • results of the search using the above database show that all the cDNAs having high homology to ET240 of the present invention are seven-transmembrane receptors, indicating that the mouse type and the human type of the present invention are used. It has been suggested that G-type ET240 is a protein belonging to the seven-transmembrane receptor.
  • the present invention relates to a fragment peptide comprising a human full-length ET240 protein and a partial sequence thereof.
  • the method for obtaining the protein of the present invention is not particularly limited, but specifically, a method for preparing a synthetic peptide based on the amino acid sequence information, or a method for encoding a peptide.
  • a method of synthesizing a peptide by introducing it into a host cell may be mentioned.
  • a method for synthesizing a peptide by introducing a gene encoding the peptide into a host cell is described in "Krieg 1 er, Gene Transferana Expression-A Laboratory Manual, Stockton Press. , (1990); and a number of methods known by Yokota et al., Biomanual Series 4, Gene Transfer and Expression 'Analysis, Yodosha, 1994]. it can.
  • Human ET240 and its fragments are useful for the production of antibodies for diagnostic purposes and for the search of drugs for therapeutic purposes. Since mouse-type ET240 is expressed in EAE-causing T cells in mice, for example, diagnosis of autoimmune diseases including multiple sclerosis and autoimmunity including multiple sclerosis It is particularly useful for searching for drugs intended for the treatment of sexually transmitted diseases. In addition, since it is expressed on mucosal lymphocyte leukocytes, it is particularly useful for searching for drugs for the purpose of diagnosing and treating autoimmune gastrointestinal diseases. Like the full-length protein, the peptide consisting of a partial sequence of the human ET240 protein can be used for antibody production and ligand screening.
  • a peptide used for preparing an antibody that is, as an antigen, for example, a peptide of 5 to 8 amino acid residues at a site corresponding to an extracellular region or a cytoplasmic region is appropriate.
  • partial peptides used for screening of ligands and the like include, for example, ⁇ 240, which is considered to be a ligand-binding site, ⁇ -terminal extracellular region (1st to 29th of SEQ ID NO: 2) Amino acid residue) and the first extracellular loop portion (amino acid residues 97 to 108 of SEQ ID NO: 2) or the second extracellular loop portion (SEQ ID NO: 1 Peptides containing (amino acid residues at positions 78 to 195) can be used.
  • the present invention is a D type which codes the above-mentioned human type ⁇ 240 ⁇ .
  • DNA encoding human ET240 of the present invention the ability to extract from a tissue in which the expression of ET240 has been confirmed, such as the small intestine and heart of a human, can be obtained by the method described in the present specification. It may be synthesized based on the nucleotide sequence described in SEQ ID NO: 1. In addition, in order to obtain DNA encoding human ET240 described in SEQ ID NO: 1, cDNA encoding the entire amino acid sequence of human ET240 is included. Transformant into which plasmid PET 240 H has been introduced E.
  • nucleotide sequence of SEQ ID NO: 1 DNA or RNA complementary to the nucleotide sequence, at least 12 or more, preferably 16 or more, and more preferably If a DNA or RNA consisting of 18 or more bases or a derivative of these nucleic acids is used, cDNA, cDNA clone, genomic DNA, and the like of the seven-transmembrane receptor protein ET240 of the present invention can be used. Genome gene clones can be detected. The length of the required nucleic acid depends on the specificity of the sequence and the stability of binding to the nucleic acid to be detected, but the target gene is determined by PCR using DNA (polymerase chain reaction).
  • Tm duplex dissociation temperature
  • one GC bond is set at 4 ° C and one AT bond is set at 2 ° C, and the Tm can be estimated. Accordingly, a nucleic acid of 12 bases is required when the GC content is high, and a nucleic acid of 16 bases is required in a region having a general GC content of about 50%. Also, nucleic acid induction with stable binding to DNA When using a body, it is possible to detect the target gene using a shorter nucleic acid.
  • a nucleic acid which can be complementary to the nucleotide sequence of SEQ ID NO: 1, or at least 12 or more, preferably 16 or more, Preferably, the nucleic acid consists of at least 18 bases, i.e., antisense DNA or RNA, or antisense nucleic acid is methylated, methylphosphated, deaminated, or thiophosphorylated.
  • Hybridization, primer extension, nuclease / protection / assay, reverse transcription gene amplification (RT-PCR), etc., using the phosphorylated derivatives Can be recruited.
  • detection of natural mRNA by hybridization was performed.
  • a method of genetic diagnosis using ET240 includes a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 2, that is, DNA or RNA, or at least 12 nucleotides thereof.
  • a nucleic acid consisting of preferably 16 or more bases, more preferably 18 or more bases, may be methylated, methylphosphated, deaminated, Or genomic southern hybridization using a chitophosphated derivative thereof.
  • genetics on genomics including humans and mice Cloning of the child is possible as well. Therefore, by using these genes thus cloned, the more detailed function of the seven-transmembrane receptor protein ET240 of the present invention can be clarified.
  • the seven-transmembrane receptor protein ET240 of the present invention administration of antisense nucleic acid to cells or living organisms is also conceivable.
  • an abnormality of the gene of the present invention is found in human genome, the discovered abnormality can be applied to gene diagnosis and gene therapy.
  • a recombinant nucleic acid obtained by incorporating an antisense nucleic acid into an appropriate vector for examples of the preparation of such antisense nucleic acids ′, see Murray, A.H.
  • the DNA of SEQ ID NO: 1, its complementary nucleic acid, and derivatives thereof are useful for diagnosis and therapy. Since the seven-transmembrane receptor protein ET240 gene of the present invention was first found in mouse EAE-causing T cells, it has been shown that autoimmune diseases including multiple sclerosis can be It is particularly useful for searching for drugs for diagnostic or therapeutic purposes. Also, the ET240 gene Because it is expressed on mucosal and lymphocyte leukocytes (see Example 4), it is considered to be particularly useful for drug discovery for the purpose of diagnosing and treating autoimmune gastrointestinal diseases. Can be
  • the present invention is a recombinant DNA, comprising any one of the above-mentioned DNAs of the present invention.
  • the vector used for preparing the recombinant DNA of the present invention is not particularly limited, and any commonly used vector can be used. Specifically, PBR32, PUC8, pUC19, pUC18, and PUC119 derived from Escherichia coli (all manufactured by Takara Shuzo Co., Ltd., Japan), Bacillus subtilis-derived plasmid, and yeast-derived Plasmid vectors such as Plasmid, etc. Bacteriophage vectors such as gt10 and ⁇ gt11 (both manufactured by Stratagene, USA), and animal violales such as Retro Winorescunia senior Winores. And the like, but any other substances can be used as long as they can be propagated in the host.
  • PBR32, PUC8, pUC19, pUC18, and PUC119 derived from Escherichia coli (all manufactured by Takara Shuzo Co., Ltd., Japan), Bacillus subtilis-derived plasmid, and yeast-derived Plasmid vectors such as Pla
  • cDNA encoding the entire amino acid sequence of human ET240 is inserted into the vector pCR3.1.
  • the obtained plasmid PET240H (see Example 6) is mentioned.
  • the present invention is a microorganism or cell transformed with the recombinant DNA.
  • the host into which the recombinant DNA of the present invention is introduced is not particularly limited, but is a microorganism or a cell capable of expressing the recombinant DNA of the present invention.
  • prokaryotic cells such as Escherichia (Escherichia) genus (Escherichia coli) and Bacillus (Bacillus subtilis) are assembled using the calcium chloride method or the like.
  • Recombinant DNA can be introduced.
  • Examples of the above Escherichia bacteria include Escherichia coli K12, HB101, MC1061, LE392, JM109, and INVaF '.
  • Bacillus subtilis Ml114 is mentioned as an example of the Bacillus genus.
  • the phage vector was introduced into the grown E. coli using, for example, the in vitro packaging method (Pr0c.Nat 1.Acad.Sci. 74: 3259-3263, 1977). can do.
  • Eukaryotic cells such as animal cells and insect cells can also be used as hosts.
  • the present invention relates to a seven-transmembrane receptor protein produced on the cell membrane surface by a transformant.
  • a DNA encoding ET240 is bound to a replicable expression vector, and the replicable expression vector is integrated with the DNA and the replicable expression vector.
  • the replicable expression vector is integrated with the DNA and the replicable expression vector.
  • ET240 produced on the cell membrane surface of the transformant by a method including the above.
  • the recombinant vector used to produce ET240 on the cell membrane surface of the transformant is a translation initiation codon at the 5 'end of the ET240-encoding DNA inserted into the vector. It may have a translation termination codon at its 3 'end. A translation initiation codon and a translation termination codon can also be added using an appropriate synthetic nucleic acid adapter. Further, in order to express the target DNA, it is preferable to connect a promoter upstream of the DNA.
  • the promoter used in the present invention is not particularly limited as long as it is a promoter corresponding to a host used for gene expression.
  • the host is a bacterium belonging to the genus Escherichia, a tac promoter, a tr ⁇ promoter, a 1 ac promoter, etc. are preferred.
  • the recombinant DNA to be introduced preferably has a ribosome binding site together with a promoter.
  • the host is yeast, PGK promoter, GAP promoter
  • the host is an animal cell, such as an SV40-derived promoter, a retrovirus promoter, a metalthione promoter, a heat shock promoter, etc. Is available.
  • the DNA used for producing ET240 of the present invention is not particularly limited as long as it encodes ET240 substantially equivalent to the amino acid sequence of SEQ ID NO: 2. .
  • the nucleotide sequence of SEQ ID NO: 1 can be used.
  • a known nucleotide sequence can be bound to DNA encoding ET240.
  • DNA encoding a signal peptide may be added to the 5 'end (the N-terminus of the peptide) or to facilitate detection of the produced protein.
  • DNA encoding the antigen epitope can be added thereto.
  • Choe, H. et al., Cels. 85, 1135-1148, 1996 reference can be made to Choe, H. et al., Cels. 85, 1135-1148, 1996.
  • a transformant for producing ET240 can be obtained by introducing the recombinant DNA constructed as described above into a host cell capable of expressing a vector.
  • the cells used as the host the above-mentioned Escherichia bacteria, Bacillus bacteria, yeast, animal cells, and the like can be used. Specifically, animal cells are preferred, and monkey cells such as C ⁇ S—7, Ver0 cells, Chinese hamster cells CHO, and silkworm cells SF9 are examples.
  • a transformant can be produced by introducing the above-described recombinant DNA into CHO cells or 2993 cells. By culturing the transformant, ET240 can be produced on the cell membrane surface of the transformant. The production of ET240 by the cultured transformant can be confirmed by the Western blot method or FACS (Fluorescence Actuated Cell Source) used in Example 7; it can.
  • FACS Fluorescence Actuated Cell Source
  • the seven-transmembrane receptor protein of the present invention can be used to screen a ligand for the seven-transmembrane receptor protein.
  • the present invention provides substantially pure human ET240, a peptide comprising a partial sequence thereof, or human ET240 produced on the cell membrane surface of a transformant. Contact the sample material and bind to the transmembrane receptor protein seven times, using as an index the change that occurs in response to the binding of ET240 or its peptide to the ligand. It is a method that includes detecting the ligand of the target.
  • E-240 used in the screening method of the present invention may be a purified protein or an unpurified protein, but must have the same ligand binding activity as in ViV0.
  • the ET240 transformant of the present invention that is, ET240 expressed on the cell membrane
  • Cells can be used for screening.
  • the sample material which is considered to include the ligand used in the screening method of the present invention is not particularly limited.
  • a tissue or a cell derived from a living body which is considered to include a physiological ligand Extracts or culture supernatants derived from the culture, and culture supernatants of synthetic compounds and microorganisms can be used.
  • candidate ligands belong to the chemokine group, which is a ligand of the seven-transmembrane receptor group. Substance is conceivable.
  • the method for detecting the ligand for ET240 is not particularly limited, but, for example, the sample material is brought into contact with ET240, and the resulting ET240 and ligand are detected.
  • Examples include a method for measuring the amount of the complex and / or the amount of unbound sample material, and a method for measuring a reaction caused by the binding of the sample material to ET240.
  • Methods for measuring the amount of complex and / or the amount of unbound sample material include, for example, labeling the sample material with a radioactive compound, dye, etc., and then contacting the sample material with ET240.
  • the ET240-.ligand complex is then separated from unbound sample material and the amount of complex and Z or unbound sample material are determined using the label. Can be measured.
  • Example 8 the amount of a complex formed between the radiolabeled candidate ligand compound and the receptor was measured. If a substance that binds to the receptor can be identified, the substance can be labeled, and the binding of the sample material can be measured based on whether the sample material competes with the labeled substance. Specific examples of these methods are given in Mikito Asanuma et al., Experimental Medicine, 11, 22-29, 1993 (Japan). Other than that, like SPA (Scintill at ion Proximi tity As say), the ligand complex can be separated without separating the ET240-ligand complex from unbound sample material. There is also a method of measuring the amount of binding.
  • SPA Scintill at ion Proximi tity As say
  • a method for measuring the reaction caused by the binding between the sample material and ET240 various methods using a signaling system to which ET240 is conjugated can be considered. Examples of such a method include a method for measuring intracellular calcium concentration, for example, as described in Experimental Medicine 7, pp. 26-109, 1989 (Japan), edited by Hideaki Karaki et al. Samson, M., et al., Biochem. 35, pp. 3362-3367, (1996), a method using a micrometer, a method for measuring the amount of intracellular cAMP, and the like. As one example, in Example 9, the chemotaxis of human type ET240 transformed cells using LPS-administered rat serum was observed.
  • Examples include a method using Bia Core and a method using purification using a resin column.
  • BiaC0re is a device that detects the association of proteins with proteins using surface plasmon resonance (Protein Nucleic Acid Enzyme Vol. 37: 2997 7-29884,, 1992) .
  • the purified peptide of the present invention preferably the N-terminal extracellular region, is immobilized on a Bia Core sensor chip, and a sample material that is a ligand candidate is added thereto.
  • the binding between the partial peptide and the sample material (that is, the ability of the sample material to be a ligand for the seven-transmembrane receptor protein of the present invention is examined.
  • the fragment peptide of the present invention is also examined. By fixing it to a resin for column chromatography and preparing an affinity column, for example, the ligand for human ET240 present in cell culture supernatants is removed. The ligand purified in this way can be isolated and identified.
  • the substance obtained by the above-described screening method using the full-length protein and its fragment peptide of the present invention is a substance that binds to ET240, controls a reaction of white blood cells, and treats a disease. Is useful.
  • ET240 and the ligand are compared.
  • a substance that changes the action that is, activates a reaction caused by binding, or conversely It is also possible to search for substances that inhibit activation.
  • the ligand for the protein or peptide is brought into contact with the sample material, and the change that occurs in response to the binding of the protein or peptide to the ligand is used as an index to determine ET240.
  • This method involves detecting a substance that inhibits binding to a ligand.
  • the chemical migration test of the transformant performed in Example 10 can be employed.
  • a substance that inhibits the binding of the ligand to the protein or peptide of the present invention binds to the seven-transmembrane receptor protein and binds to leukocyte cells. It may be useful as a substance that controls reactions and treats diseases.
  • a method for screening a substance that inhibits the binding between a peptide and a ligand using a fragment peptide consisting of a partial sequence of the seven-transmembrane receptor protein of the present invention. In the same manner as the method for determining the ligand, a method using BiaC0re can be adopted.
  • the present invention is an antibody capable of binding to a seven-transmembrane receptor protein derived from human.
  • Antigens used to produce antibodies specifically recognizing the human seven-transmembrane receptor protein include cells expressing human ET240 or full-length ET240. 0
  • the protein or its fragment peptide can be used in a purified or unpurified state.
  • the cells are not particularly limited as long as they do not cause an immune reaction in the recipient individual to whom the cells are administered.
  • a vector having a DNA encoding human ET240 was introduced into cells derived from a specific mouse individual, and the obtained transformant was used as a transformant. By returning the host cell to its original individual, an antibody that specifically recognizes human ET240 can be produced by the same method as in Example 11.
  • the protein is not particularly limited as long as it is capable of inducing an antibody that specifically recognizes human ET240. It is preferable that the full-length amino acid sequence of type ET240 is fused with GST (daltathione S-transferase) or the like. This protein is cross-linked with KLH (keyhole-l-etetemoemocyanin) or BSA (bovine serum alumin) or carrier protein, and then inoculated with an adjuvant, if necessary, to the animal. Recognition of human ET240 by collecting serum An antiserum containing antibodies (polyclonal antibodies) is obtained. Absorbing the obtained antiserum to the Pacific PPR1 protein makes it possible to produce an antiserum that does not react with the Pacific PPR1 protein and specifically recognizes human ET240. You.
  • a fragment peptide consisting of a partial sequence of the amino acid sequence shown in SEQ ID NO: 2 can also be used as an antigen for producing an antibody.
  • the fragment peptide as an antigen is a partial sequence consisting of 5 or more, preferably 8 or more contiguous amino acids, the extracellular region of human ET240 full-length protein or Preferably, the peptide is obtained from a site corresponding to the intracytoplasmic region.
  • the peptide of the present invention similarly to the above-described protein of the present invention, is cross-linked with a carrier protein such as KLH or BSA, and then, if necessary, is brought into contact with an animal together with an adjuvant to recover the serum.
  • an antiserum containing an antibody that recognizes the ET240 protein can be obtained.
  • a peptide consisting of a partial sequence of the N-terminal extracellular region important for binding to the ligand is used as the antigen, the binding of the ligand to the seven-transmembrane receptor protein of the present invention will be inhibited.
  • Such antibodies, or conversely, monoclonal antibodies that substitute for the action of ligands, can be expected to be obtained.
  • a monoclonal antibody can be prepared based on a known method for preparing a hybridoma cell.
  • a sheep, a goat, a goat, a rabbit, a mouse, a rat, and the like can be used as an animal to be inoculated with the antigen.
  • egrets are preferred, and mice are preferred for production of monoclonal antibodies.
  • the antibody of the present invention can be prepared by various methods and gene cloning methods shown in a compendium (Antibodies al aboratory manua l, E. Harlow et al., Cold Spring Harbor Laborator). Using the isolated immunoglobulin gene, it can also be produced as a recombinant antibody expressed in cells. The antibody produced by such a method can also be used for purification of human ET240 of the present invention.
  • the human ET240 Utilizing an antibody capable of binding to the human seven-time transmembrane receptor protein ET240 of the present invention (for example, the antibody prepared in Example 11), the human ET240 is produced. Detection and measurement can be performed. Therefore, the antibody of the present invention can also be used as a diagnostic agent for diseases associated with abnormal cell differentiation, such as malignant tumors, viral infections, and autoimmune diseases.
  • As a method for measuring and detecting the human ET240 Western Blotting, FACS Luo rescence Ac tivat ed Ce11 as described in Example 7, and the like. Sorter) can be adopted. For example, in Antibodiesl abo ratory manua l, E. Harlow eta, Cold Sirng Harbor Labo ra tory, pp.
  • an antibody against human ET240 that is characterized by containing an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2
  • the present invention is useful for identifying cells expressing ET240.
  • the present invention is a fragment of a mouse-type ET240 protein. That is, a substantially pure mouse-derived seven-transmembrane receptor protein fragment having the amino acid sequence of SEQ ID NO: 4.
  • the present invention is a DNA encoding the above-mentioned mouse ET240 fragment.
  • a mouse-derived seven-transmembrane receptor characterized by having the nucleotide sequence of SEQ ID NO: 3 An isolated DNA that encodes a protein fragment.
  • the mouse-derived seven-transmembrane receptor protein fragment of the present invention is a large fragment from the second transmembrane region to the C-terminus of mouse ET240. Furthermore, the mouse cells were the first to find a novel seven-transmembrane receptor protein, and the results of Northern hybridization in Example 3 showed that mouse-type ET240 Expression was confirmed in the lungs and hearts of mice, the use of this mouse-type ET240 fragment and the DNA encoding the same enabled the expression of the mouse-type ET240 full-length protein and its protein. It is easy to isolate the coding DNA. Due to the development of various genetic engineering techniques in mice, transgenic mice, gene targeting mice, and double knockers that inactivate another gene related to the gene of the present invention.
  • the mouse ET240 full-length protein and the gene encoding the same have the same function as the human ET240 full-length protein of the present invention and the DNA encoding the same. Screening of substances useful for the treatment or prevention of the diseases involved, and methods for diagnosing such diseases and diagnostic agents can also be applied.
  • Example 1 Obtaining a novel seven-transmembrane receptor protein fragment derived from mouse
  • the MBP peptide solution 900 ⁇ l and the adjuvant solution 900 ⁇ l are mixed well in a glass syringe, and the MBP peptide concentration is 8 mg Zm 1 and the MBP peptide emulsification solution is mixed.
  • This MBP peptide emulsion solution was subcutaneously injected into both hind limbs L of SJL / J mouse (9 weeks old, female; obtained from Japan, Japan, Japan) with 25 ⁇ l each. did. Further, 1 ⁇ g of islet activating protein (manufactured by Kaken Pharmaceutical Co., Ltd., Japan) solution (5 g / mi) was added to the tail vein immediately after immunization and 2 days later. A 200 ⁇ l saline solution was injected.
  • mice were selected to develop clinical symptoms of EAE (experimentalallergic encephalomye litis) and selected, and on day 63 after immunization, axillary, inguinal and popliteal lymphocytes were selected.
  • the lymph node was cut into small pieces with a female thread, rubbed with a silicone stopper using a mesh No. 150 to obtain a single cell suspension.
  • the solution was added to a medium containing 10 ⁇ g / m 1 MBP peptide [Click's EHAA medium (US, irv, containing 5% FCS (petal fetal serum; obtained from Bioser)).
  • the cells were sub-cultured in a Ca strain from Ine S cienti ⁇ c Co. No.9582) In each culture, the cell count was adjusted to 4 ⁇ 10 6 cells / ml, and a 25 cm 2 (Corning, USA) with 10 ml flask and the culture was started with the flask standing.
  • mice EL 4 was prepared in a cell Z ml IL - 2 cells (ATCC Re-available. After stimulating ATCCTIB-181) for 24 hours, the culture supernatant was collected to obtain EL4sup as a source of IL-12, a growth factor of T cells.
  • lymph node cell culture medium was subcultured (C1ick's EHAA medium, 5% FCS, 15% RGF, EL4sup).
  • each clone was divided into individual clones by ultra-dilution. Select clones that respond to the MBP antigen peptide in vitro, and then inject the clones into mice to develop EAE (tail loss of tail tone and hind limb paralysis). The target clone was selected based on this. That way One clone was named 4R312 strain. The 4R312 strain was also subjected to expanded culture by repeating the same culture cycle as described above, and used in subsequent experiments.
  • Ma c scan 4 R 3 1 culture expanded 2 strain was used as a material by culturing about 1 X 1 0 7 cells in total. After suspending the cells by pipetting, centrifuge at 100 rpm for 15 minutes (KS-8300, manufactured by Kubota Seisakusho, Japan; RS300 / 6/6) ), Aspirate the supernatant, discard the supernatant, and apply PBS (Phosphate Buffered Saline) (Dainippon Pharmaceutical Co., Ltd., Japan; Ca. No. 28-103-05) 30 m After adding 1 suspension, it was centrifuged again under the same conditions. Hereafter, the manufacturer's protocol (Rev.4.
  • RNA was used as a suspension, and 5 XF irststr and bufffer ⁇ , ⁇ ⁇ , 0 Su Im MDTT 5 ⁇ 1.
  • 5 ⁇ l of RNa sin Promega, USA
  • 1 ⁇ l of Rasefree DNase Boehr inger, Germany
  • the total volume was adjusted to 50 ⁇ l with water and left at room temperature for 5 minutes. After that, phenol-chloroform extraction and ethanol precipitation were performed, and cDNA synthesis was performed as follows.
  • CDNA synthesis was performed using Supe r sc r ip pt Cho ic Sys tem fo rc DNA Snt he s ys (manufactured by Uie Technolog ies, USA).
  • a double-stranded (ds) DNA was synthesized using oligo (dT) primer in accordance with pages 11 to 17 (Protocol 1 and 2) of P. Tokonore. Then, after phenol / chloroform extraction and ethanol precipitation, the synthesized cDNA was dissolved in 40 ⁇ l of sterilized water (this is referred to as a cDNA sample).
  • PCR Polymerase cha in reaction
  • Raze Code R001A, manufactured by Takara Shuzo, Japan
  • 5 ⁇ l of the buffer attached to the enzyme 4 ⁇ l of the dNTP mixture attached to the enzyme and the synthetic oligonucleotide ⁇ shown in SEQ ID NO: 5 in the Sequence Listing, and SEQ ID NO in the Sequence Listing
  • Each of the synthetic oligonucleotides B shown in Fig. 6 was subjected to a force of 200 pmo1, and the final volume was set to 50 ⁇ l.
  • the mixture was subjected to 95 ° C for 1 minute, 40 ° C for 2 minutes, and 72 ° C for 3 minutes for 5 cycles using TaKaRa PCR thermal Cycler 480 (Takara Shuzo, Japan). This was performed for 25 minutes at 95 ° C for 1 minute, at 50 ° C for 2 minutes, and at 72 ° C for 3 minutes.
  • a part of the obtained PCR product was subjected to electrophoresis in a 1.5% agarose gel, stained with ethidium bromide (manufactured by Nippon Gene, Japan), and observed under ultraviolet light. It was confirmed that bp cDNA was amplified.
  • the vector used was pCRIIVector (Invitrogen, The Netherlands; hereinafter, referred to as pCRII), and the vector and the preceding DNA had a molar ratio of 1: 3.
  • the DNA was mixed into the vector, and the DNA was incorporated into the vector using T4 DNA ligase (Invitrogen, The Netherlands).
  • the vector with the DNA incorporated, pCRII was transformed into Escherichia coli One Shot Competent Cells 1NV F '(manufactured by Inviogen, The Netherlands).
  • L-Broth (Takara Shuzo Co., Ltd., Japan) containing 50 ⁇ g Z ml of ampicillin (Sigma, USA) was seeded on a plate of semi-solid medium.
  • the nucleotide sequence of the inserted cDNA fragment was determined using a fluorescent sequencer manufactured by Applied Biosystems, USA. Sequence samples were prepared using PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (manufactured by Applied Biosystems, USA). In a 0.5 ml microtube, 9.5 ⁇ l of reaction stock solution, 4.5 ⁇ of 0.8 ⁇ moI /; Primer (manufactured by Applied Biosystems, Inc., USA) and 6.5 ⁇ l of 0.16 ⁇ g / ⁇ 1 sequence type DNA for sequencing are added and mixed, and 1 ⁇ m of mineral is added.
  • PCR amplification reaction is performed at 96 ° C for 30 seconds and 55 ° C for 15 seconds and at 60 ° C for 4 minutes. Was performed for 25 cycles and kept at 4 ° C for 5 minutes.
  • 80 ⁇ l of sterilized purified water was added and stirred, and after centrifugation, the aqueous layer was subjected to three times phenol / close-mouth extraction.
  • 10 ⁇ l of sodium triacetate ( ⁇ 5.2) and 300 ⁇ l of ethanol stir, and then add room temperature to room temperature. The precipitate was collected by centrifugation at 0 rpm for 15 minutes.
  • sequence sample was dissolved in formamide containing 4 ⁇ l of lOmM EDTA, denatured at 90 ° C. for 2 minutes, cooled on ice, and subjected to a sequence.
  • mice-derived ET240 fragment cDNA sequence obtained above was We originally searched the mouse's EST (Expressed Sequence Tag) database (GenBank release 100, 0, April, 1997). As a result, two types of EST fragments, mouse AA 0143733 and AA0550273, which are considered to encode almost the same gene, were used. From 13.5 dpc and 14.5 dpc embryos). By using these sequences, the cDNA sequence of the DNA sequence U of SEQ ID NO: 3 from the 501st base G onward was obtained.
  • the sequence of the mouse type ET240 obtained above and the sequence of the EST fragment were connected, and the DNA sequence shown in SEQ ID NO: 3, that is, a novel mouse-derived seven-transmembrane receptor protein ET240 was obtained. A portion of the cDNA sequence was obtained. In addition, the sequence was translated into amino acid to obtain a part of the amino acid sequence of the novel seven-transmembrane receptor protein ET240 derived from mouse shown in SEQ ID NO: 4.
  • oligonucleotide F1 (system IJ number 7: 5 'GCTGTAGCAG ATTTACTCCT TCTATTCAC 3'; a part of the sequence of H67224; 1: 259th G force to 287th base C to C) and oligonucleotide R1 (system iJ number 8: 5 'GCCGATGTCC ATGCGTTTGC TCATGTC 3'; SEQ ID NO: 1 8 35
  • system IJ number 7 5 'GCTGTAGCAG ATTTACTCCT TCTATTCAC 3'
  • oligonucleotide R1 (system iJ number 8: 5 'GCCGATGTCC ATGCGTTTGC TCATGTC 3'; SEQ ID NO: 1 8 35
  • the C base of the 860th base was used.
  • Base (corresponding to the second base of SEQ ID NO: 8), instead of complementary G, is now C), and human-derived genomic DNA (Clontech, USA) No. 6550-1) was used as a ⁇ type to amplify the gene by PCR (Polymerase), and used for gene sequence analysis.
  • Taq polymerase (Takara Shuzo, Japan) was used for PCR.
  • c Mix 1 ⁇ l of DNA library solution and 38.5 ⁇ l of deionized water and heat at 95 ° C for 7 minutes.
  • this mixture was subjected to 94 ° C for 1 minute, 65 ° C for 2 minutes, and 72 ° C for 3 minutes to 5 cycles, 94 ° C for 1 minute, 6 ° C. 3 ° C 2 min, 72 ° C 3 min 5 cycles, 94 ° C 1 min, 60 ° C 2 min, 72 ° C 3 min 5 cycles, then 95 ° C 1 Min, 50 ° C for 2 minutes, and 72 ° C for 3 minutes for 25 cycles, and finally, 72 ° C for 7 minutes for 1 cycle.
  • the PCR product was subjected to electrophoresis in 1% agarose gel, stained with ethidium Muvuchi Mide (manufactured by Japan Gene, Japan), and observed under ultraviolet light.
  • a PCR product of about 600 bp was cut out from the gel, and the DNA was purified using TaKaRa SuperECOl.
  • This purified DNA was incorporated into a pCR2.1 vector using a TA cloning kit (InVit0rogen) according to the attached protocol.
  • the pCR2.1 vector into which the DNA was incorporated was transfected into E. coli INV cF 'Competent Cells (manufactured by Invitrogen).
  • the DNA fragment obtained in this manner was designated as a human ET240 fragment.
  • a human lung-derived cDNA library (CL0NTECH, CatK HL 5030 t) as a type III gene
  • the gene was amplified by PCR (po1 ymerase cha in reaction), and the gene sequence was analyzed. It was subjected to analysis.
  • the following method was used to determine the 5 'end of the human transmembrane receptor protein ET240 gene.
  • Taq polymerase (Takara Shuzo, Japan) was used for PCR. Mix the cDNA library solution 11 with 38.5 ⁇ l of deionized water, heat at 95 ° C for 7 minutes, and add the buffer attached to the Taq polymerase 5 ⁇ 1 and 2.5 mM d NTP mixture (Takara Shuzo Co., Ltd., Japan) 4 ⁇ 1 and the oligonucleotide LD using the vector arm sequence of this cDNA library — 5: 5 'CTC GGG AAG CGC GCC ATT GTG TTG GT 3' (SEQ ID NO: 9), and oligonucleotide R3: 5 'GTG TGT ACA AGG CTG AAG TTA TTT TGC AC 3' (distribution system) 1J No.
  • reaction solution R3 the nucleotide sequence of the nucleotide sequence from 342nd G to 370th C of SEQ ID No. 1 was added at 20 pmol each, and the mixture was heated at 95 ° C for 3 minutes. 0.5 ⁇ l of polymerase was added to make a final volume of 50 ⁇ l (this reaction solution is referred to as reaction solution R3).
  • reaction solution R2 5 'GCA TTA ACA GCC CAA AAA GGC AGA GTG 3' (SEQ ID NO: 11; SEQ ID NO: 1) 2 8 5th C Capra 3 1 1
  • reaction solution R 2 5 'GCA TTA ACA GCC CAA AAA GGC AGA GTG 3'
  • This PCR product was subjected to electrophoresis in 1.5% agarose gel, stained with ethidium bromide (manufactured by Nippon Gene, Japan), and observed under ultraviolet light.
  • the band detected as a somewhat clear band is compared between the reaction solutions R 3 and R 2, and about 450 bP for the reaction solution R 2 and about 450 bP for the reaction solution R 3.
  • a band of about 500 bp which was 60 bases long was found, the PCR product was cut out from the gel, and DNA was purified using Ta KaRa SuprecOl.
  • Each of the obtained purified DNAs was incorporated into a pCRII vector according to the attached protocol using a TA cloning kit (Invitrogen, The Netherlands).
  • the determination of the 3 'end of the human seven-transmembrane receptor protein ET240 gene was determined using the same method as that for obtaining the 5' end as follows.
  • oligonucleotide vector H using ATACGACTCACTATAGGGCGAATTGGC ( ⁇ self ij number 12), using the arm sequence of the vector of the cDNA library.
  • oligonucleotides R 3 and R 2 respectively, instead of oligonucleotides F 3: GCTGCGACATGAGCAAACGCATGG AC (SEQ ID NO: 13; 8th G protein in SEQ ID NO: 1)
  • the nucleotide sequence corresponding to the 8th and 5th C) and the oligonucleotide F2 GTCAGTTATAGTTTTCATTGTCACTCAACTG (No. 14; No. 1; No. 1) No.
  • Example 3 Analysis of Mouse Tissue Expressing ET240
  • MTN 1 p 1 e Tissue Northern
  • Mouse-derived ET 2 4 0 fragment probe labeled with radioisotope 32 P was prepared in the Hare good follows.
  • the vector containing the mouse ET240 fragment was pCRII, and the inserted fragment was excised from the vector with the restriction enzyme EcoRI and electrophoresed in a 0.8% agarose gel.
  • the gel after electrophoresis was stained with ethidium bromide (manufactured by Nippon Gene, Japan), observed under ultraviolet light, and a band of about 600 bp was cut out from the gel to remove GENECLEANM I Kit (Funakosi, Japan).
  • the obtained DNA fragment was used as a DNA labeling kit (Megaprime DNA labeling system; Amersham, UK, code RPN). 1607).
  • the prepared 32 P-labeled mouse ET240 gene fragment probe was added to the hybridization solution, and the mixture was further shaken at 42 ° C for 16 hours, followed by hybridization. Was done.
  • Example 4 Analysis of Human Tissue Expressing ET240 The gene expression of the human seven-time transmembrane receptor protein ET240 obtained in Example 2 in each organ was analyzed by Northern hybridization.
  • the plate was immersed in a double concentration SSC solution containing 0.1% SDS, washed three times at room temperature, and further washed with the same solution at room temperature for 15 minutes. Further, washing was performed at room temperature for 15 minutes using a 0.2-fold concentration SSC solution containing 0.1% SDS. After the washing, the finalizer was subjected to autoradiography at 185 ° C using a sensitizing screen. As a result, bands around 1.5 to 2.2 kb were observed in all lanes except the prostate. A strong band was observed in the heart and small intestine.
  • Example 5 Analysis of Mouse Tissue Expressing ET240 by PCR
  • the mouse ET240 gene expression in the intestine and tongue was examined by PCR.
  • the residue remaining in the tea strainer was placed in a 50 ml centrifuge tube, and 15 ml of RPMI 1640 medium was shaken, shaken vigorously for 15 seconds, and the filtrate was collected using a tea strainer. . This was repeated three times. These filtrates were combined, passed through a glass wool column, centrifuged to precipitate the cells, and the cells in the pellet were collected and resuspended in 15 ml RPMI 1640 medium. The suspension was returned to the flask again, and the procedure of starting stirring in the flask was repeated twice to collect the cells.
  • the cell recovered solution is centrifuged to collect the cells again to form one stock, and twice more with PBS (Phosphate Buffered Saline) (Dainippon Pharmaceutical Co., Ltd., Japan). , Ca o. 28-103-05). After suspending the cells in 8 ml of 40% Perc 011 solution (in RPMI 1640 medium), halve 2 ml of 75%
  • the obtained 5 ⁇ 10 6 IELs were recovered, and total RNA was purified using a QuickPrep Total RNA extraction kit (Pharmacia, Sweden) according to the manufacturer's protocol. .
  • RNA was purified according to the manufacturer's protocol.
  • CDNA was synthesized using a kit of these RNA force, Superscript Preampli i'i cation (GIBCO BR, USA, Cat. No. 18089-011).
  • the mouse DNA genome was purchased from C10ntech in the United States (Ca. 6650-1).
  • Human lung-derived cDNA library (CLONTECH, Cat I HL 5030 type III, PCR of full-length ET240 gene (po 1 yme rase cha in reaction). 0 1 This was used (11'1811 Fidility Taq polymerase (Beringer Mannheim, Germany). 2 ⁇ l of this phage library solution and deionized water 36 Mix 1 ⁇ l, heat at 95 ° C for 7 minutes, add 1 ⁇ l of Taq polymerase, and 5 ⁇ l of buffer attached to Taq polymerase.
  • This mixture was subjected to 95 ° C for 1 minute, 65 ° C for 2 minutes, and 72 ° C for 3 minutes using TaKaRa PCR thermal Cycler 480, and then to 95C for 1 minute. 6 2 ° C for 2 minutes, 72 ° C for 3 minutes, 5 cycles, and 95 ° C for 1 minute, 59 ° C for 2 minutes, 72 ° C for 3 minutes, 5 cycles Then 95. C 1 minute, 50 ° C. 2 minutes, 72 ° C. 3 minutes were performed for 20 cycles, and finally a reaction was performed at 72 ° C. for 7 minutes.
  • This PCR product Perform electrophoresis in 8% agarose gel, stain with ethidium bromide (manufactured by Nippon Gene, Japan), and observe under ultraviolet light. It was confirmed that the DNA was amplified.
  • the target gene product was cut out from the gel, and DNA was purified using SuprecOl (Takara Shuzo, Japan). This purified DNA was purified using Euka Ryotic TACl on Ing Kit (manufactured by InVitrogen, The Netherlands) according to the attached protocol and the pCR3.1 vector. Incorporated into one.
  • the DNA-incorporated pCR3.1 was transfected into E.
  • the determination of the DNA base sequence was performed in the same manner as in Example 1 using a fluorescent sequencer manufactured by Applied Biosystems, USA.
  • the sequence primer is Euka ryotic TA C l on inng K it (O The primers attached to the Netherlands (1 nviogen) and the F1 and R1 primers described in Example 2 were used.
  • the consensus sequence was identical to the sequence of the cDNA shown in SEQ ID NO: 1, and the expression plasmid having the consensus sequence was subjected to PET. It was named 240H.
  • 3 clones had the base A at position 678 of the DNA sequence of SEQ ID NO: 1 changed to G. Since this change was frequent, it was determined to be an alias mutation.
  • Example 7 Transfection of Expression Vector into Cells and Its Expression
  • the expression vector prepared in Example 6 was obtained from 293 cells (available from Dainippon Pharmaceutical Co., Ltd., Japan, original ATCC No. CRL— The gene was transfected into 1 5 7 3).
  • 10% horses were collected in MEM Wis Ear One Salts (MEM Earl Liquid Medium, Japan, Dainippon Pharmaceutical Co., Ltd. C. No. 12-102-54CN).
  • Serum manufactured by ICN Biomedicals Inc., USA, Ca No. 2921149 heat-treated at 56 ° C for 20 minutes and inactivated
  • 1 volume of Penicill in- Septoniycin solution (Dainippon Pharmaceutical Co., Ltd., Japan; Ca No.
  • 16-70D-49DN 16-70D-49DN was used.
  • the cells are uniformly suspended by pipetting, centrifuged (1000 rpm, 15 minutes) (KS-8300, Kubota Manufacturing Co., Ltd., Japan; RS300 / Collected, resuspended in fresh medium and subcultured.
  • the gene transfer was carried out by the calcium phosphate coprecipitation method using a kit (Ca-No. IV2780-1) from 1 nV Itrogen in the Netherlands (protocol 6 Page) 7 times transmembrane of the present invention Transformants were prepared which harbor DNAs encoding the type receptor protein ET240. For the DNA, 5 ⁇ g of a plate having a diameter of 35 mm was used.
  • the membrane fraction was prepared as follows. Cells transfected with PET240 and cells transfected with pcDNA3 plasmid as a control were cultured for 24 to 48 hours. After that, the medium was aspirated with aspirator and discarded. The plate was added to PBS, and the plate was peeled off using Cell Scrape r-L (manufactured by Sumitomo Beilite Co., Ltd., Japan, Ca No. MS-93300). Thereafter, 1 ml of PBS was added to each of the three plates, and the plate was washed and added to the collected cells.
  • Cell Scrape r-L manufactured by Sumitomo Beilite Co., Ltd., Japan, Ca No. MS-93300
  • This cell suspension is crushed with PQ tr0n (PT10-SK, manufactured by KI Corporation, Switzerland), and a microcentrifuge for microtubes (MRX-150, Tomi Issei, Japan) ) And centrifuged at 1300 Xg for 15 minutes at 4 ° C. The supernatant was discarded, the cells were suspended twice by adding PBS twice, and centrifuged under the same conditions. The protein was quantified using a protein assay kit from Bio-Rad Laboratories, USA, and PBS was added so that the protein content would be 1 mg Zml. This suspension was used as a membrane fraction preparation.
  • the filter prepared in this manner was treated with TBS-T [20 mM Tris ⁇ HC1, 1337 mM NaC1 (pH 7.0) containing Block Ace (Dainippon Pharmaceutical, Japan). 6), in 0.1% Tween 20] at 4 ° C with shaking.
  • TBS-T 20 mM Tris ⁇ HC1, 1337 mM NaC1 (pH 7.0) containing Block Ace (Dainippon Pharmaceutical, Japan). 6
  • Tween 20 0.1% Tween 20
  • the reaction time of each antibody is 1 hour at room temperature. Repeated. After the last wash, the finolators are immersed in the reaction solution of ECL Western Blotting Detection System (Amersham, UK) for 5 minutes, wrapped in polyvinylidene wrap, and X-ray finol Exposed to light.
  • ECL Western Blotting Detection System Amersham, UK
  • the membrane fraction of the 293 cells into which the gene had not been introduced and the ET 240 transformant 293 cells was prepared in the same manner as in Example 7.
  • radiolabeled ligand candidate compound CGS 2 16 50 manufactured by Dupont NEN, USA, Cat No. NET-1021
  • 50 ⁇ I final concentration ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • 50 ⁇ l of PBS were added to make the total volume 150 ⁇ l.
  • Example 6 The expression vector prepared in Example 6 was transfected into CHO cells [original ATC No. CCL-61] [available from Dainippon Pharmaceutical Co., Ltd., Japan].
  • the medium was aspirated, discarded, and treated with EDTA trypsin solution (Cosmo Bio Co., Ltd., Japan) to remove cells from the bottom of the plate.
  • the reaction was stopped by adding the above medium (including serum).
  • the cells are then evenly distributed by pipetting.
  • the suspension was suspended and centrifuged (1000 rpm for 15 minutes; KS-8300, Kubota Seisakusho, Japan, RS3000 Z6). The cells were resuspended in a new medium and subcultured.
  • the resulting mixture was ice-cooled for 5 minutes, placed in a GenePu1 ser cell chamber, and pulsed twice under the conditions of 3F and 550V. After cooling again on ice for 5 minutes, add 10 ml of the medium kept at 37 ° C to Cuvet te, and then transfer the mixture in Cuvet te to a 10 cm diameter cell culture dish. Was cultured. After about 24 hours, the medium was replaced with a new one and cultured for about 24 hours. The cells were replaced with a medium containing neomycin (Genetic iii) (181B-023, GIBCO BRL, USA) at various cell concentrations at a concentration of 400 ⁇ g / ml.
  • neomycin Genetic iii
  • human ET240 protein-expressing cells Human seven-time transmembrane receptor protein E prepared as described above Using T240-expressing cells, the measurement of chemical migration was performed.
  • LPS lipopolysaccharide
  • rat serum prepared as follows was used as a candidate ligand.
  • a 7-week-old Wistar rat was purchased from Japan Biological Materials Co., Ltd. in Japan.
  • LPS Sigma, USA
  • Salmonella Minnesota RE595 was suspended in physiological saline in the Japanese Pharmacopoeia to a final concentration of lmg / m1.
  • the suspension was sonicated with a sonicator (Branson, Japan) to obtain a clear liquid. This was diluted 10-fold with physiological saline in the Japanese Pharmacopoeia, and 400 ⁇ l was administered via the tail vein. Rats approximately 22 hours after administration were laparotomized after ether anesthesia and blood was collected from the heart. Centrifuge in a microtube centrifuge (MRX-150, manufactured by Tomi Issei Co., Ltd., Japan) at 4 ° C for 15 minutes at 300 xg and centrifuge the supernatant. Stored at 0 ° C. This was used as the test substance solution.
  • MRX-150 manufactured by Tomi Issei Co., Ltd., Japan
  • RPMI 1640 (Sigma, U.S.A.) The test substance solution was diluted 10-fold with Ca BRL Co., Ltd., Ca No. 22400-071) and added. To the upper chamber, ET240 expressing cells, a seven-transmembrane receptor protein suspended in RPMI 164 containing 0.15% BSA, are added, and the test substance is brought into contact with the ET240 protein. Was. The 96-well microplate chamber in this state was kept at 37 ° C for 5 hours at 5% carbon dioxide. The filter was fixed and stained and observed under a microscope. As a result, chemi-migrating cells were observed.
  • Example 10 Screening of a substance antagonistic to ligand
  • Example 9 The seven-transmembrane receptor protein ET240 ′ expressed in the ET240 transformed CHO cells prepared in Example 9 and the LPS-treated rat serum shown in Example 9 were religated. As in Example 9, chemi-migrating cells were observed in the same manner as in Example 9. In addition, () N-ethylcarboxymide adenosine (manufactured by Sigma, USA) having a final concentration of 10 ⁇ m was added to the solutions contained in the upper and lower chambers in the experiment of Example 9. As in Example 9, chemi-migrating cells were observed. After that, the results of (i) and (ii) were compared, but there was no difference between them.
  • Example 1 Preparation of Antibody Recognizing 1E T240 Protein
  • Example 6 The expression vector prepared in Example 6 was replaced with BALB / c3T3 The gene was transfected into cells [available from Dainippon Pharmaceutical Co., Ltd., Japan, original ATCC No. CCL-163].
  • D-MEM Dulbecco's modified MEM medium
  • FBS Fetal Bovine Serum
  • US GIBCO BRL
  • Ca No. 10099-141 heat-treated at 56 ° C for 20 minutes and inactivated
  • Penicci 11 in-St reptomycin solution [Japan Country, Dainippon Pharmaceutical Co., Ltd., Ca No. 16-70D-49 DN] was prepared.
  • Gene transfer was performed by electroporation using GenePulser manufactured by Bio-Rad Laboratories, USA.
  • BALB / c3T3 cells are treated with trypsin as described above, the bottom of the plate is peeled off, and a buffer for electroboration (2 7 2 m M Sucrose, 1 m MM g C 1 2, 7 m M Li washed with phosphate buffer), 5 X 1 0 6 cells / 5 0 0 cormorants by becomes 1 the same d Lek collected by filtration Pollet one to The suspension was suspended in a buffer solution for use, and dispensed into Gene Puserservet.
  • Example 6 As a gene to be introduced, 5 g of the DNA of the ET240 expression vector prepared in Example 6 was added to Cuvette. The resulting mixture was ice-cooled for 5 minutes, placed in a Gene Pulser cell chamber, and pulsed twice under the conditions of 3 F and 550 V. After ice-cooling again for 5 minutes, add 10 ml of the medium kept at 37 ° C to Cuvet te, and then transfer the mixture in Cuvet te to a 10-cm-diameter cell culture dish, and transfer the cells. Cultured. After about 24 hours, the medium was replaced with a new one, and the cells were further cultured for about 24 hours.
  • the further cultured cells were replaced with a medium containing neomycin (Gene cin) (GIBCO BRL, 1811-023) at a concentration of 400 ⁇ g / m 1 at various cell concentrations. . Thereafter, the cells grown and cultured for about two weeks were designated as human ET240 protein-expressing cells.
  • Gene cin Gene cin
  • the cells were immunized into a BALBZc mouse to prepare a human-derived ET240 protein antibody of the present invention.
  • BALB / c mice Choya one pulse Li server one by Li purchased, main scan, 7 weeks old
  • 1 X 1 0 7 cells prepared cormorants good in the intraperitoneally administered, every two weeks
  • the administration was repeated 5 times.
  • the last immunization administered the cells intravenously. Seven days later, whole blood was collected, and the serum obtained therefrom was used as anti-human ET240 protein antiserum.
  • novel seven-transmembrane receptor protein derived from human of the present invention and a DNA encoding the protein are useful for treating or preventing diseases associated with leukocyte functions, such as autoimmune diseases. It is possible to screen substances and to create diagnostic methods and diagnostic agents for such diseases. Furthermore, the novel seven-transmembrane receptor protein fragment derived from the mouse of the present invention and the DNA encoding the same encode the novel full-length mouse transmembrane receptor protein and encode the same. Useful for identification and isolation of DNA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A seven-pass transmembrane receptor protein originating in humans which has the amino acid sequence represented by SEQ ID NO:2 and a DNA encoding the same. Use of this protein and the DNA encoding the same makes it possible to screen substances for treating or preventing autoimmune diseases, etc., to diagnose diseases and to produce diagnostics. An expression vector of the above protein; transformed microorganisms or cells; the above protein produced thereby; a method for screening a ligand to the above protein or a substance inhibiting the binding of the ligand to the protein; and an antibody against the protein. A fragment of a seven-pass transmembrane receptor protein originating in mouse having the amino acid sequence represented by SEQ ID NO:4; and a DNA encoding the same. This protein fragment and the DNA encoding the same are useful in identifying and isolating a novel full-length mouse seven-pass transmembrane receptor protein and a DNA encoding the same.

Description

明 細 書 新規な 7 回膜貫通型受容体蛋白質 技術分野  Description New seven-transmembrane receptor protein technology
本発明は、 白血球に存在する新規な 7 回膜貫通型受容体蛋 白質及びそれをコー ドする D N Aに関する。 更に詳細には、 配列番号 2 に記載のア ミ ノ酸配列からなる ヒ ト 由来の 7 回膜 貫通型受容体蛋白質及びそれをコー ドする D N Aに関する。 本発明の 7 回膜貫通型受容体蛋白質及びそれをコー ドする D N Aを用いる と 、 自 己免疫性疾患などの白血球の機能が関与 する疾患の治療又は予防に有用な物質のス ク リ 一二ングや、 そのよ う な疾患の診断方法や診断剤を作成する こ とができ る。 又、 本発明は上記の D N Aを複製可能な発現べク ターに組込 んでなる複製可能な組換え体 D N A ; 上記の複製可能な組換 えベク ターで形質転換された微生物又は細胞 ; 上記の形質転 換体の細胞膜表面に製造された 7 回膜貫通型受容体蛋白質 ; 上記の 7 回膜貫通型蛋白質に対する リ ガン ドやその リ ガン ド と 7 回膜貫通型蛋白質と の結合を阻害する物質のス ク リ ー二 ング方法 ; 並びに上記 7 回膜貫通型受容体蛋白質と結合し う る抗体に関する。 更に、 本発明は配列番号 4 に記載のァ ミ ノ 酸配列からなるマウス由来の 7回膜貫通型受容体蛋白質の断 片及びそれをコー ドする D N Aに関する。 従来技術 The present invention relates to a novel seven-transmembrane receptor protein present on leukocytes and a DNA encoding the same. More specifically, the present invention relates to a human-derived seven-transmembrane receptor protein comprising the amino acid sequence of SEQ ID NO: 2, and a DNA encoding the same. The use of the seven-transmembrane receptor protein and the DNA encoding the protein of the present invention makes it possible to screen for substances useful for treating or preventing diseases involving leukocyte functions such as autoimmune diseases. And diagnostic methods and agents for such diseases. Also, the present invention provides a replicable recombinant DNA obtained by incorporating the above DNA into a replicable expression vector; a microorganism or a cell transformed with the above replicable recombinant vector; A seven-transmembrane receptor protein produced on the cell membrane surface of the transformant; a ligand for the above-mentioned seven-transmembrane protein and a substance that inhibits the binding of the ligand to the seven-transmembrane protein A screening method; and an antibody capable of binding to the seven-transmembrane receptor protein. Furthermore, the present invention relates to a mouse-derived seven-transmembrane receptor protein fragment comprising the amino acid sequence of SEQ ID NO: 4, and a DNA encoding the same. Conventional technology
白血球は血液細胞の一種でぁ リ 、 免疫 · 炎症等の種々の機 能を司る細胞である。 特に、 感染の際に白血球は、 有益な免 疫 · 炎症反応のメ カニズムによって生体を防御する 〔麻生芳 郎 訳、 一 目 でわかる免疫学、 メ ティ ガル ' サイエンス ' ィ ンターナシ ョ ナル発行、 4 8〜 6 1 , 1 9 9 3年(J apan)〕 。 しかし、 その一方で自 己免疫などの望ま しく ない免疫 · 炎症 作用をも引き起こす 〔麻生芳郎 訳、 一目でわかる免疫学、 メディ カル · サイエンス · イ ンターナショ ナル発行、 6 2〜 7 3, 1 9 9 3年(japan)〕 。 白血球の機能を制御する方法 を見出すこ と によ リ 、 有益な免疫応答による感染や腫瘍の治 癒、 あるいは有害な免疫応答の減退によ る 自己免疫性疾患な どの治療が可能になる と考えられている。  Leukocytes are a kind of blood cells and are cells that control various functions such as immunity and inflammation. In particular, during infection, leukocytes protect the body through beneficial immune and inflammatory response mechanisms (translated by Yoshio Aso, at-a-glance immunology, published by Metigull 'Science' International, 4 8-61, 1993 (Japan)]. However, it also causes unwanted immunity and inflammatory effects such as autoimmunity [translated by Yoshio Aso, immunology at a glance, published by Medical Sciences International, 62-73, 199 3 years (japan)]. Finding ways to control the function of leukocytes could help cure infections and tumors with a beneficial immune response, or treat autoimmune diseases with a diminished harmful immune response. Have been.
白血球の機能、 即ち、 その増殖、 分化、 活性化、 化学遊走 等は白血球に発現している様々 な受容体蛋白質によって制御 されている。 受容体と は、 細胞表面に存在し、 他の細胞の表 面や体液中に存在する特定の物質 (シグナル分子) と高い親 和性で結合し、 シグナル分子との結合とい う細胞外の出来事 を細胞内シグナルに変換して細胞の応答を引き起こす蛋白質 である 〔中村桂子 · 松原健一監修、 細胞の分子生物学 (第 2 版) 、 教育社、 9 3 6 頁, 1 9 9 0年(Japan)〕 。 受容体と 結合する物質を一般的に リ ガン ドと い う。 受容体の機能を変 化させる物質、 即ち受容体と結合 して細胞を刺激する ものや、 受容体と結合 して他の リ ガン ドによ る刺激を遮る もの、 他の リ ガン ドによ る刺激が細胞内に伝達される こ と を阻害する物 質を得る こ と ができれば、 得られた物質は白血球の機能を正 や負に制御し、 白血球の機能の不足や過剰に起因する疾患の 治療に役立つと予想される。 The functions of leukocytes, that is, their proliferation, differentiation, activation, chemotaxis, etc., are controlled by various receptor proteins expressed on leukocytes. Receptors are extracellular events that occur on the cell surface and bind with high affinity to specific substances (signal molecules) present on the surface of other cells or in body fluids. Is a protein that converts cells into intracellular signals and triggers cell responses [Keiko Nakamura and Kenichi Matsubara, Molecular Biology of Cells (2nd ed.), Kyoikusha, p. 936, 1990 (Japan) )] Substances that bind to receptors are generally called ligands. Alters receptor function Substances that stimulate the cell by binding to the receptor, those that block the stimulation of other ligands by binding to the receptor, or that are stimulated by other ligands inside the cell If a substance that inhibits transmission could be obtained, the obtained substance would positively or negatively regulate the function of leukocytes, and would be useful for treating diseases caused by insufficient or excessive functions of leukocytes. Is done.
白血球の受容体と しては、 サイ トカイ ン受容体フ ァ ミ リ ー、 E G F (Ep i derma 1 Growth Factor)受容体フ ァ ミ リ ー、 7 回 膜貫通型受容体ファ ミ リ ーなど種々 の受容体蛋白質が知られ て . リ し he Leukocyte Ant igen Facts Book, Academic Press Inc. , 38 -49 ( 1993 ) ] 、 その機能は多岐にわたってい る。  There are various leukocyte receptors such as the family of cytokine receptors, the family of EGF (Epiderma 1 Growth Factor) receptors, and the family of seven transmembrane receptors. The Leukocyte Antigen Facts Book, Academic Press Inc., 38-49 (1993)], has a wide variety of functions.
7 回膜貫通型受容体蛋白質ファ ミ リ 一は、 このよ う な受容 体フア ミ リ ーの一つでぁ リ 、 G蛋白質共役型受容体(G- ote in coupled receptor) , ロ ドプシン型受容体な どと も呼ばれ ている。 白血球における 7 回膜貫通型受容体蛋白質の研究は 比較的最近開始されたばかリ で、 いまだ数多く の未知の 7 回 膜貫通型受容体蛋白質が存在する と考えられている。  The seven-transmembrane receptor protein family is one of such receptor families, G-protein-coupled receptor, rhodopsin-type receptor. It is also called the body. Studies of seven transmembrane receptor proteins in leukocytes have been relatively recently started, and it is believed that there are still many unknown seven transmembrane receptor proteins.
現在までに白血球に存在する 7 回膜貫通型受容体蛋白質と して同定された受容体には、 ァナフイ ラ トキシンと結合する 受容体群、 ケモカイ ン と結合する受容体群、 P A F (血小板 活性化因子) と結合する受容体な どがある。  Receptors identified to date as seven-transmembrane receptor proteins present on leukocytes include receptors that bind to anaphylatoxin, receptors that bind to chemokines, and PAF (platelet activation Factors) and other receptors.
例えば、 ァナフイ ラ ト キシンの受容体は、 好中球やマク ロ ファージの機能、 例えば、 活性酸素の産生、 化学遊走、 細胞 接着の活性化に関与している 〔Bou l ey,F. ら、 Biochemi s y 30 , 2993 - 2999, ( 1991 ) ] 。 又、 ケモカイ ンと結合する受容 体群の一つである I L— 8 (イ ンターロイ キン 8 ) 受容体ホ モロ グの欠損 したマウスに炎症誘導物質の腹腔内投与を行う と 、 好中球浸潤が減少する と同時に好中球増加症や、 骨髄や リ ンパ節での顆粒球、 形質細胞の増加が観察された 〔飯笹久、 松島綱治、 臨床免疫、 2 8, 7 3 1〜 7 3 7, 1 9 9 6年(J apan) ] 。 上記から明 らかなよ う に、 これらの 7回膜貫通型 受容体蛋白質は、 白血球の増殖、 分化、 活性化、 化学遊走等 を制御 している。 For example, the receptor for anaphylatoxin is neutrophils and macrophages. It is involved in the function of phage, for example, the production of reactive oxygen species, the chemotaxis, and the activation of cell adhesion [Bouley, F. et al., Biochemistry 30, 2993-2999, (1991)]. In addition, administration of an inflammation-inducing substance intraperitoneally to mice deficient in IL-8 (interleukin 8) receptor homolog, one of the receptors that bind to chemokines, caused neutrophil infiltration. At the same time, neutrophilia and an increase in granulocytes and plasma cells in the bone marrow and lymph nodes were observed [Hisashi Iizasa, Tsunaharu Matsushima, Clinical Immunity, 28, 731-173, 1 996 years (Japan)]. As is clear from the above, these seven transmembrane receptor proteins regulate leukocyte proliferation, differentiation, activation, chemotaxis and the like.
この様な受容体に作用する物質の う ち、 疾患の治療剤と し ての可能性が考えられる ものの中には、 I L — 8や M C P — 1 (Monocyt e Chemo tac t i c Prot e in 1 )のよ う ίこ受容体 ίこ結合 して細胞を刺激する ものや、 I L一 8変異体のよ う に受容体 と結合して リ ガン ドによる刺激を遮る ものがある 〔 Howa r d , O.M. Z. ら、 TIBTECH, 14, 46-51, ( 1996 ) ) 。  Among the substances that act on such receptors, those that may be considered as therapeutic agents for diseases include IL-8 and MCP-1 (Monocyte Chemotactic Protein 1). There are those that bind cells to stimulate cells and those that bind to receptors and block the stimulation by ligands, such as IL-18 mutants (Howard, OMZ et al. TIBTECH, 14, 46-51, (1996)).
7 回膜貫通型受容体においては、 多く の場合、 受容体は複 数のシグナル分子と結合し、 又、 シグナル分子も複数の受容 体と結合する。 従って、 疾患の治療を考えた場合には、 シグ ナル分子を知る こ と だけでは不十分である。 例えば、 セロ ト ニンの場合には、 セロ トニンとい う 単一のシグナル分子に対 し、 7 回膜貫通型受容体の他に、 イオンチャ ンネル型受容体 とい う全く 異なるシグナル伝達経路の受容体を含む計 1 4種 の受容体が知られてお り 、 更に、 個々 の受容体に特異的に結 合する化合物も知られている こ と から 〔 1996 Recept or lo n し hanne l Nomenc l ature supp l ement, Trends Pharmaco l . Sc に,(1996) 〕 、 各受容体の異なる疾患の治療への応用も考え られている。 また、 ケモカイ ン群の場合には、 単一のシグナ ル分子 (一種のケモカイ ン) が多数の受容体と反応する と同 時に、 単一の受容体が多数のシグナル分子 (多種のケモカイ ン) と反応する例も多く 知られている 〔 A. Powe rら、 Trend s Pharmaco 1. Sc i . 17 , 209 - 213 , ( 1996 ) ] 。 In seven transmembrane receptors, the receptor often binds to multiple signal molecules, and the signal molecule also binds to multiple receptors. Therefore, knowing the signal molecule is not enough when considering the treatment of a disease. For example, in the case of serotonin, for a single signal molecule called serotonin, in addition to a seven-transmembrane receptor, an ion channel receptor A total of 14 types of receptors, including receptors for completely different signal transduction pathways, are known, and compounds that specifically bind to individual receptors are also known [1996]. Scientifically, Recept or lon, Hannell Nomenclature supplement, Trends Pharmacol. Sc, (1996)], and the application of each receptor to treatment of different diseases is also considered. In the case of chemokines, a single signal molecule (a kind of chemokine) reacts with many receptors, while a single receptor becomes a large number of signal molecules (multiple kinds of chemokines). Many examples are known [A. Power et al., Trends Pharmaco 1. Sc i. 17, 209-213, (1996)].
上記から明 らかなよ う に、 仮に単一のシグナル分子が疾患 の原因である と しても、 細胞の種類によって異なる受容体が 複数存在する。 そ して疾患の原因である特定の細胞群の機能 を特異的に制御するためには、 その細胞に作用するシグナル 分子の特定よ リ も、 その細胞に発現している受容体を特定す るこ とが重要となる。 例えば、 シグナル分子群の一つである ケモカイ ン群を例にと る と 、 白血球に作用するシグナル分子 R A N T IL S (Regu lat ed on Ac t ivat ion, Norma 1 T ce l l ex pressed and secreted)に反応する 白血球は種々存在するた め、 R A N T E S との反応性ではある 白血球を特定する こ と はできない。 しかし、 白血球の一種である好酸球はケモカイ ン受容体の一つである C C R 3 を特異的に発現している こ と から、 受容体 C C R 3 を用いれば、 好酸球を特異的に制御す る方法の検索も可能と なる 〔Howard,O.M. Z. ら、 T1BTECH, 14, 46- 51, ( 1996 ) ] 。 As is clear from the above, even if a single signal molecule is the cause of the disease, there are multiple receptors that differ depending on the cell type. In order to specifically control the function of a specific cell group that causes a disease, the receptor expressed in the cell is specified rather than the signal molecule that acts on the cell. This is important. For example, taking the chemokine group, one of the signal molecules, as an example, the signal molecule RANT ILS (Regulated on Activation, Norma 1 T cell ex pressed and secreted) acting on leukocytes Because of the variety of leukocytes that react, it is not possible to identify leukocytes that are reactive with RANTES. However, eosinophils, a type of leukocyte, specifically express CCR3, one of the chemokine receptors, so using the receptor CCR3 specifically regulates eosinophils. You It is also possible to search for methods that use this method [Howard, OMZ et al., T1BTECH, 14, 46-51, (1996)].
また、 ヒ 卜 とその他の種の生物の受容体では、 同一の化合 物に対する反応が異なる こ と も知 られている 〔例えば、 Mar l eau S. ら、 J. Immun。l . 157 , 4141 -4146 ( 1996 ) ] 。 ヒ トの受 容体に対して活性化の作用を示す物質が、 他の種の受容体に 対しては活性化を阻害する物質と して働く 例も知られている。 従って、 ヒ トに対する医薬品を開発するためには、 ヒ ト由来 の受容体を用いる こ とが重要である。  It is also known that receptors in humans and other species of organisms respond differently to the same compound [for example, Marleau S. et al., J. Immun. 157, 4141-4146 (1996)]. It is known that a substance that activates human receptors acts as a substance that inhibits the activation of other types of receptors. Therefore, it is important to use human-derived receptors to develop drugs for humans.
更に、 受容体の中にはウ ィ ルスの感染の際の受容体と して 働く ものも知られてお り 〔例えば、 Choe H. ら、 Ce 11 85, 1 135- 1148, ( 1996 ) 、 このよ う な受容体に結合する分子がゥ ィルス の感染を防ぐこ と も知られている 〔例えば、 B 1 e u 1  In addition, some receptors are known to act as receptors during viral infection [see, for example, Choe H. et al., Ce 1185, 1135-1148, (1996), It is also known that molecules that bind to such receptors prevent virus infection (eg, B 1 eu 1
ら、 Nature, 382, 829 -833, ( 1996 ) ] 。 こ う いった場合 にも、 ウ ィ ルスの感染する細胞に発現する受容体を知る こ と が肝要と なる。 また、 特定のウ ィ ルスは、 特定の生物種 (S P ecies) の受容体と結合するこ と によって感染が成立する こ と も知られている。 従って、 ヒ トのゥイ ノレ ス感染防止のため の医薬品を開発する際には、 ヒ ト 由来の受容体が重要である。 現在に至るまで、 白血球に作用するシグナル分子、 例えば 既知のケモカイ ンである P F 4 , H C C 1 などについては、 その受容体は 7 回膜貫通型受容体蛋白質である と推定されて いる ものの、 受容体タンパク質は同定されていない 〔Premac k Β,Α. ら 、 Nature Medicine 2 , 1174- 1178 , ( 1996 ) ; Loetsche r M. ら 、 j. Exp. Med. 84 , 963 -969 , ( 1996 ) ] 。 特にケモカイ ン群については、 更に多く の新規ケモカイ ンが存在する と推 定されてぉ リ [Howard, O.M. Z. ら、 TIBTECH, 14, 46-51, (19 96)〕 、 未知のケモカイ ンに対する多く の受容体が存在する と期待されている。 上記のよ う に、 白血球に作用する分子の 受容体はすべて理解されたわけではなく 、 白血球には更に多 く の 7 回膜貫通型受容体蛋白質が存在する と考えられる。 こ のよ う な受容体の作用を変化させる物質 (シグナル分子) を 特定する こ と によ リ 、 白血球の機能を制御し、 ひいては、 疾 患を制御する方法が得られる と考えられている。 Nature, 382, 829-833, (1996)]. In these cases, it is also important to know the receptors that are expressed on the virus-infected cells. It is also known that certain viruses can be infected by binding to receptors for certain species (SPecies). Therefore, human-derived receptors are important when developing pharmaceuticals to prevent human infection with humans. To date, signal molecules acting on leukocytes, such as the known chemokines PF4 and HCC1, have been presumed to be seven-transmembrane receptor proteins. Although no receptor protein has been identified [Premack Β, Α. Et al., Nature Medicine 2, 1174-1178, (1996); Loetscher M. et al., J. Exp. Med. 84, 963-969, (1996)]. In particular, it is estimated that there are more new chemokines in the chemokine group [Howard, OMZ et al., TIBTECH, 14, 46-51, (1996)]. The receptor is expected to be present. As described above, not all receptors for molecules acting on leukocytes have been understood, and it is considered that leukocytes have more seven-transmembrane receptor proteins. It is thought that identifying a substance (signal molecule) that alters the action of such a receptor will provide a method for controlling the function of leukocytes and, consequently, a disease.
例えば、 慢性関節 リ ユ ーマチおよび多発性硬化症などの自 己免疫疾患は、 全身または臓器特異的な難治性の慢性炎症を 特徴と している。 現在、 '治療に用いられている医薬品は、 治 療効果が低い、 または治療効果が高く ても副作用が強い等の 種々 の不十分な と ころが指摘されている。 これらの問題を解 決するためには、 自 己免疫疾患の発症機序を明 ら力 に し、 そ の機序のみを特異的に阻害する薬剤が必要である。 自 己免疫 疾患の発症機序には、 後天的な免疫異常以外にも遺伝的な素 因や感染等の関与も考えられ、 未だに詳細は明 らかにされて いない。 しかし、 近年、 自 己免疫性疾患の慢性炎症の誘導お よび悪化に細胞性免疫が関与している こ と が動物モデルから 明らかと なった。 そ して、 白血球の一種、 自己反応性 T細胞 と抗原提示細胞上の自 己抗原と の反応が引き金と な り 、 サイ トカイ ン、 ケモカイ ンの分泌やそれに対する細胞の遊走、 そ の他の反応のカスケ一 ドが動き を開始し、 更に多く の自己反 応性 T細胞や別の白血球である単核球の浸潤を伴う炎症が形 成され、 自 己免疫性疾患が発症する と考えられている。 従つ て、 自 己反応性 T細胞の活性化を抑制する こ とは、 続いて生 じる様々 な反応を抑制 し、 自己免疫性疾患の治療につながる と考えられる。 For example, autoimmune diseases such as rheumatoid arthritis and multiple sclerosis are characterized by refractory chronic inflammation that is systemic or organ-specific. At present, it has been pointed out that there are various inadequacies such as the low therapeutic effect of the drug used for the treatment, or the strong side effect even if the therapeutic effect is high. In order to solve these problems, drugs that clarify the pathogenesis of autoimmune diseases and that specifically inhibit only those mechanisms are needed. The pathogenesis of autoimmune diseases is thought to involve genetic factors and infection in addition to acquired immune abnormalities, and the details have not yet been elucidated. However, animal models have recently shown that cellular immunity is involved in the induction and exacerbation of chronic inflammation in autoimmune diseases. It became clear. The reaction between a type of leukocyte, a self-reactive T cell, and an autoantigen on an antigen-presenting cell triggers the secretion of cytokins and chemokines, the migration of cells to it, and other reactions. The cascade of reactions begins to move, creating inflammation with the infiltration of more self-reactive T cells and another leukocyte, a mononuclear cell, which is thought to trigger an autoimmune disease I have. Therefore, suppressing the activation of autoreactive T cells is thought to suppress various subsequent reactions and lead to the treatment of autoimmune diseases.
多発性硬化症は中枢神経系の自 己免疫疾患でぁ リ 、 その病 態モデルであるマ ウスの実験的ア レルギー性脳脊髄炎 ( E A £ , exper iment al al l erg ic encepha l omye l i t i s) はその発 症機序の解析がもつ と も進んでいる病態モデルである。 こ の 疾患モデルは、 神経髄鞘に存在する ミ エ リ ン塩基性蛋白質 Multiple sclerosis is an autoimmune disease of the central nervous system, and its pathological model is experimental allergic encephalomyelitis of the mouse (EA £, experiment al al ergic encepha l omye litis). Is a pathological model whose analysis of the pathogenesis is advanced. This disease model is based on the myelin basic protein found in the nerve myelin.
(M B P, mye l in bas i c prot e i n) やプロテオリ ピッ ドアポ 蛋白質に反応する 自 己反応性 T細胞にょ リ誘導される こ とが 知られてぉ リ 、 その T細胞をク ローン化したものもレヽく つ力 の研究機関で樹立されている 〔例えば、 J . Neuro immuno 1. 5 8 , 167- 176 ( 1995) ) 。 しかし、 これらの細胞の機能を制御 している受容体、 特に 7 回膜貫通型受容体蛋白質については これまで報告されていない。 従って、 白血球、 特に自 己反応 性 T細胞に作用する分子と その受容体はすべて理解されたわ けではなく 、 自 己反応性 T細胞にも今まで知られていない 7 回膜貫通型受容体蛋白質の存在が予想される。 そ して、 その 様々 な新規受容体の作用を変化させる物質を特定する こ と に ょ リ 、 自 己反応性 T細胞の機能を制御し、 ひいては、 自己免 疫性疾患の制御方法の確立が期待される。 (MBP, myelin basic protein) and autoreactive T cells that respond to proteolipid apoproteins are known to be induced, and cloned T cells are also available. It has been established at the research institute of Tsutsuji [eg, J. Neuro immuno 1.58, 167-176 (1995)]. However, no receptor that controls the function of these cells, especially the seven-transmembrane receptor protein, has been reported so far. Thus, not all molecules and their receptors that act on leukocytes, especially on autoreactive T cells, have been understood, nor have they been known on autoreactive T cells. The presence of a transmembrane receptor protein is expected. By identifying substances that alter the actions of these various novel receptors, it is necessary to control the function of autoreactive T cells and, consequently, establish a method for controlling autoimmune diseases. Be expected.
7 回膜貫通型受容体蛋白質に作用する內因性の物質と して は、 様々 な受容体に対し様々 な物質が知られている。 例えば、 生理ァ ミ ンであるグルタ ミ ン酸ゃ ドーパミ ンは、 それぞれグ ルタ ミ ン酸受容体群、 ドーパミ ン受容体群に結合する。 また、 ぺプチ ドである神経べプチ ド Yゃェン ドセ リ ンはそれぞれ神 経べプチ ド Y受容体群、 ェン ドセ リ ン受容体群に結合する い Va t son,S.および St eve Ark i ns t a l l著、 The G- p ro t e in 1 i n ked r ece t o r Fac t s Book, Academi c P res s I nc . , (1994) ) 。 これらの中には、 ケモカイ ン群、 P A Fのよ う に白血球に作 用する こ とが知られている物質と 、 白血球には作用 しない物 質が含まれている。  As a causative substance acting on the seven-transmembrane receptor protein, various substances are known for various receptors. For example, glutamate-dopamine, which is a physiological amide, binds to glutamate receptors and dopamine receptors, respectively. In addition, the neural peptide Yendocerin, which is a peptide, binds to the neuropeptide Y receptor group and the endocrine receptor group, respectively. And Steve Arkinstall, The G-protein 1 in kedrefactors Book, Academic Press Inc., (1994)). These include substances known to act on leukocytes, such as the chemokine group and PAF, and substances that do not act on leukocytes.
上記のよ う な 7 回膜貫通型受容体蛋白質を活性化する物質 は、 天然 · 非天然を問わず、 その物質と 、 7 回膜貫通型受容 体蛋白質そのもの、 受容体を発現している細胞の 3者それぞ れの状態に依存して様々 な細胞内シグナル分子の変動を引き 起こす。 そのシグナル分子の変動は、 例えば、 細胞内 c A M P濃度の上昇や下降、 イ ノ シ トールリ ン酸濃度の上昇、 細胞 内カルシウム濃度の上昇といった反応であ リ 〔 Wa t son, S.お よび St eve Ar k i ns t a l l荖、 The G - p ro t e i n l i nke d r e cep t o r Fac t s Book, Academi c Pres s Inc. , ( 1994 ) ] 、 それぞれを測 定する方法も開発されている。 従って、 上記の様な反応を測 定する こ と によ リ 、 特定の物質が特定の 7 回膜貫通型受容体 蛋白質を活性化するかど う 力 、 あるいはその活性化を妨げる かど う かを判断する事ができ る。 又、 このよ う な物質が 7回 膜貫通型受容体蛋白質と結合して生じる細胞増殖、 遺伝子発 現の変動や化学遊走などの生理学的な現象を観察する方法も 知られてぉ リ 、 上記と 同様に して、 ある物質が特定の 7 回膜 貫通型受容体蛋白質を活性化するかどう 力 、 あるいはその活 性化を妨げるかど う かを判断するための指標と して用いる こ とができる。 The substance that activates the seven-transmembrane receptor protein as described above, whether natural or non-natural, is the substance, the seven-transmembrane receptor protein itself, or a cell that expresses the receptor. Depending on the status of each of the three, various intracellular signal molecules fluctuate. Fluctuations in the signal molecule include, for example, reactions such as an increase or decrease in intracellular cAMP concentration, an increase in inositol phosphate concentration, and an increase in intracellular calcium concentration (Watson, S. and St. eve Ar ki ns tall 荖, The G-pro teinli nke dre cep tor Factors Book, Academic Press Inc., (1994)], and a method for measuring each of them has been developed. Therefore, by measuring the reaction as described above, it is possible to determine whether a specific substance activates a specific seven-transmembrane receptor protein or inhibits its activation. You can do it. Also, a method for observing physiological phenomena such as cell proliferation, fluctuations in gene expression, and chemical migration caused by binding of such a substance to the transmembrane receptor protein seven times is also known. Similarly, a substance can be used as an indicator to determine whether a substance activates a specific seven-transmembrane receptor protein or prevents it from activating. it can.
このよ う に 7 回膜貫通型受容体蛋白質に作用する物質の同 定方法には色々 あるが、 これらの方法を利用 してヒ 卜の医薬 品と して有用な物質を得るためには、 初めに ヒ ト 由来の 7 回 膜貫通型受容体を取得する こが肝要である。  As described above, there are various methods for identifying a substance that acts on the seven-transmembrane receptor protein, but in order to obtain a substance useful as a human drug by using these methods, First, it is important to obtain seven transmembrane receptors from humans.
こ う いった考察に基づき、 白血球、 特に自 己反応性 T細胞 の機能を制御 し、 疾患の制御を行う ためには、 これまで知ら れていない 7 回膜貫通型受容体を取得するこ と 、 特にヒ トの 医薬品と して有用な物質を得るためにはヒ ト 由来の 7 回膜貫 通型受容体を取得する こ と が大きな課題である。  Based on these considerations, in order to control the function of leukocytes, especially autoreactive T cells, and to control diseases, it is necessary to obtain a previously unknown seven-transmembrane receptor. In particular, obtaining a seven-transmembrane receptor derived from human is a major issue in order to obtain a substance useful as a human drug.
上記のよ う に、 白血球、 特に自 己反応性 T細胞の機能を制 御し、 疾患をコ ン ト ロールする手法はいまだ完成されていな い。 その最大の原因は、 疾患と 関連した白血球の機能を制御 している受容体蛋白質、 特に 7 回膜貫通型受容体蛋白質が同 定されていない点にある。 即ち、 本発明の課題は、 白血球に 存在する新規な 7 回膜貫通型受容体蛋白質とその蛋白質をコ ― ドする c D N Aを見出 し、 白血球の機能を制御する医薬品 の探索に利用する方法を提供する こ と にある。 発明の概要 As described above, a method for controlling the function of leukocytes, particularly autoreactive T cells, and controlling disease has not yet been completed. The biggest cause is controlling the function of leukocytes associated with the disease Is that the receptor protein, especially the seven-transmembrane receptor protein, has not been identified. That is, an object of the present invention is to find a novel seven-transmembrane receptor protein present in leukocytes and a cDNA encoding the protein, and to use the same for searching for a drug that controls the function of leukocytes. To provide Summary of the Invention
本発明者らは、 上記課題を解決すべき鋭意研究の結果、 白 血球に存在する 7 回膜貫通型受容体蛋白質が白血球の機能を 制御する医薬品の探索に役立つと考えた。 始めに、 研究材料 となる E A E発症性自 己反応性マ ウス T細胞 4 R 3 1 2株を 確立し、 その R N Aを利用 して、 白血球に発現している公知 の 7回膜貫通型受容体蛋白質の遺伝子配列と類似したマウス の c D N A断片を取得した。 更に、 取得した c D N A断片と の相同性を有するマ ウス c D N A断片 2種を公知のデータべ ース上に発見し、 これらの配列を基に、 新規な 7 回膜貫通型 受容体蛋白質 (以下、 屡々 、 E T 2 4 0 とい う ) の遺伝子断 片を、 上記のマウス 4 R 3 1 2株の c D N Aライブラ リ 一よ リ ク 口一ニングする こ と に成功した。 次に、 本発明者らは、 マウス T細胞 4 R 3 1 2株よ リ得られた E T 2 4 0 c D N A 断片を用いて公知のデータベースを検索 し、 上記のマ ウス E T 2 4 0 と相同性を有する 2つの独立 した ヒ ト 由来の c D N A断片を発見した。 データベース よ リ得られた 2 つの配列を 基に、 マ ウス型 E T 2 4 0の断片 と 8 4 . 4 %とい う 高い相 同性を有する ヒ ト 由来の新規な 7 回膜貫通型受容体蛋白質の 全長 c D N Aコー ド領域のク ロ一ニングに成功 した。 又、 ク ローニ ングされたマ ウス及びヒ ト の c D N Aをア ミ ノ酸配列 に翻訳 し、 新規なマウス型 E T 2 4 0蛋白質の断片及びヒ ト 型 E T 2 4 0蛋白質の全長を取得した。 更に、 ヒ ト型 E T 2 4 0の発現系を確立し、 ヒ ト型 E T 2 4 0 と特異的に結合し う る抗体を作成する こ と によ リ 、 本発明を完成させるに至つ た。 The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, thought that the seven-transmembrane receptor protein present in leukocytes would be useful for searching for a drug that regulates the function of leukocytes. First, we established EAE-causing autoreactive mouse T cells 4R312 strain as research material and used that RNA to express a known seven-transmembrane receptor expressed on leukocytes. A mouse cDNA fragment similar to the protein gene sequence was obtained. Furthermore, two types of mouse cDNA fragments having homology to the obtained cDNA fragments were found on a publicly known database, and based on these sequences, a novel seven-transmembrane receptor protein ( Hereinafter, the gene fragment of ET240 is often successfully linked to the cDNA library of the mouse 4R312 strain described above. Next, the present inventors searched a known database using the ET240 cDNA fragment obtained from the mouse T cell 4R312 strain and found that the homologous to the mouse ET240 described above. CDNA fragments derived from two independent humans were discovered. The two arrays obtained from the database are Based on the full-length cDNA coding region of a novel seven-transmembrane receptor protein derived from human, which has a high homology (84.4%) with a mouse-type ET240 fragment. Was successfully completed. In addition, the cloned mouse and human cDNAs were translated into amino acid sequences to obtain novel mouse ET240 protein fragments and full-length human ET240 proteins. . Furthermore, the present invention was completed by establishing an expression system for human ET240 and producing an antibody capable of specifically binding to human ET240. .
従って、 本発明の主たる 1 つの 目的は、 白血球の機能を制 御する医薬品の探索に有用なヒ ト 由来の 7回膜貫通型受容体 蛋白質を提供する こ と にある。  Therefore, one main object of the present invention is to provide a human-derived seven-transmembrane receptor protein useful for the search for a drug that controls the function of leukocytes.
本発明の他の 1 つの 目的は、 上記 7回膜貫通型受容体蛋白 質をコー ドする D N A、 こ の D N Aを発現ベク ターに組込ん でなる組換え体 D N A、 及びこ の組換え体 D N Aで形質転換 された微生物又は細胞を提供する こ と にある。  Another object of the present invention is to provide a DNA encoding the above seven-transmembrane receptor protein, a recombinant DNA obtained by incorporating this DNA into an expression vector, and this recombinant DNA A microorganism or cell transformed by the method described above.
本発明の他の 1 つの 目的は、 7 回膜貫通型受容体蛋白質と 結合し う る リ ガン ドをス ク リ 一ユングする方法、 及び 7回膜 貫通型受容体蛋白質と該蛋白質に対する リ ガン ドとの結合を 阻害し う る物質をスク リ ーニングする方法を提供する こ と に める。  Another object of the present invention is to provide a method for screening a ligand that binds to a seven-transmembrane receptor protein, and a seven-transmembrane receptor protein and a ligand for the protein. It is intended to provide a method for screening a substance that inhibits the binding to a metal.
本発明の他の 1 つの 目的は、 7回膜貫通型受容体蛋白質と 結合し う る抗体を提供する こ と にある。 本発明の他の 1 つの 目的は、 マウス 7回膜貫通型受容体蛋 白質の断片と それをコー ドする D N Aを提供する こ と にある。 Another object of the present invention is to provide an antibody that can bind to a seven-transmembrane receptor protein. Another object of the present invention is to provide a mouse seven-transmembrane receptor protein fragment and a DNA encoding the same.
本発明の上記及び他の諸目的、 諸特徴並びに諸利益は、 添 付の配列表を参照しなが ら述べる次の詳細な説明及び請求の 範囲の記載から明ら力 になる。 配列表のフ リ ーテキス ト The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the appended claims, taken in conjunction with the accompanying Sequence Listing. Free text of sequence listing
配列番号 5 の配列は、 白血球に発現している公知の 7 回膜 貫通型受容体蛋白質の配列に基づく マウス E T 2 4 0 断片の ク ローニング用のプライマーである。  The sequence of SEQ ID NO: 5 is a primer for cloning a mouse ET240 fragment based on the sequence of a known seven-transmembrane receptor protein expressed in leukocytes.
配列番号 6 の配列は、 白血球に発現している公知の 7 回膜 貫通型受容体蛋白質の配列に基づく マウス E T 2 4 0 断片の ク ローニング用のプライマーである。  The sequence of SEQ ID NO: 6 is a primer for cloning a mouse ET240 fragment based on the sequence of a known seven-transmembrane receptor protein expressed in leukocytes.
配列番号 7 は、 GenBankのェン ト リ ー H 6 7 2 2 4 に基づ く ヒ ト E T 2 4 0のサブク ロ一ニング用のプライマーである。 配列番号 8 は、 GenBankのエ ン ト リ ー A A 2 1 5 5 7 7 に 基づく ヒ ト E T 2 4 0 のサブク ロ一ユング用のプライ マーで ある。  SEQ ID NO: 7 is a primer for subcloning human ET240 based on GenBank entry H67224. SEQ ID NO: 8 is a primer for subcloning of human ET240 based on GenBank entry AA2155707.
配列番号 9 は、 公知のベク タ一 A T r i p 1 E x のアーム の配列に基づく ヒ ト E T 2 4 0 のサブク ローユング用のプラ ィマーである。  SEQ ID NO: 9 is a primer for subcloning of human ET240 based on the sequence of a known vector ATrip1Ex arm.
配列番号 1 0 は、 GenBankのェン ト リ 一 H 6 7 2 2 4 の相 捕鎖に基づく ヒ ト E T 2 4 0 のサブク ロ一ユング用のプライ マ一である。  SEQ ID NO: 10 is a primer for subcloning of human ET240 based on the trapping of GenBank entry H67224.
配列番号 1 1 は、 GenBankのェ ン ト リ 一 H 6 7 2 2 4 の相 補鎖に基づく ヒ ト E T 2 4 0 のサブク ローニング用のプライ マーである。 SEQ ID NO: 11 is the phase of the GenBank entry H67224. Primer for subcloning of human ET240 based on the complementary chain.
配列番号 1 2 は、 公知のベク タ一 え T r i p 1 E xのァー ムの配列に基づく ヒ ト E T 2 4 0 のサブク ローニング用のプ ライ マーである。  SEQ ID NO: 12 is a primer for subcloning of human ET240 based on the sequence of a known vector Trip1Ex.
配列番号 1 3 は、 GenBankのェン ト リ ー A A 2 1 5 5 7 7 に基づく ヒ ト E T 2 4 0 のサブク ローユング用のプライマー である。  SEQ ID NO: 13 is a primer for subcloning of human ET240 based on GenBank entry AA2155707.
配列番号 1 4 は、 GenBankのェン ト リ 一 A A 2 1 5 5 7 7 に基づく ヒ ト E T 2 4 0 のサブク ローユング用のプライマ一 である。  SEQ ID NO: 14 is a primer for subcloning of human ET240 based on the GenBank entry AA2155707.
配列番号 1 5 は、 配列番号 3 に基づく マウス E T 2 4 0 の 分析用のプライマーである。  SEQ ID NO: 15 is a primer for the analysis of mouse ET240 based on SEQ ID NO: 3.
配列番号 1 6 は、 配列番号 3 に基づく マウス E T 2 4 0 の 分析用のプライマーである。  SEQ ID NO: 16 is a primer for the analysis of mouse ET240 based on SEQ ID NO: 3.
配列番号 1 7 は、 配列番号 1 に基づく ヒ ト E T 2 4 0 のサ ブク ローニング用のプライマーである。  SEQ ID NO: 17 is a primer for subcloning human ET240 based on SEQ ID NO: 1.
配列番号 1 8 は、 配列番号 1 に基づく ヒ ト E T 2 4 0 のサ ブク ローニング用のプライマーである。  SEQ ID NO: 18 is a primer for subcloning human ET240 based on SEQ ID NO: 1.
配列番号 1 9 は、 E A E (実験的ア レルギー性脳脊髄炎) をマウスに誘発する際に用いた、 モルモ ッ ト 由来のミ エ リ ン 塩基性蛋白質の部分配列である。  SEQ ID NO: 19 is a partial sequence of a guinea pig-derived myelin basic protein used to induce EAE (experimental allergic encephalomyelitis) in mice.
発明の詳細な説明 本発明の 1 つの態様によれば、 配列番号 2 に記載のア ミ ノ 酸配列を有する こ と を特徴とする実質的に純粋なヒ ト 由来の 7 回膜貫通型受容体蛋白質が提供される。 次に、 本発明の理解を容易にする為に、 まず本発明の基本 的特徴及び好ま しい態様を列挙する。 Detailed description of the invention According to one aspect of the present invention, there is provided a substantially pure human-derived seven-transmembrane receptor protein having the amino acid sequence of SEQ ID NO: 2. . Next, in order to facilitate understanding of the present invention, first, basic features and preferred embodiments of the present invention will be listed.
1 . 配列番号 2 に記載のア ミ ノ酸配列を有する こ と を特徴と する実質的に純粋なヒ ト 由来の 7 回膜貫通型受容体蛋白質。 1. A substantially pure human-derived seven-transmembrane receptor protein having the amino acid sequence of SEQ ID NO: 2.
2 . 配列番号 2 に記載のア ミ ノ酸配列の少な く と も 5個のァ ミ ノ酸からなる部分配列である こ と を特徴とする実質的に純 粋なぺプチ ド。 2. A substantially pure peptide characterized by being a partial sequence consisting of at least five amino acids of the amino acid sequence of SEQ ID NO: 2.
3 . 前項 1 に記載の 7 回膜貫通型受容体蛋白質をコー ドする 単離された D N A。 3. An isolated DNA encoding the seven-transmembrane receptor protein described in 1 above.
4 . 配列番号 1 に記載の塩基配列を有する こ と を特徴とする 前項 3 に記載の単離された D N A。 4. The isolated DNA according to item 3, which has the nucleotide sequence of SEQ ID NO: 1.
5 . 請求項 3 または 4 に記載の塩基配列の中の少なく と も 1 2個の塩基からなる D N Aあるいはその誘導体。 6 . 請求項 3 または 4 に記載の塩基配列に相補的な D N Aの 中の少なく と も 1 2個の塩基からなる D N Aあるいはその誘 導体。 5. A DNA or derivative thereof comprising at least 12 bases in the base sequence according to claim 3 or 4. 6. A DNA consisting of at least 12 bases in a DNA complementary to the base sequence according to claim 3 or 4, or a derivative thereof.
7 . 請求項 3 または 4 に記載の塩基配列に相補的な R N Aの 中の少なく と も 1 2個の塩基からなる R N Aあるいはその誘 導体。 7. An RNA consisting of at least 12 bases in the RNA complementary to the base sequence according to claim 3 or 4, or a derivative thereof.
8 . 前項 3 〜 7 のいずれかに記載の D N Aを複製可能な発現 べク ターに組込んでなる複製可能な組換え体 D N A。 8. A replicable recombinant DNA comprising the DNA according to any one of the above items 3 to 7 incorporated into a replicable expression vector.
9 . 前項 8 に記載の複製可能な組換え体 D N Aで形質転換さ れた微生物又は細胞。 9. A microorganism or cell transformed with the replicable recombinant DNA according to item 8 above.
1 0 . ( a ) 前項 3 又は 4 に記載の D N Aを複製可能な発現 ベク ターに結合して、 該 D N Aと該複製可能な発現ベク ター と を組込んでなる複製可能な組換え体 D N Aを得、 10. (A) The DNA described in 3 or 4 above is bound to a replicable expression vector and a replicable recombinant DNA comprising the DNA and the replicable expression vector is obtained. Get
( b ) 該複製可能な組換え体 D N Aで微生物又は細胞を形質 転換させて形質転換体を形成せしめ、  (b) transforming a microorganism or a cell with the replicable recombinant DNA to form a transformant,
( c ) 該形質転換体を該微生物又は細胞の親細胞から選別 し、  (c) selecting the transformant from the parent cell of the microorganism or cell,
( d ) 該形質転換体を培養 して、 該形質転換体に該 D N Aを 発現させる、 こ と を包含する方法によって該形質転換体の細胞膜表面に製 造された 7 回膜貫通型受容体蛋白質。 (d) culturing the transformant to cause the transformant to express the DNA; A seven-transmembrane receptor protein produced on the cell membrane surface of the transformant by a method including the above.
1 1 . 7 回膜貫通型受容体蛋白質と結合し う る リ ガン ドをス ク リ ーニングする方法に して、 前項 1 又は 1 0 に記載の蛋白 質、 あるいは前項 2 に記載のペプチ ドを、 サンプル材料と接 触せしめ、 該蛋白質又は該ぺプチ ドと リ ガン ドと の結合に対 応して起き る変化を指標と して、 7 回膜貫通型受容体蛋白質 と結合し う る リ ガン ドを検出する こ と を包含する方法。 11.7 The method of screening for a ligand that binds to a 1.7-transmembrane receptor protein includes the use of the protein described in 1 or 10 above or the peptide described in 2 above. A protein that is brought into contact with the sample material and binds to the transmembrane receptor protein seven times, using as an index the change that occurs in response to the binding of the protein or the peptide to the ligand. A method that involves detecting a gand.
1 2 . 7 回膜貫通型受容体蛋白質と該蛋白質に対する リ ガン ドとの結合を阻害する物質をスク リ ーニングする方法に して、 前項 1 又は 1 0 に記載の蛋白質、 あるいは前項 2 に記載のぺ プチ ドと該リ ガン ドをサンプル材料と接触せしめ、 そ して該 蛋白質又は該ぺプチ ドと該リ ガン ドとの結合に対応して起き る変化を指標と して、 7 回膜貫通型受容体蛋白質と リ ガン ド との結合を阻害し う る物質を検出するこ と を包含する方法。 12.7 The method of screening a substance that inhibits the binding of a seven-transmembrane receptor protein to a ligand to the protein, the protein described in the above item 1 or 10, or the protein described in the above item 2 The peptide of the present invention and the ligand are brought into contact with the sample material, and the change caused by the binding of the protein or the peptide to the ligand is used as an index, and the membrane is repeated seven times. A method comprising detecting a substance that inhibits the binding between a penetrating receptor protein and a ligand.
1 3 . 前項 1 に記載の 7 回膜貫通型受容体蛋白質と結合し う る抗体。 13. An antibody that binds to the seven-transmembrane receptor protein described in 1 above.
1 4 . 配列番号 4 に記載のア ミ ノ酸配列を有する こ と を特徴 とする実質的に純粋なマウス由来の 7 回膜貫通型受容体蛋白 質の断片。 14. A substantially pure seven-transmembrane receptor protein derived from a mouse, having the amino acid sequence of SEQ ID NO: 4. A piece of quality.
1 5 . 前項 1 4 に記載の 7 回膜貫通型受容体蛋白質の断片を コ ー ドする単離された D N A。 15. An isolated DNA encoding the fragment of the seven-transmembrane receptor protein described in 14 above.
1 6 . 配列番号 3 に記載の塩基配列を有する こ と を特徴とす る前項 1 5 に記載の単離された D N A。 以下、 本発明について具体的に説明する。 16. The isolated DNA according to the above item 15, which has the nucleotide sequence of SEQ ID NO: 3. Hereinafter, the present invention will be described specifically.
配列表に記載されたア ミ ノ酸配列の左端及び右端はそれぞ れァ ミ ノ 基末端 (以下、 N末とい う) 及びカルボキシル基末 端 (以下、 C末とい う) であ り 、 また塩基配列の左端及び右 端はそれぞれ 5 ' 末端及び 3 ' 末端である。  The left and right ends of the amino acid sequence described in the sequence listing are the amino terminal (hereinafter referred to as N terminal) and the carboxyl terminal (hereinafter referred to as C terminal), respectively. The left and right ends of the nucleotide sequence are the 5 'end and the 3' end, respectively.
尚、 本発明において、 D N A塩基配列中の Aはアデニン、 Cはシ ト シン、 Gはグァニン、 Tはチミ ンを示す。  In the present invention, A in the DNA base sequence indicates adenine, C indicates cytosine, G indicates guanine, and T indicates thymine.
また、 本発明においては、 3文字表示で、 ア ミ ノ酸配列中 の A 1 a はァラニン、 A r g はアルギニ ン、 A s n はァ ス ノ ラ ギン、 A s p はァスノ ラ ギン酸、 C y s はシスティ ン、 G 1 n はグルタ ミ ン、 G 1 uはグルタ ミ ン酸、 G 1 y はグリ シ ン、 H i s は ヒ スチジン、 I 1 e はイ ソ ロ イ シン、 L e u は ロ イ シン、 L y s は リ ジン、 M e t はメ チォニ ン、 P h e は フ エ二ルァ ラ ニン、 P r o はプロ リ ン、 S e r はセ リ ン、 T h r はス レオニ ン、 T r p は ト リ プ ト フ ァ ン、 T y r はチ ロ シン、 V a 1 はバ リ ンである。 In the present invention, in the three-letter display, A1a in the amino acid sequence is alanine, Arg is arginine, A sn is asnolagin, Asp is asanoraginate, Cys Is cystine, G1n is glutamine, G1u is glutamic acid, G1y is glycine, His is histidine, I1e is isoleucine, and Leu is royin. Syn, Lys is lysine, Met is methionine, Phe is phenylalanine, Pro is proline, Ser is serine, Thr is threonine, Trp is tolane. Rip fan, T yr is Ciro Shin, V a1 is valine.
本発明でい う 「 7 回膜貫通型受容体蛋白質」 と は、 白血球、 特に自 己反応性 T細胞、 に存在する 7 回膜貫通型受容体であ リ 、 本発明者らによって初めて見出された蛋白質である。 本 発明の蛋白質は、 受容体に対する特異的な リ ガン ドと の結合 活性、 及びシグナル伝達経路において下流側に存在するシグ ナル伝達活性を有する蛋白質である。  The term “seven-transmembrane receptor protein” in the present invention is a seven-transmembrane receptor present on leukocytes, particularly autoreactive T cells, and was first discovered by the present inventors. Protein. The protein of the present invention is a protein having a specific ligand-binding activity for a receptor and a signal transmission activity present downstream in a signal transduction pathway.
このよ う な蛋白質の 1 つが配列番号 2 のア ミ ノ酸配列を有 する ヒ ト型 E T 2 4 0 であるが、 本発明の蛋白質は、 配列番 号 2 のア ミ ノ 酸配列に限定される ものではない。 上記した受 容体と しての特性を有するポリ ペプチ ドであれば、 自然界で 生じる こ とが知られている生物種内変異、 ア レル変異等の突 然変異によって生じる改変体 (即ち、 1 若しく は数個のア ミ ノ酸が欠失、 置換若しく は付加されたア ミ ノ酸配列) も本発 明の蛋白質に含まれる。  One such protein is human ET240 having the amino acid sequence of SEQ ID NO: 2, but the protein of the present invention is limited to the amino acid sequence of SEQ ID NO: 2. It is not. If the polypeptide has the above-mentioned properties as a receptor, a variant (i.e., one or more mutations) caused by a mutation, such as intra-species mutation or allelic mutation, which is known to occur in nature. The present invention also includes amino acid sequences in which several amino acids have been deleted, substituted, or added (amino acid sequences).
又、 本発明の蛋白質は翻訳後修飾を受けていてもよい。 配 列番号 2 のア ミ ノ酸配列には、 糖鎖の付加が予想される部分 が存在する。 例えば、 配列番号 2 の 6番目 の Asn (Asn-Gln-S er)は、 N —グ リ コシ ド結合の共通配列 Asn- X- Se r/Thr の A sn である と考えられ、 N—グ リ コ シ ド修飾を受けている可 能性がある。 又、 N—ァセチル一 D —ガラ ク トサ ミ ンの 0 — グリ コ シ ド結合を推定する部分と して、 セ リ ン又はス レオニ ン残基が頻出する部分が考えられる。 これらの糖鎖が付加さ れた蛋白質の方が糖鎖の付加されていない蛋白質そのものよ リ も一般に生体内での分解に対して安定であ り 、 また強い生 理活性を有している と考えられる。 従って、 本発明の蛋白質 には配列番号 2 のァ ミ ノ酸配列の中に N—ァセチル— D —グ ノレコサミ ンや N—ァセチルー D —ガラク トサミ ンなどの、 N —ダリ コ シ ド又は〇一ダリ コシ ド結合を有する糖鎖を包含す る蛋白質も含まれる。 Further, the protein of the present invention may be modified after translation. In the amino acid sequence of SEQ ID NO: 2, there is a portion expected to add a sugar chain. For example, the sixth Asn (Asn-Gln-Ser) of SEQ ID NO: 2 is considered to be Asn of N-glycosidic consensus sequence Asn-X-Ser / Thr, and N-g It may have been modified by the risk. In addition, a portion where serine or threonine residues frequently appear may be considered as a portion for estimating the 0-glycosidic bond of N-acetyl-D-galactosamine. These sugar chains are added It is considered that the obtained protein is generally more stable to degradation in vivo than the protein itself to which no sugar chain is added, and has a stronger physiological activity. Therefore, the protein of the present invention contains N-daricoside or N-acetyl, such as N-acetyl-D-gnorecosamine or N-acetyl-D-galactosamine, in the amino acid sequence of SEQ ID NO: 2. It also includes a protein containing a sugar chain having a dalicoside bond.
更に本発明の蛋白質は、 抗原ェピ トープ等の公知のタグ配 列を有しても よい。 例えば、 F L A G ( DY DDDDK) T 7 (MASMTGGQQMG) , H S V (SQP EL AP EDP ED) , S ( ETAAAKFERQH DS) , M y c (EQKLISEEDL) , H i s (HHHHHHHH) , H A (YP YDVPDYA) 等のタ グ配歹 ij (カ ツ コ内の配列は全てア ミ ノ酸の 1 文字表記である) を有していてもよい。 タ グ配列が E T 2 4 0蛋白質の C末端又は N末端に存在する こ と によ リ 、 本発 明の蛋白質をフ ローサイ ト メ ト リ ーや Wes t ern b lot t ing等の 手法を用いて容易に検出する こ とができ る。  Further, the protein of the present invention may have a known tag sequence such as an antigen epitope. For example, tags such as FLAG (DY DDDDK) T 7 (MASMTGGQQMG), HSV (SQP EL AP EDP ED), S (ETAAAKFERQH DS), Myc (EQKLISEEDL), His (HHHHHHHH), HA (YP YDVPDYA), etc. It may have a system ij (all sequences in kazuko are one-letter notation of amino acid). Since the tag sequence is present at the C-terminus or N-terminus of the ET240 protein, the protein of the present invention can be obtained by a method such as flow cytometry or Western blotting. And can be easily detected.
又、 配列番号 2 のァ ミ ノ酸配列からなる蛋白質をコー ドす る、 本発明のヒ ト 由来の天然の c D N A配列については、 配 列番号 1 にア ミ ノ酸配列と と もに記載した。 自然界から分離 した染色体 D N A又は c D N Aにおいて、 遺伝コ ー ドの縮重 によ リ 、 その D N Aがコ一 ドするア ミ ノ酸配列を変化させる こ となく D N Aの塩基配列が変異した例は屡々認め られる。 実際に実施例 6 において、 ヒ ト天然の c D N Aライ ブラ リ ー から配列番号 1 の 6 7 8番目 の塩基である Aが Gになったク 口 一ンが取得されている。 こ の変異によ っ て コ ドンが A C A 力 ら A C Gに変化してレヽるが、 どち ら もア ミ ノ酸と しては T h r (ス レオニン) をコー ドしてお り 、 その結果得られるア ミ ノ酸配列は変化しない。 こ の よ う な変異を含む D N A配列も 本発明の D N Aには含まれる。 又、 5 ' 非翻訳領域及び 3 ' 非翻訳領域は蛋白質のア ミ ノ酸配列の規定には関与しないの で、 非翻訳領域の塩基配列は変異しやすい。 このよ う な変異 や遺伝コー ドの縮重によって得られる塩基配列も本発明の D N Aに含まれる。 In addition, a natural cDNA sequence derived from human of the present invention, which encodes a protein consisting of the amino acid sequence of SEQ ID NO: 2, is described in SEQ ID NO: 1 together with the amino acid sequence. did. In chromosomal DNA or cDNA isolated from the natural world, the base sequence of DNA is often mutated without changing the amino acid sequence encoded by the DNA due to the degeneracy of the genetic code. Is recognized. In fact, in Example 6, the human natural cDNA library was used. And the amino acid at position A, which is the 678th base of SEQ ID NO: 1, has become G. Due to this mutation, the codon changes from ACA to ACG, and both codify for amino acid as Thr (threonine). The resulting amino acid sequence does not change. A DNA sequence containing such a mutation is also included in the DNA of the present invention. Further, since the 5 'untranslated region and the 3' untranslated region are not involved in the definition of the amino acid sequence of the protein, the nucleotide sequence of the untranslated region is easily mutated. The nucleotide sequence obtained by such mutation or degeneracy of the genetic code is also included in the DNA of the present invention.
本発明でい う 、 「マウス由来の 7回膜貫通型受容体蛋白質 の断片」 とは、 上記したヒ ト 由来の 7 回膜貫通型受容体に対 応するマ ウスの 7 回膜貫通型受容体の断片である。 具体的に は、 受容体の第 2膜貫通領域から C末端までの配列でぁ リ 、 配列番号 4 に示したア ミ ノ 酸配列を有するポ リ べプチ ドであ る。 しかし、 上記した 7回膜貫通型受容体蛋白質と 同様に、 7 回膜貫通型受容体蛋白質の断片もまた、 配列表に示 したァ ミ ノ酸配列に限定される ものではなく 、 突然変異によ って生 じる改変体も本発明に含まれる。 更に、 翻訳後修飾や、 抗原 ェピ トープ等の公知のタグ配列を有してもよい。  In the present invention, “a fragment of a seven-transmembrane receptor protein derived from a mouse” refers to a seven-transmembrane receptor of a mouse corresponding to the seven-transmembrane receptor derived from human. It is a fragment of the body. Specifically, it is a polypeptide having the amino acid sequence shown in SEQ ID NO: 4 from the second transmembrane region of the receptor to the C-terminal. However, similarly to the seven-transmembrane receptor protein described above, the fragment of the seven-transmembrane receptor protein is not limited to the amino acid sequence shown in the sequence listing, but may be mutated. Thus, the resulting variants are also included in the present invention. Further, it may have a known tag sequence such as post-translational modification or antigen epitope.
又、 配列番号 4 のア ミ ノ 酸配列からなる 7·回膜貫通型受容 体の断片をコー ドする本発明のマ ウス由来の天然の c D N A 配列については、 配列番号 3 にア ミ ノ酸配列と と もに記載し た。 上記した本発明のヒ ト 由来の c D N Aと同様に、 マウス c D N Aも、 翻訳後のア ミ ノ酸の変化を伴わない塩基配列の 変異や遺伝コー ドの縮重によって得られる塩基配列も本発明 の D N Aに含まれる。 In addition, the natural cDNA sequence derived from the mouse of the present invention encoding a seven-transmembrane receptor fragment consisting of the amino acid sequence of SEQ ID NO: 4 has amino acid sequence of SEQ ID NO: 3 Described along with the sequence Was. As with the human-derived cDNA of the present invention described above, the mouse cDNA also has a nucleotide sequence obtained by mutation of the nucleotide sequence without a change in amino acid after translation and degeneracy of the genetic code. Included in the DNA of the invention.
又、 本発明で述べられる遺伝子操作に必要な c D N Aの作 製、 ノ ーザンプロ ッ トによる発現の検討、 ハイブリ ダィゼー シ ヨ ンによ るス ク リ ーニング、 組換え D N Aの作製、 D N A の塩基配列の決定、 c D N Aライ ブラ リ 一の作製等の一連の 分子生物学的な手法は、 通常の実験書に記載の方法によって 行う こ とができ る。 具体的には、 Mo l ecu l a r Clon ing, A l ab oratory manua l , (1989) , S amb r o o k , J . , F r i t s c h , E . F . , a n d Ma n i a t i s , T. Eds . , Co l d Spr ing Harbo r La orator P r e s s等を参照する こ とができ る。 In addition, production of cDNA necessary for the genetic manipulation described in the present invention, examination of expression by Northern plot, screening by hybridization, production of recombinant DNA, nucleotide sequence of DNA A series of molecular biology techniques such as determination of DNA library and preparation of a cDNA library can be performed by a method described in an ordinary experimental book. More specifically, Molecular cloning, Almanatory manual, (1989), Sambrook, J., Fritsch, E.F., and Maniatis, T. Eds., Cold Spr. ing Harbor Laorator Press, etc. can be referred to.
次に、 本発明の基本的特徴を更に明 らかにする為に、 本発 明の完成に至る経緯を追いなが ら、 本発明に包含される技術 的特徴について説明する。 Next, in order to further clarify the basic features of the present invention, the technical features included in the present invention will be described while following the process leading to the completion of the present invention.
新規な 7 回膜貫通型受容体蛋白質をク ローユングする 目的 で、 白血球に発現している こ とが知られる公知の 7 回膜貫通 型受容体蛋白質の塩基配列を基に設計したプライマ ー (配列 番号 5 及び 6 ) を用い、 マ ウ ス E A E発症性 T細胞 4 R 3 1 2株 c D N Aライブラ リ ーよ リ遺伝子断片を増幅した。 増幅 された D N A配列をマ ウス E S Tデータべ一ス上に検索した と ころ、 2 つの E S T断片が見出された。 本発明者らによつ てク ローニングされたマウス D N A配列とデータベースよ リ 得られた E S T断片を用いて、 配列表の配列番号 3及び 4 に 記載したマ ウ ス由来の新規な 7 回膜貫通型受容体蛋白質の断 片を得た。 こ の新規な蛋白質は、 E A E発症性 T細胞 ( 「 E T」 と略す) において初めて見出された受容体蛋白質である こ と力 ら、 Ε Τ 2 4 0 と命名 した (以下、 屡々 、 マウス由来 の 7 回膜貫通型受容体蛋白質を 「マウス型 Ε Τ 2 4 0」 とレ、 う)。 マウス型 Ε Τ 2 4 0 の断片が Ε Α Ε発症性マ ウス Τ細 胞ょ リ ク ローニングされたこ と は、 Ε Τ 2 4 0 の m R N Aが E A E発症性マウス T細胞に発現している こ と を示唆してレヽ る。 その後の実験にょ リ 、 マウス型 E T 2 4 0 の天然 m R N Aはマ ウスの肺、 心臓、 肝臓の各組織、 更にはマ ウスの舌と 腸管 リ ンパ球においても検出された。 従って、 新規な 7 回膜 貫通型受容体がマウス E A E発症性マウス T細胞だけではな く 、 様々 なマ ウス組織にも存在するこ とが明 らかと なった。 更に本発明者らは、 上記のよ う にして得られたマウス型 Ε Τ 2 4 0 の断片を用い、 ヒ トの肺に由来する c D N Aライブ ラ リ ーから、 マ ウス型 E 丁 2 4 0 に対応する新規な 7 回膜貫 通型受容体蛋白質の全長 c D N Aをク ローニングする こ とに 成功した (この 「ヒ ト 由来の 7 回膜貫通型受容体蛋白質」 を 以下、 屡々 、 「ヒ ト型 E T 2 4 0 」 とレ、 う)。 後の研究によ つて、 E T 2 4 0 をコー ドする天然の m R N Aは、 ヒ トの小 腸と心臓において強く 発現しているこ とが見出された。 A primer (sequence) designed based on the nucleotide sequence of a known seven-transmembrane receptor protein known to be expressed in leukocytes for the purpose of closing a novel seven-transmembrane receptor protein Using Nos. 5 and 6), a gene fragment was amplified from a mouse EAE-causing T cell 4R312 strain cDNA library. When the amplified DNA sequence was searched on the mouse EST database, two EST fragments were found. Using the mouse DNA sequence cloned by the present inventors and the EST fragment obtained from the database, a novel seven-transmembrane mouse derived from the mouse described in SEQ ID NOs: 3 and 4 in the sequence listing A fragment of the type receptor protein was obtained. This novel protein was named ΤΤ240 because of its ability to be the first receptor protein found in EAE-causing T cells (abbreviated as “ET”) (hereinafter often referred to as mouse-derived T cells). The 7-times transmembrane receptor protein is called “mouse type Ε Ε 240”. The fact that the mouse-type Τ240 fragment was cloned into Ε Ε pathogenetic mouse は cells means that Τ-240 mRNA was expressed in EAE-onset mouse T cells. It suggests and. In subsequent experiments, native mRNA for mouse ET240 was detected in mouse lung, heart, and liver tissues, as well as in mouse tongue and intestinal lymphocytes. Therefore, a new seven-time membrane It was revealed that the penetrating receptor exists not only in mouse EAE-causing mouse T cells but also in various mouse tissues. Furthermore, the present inventors used the mouse-type cDNA fragment obtained as described above to derive a mouse-type E-frog from a cDNA library derived from human lung. We succeeded in cloning the full-length cDNA of a novel seven-transmembrane receptor protein corresponding to 0 (this "human-derived seven-transmembrane receptor protein" is often referred to as " Human ET240 ”). Later studies found that native mRNA encoding ET240 was strongly expressed in the human small intestine and heart.
上記の実験結果から、 本発明のマウス型及びヒ ト型の 7 回 膜貫通型受容体蛋白質 E T 2 4 0 の天然の m R N Aは全身的 に発現してぉ リ 、 特に粘膜系の リ ンパ球系白血球に発現して いる と推定された。 m R N Aは、 細胞內のメ カニズムによ リ 蛋白質へと翻訳されるので、 これらの組織における E T 2 4 0 の天然の m R N Aの検出は、 E T 2 4 0蛋白質の存在と 同 等だと考えられる。  From the above experimental results, it can be seen that the natural mRNA of the mouse and human seven-transmembrane receptor protein ET240 of the present invention is expressed systemically, especially lymphocytes of the mucosal system. It was presumed to be expressed in leukocytes. Because mRNA is translated into proteins by cellular mechanisms, detection of ET240 native mRNA in these tissues is considered equivalent to the presence of ET240 protein. Can be
本発明の 7 回膜貫通型受容体蛋白質 E T 2 4 0 は、 配列表 の配列番号 2 に記載したヒ ト型 E T 2 4 0 の全長蛋白質と 、 配列番号 4 に記載したマウス型 E T 2 4 0 の断片べプチ ドで ある。 本発明者らは、 Gene X - Mac/DB Ve r . 37.0 (Sof tware Development Co . , Lt d . ) を用い、 配列番号 2及び 4 のア ミ ノ酸配列と、 デ一タベース 〔GenBank CDS (Re 1.100 Apr i l 1 997; Pr ima t es , Rodent , Mamma I s , Ver t ebrat e, Pat entのサ ブデータベース)〕 に登録されているア ミ ノ酸配列と の相同 性を比較した。 その結果を表 1 及び 2 に示した。 The seven-transmembrane receptor protein ET240 of the present invention comprises a full-length human ET240 represented by SEQ ID NO: 2 in the sequence listing and a mouse ET240 represented by SEQ ID NO: 4. This is a fragment peptide. The present inventors used Gene X-Mac / DB Ver. 37.0 (Software Development Co., Ltd.) and prepared the amino acid sequences of SEQ ID NOS: 2 and 4 and the database (GenBank CDS ( Re 1.100 Apr il 1 997; a sub-database of Primates, Rodent, MammaIs, Vertebrate, and Patent)). The results are shown in Tables 1 and 2.
マウス型 E T 2 4 0の GenBank cds サーチ結果 順位 エン ト リ一名 コ メ ン ト 類似度 Mouse type ET240 GenBank cds Search result Rank Entry name Comment Similarity
1 S63848 ij - protein coupled receptor 84.0% type B {clone PPRl} . 1 S63848 ij-protein coupled receptor 84.0% type B {clone PPRl}.
2 HSU45982 Human G p r0 t e in - coup 1 e d 37.4% receptor GPR - 9 - 6 gene, complete cds. 2 HSU45982 Human Gpr 0 te in-coup 1 ed 37.4% receptor GPR-9-6 gene, complete cds.
3 HUMGPCRA Human Epstein - Barr virus 36.4% induced G- protein coupled 3 HUMGPCRA Human Epstein-Barr virus 36.4% induced G-protein coupled
receptor m NA.  receptor m NA.
4 HUMEBI 1CDN Human G protein-coupled 36.4% receptor (EB I 1) mRNA, com - p 1 e t e cds. 4 HUMEBI 1CDN Human G protein-coupled 36.4% receptor (EB I 1) mRNA, com-p 1 e t cds.
5 醒 EBI103 Human G p r o t e i n~coup 1 ed 36.4% receptor (EB I 1) gene exon 3, com 1 e t e cds . 5 Awake EBI103 Human G prot ein ~ coup 1 ed 36.4% receptor (EB I 1) gene exon 3, com 1 e t e cds.
6 USIL8GR0A Mouse IL8/gro - a lpha receptor 33.8% gene, comp 1 e t e cds. 6 USIL8GR0A Mouse IL8 / gro-a lpha receptor 33.8% gene, comp 1 e t e cds.
7 U31207 Mus mu s c u 1 u s i n t e r 1 e u k i n-8 33.8% receptor gene, complete cds. 7 U31207 Mus mu s c u 1 u s i n t e r 1 e u k i n-8 33.8% receptor gene, complete cds.
8 USIL8RB Mouse inter leukin-8 receptor 33.8% type B (I 18rb) gene, complete cds . 8 USIL8RB Mouse inter leukin-8 receptor 33.8% type B (I 18rb) gene, complete cds.
9 MUSITLK8 Mouse mRNA for i n t e r 1 euk Ί n-8 33.8% receptor (IL-8R) , comp 1 e t e 9 MUSITLK8 Mouse mRNA for i n t e r 1 euk Ί n-8 33.8% receptor (IL-8R), comp 1 e t e
cds .  cds.
10 RNIL8R R. norveg i cus mRNA for inter- 3 .1% 10 RNIL8R R. norveg icus mRNA for inter- 3.1%
1 euk i n-8 rece tor. |  1 euk i n-8 rece tor. |
1 表 2 ヒ ト型 E T 2 4 0の GenBank cds サーチ結果 順位 エン ト リ一名 コ メ ン ト 類似度 1 Table 2 Results of GenBank cds search for human ET240s Rank Ranking Entry name Comment Similarity
1 S63848 υ - protein coupled receptor 86.0% type B {c lone PPR1} . 1 S63848 υ-protein coupled receptor 86.0% type B {clone PPR1}.
2 願 EBIICDN Mouse G p r ot e in-coup 1 ed 39.4% receptor (EB I 1) mRNA, complete cds. 2 Application EBIICDN Mouse Gprote in-coup 1 ed 39.4% receptor (EB I 1) mRNA, complete cds.
3 HU EBI103 Human G p rot e in-cou 1 ed 39.2% receptor (EB I 1) gene exon 3 HU EBI103 Human Gprote in-cou 1 ed 39.2% receptor (EB I 1) gene exon
3, com 1 e t e cds.  3, com 1 e t e cds.
4 HUMGPCRA Human Ep s t e i n - Ba r r virus 38.9% induced G - protein cou led 4 HUMGPCRA Human Epst e inn-Barr virus 38.9% induced G-protein cou led
receptor mRNA.  receptor mRNA.
5 HUMEBI1CDN Human G protein-coupled 39.2% receptor (EB I 1) mRNA, complete cds . 5 HUMEBI1CDN Human G protein-coupled 39.2% receptor (EB I 1) mRNA, complete cds.
6 HSU20350 Human G protein-coupled 35.5% receptor V28 mRNA, complete cds. 6 HSU20350 Human G protein-coupled 35.5% receptor V28 mRNA, complete cds.
7 謂 28934 Human beta chemok i ne rece 35.5% tor-like 1 mRNA, com lete 7 So-called 28934 Human beta chemok i ne rece 35.5% tor-like 1 mRNA, com lete
cds.  cds.
8 HSU45982 Human G protein-coupled 36.8% receptor GPR - 9-6 gene, complete cds. 8 HSU45982 Human G protein-coupled 36.8% receptor GPR-9-6 gene, complete cds.
9 FCU63558 Felis c a t u s CXCR-4 homo I o g 35.1% mRNA, complete cds. 9 FCU63558 Felis c atus CXCR-4 homo Iog 35.1% mRNA, complete cds.
10 HSNPYRLA H. sapiens mRNA for neuro34.6% ί peptide Y-l i ke rece tor. 10 HSNPYRLA H. sapiens mRNA for neuro34.6% ί peptide Y-like rece tor.
1 表 1 に、 GenBank CDSに登録されているア ミ ノ酸配列の う ち、 本発明のマウス型 E T 2 4 0 断片 (配列番号 4 ) と相同 性の高い上位 1 0種の蛋白質とその相同性を示した。 本発明 のマウス型 E T 2 4 0 断片との比較で相同性が高いと された 蛋白質は、 いずれも 7 回膜貫通型受容体蛋白質であつたが、 本発明のマウス型 E T 2 4 0断片と 同一である と判断されう る配列は 1 つも発見されなかった。 従って、 本発明者らによ つてその 1 部がク ローニングされたマウス型 E T 2 4 0 は新 規な配列である と確認された。 1 Table 1 shows that among the amino acid sequences registered in GenBank CDS, the top 10 proteins with high homology to the mouse ET240 fragment (SEQ ID NO: 4) of the present invention and their homology showed that. The proteins determined to be highly homologous in comparison with the mouse ET240 fragment of the present invention were all seven-transmembrane receptor proteins. No sequences were found to be identical. Therefore, the present inventors confirmed that mouse-type ET240, a part of which was cloned, had a novel sequence.
表 2 に、 GenBank CDSに登録されているア ミ ノ酸配列の う ち、 本発明のヒ ト型 E T 2 4 0 (配列番号 2 ) と相同性の高 い上位 1 0種の蛋白質と その相同性を示した。 本発明のヒ ト 型 E T 2 4 0 との比較で相同性が高いと された蛋白質は、 レ、 ずれも 7回膜貫通型受容体蛋白質であつたが、 本発明のヒ ト 型 E T 2 4 0 と 同一である と判断されう る配列は 1 つも発見 されなかった。 従って、 本発明者らによってその全長がク ロ 一ユングされたヒ ト型 E T 2 4 0 は新規な配列である と確認 された。  Table 2 shows that among the amino acid sequences registered in GenBank CDS, the top 10 proteins with high homology to human ET240 (SEQ ID NO: 2) of the present invention and their homology Showed sex. The protein determined to have high homology as compared with the human ET240 of the present invention was a transmembrane receptor protein having a seven-fold translocation, but the human ET240 of the present invention was the same. No sequence that could be judged to be the same as 0 was found. Therefore, the present inventors confirmed that human-type ET240 whose full-length had been cloned was a novel sequence.
本発明のマウス型 E T 2 4 0断片 (配列番号 4 ) 及びヒ ト 型 E T 2 4 0 (配列番号 2 ) と最も高い相同性を有する配列 はゥシ由来の 7回膜貫通型受容体蛋白質 P P R 1 であ リ 、 マ ウス型 E T 2 4 0及びヒ ト型 E T 2 4 0 との相同性はそれぞ れ 8 4 . 0 %と 8 6 . 0 %だった。 P P R 1 はゥ シの舌由来 の受容体と して報告されてお リ 、 神経べプチ ドの受容体であ る可能性が論議され、 肺での強い発現が報告されている 〔Bi ochem.Biophys . Res . Comm. 194, 504 - 511 ( 1993 ) 。 しかし ながら、 P P R 1 の白血球での発現や、 この受容体の自己免 疫性疾患、 特に多発性硬化症やそのモデルである E A Eにお ける役割については全く 知られていない。 従って、 P P R 1 が白血球、 特に自 己反応性 T細胞の機能を制御し、 ひいては 疾患の制御をする可能性については全く 知られていない。 The sequence having the highest homology with the mouse type ET240 fragment (SEQ ID NO: 4) and the human type ET240 (SEQ ID NO: 2) of the present invention is a seven-transmembrane receptor protein PPR derived from Escherichia coli. The homology with mouse ET240 and human ET240 was 84.0% and 86.0%, respectively. PPR 1 is from tongue The possibility of a neuropeptide receptor has been discussed, and strong expression in the lung has been reported (Biochem. Biophys. Res. Comm. 194, 504-511 (1993). However, nothing is known about the expression of PPR1 in leukocytes and its role in autoimmune diseases, especially in multiple sclerosis and its model, EAE. Thus, there is no known possibility that PPR1 regulates the function of leukocytes, particularly autoreactive T cells, and thus regulates disease.
更に、 配列番号 2 のヒ ト型 E T 2 4 0 のア ミ ノ 酸配列及び 配列番号 4 のマウス型 E T 2 4 0 断片のア ミ ノ酸配列をそれ ぞれ Swi ss Prot 〔 リ リ ース 34.0, October, ( 1996) ) 及び特 許データベース(DGENE Derwent Inf ormat ion Lt d. ; 971130 UP) } に登録されているア ミ ノ酸配列 と を比較したと ころ、 やはり 、 いずれの配列も全く 新規な配列である こ とが確認さ れた。  Furthermore, the amino acid sequence of the human ET240 of SEQ ID NO: 2 and the amino acid sequence of the mouse ET240 fragment of SEQ ID NO: 4 were respectively changed to the Swiss Prot [Release 34.0]. , October, (1996)) and the amino acid sequence registered in the patent database (DGENE Derwent Information Lt d .; 971130 UP)}. It was confirmed that the sequence was correct.
又、 上記のデータベースによるサーチの結果において、 本 発明の E T 2 4 0 と高い相同性を示す蛋白質がすべて 7 回膜 貫通型受容体である こ と から、 本発明のマウス型及びヒ ト型 の E T 2 4 0 が 7 回膜貫通型受容体に属する蛋白質である こ とが示唆された。  In addition, according to the results of the search using the above-mentioned database, since the proteins having high homology with ET240 of the present invention are all seven transmembrane receptors, the mouse and human types of the present invention were not identified. It was suggested that ET240 is a protein belonging to the seven-transmembrane receptor.
更に本発明者らは、 Kyt e-Doo 1 i t t 1 eの方法 U.M .B'ioL 157: 105 , ( 1982 ) 〕 に従って、 配列番号 2 のア ミ ノ酸配列の 疎水性部分と親水性部分を解析した。 その結果、 本発明のヒ ト 由来 7 回膜貫通型受容体蛋白質 E T 2 4 0 は細胞膜通過部 分を 7 つ有する細胞膜蛋白質と して、 細胞表面に発現される こ とが明 らかと なった。 配列番号 4 のア ミ ノ酸配列について も、 上記と 同様に Kyt e- Doo l i leの方法 U. Moし Bioし 157: 105 , ( 1982 ) 〕 に従って疎水性部分と親水性部分の解析を行 つたと こ ろ、 配列番号 4 の配列は、 配列番号 2 の配列の後半 部分と ほぼ対応する疎水性部分及び親水性部分 (即ち、 第 2 膜貫通部分の途中から C末端部分) からなるこ とが判明 し、 細胞膜通過部分を 7つ有する細胞膜蛋白質の一部を構成する 断片である と予測された。 Further, the present inventors have made the hydrophobic part and the hydrophilic part of the amino acid sequence of SEQ ID NO: 2 in accordance with the method of Kyte-Doo 1 itt 1 e UM.B'ioL 157: 105, (1982)]. Analyzed. As a result, the present invention It has been clarified that ET240, a seven-transmembrane receptor protein derived from G, is expressed on the cell surface as a cell membrane protein having seven cell membrane translocating parts. With respect to the amino acid sequence of SEQ ID NO: 4, analysis of the hydrophobic portion and the hydrophilic portion was carried out in the same manner as described above, according to the method of Kyte-Doolyle U. Mo and Bio, 157: 105, (1982)]. In other words, the sequence of SEQ ID NO: 4 consists of a hydrophobic portion and a hydrophilic portion (ie, a C-terminal portion from the middle of the second transmembrane portion) almost corresponding to the latter half of the sequence of SEQ ID NO: 2. And was predicted to be a fragment constituting a part of a cell membrane protein having seven cell membrane transit portions.
ヒ ト型 E T 2 4 0及びマウス型 E T 2 4 0断片のア ミ ノ酸 配列を分析したよ う に、 本発明者らは、 配列番号 1 に記載し たヒ ト型 E T 2 4 0 をコー ドする D N Aの塩基配列及び配列 番号 3 に記載したマ ウ ス型 E T 2 4 0断片をコー ドする D N Aの塩基配列をそれぞれ分析した。 本発明者らは、 Gene t yx- Ma c/DB Ve r . 37.0 (So f twa r e Deve l opmen t Co. , Lt d. ) を用 い、 配列番号 1 及び 3 の塩基配列とデータベース 〔GenBank (Reに 100 Ap r i l 1997; P r ima t e s , Rodent , Mamma l s , Ve r t eb r at e, Pa t en tのサブデータベース)〕 に登録されている c D N A配列と の相同性を比較した。 その結果を表 3及び 4 に示 した。 表 3 ヒ ト型 E T 2 4 0 c D N Aの GenBank サーチ結果 As analyzed by the amino acid sequences of the human ET240 and mouse ET240 fragments, the present inventors encoded the human ET240 described in SEQ ID NO: 1. The nucleotide sequence of the DNA to be encoded and the nucleotide sequence of the DNA encoding the mouse ET240 fragment described in SEQ ID NO: 3 were analyzed. The present inventors used Genetyx-Mac / DB Ver. (Re: 100 April 1997; a sub-database of Primates, Rodent, Mammals, Vertebrate, and Patent)]. The results are shown in Tables 3 and 4. Table 3 Results of GenBank search for human ET240 cDNA
順位 エント リ一名 コ メ ン ト 類似度  Rank Entry One Comment Comment Similarity
1 S63848 ϋ- r o t e i n cou led receptor 82.0% type B {clone PPR1} . 1 S63848 ϋ- r o t e in cou led receptor 82.0% type B {clone PPR1}.
2 HUMGPCRA Human Ep s t e i n-Ba r r virus 54.2% induced G - protein coupled 2 HUMGPCRA Human Epst ein-Barr virus 54.2% induced G-protein coupled
rece tor mRNA.  rece tor mRNA.
3 HUMEBllCDN Human G p r o t e i n - cou p 1 e d 54.0% receptor (EB I 1) mRNA, complete c d s . 3 HUMEBllCDN Human G p ro t e inn-cou p 1 e d 54.0% receptor (EB I 1) mRNA, complete cds.
4 HSDNABLR2 H. sapiens BLR2 gene. 54.0% 4 HSDNABLR2 H. sapiens BLR2 gene.54.0%
5 HU EBI103 Human G protein-coupled 54.0% receptor (EBI 1) gene exon 5 HU EBI103 Human G protein-coupled 54.0% receptor (EBI 1) gene exon
3 , c om 1 e t e c d s .  3, c om 1 e t e c d s.
6 USIL8GR0A Mouse I L8/ g r0-a 1 pha recep - 50.6% tor gene, complete c ds . 6 USIL8GR0A Mouse I L8 / gr 0 -a 1 pha recep-50.6% tor gene, complete c ds.
7 MUSIL8RB Mouse inter 1 euk i n~8 recep50.6% tor type B (I 18rb) gene, 7 MUSIL8RB Mouse inter 1 euk i n ~ 8 recep50.6% tor type B (I 18rb) gene,
c omp 1 e t e c d s .  c omp 1 e t e c d s.
8 画 31207 Mus mus c u 1 u s i nt e r 1 euk i n~8 50.6% receptor gene, c omp 1 e t e 8 strokes 31207 Mus mus c u 1 u s int e r 1 euk i n ~ 8 50.6% receptor gene, c omp 1 e t e
cds.  cds.
9 USITLK8 Mouse mRNA for interleukin- 50.6% 9 USITLK8 Mouse mRNA for interleukin- 50.6%
8 receptor ( I L-8R) , complete cds .  8 receptor (IL-8R), complete cds.
10 i RABIL8REC Or y c t o 1 a gu s c un i cu 1 u s inter - 50.6% 10 i RABIL8REC Or y c t o 1 a gu s c un i cu 1 u s inter-50.6%
1 euk i n~8 (IL - 8) receptor  1 euk i n ~ 8 (IL-8) receptor
mRNA, complete cds. 表 4 マウス型 E T 24 0 c D N Aの GenBank サーチ結果
Figure imgf000035_0001
表 3 に、 GenBankに登録されている c D N A配列の う ち、 本発明のマ ウス型 E T 2 4 0断片をコー ドする遺伝子と相同 性の高い上位 1 0種の c D N A と その相同性を示した。 本発 明のマ ウス型 E T 2 4 0 断片をコー ドする遺伝子との比較で 相同性が高い と された c D N Aは、 いずれも 7 回膜貫通型受 容体蛋白質の c D N Aであったが、 本発明のマウス型 E T 2 4 0 と 同一である と判断されう る塩基配列は 1 つも発見され なかった。 従って、 マウス型 E T 2 4 0 は新規な配列である と確認された。
mRNA, complete cds. Table 4 Results of GenBank search for mouse ET240c DNA
Figure imgf000035_0001
Table 3 shows the top 10 cDNAs with high homology to the gene encoding the mouse ET240 fragment of the present invention among the cDNA sequences registered in GenBank. Indicated. The cDNAs with high homology compared to the gene encoding the mouse ET240 fragment of the present invention were all cDNAs of the seven-transmembrane receptor protein. None of the nucleotide sequences determined to be the same as the mouse type ET240 of the present invention was found. Therefore, mouse ET240 was confirmed to be a novel sequence.
表 4 に、 GenBankに登録されている c D N A配列の う ち、 本発明のヒ ト型 E T 2 4 0 の全長をコー ドする遺伝子と相同 性の高い上位 1 0種の c D N Aとその相同性を示した。 本発 明のヒ ト型 E T 2 4 0 をコー ドする遺伝子との比較で相同性 が高いと された c D N Aは、 いずれも 7 回膜貫通型受容体蛋 白質の c D N Aであったが、 本発明のヒ ト型 E T 2 4 0 と同 一である と判断されう る塩基配列は 1 つも発見されなかった。 従って、 ヒ ト型 E T 2 4 0 は新規な配列である と確認された。 ア ミ ノ酸配列のサーチ結果と同様に、 本発明の 7 回膜貫通 型受容体蛋白質 E T 2 4 0 の遺伝子と最も高い相同性を有す る塩基配列はゥシ由来の 7 回膜貫通型受容体蛋白質 P P R 1 の c D N Aであ リ 、 マウス型及びヒ ト型 E T 2 4 0 との相同 性はそれぞれ 8 2 . 0 %と 8 8 . 4 %だった。 しカゝし、 上記 したよ う に、 P P R 1 は本発明の蛋白質及び D N Aと全く 異 なる配列である。 Table 4 shows that among the cDNA sequences registered in GenBank, the top 10 cDNAs with high homology to the gene encoding the full length human ET240 of the present invention and their homology showed that. The cDNAs that were found to have a high degree of homology with the gene encoding human ET240 of the present invention were all cDNAs of the seven-transmembrane receptor protein. None of the nucleotide sequences determined to be the same as human ET240 of the present invention was found. Therefore, human ET240 was confirmed to be a novel sequence. Similar to the amino acid sequence search results, the nucleotide sequence having the highest homology with the gene of the seven-transmembrane receptor protein ET240 of the present invention is a seven-transmembrane type protein derived from Escherichia coli. The homology between the cDNA of the receptor protein PPR1 and the mouse and human ET240 was 82.0% and 88.4%, respectively. And then As described above, PPR1 has a completely different sequence from the protein and DNA of the present invention.
又、 上記のデータベースによるサーチの結果において、 本 発明の E T 2 4 0 と高い相同性を示す c D N Aがすべて 7回 膜貫通型受容体である こ とからも、 本発明のマ ウス型及びヒ ト型の E T 2 4 0が 7 回膜貫通型受容体に属する蛋白質であ るこ とが示唆された。 In addition, the results of the search using the above database show that all the cDNAs having high homology to ET240 of the present invention are seven-transmembrane receptors, indicating that the mouse type and the human type of the present invention are used. It has been suggested that G-type ET240 is a protein belonging to the seven-transmembrane receptor.
本発明は、 ヒ ト型 E T 2 4 0全長蛋白質及びその部分配列 からなる断片べプチ ドである。 The present invention relates to a fragment peptide comprising a human full-length ET240 protein and a partial sequence thereof.
本発明の蛋白質を取得する方法は特に限定されないが、 具 体的には、 ア ミ ノ酸配列の情報を基に合成ペプチ ドを調製す る方法、 又はべプチ ドをコ一ドする遺伝子を宿主細胞に導入 してべプチ ドを合成する方法が挙げられる。 ぺプチ ドをコ一 ドする遺伝子を宿主細胞に導入してペプチ ドを合成する方法 と し " は、 成 [ K r i e g 1 e r , Gene Trans f er ana Express i on -A Laboratory Manua l , Stockton Press, ( 1990 ) ; および横 田 ら、 バイオマニュ アルシ リ ーズ 4 , 遺伝子導入と発現 ' 解 析法、 羊土社、 1 9 9 4〕 によって知られている多数の方法 を参照する こ とができ る。  The method for obtaining the protein of the present invention is not particularly limited, but specifically, a method for preparing a synthetic peptide based on the amino acid sequence information, or a method for encoding a peptide. A method of synthesizing a peptide by introducing it into a host cell may be mentioned. A method for synthesizing a peptide by introducing a gene encoding the peptide into a host cell is described in "Krieg 1 er, Gene Transferana Expression-A Laboratory Manual, Stockton Press. , (1990); and a number of methods known by Yokota et al., Biomanual Series 4, Gene Transfer and Expression 'Analysis, Yodosha, 1994]. it can.
ヒ ト型 E T 2 4 0及びその断片は、 診断を 目的と した抗体 の作成や、 治療を 目的と した医薬品の検索に有用である。 マ ウス型 E T 2 4 0がマウスの E A E発症性 T細胞に発現して いるこ とから、 例えば、 多発性硬化症を含む自 己免疫性疾患 の診断や、 多発性硬化症を含む自 己免疫性疾患の治療を 目的 と した医薬品の検索に特に有用である。 また、 粘膜系の リ ン パ球系白血球に発現している こ とから、 自己免疫性消化管疾 患の診断、 治療を目的と した医薬品の検索に特に有用である。 ヒ ト型 E T 2 4 0蛋白質の部分配列からなるぺプチ ドは、 全長蛋白質と 同様に、 抗体の作製、 リ ガン ドのス ク リ ーニン グ、 及び E T 2 4 0 に結合 して白血球細胞の反応を制御した リ疾患の治療を行う物質を検索する上で有用である。 抗体の 作成、 即ち、 抗原と して用いるペプチ ドと しては、 例えば、 細胞外領域又は細胞質内領域に相当する部位の 5 〜 8 アミ ノ 酸残基のペプチ ドが適当である。 リ ガン ド等のスク リ ーニン グに用いる部分ペプチ ドと しては、 例えば、 Ε Τ 2 4 0の リ ガン ド結合部位と考えられる Ν末細胞外領域 (配列番号 2 の 1 〜 2 9番目 のア ミ ノ酸残基) や、 更に第 1 細胞外ループ部 (配列番号 2 の 9 7 〜 1 0 8番目 のア ミ ノ酸残基) 又は第 2 細胞外ループ部 (配列番号 2 の 1 7 8 〜 1 9 5番目 のァ ミ ノ 酸残基) を含むペプチ ドを用いる こ とができ る。 Human ET240 and its fragments are useful for the production of antibodies for diagnostic purposes and for the search of drugs for therapeutic purposes. Since mouse-type ET240 is expressed in EAE-causing T cells in mice, for example, diagnosis of autoimmune diseases including multiple sclerosis and autoimmunity including multiple sclerosis It is particularly useful for searching for drugs intended for the treatment of sexually transmitted diseases. In addition, since it is expressed on mucosal lymphocyte leukocytes, it is particularly useful for searching for drugs for the purpose of diagnosing and treating autoimmune gastrointestinal diseases. Like the full-length protein, the peptide consisting of a partial sequence of the human ET240 protein can be used for antibody production and ligand screening. It is useful in searching for a substance that binds to ET240 and regulates the response of white blood cells to treat a disease. As a peptide used for preparing an antibody, that is, as an antigen, for example, a peptide of 5 to 8 amino acid residues at a site corresponding to an extracellular region or a cytoplasmic region is appropriate. Examples of partial peptides used for screening of ligands and the like include, for example, Ν240, which is considered to be a ligand-binding site, Ν-terminal extracellular region (1st to 29th of SEQ ID NO: 2) Amino acid residue) and the first extracellular loop portion (amino acid residues 97 to 108 of SEQ ID NO: 2) or the second extracellular loop portion (SEQ ID NO: 1 Peptides containing (amino acid residues at positions 78 to 195) can be used.
更に本発明は、 上記したヒ ト型 Ε Τ 2 4 0 をコー ドする D Ν Αである。  Further, the present invention is a D type which codes the above-mentioned human type {240}.
本発明のヒ ト型 E T 2 4 0 をコー ドする D N Aを取得する には、 ヒ トの小腸や心臓などの E T 2 4 0 の発現が確認され ている組織から抽出する力 、 本明細書の配列番号 1 に記載し た塩基配列を基に合成すればよい。 又、 配列番号 1 に記載し たヒ ト型 E T 2 4 0 をコー ドする D N Aを取得するには、 ヒ ト型 E T 2 4 0 の全ア ミ ノ 酸配列をコー ドする c D N Aを含 むプラス ミ ド P E T 2 4 0 Hを導入した形質転換体 E. co l i : INV a F' - p E T 2 4 0 H 〔通商産業省工業技術院生命工学 工業技術研究所 (〒 3 0 5 - 0 0 4 6 日本国茨城県つく ば市 東 1 丁目 1 番 3号) に平成 9年 1 2月 2 2 日 に受託番号 : F E RM B P— 6 2 1 3 と して寄託〕 から単離する こ と もで き る。 In order to obtain DNA encoding human ET240 of the present invention, the ability to extract from a tissue in which the expression of ET240 has been confirmed, such as the small intestine and heart of a human, can be obtained by the method described in the present specification. It may be synthesized based on the nucleotide sequence described in SEQ ID NO: 1. In addition, in order to obtain DNA encoding human ET240 described in SEQ ID NO: 1, cDNA encoding the entire amino acid sequence of human ET240 is included. Transformant into which plasmid PET 240 H has been introduced E. coli: INV a F'-p ET 240 H [Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology 0 4 6 1-3-3 Higashi 1-chome, Tsukuba, Ibaraki, Japan) Contract number: F on February 22, 1997 ERM BP—deposited as 6213).
配列番号 2で表されるア ミ ノ酸配列と実質的に同等なポ リ ペプチ ドをコー ドする D N A、 例えば、 配列番号 1 で示され る塩基配列からなる D N Aは、 本発明のヒ ト 由来の 7回膜貫 通型受容体蛋白質 E T 2 4 0の詳細な機能の検討を行う際に 有用である。  A DNA encoding a polypeptide substantially equivalent to the amino acid sequence represented by SEQ ID NO: 2, for example, a DNA consisting of the base sequence represented by SEQ ID NO: 1 is derived from the human of the present invention. It is useful when examining the detailed function of the ET240, a seven-transmembrane receptor protein of the above.
具体的には、 配列番号 1 の塩基配列、 その塩基配列に相補 的な D N Aや R N A、 それらの中の少な く と も 1 2個以上、 好ま しく は 1 6個以上、 さ らに好ま しく は 1 8個以上の塩基 からなる D N Aや R N A、 あるいはこれら核酸の誘導体を用 いれば、 本発明の 7回膜貫通型受容体蛋白質 E T 2 4 0の c D N A、 c D N Aク ローン、 ゲノ ム D N A、 ゲノ ム遺伝子ク ローンなどを検出する こ とができ る。 必要な核酸の長さはそ の配列の特異性、 検出しよ う と している核酸と の結合の安定 性によって異なるが、 D N Aを用い、 P C R (Po lymerase C ha in React ion) によって目的遺伝子を検出する場合には、 T m ( 2本鎖解離温度) が 4 5 °C以上である こ とが望ま しい。 P C Rのよ う に D N A同士が結合する場合には、 1 つの G C 結合を 4 °Cと し、 1 つの A T結合を 2 °Cと して合算し、 T m を推定するこ と ができ る。 従って G C含量が高い場合には 1 2塩基の、 一般的な 5 0 %位の G C含量の領域では 1 6塩基 の核酸が必要と なる。 又、 D N Aとの結合が安定な核酸誘導 体を用いる場合には、 さ らに短い核酸を用いて 目的遺伝子を 検出する こ と が可能である。 例えば、 診断目的でこれら遺伝 子の発現を調べるためには、 配列番号 1 の塩基配列に相補し 得る核酸、 又はその中の少なく と も 1 2個以上、 好ま しく は 1 6個以上、 さ らに好ま し く は 1 8個以上の塩基からなる核 酸、 つま リ アンチセ ンス D N Aや R N A、 あるいはアンチセ ンス核酸がメ チル化、 メ チルフォ ス フ ェー ト化、 脱ァ ミ ノ化、 またはチォフ ォ スフエ一ト化された誘導体を用いた、 ハイブ リ ダィゼーシ ヨ ン、 プライマーエク ステ ンシ ョ ン、 ヌ ク レア ーゼ · プロテク ショ ン · ア ツセィ 、 逆転写遺伝子増幅 ( R T — P C R ) 法等を採用する こ とができ る。 本明細書の実施例 4 において、 ハイブリ ダイゼーショ ンによる天然 m R N Aの 検出を行った。 Specifically, the nucleotide sequence of SEQ ID NO: 1, DNA or RNA complementary to the nucleotide sequence, at least 12 or more, preferably 16 or more, and more preferably If a DNA or RNA consisting of 18 or more bases or a derivative of these nucleic acids is used, cDNA, cDNA clone, genomic DNA, and the like of the seven-transmembrane receptor protein ET240 of the present invention can be used. Genome gene clones can be detected. The length of the required nucleic acid depends on the specificity of the sequence and the stability of binding to the nucleic acid to be detected, but the target gene is determined by PCR using DNA (polymerase chain reaction). When Tm is detected, it is desirable that Tm (duplex dissociation temperature) be 45 ° C or more. When DNAs bind to each other as in PCR, one GC bond is set at 4 ° C and one AT bond is set at 2 ° C, and the Tm can be estimated. Accordingly, a nucleic acid of 12 bases is required when the GC content is high, and a nucleic acid of 16 bases is required in a region having a general GC content of about 50%. Also, nucleic acid induction with stable binding to DNA When using a body, it is possible to detect the target gene using a shorter nucleic acid. For example, in order to examine the expression of these genes for diagnostic purposes, a nucleic acid which can be complementary to the nucleotide sequence of SEQ ID NO: 1, or at least 12 or more, preferably 16 or more, Preferably, the nucleic acid consists of at least 18 bases, i.e., antisense DNA or RNA, or antisense nucleic acid is methylated, methylphosphated, deaminated, or thiophosphorylated. Hybridization, primer extension, nuclease / protection / assay, reverse transcription gene amplification (RT-PCR), etc., using the phosphorylated derivatives Can be recruited. In Example 4 of the present specification, detection of natural mRNA by hybridization was performed.
更に、 E T 2 4 0 を用いた遺伝子診断の方法と しては、 配 列番号 2 のァ ミ ノ酸配列をコー ドする塩基配列、 即ち D N A や R N A、 又はその中の少なく と も 1 2個以上、 好ま しく は 1 6個以上、 さ らに好ま しく は 1 8個以上の塩基からなる核 酸、 あるレ、はそれらがメ チル化、 メ チルフォスフェー ト化、 脱ア ミ ノ化、 またはチォフ ォ スフエ一ト化されたその誘導体 を用いたゲノ ミ ッ クサザーンハイ ブリ ダイゼーショ ン等が挙 げられる。 同様な方法でラ ッ ト等の他の生物が有する本発明 の遺伝子のホモロ グの検出や、 そのよ う な遺伝子のク 口一二 ングができ る。 更に、 ヒ ト 、 マウスを含めたゲノ ム上の遺伝 子のク ロ一ニングも同様に可能である。 従って、 そのよ う に してク ローニングされたこれらの遺伝子を用いれば、 本発明 の 7 回膜貫通型受容体蛋白質 E T 2 4 0 の更に詳細な機能も 明らかにする こ とができ る。 Furthermore, a method of genetic diagnosis using ET240 includes a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 2, that is, DNA or RNA, or at least 12 nucleotides thereof. As described above, a nucleic acid consisting of preferably 16 or more bases, more preferably 18 or more bases, may be methylated, methylphosphated, deaminated, Or genomic southern hybridization using a chitophosphated derivative thereof. In a similar manner, it is possible to detect homologs of the gene of the present invention in other organisms such as rats, and to close such genes. Furthermore, genetics on genomics including humans and mice Cloning of the child is possible as well. Therefore, by using these genes thus cloned, the more detailed function of the seven-transmembrane receptor protein ET240 of the present invention can be clarified.
本発明の 7 回膜貫通型受容体蛋白質 E T 2 4 0 の更に詳細 な機能を明 らかにする こ と を 目的と して、 細胞や生体へのァ ンチセ ンス核酸の投与も考えられる。 また、 本発明の遺伝子 の異常がヒ トのゲノ ム上に発見されれば、 発見された異常を 遺伝子診断や遺伝子治療へ応用する こ と も可能である。 例え ば、 E T 2 4 0の過剰な反応が病態と なっている疾患につい ては、 これらアンチセ ンス核酸を用いて遺伝子の発現を抑え るこ と によって治療を行う こ と も可能である。 また、 アンチ センス核酸を適当なベク タ一に組み込んで得られる組み換え 体核酸を用いる こ と も可能である。 このよ う なアンチセンス 核酸の作成例 ' 使用例については Mu r r a y , A . H .編、  For the purpose of clarifying the more detailed function of the seven-transmembrane receptor protein ET240 of the present invention, administration of antisense nucleic acid to cells or living organisms is also conceivable. In addition, if an abnormality of the gene of the present invention is found in human genome, the discovered abnormality can be applied to gene diagnosis and gene therapy. For example, it is possible to treat a disease in which an excessive response of ET240 is a condition by suppressing gene expression using these antisense nucleic acids. It is also possible to use a recombinant nucleic acid obtained by incorporating an antisense nucleic acid into an appropriate vector. For examples of the preparation of such antisense nucleic acids ′, see Murray, A.H.
ANTISENSE RNA AND DNA, Wi ley-Liss, Inc. , (1992)、 を参 照する こ とができ る。  ANTISENSE RNA AND DNA, Wiley-Liss, Inc., (1992).
上記のよ う に、 配列番号 1 の D N A、 その相補鎖である核 酸、 及びそれらの誘導体は、 診断や治療に有用である。 本発 明の 7 回膜貫通型受容体蛋白質 E T 2 4 0遺伝子が始めにマ ウスの E A E発症性 T細胞よ リ 見出されたこ とから、 例えば 多発性硬化症を含む自 己免疫性疾患の診断や治療を 目的と し た医薬品の検索に特に有用である。 又、 E T 2 4 0遺伝子は 粘膜系ゃリ ンパ球系の白血球に発現している こ と (実施例 4 を参照) から、 自 己免疫性消化管疾患の診断や治療を 目的と した医薬品の検索に特に有用である と考えられる。 As described above, the DNA of SEQ ID NO: 1, its complementary nucleic acid, and derivatives thereof are useful for diagnosis and therapy. Since the seven-transmembrane receptor protein ET240 gene of the present invention was first found in mouse EAE-causing T cells, it has been shown that autoimmune diseases including multiple sclerosis can be It is particularly useful for searching for drugs for diagnostic or therapeutic purposes. Also, the ET240 gene Because it is expressed on mucosal and lymphocyte leukocytes (see Example 4), it is considered to be particularly useful for drug discovery for the purpose of diagnosing and treating autoimmune gastrointestinal diseases. Can be
更に本発明は、 上記した本発明のいずれかの D N Aを含有 する こ と を特徴とする組換え体 D N Aである。  Furthermore, the present invention is a recombinant DNA, comprising any one of the above-mentioned DNAs of the present invention.
本発明の組換え体 D N Aを調製する為に用いられるべク タ 一と しては特に限定されないが、 通常用いられるベク ターを 利用する こ とができ る。 具体的には、 大腸菌由来の P B R 3 2 2, P U C 8 , p U C 1 9 , p U C 1 8 , P U C 1 1 9 (いずれも 日本国、 宝酒造社製) 、 枯草菌由来プラス ミ ド、 酵母由来プラス ミ ド等のプラス ミ ドベク ター、 え g t 1 0, λ g t 1 1 (いずれも米国、 St ratagene社製) などのバクテ リ オファージベク ター、 レ ト ロ ウイノレスゃワ ク シニアウイノレ スなどの動物ウイノレ ス等が挙げられるが、 その他のものであ つても宿主內で増殖でき る ものであればよい。 本発明の組換 え体 D N Aの具体的な例と しては、 ベク ター p C R 3 . 1 に ヒ ト型 E T 2 4 0 の全ア ミ ノ酸配列をコー ドする c D N Aを 挿入して得たプラス ミ ド P E T 2 4 0 H (実施例 6 を参照) が挙げられる。 P E T 2 4 0 Hを大腸菌 I N V a F ' に遺伝 子導入して得た形質転換体を、 E . c o l i : I N V a F ' — Ρ Ε Τ 2 4 0 Η (寄託番号 : F E RM B P — 6 2 1 3 ) と して、 日本国通商産業省工業技術院生命工学工業技術研究 所 (〒 3 0 5 — 0 0 4 6 、 日本国茨城県つく ば市東 1 丁目 1 番 3号に平成 9年 1 2月 2 2 日) に寄託した。 The vector used for preparing the recombinant DNA of the present invention is not particularly limited, and any commonly used vector can be used. Specifically, PBR32, PUC8, pUC19, pUC18, and PUC119 derived from Escherichia coli (all manufactured by Takara Shuzo Co., Ltd., Japan), Bacillus subtilis-derived plasmid, and yeast-derived Plasmid vectors such as Plasmid, etc. Bacteriophage vectors such as gt10 and λgt11 (both manufactured by Stratagene, USA), and animal violales such as Retro Winorescunia senior Winores. And the like, but any other substances can be used as long as they can be propagated in the host. As a specific example of the recombinant DNA of the present invention, cDNA encoding the entire amino acid sequence of human ET240 is inserted into the vector pCR3.1. The obtained plasmid PET240H (see Example 6) is mentioned. E. coli: INV aF '— 4 Ε 4 240 Η (Deposit number: FE RM BP — 62) 13) The Institute of Biotechnology and Industrial Technology of the Ministry of International Trade and Industry of the Ministry of International Trade and Industry of Japan (〒 30 5 — 0 4 6) No. 3 on February 22, 1997).
また、 本発明の組換え体 D N Aは公知の宿主に導入する こ とが好ま しい。 即ち、 本発明は組換え体 D N Aで形質転換さ れた微生物又は細胞である。  Further, it is preferable to introduce the recombinant DNA of the present invention into a known host. That is, the present invention is a microorganism or cell transformed with the recombinant DNA.
本発明の組換え体 D N Aを導入する宿主は特に限定されな いが、 本発明の組換え体 D N Aを発現可能な微生物又は細胞 である。 具体的には、 ェシエ リ ヒ ア (Escher i chi a) 属菌 ( 大腸菌) 、 バチルス (Bac i l lus) 属菌 (枯草菌) などの原核 細胞に、 カルシウムク ロ ライ ド法等を用いて組換え体 D N A を導入する こ とができ る。 上記ェシエ リ ヒ ア属菌の例と して は、 ェシエ リ ヒ ア コ リ K 1 2 、 H B 1 0 1 , M C 1 0 6 1 , L E 3 9 2 , J M 1 0 9 、 I N V a F ' が挙げられる。 上記バチルス属菌の例と してはバチルス サチ リ ス M l 1 1 4 が挙げられる。 また、 フ ァージベク ターは、 例えば増殖さ せた大腸菌にィ ン ビ ト 口パッケージング法 ( P r 0 c . N a t 1. A c a d · Sc i . 74: 3259- 3263 , 1977 ) を用いて導入するこ と ができ る。 また、 動物細胞、 昆虫細胞などの真核細胞も宿主と して用い るこ と ができ る。  The host into which the recombinant DNA of the present invention is introduced is not particularly limited, but is a microorganism or a cell capable of expressing the recombinant DNA of the present invention. Specifically, prokaryotic cells such as Escherichia (Escherichia) genus (Escherichia coli) and Bacillus (Bacillus subtilis) are assembled using the calcium chloride method or the like. Recombinant DNA can be introduced. Examples of the above Escherichia bacteria include Escherichia coli K12, HB101, MC1061, LE392, JM109, and INVaF '. No. Bacillus subtilis Ml114 is mentioned as an example of the Bacillus genus. The phage vector was introduced into the grown E. coli using, for example, the in vitro packaging method (Pr0c.Nat 1.Acad.Sci. 74: 3259-3263, 1977). can do. Eukaryotic cells such as animal cells and insect cells can also be used as hosts.
更に本発明は、 形質転換体によって、 その細胞膜表面に製 造された 7 回膜貫通型受容体蛋白質である。 具体的には、 ( a ) E T 2 4 0 をコー ドする D N Aを複製可能な発現べク ターに結合して、 該 D N Aと該複製可能な発現べク タ一と を 組込んでなる複製可能な組換え体 D N Aを得、 ( b ) 該複製可能な組換え体 D N Aで微生物又は細胞を形質 転換させて形質転換体を形成せしめ、 Further, the present invention relates to a seven-transmembrane receptor protein produced on the cell membrane surface by a transformant. Specifically, (a) a DNA encoding ET240 is bound to a replicable expression vector, and the replicable expression vector is integrated with the DNA and the replicable expression vector. To obtain a recombinant DNA, (b) transforming a microorganism or cell with the replicable recombinant DNA to form a transformant,
( c ) 該形質転換体を該微生物又は細胞の親細胞から選別し、 ( d ) 該形質転換体を培養して、 該形質転換体に該核酸を発 現させる、  (c) selecting the transformant from the parent cell of the microorganism or cell, and (d) culturing the transformant to cause the transformant to express the nucleic acid,
こ と を包含する方法によって該形質転換体の細胞膜表面に製 造された E T 2 4 0 である。 It is ET240 produced on the cell membrane surface of the transformant by a method including the above.
形質転換体の細胞膜表面に E T 2 4 0 を製造する際に使用 する組換えベク ターは、 ベク タ一に挿入された E T 2 4 0 を コー ドする D N Aの 5 ' 末端に翻訳開始コ ドン、 その 3 ' 末 端に翻訳終止コ ドンを有していてもよい。 翻訳開始コ ドンや 翻訳終止コ ドンは適当な合成核酸アダプタ一を用いて付加す るこ と もでき る。 更に、 目的とする D N Aを発現させるため に、 D N Aの上流にプロモータ一を接続する こ と が好ま しい。 本発明に用いられるプロモーターは、 遺伝子発現に用いる 宿主に対応したプロモータ一であれば特に限定されない。 宿 主がェシエ リ ヒ ア属菌である場合は、 t a c プロモーター、 t r ρ プロモータ一、 1 a c プロモーターなどが好ま しく 、 宿主がバチルス属菌である場合には S P O 1 プロモーター、 S P O 2プロモーターなどが好ま しい。 宿主が原核細胞であ る場合には、 導入する組換え体 D N Aはプロモータ一と と も に リ ボゾーム結合部位を有する こ とが好ま しい。 又、 宿主が 酵母である場合には P G Kプロモータ一、 G A Pプロモータ ―、 A D Hプロモータ一などが好ま しく 、 宿主が動物細胞で ある場合には、 S V 4 0 由来のプロ モーター、 レ ト ロ ウイノレ スのプロ モー ター、 メ タルチオネイ ンプロ モーター、 ヒー ト ショ ッ クプロモーターなどが利用でき る。 The recombinant vector used to produce ET240 on the cell membrane surface of the transformant is a translation initiation codon at the 5 'end of the ET240-encoding DNA inserted into the vector. It may have a translation termination codon at its 3 'end. A translation initiation codon and a translation termination codon can also be added using an appropriate synthetic nucleic acid adapter. Further, in order to express the target DNA, it is preferable to connect a promoter upstream of the DNA. The promoter used in the present invention is not particularly limited as long as it is a promoter corresponding to a host used for gene expression. If the host is a bacterium belonging to the genus Escherichia, a tac promoter, a tr ρ promoter, a 1 ac promoter, etc. are preferred. New When the host is a prokaryotic cell, the recombinant DNA to be introduced preferably has a ribosome binding site together with a promoter. If the host is yeast, PGK promoter, GAP promoter If the host is an animal cell, such as an SV40-derived promoter, a retrovirus promoter, a metalthione promoter, a heat shock promoter, etc. Is available.
本発明の E T 2 4 0 を製造する際に用いる D N Aと しては、 配列番号 2 のア ミ ノ酸配列と実質的に同等の E T 2 4 0 をコ ー ドする D N Aであれば特に限定されない。 具体的には、 配 列番号 1 の塩基配列を用いる こ と ができ る。 又、 特別の機能 を付力 D した E T 2 4 0 を生産するために、 E T 2 4 0 をコー ドする D N Aに公知の塩基配列を結合する こ と もでき る。 例 えば、 膜表面への発現を保証するために、 シグナルペプチ ド をコー ドする D N Aを 5 ' 末端 (ペプチ ドの N末) に付加 し た り 、 産生された蛋白質の検出を容易にするために、 抗原ェ ピ トープをコー ドする D N A等を付加する こ と ができ る。 こ の よ う な技術の一例について、 Choe, H. ら、 Celし 85, 1135 - 1148 , 1996を参照する こ とができ る。  The DNA used for producing ET240 of the present invention is not particularly limited as long as it encodes ET240 substantially equivalent to the amino acid sequence of SEQ ID NO: 2. . Specifically, the nucleotide sequence of SEQ ID NO: 1 can be used. In addition, in order to produce ET240 with a special function D, a known nucleotide sequence can be bound to DNA encoding ET240. For example, to ensure expression on the membrane surface, DNA encoding a signal peptide may be added to the 5 'end (the N-terminus of the peptide) or to facilitate detection of the produced protein. In addition, DNA encoding the antigen epitope can be added thereto. For an example of such a technique, reference can be made to Choe, H. et al., Cels. 85, 1135-1148, 1996.
E T 2 4 0 を製造するための形質転換体は、 上記のよ う に して構築された組換え体 D N Aを、 ベク ターを発現可能な宿 主細胞に導入して得られる。 宿主と して用いられる細胞は、 上記したェシエ リ ヒ ア属菌、 バチルス属菌、 酵母、 動物細胞 などを用いる こ とができ る。 ょ リ 具体的には、 動物細胞が好 ま しく 、 サル細胞である C 〇 S — 7 , V e r 0 細胞、 チヤィ ニーズハムス ター細胞 C H O , カイ コ細胞 S F 9 などが挙げ られる。 A transformant for producing ET240 can be obtained by introducing the recombinant DNA constructed as described above into a host cell capable of expressing a vector. As the cells used as the host, the above-mentioned Escherichia bacteria, Bacillus bacteria, yeast, animal cells, and the like can be used. Specifically, animal cells are preferred, and monkey cells such as C〇S—7, Ver0 cells, Chinese hamster cells CHO, and silkworm cells SF9 are examples. Can be
本明細書の実施例 7及び 9 で行ったよ う に、 上記の組換え 体 D N Aを C H O細胞や 2 9 3細胞に遺伝子導入して形質転 換体を製造する こ とができ る。 形質転換体を培養する こ とに よって、 E T 2 4 0 を形質転換体の細胞膜表面に製造する こ と ができ る。 培養した形質転換体によ る E T 2 4 0 の製造は、 実施例 7 で用いた Wes t ern b 1 o i n g法や F A C S (Fluoresc ence Act i a ted Ce l l Sor t er) によって確認する こ と力;でき る。  As described in Examples 7 and 9 of the present specification, a transformant can be produced by introducing the above-described recombinant DNA into CHO cells or 2993 cells. By culturing the transformant, ET240 can be produced on the cell membrane surface of the transformant. The production of ET240 by the cultured transformant can be confirmed by the Western blot method or FACS (Fluorescence Actuated Cell Source) used in Example 7; it can.
本発明の 7 回膜貫通型受容体蛋白質を用いて、 7 回膜貫通 型受容体蛋白質に対する リ ガン ドのスク リ ーニングを行う こ とができ る。 具体的には、 本発明は、 実質的に純粋な ヒ ト型 E T 2 4 0 、 その部分配列からなるペプチ ド、 又は形質転換 体の細胞膜表面に製造された ヒ ト型 E T 2 4 0 を、 サンプル 材料と接触せ しめ、 E T 2 4 0 あるいはそのべプチ ドと リ ガ ン ドと の結合に対応して起き る変化を指標と して、 7 回膜貫 通型受容体蛋白質と結合し う るの リ ガン ドを検出する こ と を 包含する方法である。  The seven-transmembrane receptor protein of the present invention can be used to screen a ligand for the seven-transmembrane receptor protein. Specifically, the present invention provides substantially pure human ET240, a peptide comprising a partial sequence thereof, or human ET240 produced on the cell membrane surface of a transformant. Contact the sample material and bind to the transmembrane receptor protein seven times, using as an index the change that occurs in response to the binding of ET240 or its peptide to the ligand. It is a method that includes detecting the ligand of the target.
本発明のスク リ ーユング方法に用いられる E 丁 2 4 0 は、 精製した蛋白質でも未精製の蛋白質でもかまわないが、 i n V i V 0と 同様の リ ガン ド結合活性を有する必要がある。 特に、 本発明の E T 2 4 0形質転換体 (即ち、 細胞膜に発現されて いる E T 2 4 0 ) をスク リ ーユングに用いる こ とが好ま しい。 例えば、 実施例 8 で行ったよ う に、 ヒ ト型 7 回膜貫通型受容 体蛋白質 E T 2 4 0 の全長をコー ドする D N Aを包含する組 換えべク タ一によって形質転換された 2 9 3細胞をスク リ ー ニングに用いる こ と ができ る。 E-240 used in the screening method of the present invention may be a purified protein or an unpurified protein, but must have the same ligand binding activity as in ViV0. In particular, it is preferable to use the ET240 transformant of the present invention (that is, ET240 expressed on the cell membrane) for screening. For example, as was performed in Example 8, 293 transfected with a recombinant vector containing DNA encoding the full length of the human seven-transmembrane receptor protein ET240. Cells can be used for screening.
本発明のス ク リ 一二ング方法に用いられる リ ガン ドを包含 する と考えられるサンプル材料は特に限定されないが、 例え ば、 生理的 リ ガン ドが含まれる と考えられる生体由来の組織 や細胞由来の抽出液又は培養上清、 合成化合物や微生物の培 養上清を用いる こ と ができ る。 特に、 本発明の受容体は 7回 膜貫通型受容体蛋白質群に属するため、 リ ガン ドの候補と し ては、 7 回膜貫通型受容体群の リ ガン ドであるケモカイ ン群 に属する物質が考えられる。  The sample material which is considered to include the ligand used in the screening method of the present invention is not particularly limited. For example, a tissue or a cell derived from a living body which is considered to include a physiological ligand Extracts or culture supernatants derived from the culture, and culture supernatants of synthetic compounds and microorganisms can be used. In particular, since the receptor of the present invention belongs to the seven-transmembrane receptor protein group, candidate ligands belong to the chemokine group, which is a ligand of the seven-transmembrane receptor group. Substance is conceivable.
E T 2 4 0 に対する リ ガン ドを検出する方法と しては特に 限定されないが、 例えば、 E T 2 4 0 とサンプル材料を接触 させ、 その結果と して生じた E T 2 4 0 と リ ガン ドと の複合 体の量および または未結合のサンプル材料の量を測定する 方法や、 サンプル材料と E T 2 4 0 と の結合によって引き起 こ される反応を測定する方法が挙げられる。 複合体の量およ び/または未結合のサンプル材料の量を測定する方法と して は、 例えば、 放射性化合物や色素などを用いてサンプル材料 を標識してから E T 2 4 0 と接触せしめ、 その後、 E T 2 4 0 —.リ ガン ド複合体と未結合のサ ンプル材料と を分離し、 標 識を用いて複合体の量および Zまたは未結合のサンプル材料 の量を測定する こ と ができ る。 一例と して、 実施例 8 では放 射標識された リ ガン ド候補化合物と受容体が形成する複合体 の量の測定を行った。 又、 受容体と結合する物質が特定でき ている場合には、 その物質を標識し、 サンプル材料が標識物 質と競合するかど う かをもって、 サンプル材料の結合を測定 する こ と もでき る。 これらの方法の具体例が、 浅沼幹人ら、 実験医学 1 1 , 2 2 〜 2 9 , 1 9 9 3年(J apan)に挙げられ てレヽる。 その他にも、 S P A (Sc int i l l at ion Prox imi t y As say) のよ う に、 E T 2 4 0 — リ ガン ド複合体と未結合のサ ンプル材料と を分離する こ となく 、 リ ガン ドの結合量を測定 する方法もある。 The method for detecting the ligand for ET240 is not particularly limited, but, for example, the sample material is brought into contact with ET240, and the resulting ET240 and ligand are detected. Examples include a method for measuring the amount of the complex and / or the amount of unbound sample material, and a method for measuring a reaction caused by the binding of the sample material to ET240. Methods for measuring the amount of complex and / or the amount of unbound sample material include, for example, labeling the sample material with a radioactive compound, dye, etc., and then contacting the sample material with ET240. The ET240-.ligand complex is then separated from unbound sample material and the amount of complex and Z or unbound sample material are determined using the label. Can be measured. As an example, in Example 8, the amount of a complex formed between the radiolabeled candidate ligand compound and the receptor was measured. If a substance that binds to the receptor can be identified, the substance can be labeled, and the binding of the sample material can be measured based on whether the sample material competes with the labeled substance. Specific examples of these methods are given in Mikito Asanuma et al., Experimental Medicine, 11, 22-29, 1993 (Japan). Other than that, like SPA (Scintill at ion Proximi tity As say), the ligand complex can be separated without separating the ET240-ligand complex from unbound sample material. There is also a method of measuring the amount of binding.
サンプル材料と E T 2 4 0 と の結合によって引き起こ され る反応を測定する方法と しては、 E T 2 4 0 が共役している シグナル伝達系を用いた様々 な方法が考えられる。 このよ う な方法と して、 例えば唐木英明 ら編、 実験医学 7 , p p . 2 6 〜 1 0 9 , 1 9 8 9年(Japan)のよ う に、 細胞内カルシゥ ム濃度を測定する方法、 Samson, M. ら、 Biochem. 35, pp.3362 -3367, ( 1996 ) のよ う にマイ ク ロ フイ ジォメ ーターを用いる 方法、 細胞内 c A M Pの量を測定する方法等が挙げられる。 1 例と して、 実施例 9 では、 L P S投与ラ ッ ト血清を用いた ヒ ト型 E T 2 4 0形質転換細胞の化学遊走を観察した。  As a method for measuring the reaction caused by the binding between the sample material and ET240, various methods using a signaling system to which ET240 is conjugated can be considered. Examples of such a method include a method for measuring intracellular calcium concentration, for example, as described in Experimental Medicine 7, pp. 26-109, 1989 (Japan), edited by Hideaki Karaki et al. Samson, M., et al., Biochem. 35, pp. 3362-3367, (1996), a method using a micrometer, a method for measuring the amount of intracellular cAMP, and the like. As one example, in Example 9, the chemotaxis of human type ET240 transformed cells using LPS-administered rat serum was observed.
又、 本発明の 7 回膜貫通型受容体蛋白質の部分配列からな る断片べプチ ドを用いて リ ガン ドを決定する手法と しては、 B i a C o r e を用いた方法、 樹脂カラムを用いた精製によ る方法などが挙げられる。 B i a C 0 r e は蛋白質と蛋白質 の会合を表面プラズモン共鳴を利用 して検出する装置である (蛋白質 核酸 酵素 V o l . 3 7 : 2 9 7 7〜 2 9 8 4 , , 1 9 9 2 )。 この場合、 精製した本発明のペプチ ド、 好ま し く は N末端細胞外領域部を B i a C o r e のセンサーチップ 上に固定し、 リ ガン ド候補であるサンプル材料をその上に添 加し、 部分ペプチ ドとサンプル材料と の結合 (即ち、 サンプ ル材料が本発明の 7回膜貫通型受容体蛋白質の リ ガン ドであ るかど う 力 を検討する。 また、 本発明の断片ペプチ ドを力 ラムク ロマ ト グラフィー用の樹脂に固定し、 ァフィ 二ティ一 カラムを作製するこ と によ リ 、 例えば、 細胞培養上清中など に存在する ヒ ト型 E T 2 4 0の リ ガン ドをァフィ ニティー精 製する こ とができ る。 このよ う に して精製した リ ガン ドを単 離し、 その同定が可能である。 Further, as a method for determining the ligand using a fragment peptide consisting of a partial sequence of the seven-transmembrane receptor protein of the present invention, Examples include a method using Bia Core and a method using purification using a resin column. BiaC0re is a device that detects the association of proteins with proteins using surface plasmon resonance (Protein Nucleic Acid Enzyme Vol. 37: 2997 7-29884,, 1992) . In this case, the purified peptide of the present invention, preferably the N-terminal extracellular region, is immobilized on a Bia Core sensor chip, and a sample material that is a ligand candidate is added thereto. The binding between the partial peptide and the sample material (that is, the ability of the sample material to be a ligand for the seven-transmembrane receptor protein of the present invention is examined. The fragment peptide of the present invention is also examined. By fixing it to a resin for column chromatography and preparing an affinity column, for example, the ligand for human ET240 present in cell culture supernatants is removed. The ligand purified in this way can be isolated and identified.
上記した本発明の全長蛋白質及びその断片ぺプチ ドを用い たスク リ ーニング方法によって得られる物質は、 E T 2 4 0 に結合して白血球細胞の反応を制御し、 疾患の治療を行う物 質と しての有用性が考えられる。  The substance obtained by the above-described screening method using the full-length protein and its fragment peptide of the present invention is a substance that binds to ET240, controls a reaction of white blood cells, and treats a disease. Is useful.
更に、 本発明の 7回膜貫通型受容体蛋白質 E T 2 4 0に作 用する物質、 即ち、 本発明の蛋白質に対する リ ガン ドを発見 した場合には、 E T 2 4 0 と リ ガン ドと の作用を変化させる 物質、 即ち、 結合によって生じる反応を活性化 した り 、 逆に 活性化を阻害 した り する物質を検索する こ と も可能である。 具体的には、 実質的に純粋なヒ ト型 E T 2 4 0 、 その部分配 列からなるぺプチ ド、 又は形質転換体の細胞膜表面に製造さ れたヒ ト型 E T 2 4 0 と 、 その蛋白質又はペプチ ドに対する リ ガン ドをサンプル材料と接触せ しめ、 そ して蛋白質又はべ プチ ドと 、 リ ガン ドとの結合に対応して起き る変化を指標と して、 E T 2 4 0 と リ ガン ドとの結合を阻害し う る物質を検 出する こ と を包含する方法である。 Furthermore, when a substance acting on the seven-transmembrane receptor protein ET240 of the present invention, that is, a ligand for the protein of the present invention, is discovered, ET240 and the ligand are compared. A substance that changes the action, that is, activates a reaction caused by binding, or conversely It is also possible to search for substances that inhibit activation. Specifically, substantially pure human ET240, a peptide comprising a partial distribution thereof, or human ET240 produced on the cell membrane surface of a transformant, and the like. The ligand for the protein or peptide is brought into contact with the sample material, and the change that occurs in response to the binding of the protein or peptide to the ligand is used as an index to determine ET240. This method involves detecting a substance that inhibits binding to a ligand.
具体的なス ク リ ーニング方法と しては、 例えば、 実施例 1 0で行った形質転換体の化学遊走試験を採用する こ とができ る。 又、 E T 2 4 0 に対する リ ガン ドと 同様に、 リ ガン ドと 本発明の蛋白質又はべプチ ドとの結合を阻害する物質は、 7 回膜貫通型受容体蛋白質に結合して白血球細胞の反応を制御 し、 疾患の治療を行う物質と しての有用性が考えられる。 又、 本発明の 7 回膜貫通型受容体蛋白質の部分配列からな る断片ペプチ ドを用いて、 ペプチ ドと リ ガン ドとの結合を阻 害する物質などをスク リ 一ニングする手法と しては、 リ ガン ドを決定する方法と 同様に、 B i a C 0 r e を用いた方法な どを採用する こ とができ る。 更に本発明は、 ヒ ト 由来の 7 回膜貫通受容体蛋白質と結合 し う る抗体である。 As a specific screening method, for example, the chemical migration test of the transformant performed in Example 10 can be employed. In addition, like the ligand for ET240, a substance that inhibits the binding of the ligand to the protein or peptide of the present invention binds to the seven-transmembrane receptor protein and binds to leukocyte cells. It may be useful as a substance that controls reactions and treats diseases. Further, as a method for screening a substance that inhibits the binding between a peptide and a ligand, using a fragment peptide consisting of a partial sequence of the seven-transmembrane receptor protein of the present invention. In the same manner as the method for determining the ligand, a method using BiaC0re can be adopted. Further, the present invention is an antibody capable of binding to a seven-transmembrane receptor protein derived from human.
ヒ ト 由来の 7 回膜貫通型受容体蛋白質を特異的に認識する 抗体を製造する為に用いる抗原と しては、 ヒ ト型 E T 2 4 0 を発現している細胞、 又は全長 E T 2 4 0蛋白質あるいはそ の断片ペプチ ドを精製又は未精製の状態で使用する こ とがで き る。 細胞を抗原と して用いる場合には、 細胞を投与される 受け手の個体に免疫反応を起こ させない ものであれば特に限 定されない。 例えば、 実施例 6 で行ったよ う に、 ヒ ト型の E T 2 4 0 をコー ドする D N Aを有するベク ターを特定のマウ ス個体に由来する細胞に導入し、 得られた形質転換体を、 宿 主細胞の元の個体に戻すこ とによ リ 、 実施例 1 1 と 同様の手 法によってヒ ト型 E T 2 4 0 を特異的に認識する抗体を作製 するこ とができ る。  Antigens used to produce antibodies specifically recognizing the human seven-transmembrane receptor protein include cells expressing human ET240 or full-length ET240. 0 The protein or its fragment peptide can be used in a purified or unpurified state. When cells are used as an antigen, the cells are not particularly limited as long as they do not cause an immune reaction in the recipient individual to whom the cells are administered. For example, as in Example 6, a vector having a DNA encoding human ET240 was introduced into cells derived from a specific mouse individual, and the obtained transformant was used as a transformant. By returning the host cell to its original individual, an antibody that specifically recognizes human ET240 can be produced by the same method as in Example 11.
また、 蛋白質を抗原と して用いる場合には、 ヒ ト型 E T 2 4 0 を特異的に認識する抗体を誘導する こ と ができ る蛋白質 であれば特に限定されないが、 配列番号 2 の ヒ ト型 E T 2 4 0 の全長ア ミ ノ 酸配列を G S T (ダルタチオン S— ト ランス フェラーゼ) などと融合させたものが好ま しい。 この蛋白質 をそのまま、 又は K L H (keyhole— l impet h emo c y a n i n ) や B S A (bovine serum al umin) とレ、つたキャ リ ア蛋白質と 架橋した後に必要に応じてアジュバン ト と共に動物へ接種せ しめ、 その血清を回収する こ とでヒ ト型 E T 2 4 0 を認識す る抗体 (ポ リ ク ロ一ナル抗体) を含む抗血清が得られる。 得 られた抗血清を ゥ シ P P R 1 蛋白質に吸収させる こ と でゥシ P P R 1 蛋白質に反応せず、 ヒ ト型 E T 2 4 0 を特異的に認 識する抗血清を作製する こ とができ る。 When a protein is used as an antigen, the protein is not particularly limited as long as it is capable of inducing an antibody that specifically recognizes human ET240. It is preferable that the full-length amino acid sequence of type ET240 is fused with GST (daltathione S-transferase) or the like. This protein is cross-linked with KLH (keyhole-l-etetemoemocyanin) or BSA (bovine serum alumin) or carrier protein, and then inoculated with an adjuvant, if necessary, to the animal. Recognition of human ET240 by collecting serum An antiserum containing antibodies (polyclonal antibodies) is obtained. Absorbing the obtained antiserum to the Pacific PPR1 protein makes it possible to produce an antiserum that does not react with the Pacific PPR1 protein and specifically recognizes human ET240. You.
更に、 配列番号 2 に記載のア ミ ノ酸配列の部分配列からな る断片べプチ ドも抗体を作製するための抗原と して用いるこ とが可能である。 抗原と しての断片ペプチ ドは、 5個以上、 好ま しく は、 8個以上の連続したァ ミ ノ酸からなる部分配列 であ リ 、 ヒ ト型 E T 2 4 0全長蛋白質の細胞外領域又は細胞 質内領域に相当する部位よ リ得られたぺプチ ドである こ とが ょ リ好ま しい。 本発明のペプチ ドは、 上記した本発明の蛋白 質と同様に、 例えば K L Hや B S Aといったキャ リ ア一蛋白 質と架橋した後に、 必要に応じてアジュバン ト と共に動物へ 接触せしめ、 その血清を回収する こ と によって E T 2 4 0蛋 白質を認識する抗体を含む抗血清を得る こ とができ る。 特に、 リ ガン ドと の結合に重要な N末端細胞外領域の部分配列から なるペプチ ドを抗原に用いれば、 リ ガン ドと本発明の 7 回膜 貫通型受容体蛋白質の結合を阻害するよ う な抗体、 あるいは 逆に、 リ ガン ドの作用を代替するモノ ク 口 一ナル抗体を得る こ とが期待でき る。  Furthermore, a fragment peptide consisting of a partial sequence of the amino acid sequence shown in SEQ ID NO: 2 can also be used as an antigen for producing an antibody. The fragment peptide as an antigen is a partial sequence consisting of 5 or more, preferably 8 or more contiguous amino acids, the extracellular region of human ET240 full-length protein or Preferably, the peptide is obtained from a site corresponding to the intracytoplasmic region. The peptide of the present invention, similarly to the above-described protein of the present invention, is cross-linked with a carrier protein such as KLH or BSA, and then, if necessary, is brought into contact with an animal together with an adjuvant to recover the serum. By doing so, an antiserum containing an antibody that recognizes the ET240 protein can be obtained. In particular, if a peptide consisting of a partial sequence of the N-terminal extracellular region important for binding to the ligand is used as the antigen, the binding of the ligand to the seven-transmembrane receptor protein of the present invention will be inhibited. Such antibodies, or conversely, monoclonal antibodies that substitute for the action of ligands, can be expected to be obtained.
更に、 また、 抗血清よ リ 抗体を精製して使用する こ と も可 能である。 また、 ハイ プ リ ドーマ細胞を作製する公知の方法 に基づき、 モ ノ ク ロ ーナル抗体を作成する こ と も可能である。 抗原を接種する動物と しては、 ヒ ッジ、 ゥシ、 ャギ、 ゥサ ギ、 マウス、 ラ ッ ト等を用いる こ と ができ るが、 ポリ ク ロー ナル抗体の作製にはヒ ッジと ゥサギが好ま しく 、 モノ ク ロー ナル抗体の作成にはマウスが好ま しい。 Further, it is also possible to purify the antibody from the antiserum and use it. In addition, a monoclonal antibody can be prepared based on a known method for preparing a hybridoma cell. As an animal to be inoculated with the antigen, a sheep, a goat, a goat, a rabbit, a mouse, a rat, and the like can be used. And egrets are preferred, and mice are preferred for production of monoclonal antibodies.
更に、 本発明の抗体は、 成書 (Ant ibod ies a l aboratory manua l , E.Har low e t a 1. , Co l d Spr ing Harbor Laborator ) に示された各種の方法及び遺伝子ク ローニング法などによ リ 分離されたィ ム ノ グロプ リ ン遺伝子を用いて、 細胞に発現さ せた遺伝子組換え体抗体と しても作製するこ とができ る。 こ のよ う な方法で作製された抗体は、 本発明のヒ ト型 E T 2 4 0の精製に利用する こ と もでき る。  Furthermore, the antibody of the present invention can be prepared by various methods and gene cloning methods shown in a compendium (Antibodies al aboratory manua l, E. Harlow et al., Cold Spring Harbor Laborator). Using the isolated immunoglobulin gene, it can also be produced as a recombinant antibody expressed in cells. The antibody produced by such a method can also be used for purification of human ET240 of the present invention.
本発明のヒ ト由来の 7 回膜貫通型受容体蛋白質 E T 2 4 0 と結合し う る抗体 (例えば、 実施例 1 1 で作成した抗体) を 利用 して、 ヒ ト型 E T 2 4 0 の検出や測定を行う こ と ができ る。 従って、 本発明の抗体は、 細胞の分化異常を伴う疾患、 例えば悪性腫瘍、 ウィルス感染、 自 己免疫性疾患などの診断 薬と して使用する こ と も可能である。 ヒ ト型 E T 2 4 0 の測 定ゃ検出を行う方法と しては、 実施例 7 で行ったよ う な、 We s t ern Bl ot t ing, や F A C S l uo rescence Ac t ivat ed C e 1 1 Sor t e r ) などを採用する こ とができ る。 例えば、 An t i bo d i e s l abo ratory manua l , E.Har l ow e t aに , Co l d S r i ng H a r b o r Labo ra tory, p p .471— 510に(ま、 Wes tern Blo t t ing ( I mmu nob 1 o t t i ng) を用いた蛋白質ゃぺプチ ドの検出及び測定の方 法の詳細が挙げられてお り 、 免疫沈降や免疫測定などに関し ては、 同書 PP.421 - 470と pp.553 - 612にそれぞれ詳細が記され ている。 また、 天神美夫ら編、 フ ロ ーサイ ト メ ト リ ーハン ド ブック 、 サイ エンス フォーラム社、 1 9 8 4年(j apan)の第 4部 「 フ ロ ーサイ ト メ ト リ 一の臨床医学への応用」 に、 F A C S を用いた臨床診断の例が挙げられている。 F A C S の際 の細胞の染色については、 高津聖志、 瀧伸介、 免疫研究の基 礎技術、 羊土社、 1 9 9 5年、 p p .16-61に記載がぁ リ 、 F A C S の操作については、 天神美夫ら編、 フ ロ ーサイ ト メ ト リ 一ハン ドブッ ク 、 サイ エンスフ ォーラ ム社、 1 9 8 4年 Π a p an)に詳細が示されている。 Utilizing an antibody capable of binding to the human seven-time transmembrane receptor protein ET240 of the present invention (for example, the antibody prepared in Example 11), the human ET240 is produced. Detection and measurement can be performed. Therefore, the antibody of the present invention can also be used as a diagnostic agent for diseases associated with abnormal cell differentiation, such as malignant tumors, viral infections, and autoimmune diseases. As a method for measuring and detecting the human ET240, Western Blotting, FACS Luo rescence Ac tivat ed Ce11 as described in Example 7, and the like. Sorter) can be adopted. For example, in Antibodiesl abo ratory manua l, E. Harlow eta, Cold Sirng Harbor Labo ra tory, pp. 471—510 (in addition, Wes tern Blo tt ing nob 1 otti ng) for the detection and measurement of protein peptides.For immunoprecipitation and immunoassay, see PP.421-470 and pp.553- Details are given in 612 respectively. In addition, edited by Tenjin Mio et al., Flow cytometry handbook, Science Forum, Japan, Part 4 of 1998 (japan). Application of FACS provides an example of clinical diagnosis using FACS. For details on the staining of cells during FACS, see Seiji Takatsu and Shinsuke Taki, Basic Techniques for Immunological Research, Yodosha, 1995, pp. 16-61. The details are shown in the book “Flow Site Metrics Handbook, Science Forum, Inc., edited by Mio Tenjin et al., 1998, Πap an).
以上のよ う に、 配列番号 2 で表されるア ミ ノ 酸配列と実質 的に同一のア ミ ノ酸配列を含有する こ と を特徴とする ヒ ト型 E T 2 4 0 に対する抗体は、 ヒ ト型 E T 2 4 0 を発現してレヽ る細胞を同定する上で有用である。  As described above, an antibody against human ET240 that is characterized by containing an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 The present invention is useful for identifying cells expressing ET240.
更に本発明は、 マ ウス型 E T 2 4 0蛋白質の断片である。 即ち、 配列番号 4 に記載のア ミ ノ酸配列を有する こ と を特徴 とする実質的に純粋なマウス由来の 7 回膜貫通型受容体蛋白 質の断片である。  Furthermore, the present invention is a fragment of a mouse-type ET240 protein. That is, a substantially pure mouse-derived seven-transmembrane receptor protein fragment having the amino acid sequence of SEQ ID NO: 4.
又、 本発明は上記のマウス型 E T 2 4 0 断片をコー ドする D N Aである。 具体的には、 配列番号 3 に記載の塩基配列を 有する こ と を特徴とする、 マウス由来の 7 回膜貫通型受容体 蛋白質の断片をコ一 ドする単離された D N Aである。 Further, the present invention is a DNA encoding the above-mentioned mouse ET240 fragment. Specifically, a mouse-derived seven-transmembrane receptor characterized by having the nucleotide sequence of SEQ ID NO: 3 An isolated DNA that encodes a protein fragment.
本発明のマ ウス由来の 7 回膜貫通型受容体蛋白質の断片は、 マウス型 E T 2 4 0 の第 2膜貫通領域から C末端までの大き な断片である。 そ して、 新規な 7 回膜貫通型受容体蛋白質が 始めて見出されたのがマウス細胞である こ と 、 そ して実施例 3 のノ ーザンハイブ リ ダイゼーショ ンの結果からマウス型 E T 2 4 0 の発現がマウスの肺や心臓において確認されたこ と 力 ら も、 このマウス型 E T 2 4 0 の断片及びそれをコー ドす る D N Aを用いれば、 マウス型 E T 2 4 0 の全長蛋白質及び それをコー ドする D N Aを単離する こ と は容易である。 マウ スでは様々 な遺伝子操作技術が発達しているので、 ト ラ ンス ジエ ニ ッ クマ ウス、 ジーンターゲッティ ングマウス、 また、 本発明の遺伝子と関連する別の遺伝子を共に不活化したダブ ルノ ッ ク ァ ゥ トマウスなどの手法を用いて本発明の 7 回膜貫 通型受容体蛋白質 E T 2 4 0 の更に詳細な機能を明 らかにす るこ と も可能である。 従って、 マウス型 E T 2 4 0 の全長蛋 白質及びそれをコー ドする遺伝子は、 本発明のヒ ト型 E T 2 4 0の全長蛋白質及びそれをコー ドする D N Aと同様に、 白 血球の機能が関与する疾患の治療又は予防に有用な物質のス ク リ ーニ ングゃ、 そのよ う な疾患の診断方法や診断剤を作成 に応用する こ と もでき る。 発明を実施するための最良の形態 The mouse-derived seven-transmembrane receptor protein fragment of the present invention is a large fragment from the second transmembrane region to the C-terminus of mouse ET240. Furthermore, the mouse cells were the first to find a novel seven-transmembrane receptor protein, and the results of Northern hybridization in Example 3 showed that mouse-type ET240 Expression was confirmed in the lungs and hearts of mice, the use of this mouse-type ET240 fragment and the DNA encoding the same enabled the expression of the mouse-type ET240 full-length protein and its protein. It is easy to isolate the coding DNA. Due to the development of various genetic engineering techniques in mice, transgenic mice, gene targeting mice, and double knockers that inactivate another gene related to the gene of the present invention. It is also possible to clarify more detailed functions of the seven-transmembrane receptor protein ET240 of the present invention by using a technique such as a mouse. Therefore, the mouse ET240 full-length protein and the gene encoding the same have the same function as the human ET240 full-length protein of the present invention and the DNA encoding the same. Screening of substances useful for the treatment or prevention of the diseases involved, and methods for diagnosing such diseases and diagnostic agents can also be applied. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例及び比較例によ り 本発明を具体的に説明する が、 これらは本発明の範囲を限定する ものではない。 実施例 1 マウス由来の新規な 7 回膜貫通型受容体蛋白質 の断片の取得  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but these do not limit the scope of the present invention. Example 1 Obtaining a novel seven-transmembrane receptor protein fragment derived from mouse
( 4 R 3 1 2株の樹立)  (Establishment of 4R312 shares)
M B P (myel in bas ic rotein) のペプチ ド (配列表配列 番号 1 9 のア ミ ノ酸配列) を米国、 App l ied Biosyst ems社製 4 3 O A型ぺプチ ド合成機を用いた固相法にて合成し、 1 6 m g /m l の M B Pペプチ ド溶液を調製した。 次に、 完全フ ロイ ン トアジュバン ド (米国、 Di f co社製) に結核死菌 (青 山 B株) (日本ビーシージ一、 日本国、 国立予防衛生研究所 から入手) を最終濃度 4 m g /m l になる よ う に加え、 アジ ュバン ド溶液と した。 M B Pペプチ ド溶液 9 0 0 μ 1 と こ の アジュバン ド溶液 9 0 0 μ 1 をガラス注射筒でよ く 混合し、 M B Pぺプチ ドの濃度が 8 m g Zm 1 の M B Pぺプチ ドエマ ルジ ョ ン溶液と した。  Solid phase method using MBP (myel in basic rotein) peptide (amino acid sequence of SEQ ID NO: 19 in the Sequence Listing) using a 43 OA peptide synthesizer manufactured by Applied Biosystems, USA And a 16 mg / ml MBP peptide solution was prepared. Next, tuberculosis-killed bacteria (Aoyama B strain) (obtained from Nippon BSI, Japan, National Institute for Preventive Health) was added to complete Freund's adjuvant (manufactured by Difco, USA) at a final concentration of 4 mg / day. ml, and the solution was made into an adjuvant solution. The MBP peptide solution 900 μl and the adjuvant solution 900 μl are mixed well in a glass syringe, and the MBP peptide concentration is 8 mg Zm 1 and the MBP peptide emulsification solution is mixed. And
この M B Pぺプチ ドエマルジョ ン溶液を、 S J L / J マウ ス ( 9週齢、 メ ス ; 日本国、 日本チヤ一ルス リ バ一ょ リ入 手) の両後肢躕の皮下に 2 5 μ 1 ずつ注入した。 さ らに 1 μ g の islet act ivat ing protein (日本国、 科研製薬社製) 溶液 ( 5 g /m i ) を、 免疫直後および 2 日後に尾静脈よ リ 2 0 0 μ 1 の生理食塩水溶液と して注入した。 This MBP peptide emulsion solution was subcutaneously injected into both hind limbs L of SJL / J mouse (9 weeks old, female; obtained from Japan, Japan, Japan) with 25 μl each. did. Further, 1 μg of islet activating protein (manufactured by Kaken Pharmaceutical Co., Ltd., Japan) solution (5 g / mi) was added to the tail vein immediately after immunization and 2 days later. A 200 μl saline solution was injected.
肉眼での観察によ り 臨床症状的に E A E ( expe r imen t a l a l l e r g i c encepha l omye l i t i s ; を発症してレヽるマウスを選び 出 し、 免疫後 6 3 日 目 に、 腋窩、 鼠径及び膝窩 リ ンパ節を採 取した。 リ ンパ節をメ スで細かく 切ったのち、 シ リ コ ン栓を 用いて、 1 5 0番のメ ッシュでこ し、 単細胞懸濁液と した。 こ の単細胞懸濁液を 1 0 μ g / m 1 の M B Pぺプチ ドを含む 培地 〔 5 % F C S (ゥシ胎児血清 ; B i 0 s e r 社ょ リ入手) を 含む C l i ck' s EHAA 培地(米国、 i rv i ne S c i e n t i Π c社製 Caし No .9582) で継代培養した。 いずれの培養も、 細胞数を 4 X 1 0 6 細胞/ m l に調整し、 2 5 c m 2 のフ ラ ス コ (米国、 Co rn i ng社製) に 1 0 m l フ ラ ス コ で加え、 フ ラ ス コ を立 てて培養を開始した。 Based on visual observation, mice were selected to develop clinical symptoms of EAE (experimentalallergic encephalomye litis) and selected, and on day 63 after immunization, axillary, inguinal and popliteal lymphocytes were selected. The lymph node was cut into small pieces with a female thread, rubbed with a silicone stopper using a mesh No. 150 to obtain a single cell suspension. The solution was added to a medium containing 10 μg / m 1 MBP peptide [Click's EHAA medium (US, irv, containing 5% FCS (petal fetal serum; obtained from Bioser)). The cells were sub-cultured in a Ca strain from Ine S cienti Πc Co. No.9582) In each culture, the cell count was adjusted to 4 × 10 6 cells / ml, and a 25 cm 2 (Corning, USA) with 10 ml flask and the culture was started with the flask standing.
継代用の培地には以下の因子を添加した。 1 0 μ g / 1 の コ ンカナパ リ ン A (米国、 S i gm a社製) および 1 % F C S を含む R P M I 1 6 4 0培地 (米国、 GIBCO BRL社製) で 1 0 6細胞/ m 1 の S Dラ ッ ト (チヤ一ルス リ バ一) の脾細 胞を 4 8 時間刺激後、 上清を回収 し、 終濃度が 2 0 m g Z m 1 になる ょ ぅ に(1ー111611^ 1—0— 1113111105 ; (16を添カ卩 し、 R G F ( Ra t Gr owt h Fac t o r ) と した。 また、 l n g / m l のホルボー ノレ ミ リ ステ一 トアセテー ト (米国、 S i gma社製) を含む D — M E M ( G I BCO- BR L社製 ; 5 % F C S を含む) で 1 0 6 細胞 Z m l に調製したマ ウス E L 4 . I L — 2細胞 ( A T C C よ リ入手可能。 A T C C T I B — 1 8 1 ) を 2 4時間刺激後、 培養上清を回収し、 T細胞の増殖因子である I L一 2の供給 源と なる E L 4 s u p を得た。 The following factors were added to the subculture medium. 1 0 mu g / 1 of co Nkanapa Li down A (US, S i gm a Inc.) and RPMI 1 6 4 0 medium containing 1% FCS (US, GIBCO BRL Co.) 1 0 6 cells / m 1 After stimulating the spleen cells of an SD rat (Chart River) for 48 hours, the supernatant was collected and the final concentration was 20 mg Zm1 (1-1111611 ^ 1). —0— 11131111 0 5; (Add 16 and add RGF (Rat Growth Factor). Also, lng / ml phorbo noremyristate acetate (Sigma, USA) D including) - MEM (GI BCO- BR L manufactured;. in containing 5% FCS) 1 0 6 mice EL 4 was prepared in a cell Z ml IL - 2 cells (ATCC Re-available. After stimulating ATCCTIB-181) for 24 hours, the culture supernatant was collected to obtain EL4sup as a source of IL-12, a growth factor of T cells.
前記の リ ンパ節細胞の培地を、 培養 6 日 目 に継代培地 〔 C 1 i ck' s EHAA培地、 5 % F C S、 1 5 % R G F、 E L 4 s u p On the 6th day of culture, the above-mentioned lymph node cell culture medium was subcultured (C1ick's EHAA medium, 5% FCS, 15% RGF, EL4sup).
1 %を含む〕 に交換し、 同 じ培地で 4 X 1 06 細胞/ m 1 となる よ う に調整し、 2 4穴プレー トに 1 . 2 m l ノ穴で分 注し、 5 %二酸化炭素雰囲気中 3 7 °Cで培養した。 1%), adjust to 4 × 10 6 cells / m 1 in the same medium, dispense into a 24-well plate with 1.2 ml no-well, and add 5% The cells were cultured at 37 ° C in a carbon atmosphere.
約 1 週間の培養後、 1 g /m l の MB Pペプチ ドおよ び約 2 X 1 06 細胞/ m 1 の抗原提示細胞 ( S J L Z J マウ スの脾細胞を 3 0 0 0 Rで X線照射して調製した) の存在下 で、 上記のマ ウス単細胞を 5 %二酸化炭素雰囲気中 3 7 °Cで 培養し (抗原刺激) 、 約 1 週間後に継代培地に培地を交換し、 さ らに 5 %二酸化炭素雰囲気中 3 7 °Cで約 1 週間培養 した。 これを培養の 1 サイ クルと し、 2週間ごと にこの培養サイ ク ノレを繰り 返した。 継代の際に植える細胞の数は徐々 に減ら し、 最終的には 2 . 5〜 5 X 1 05 細胞/ m 1 で継代培養を行つ た。 After about 1 week of culture, 1 g / ml of MB P peptide Dooyo beauty about 2 X 1 0 6 X-ray irradiated cells / m 1 of antigen-presenting cells (SJLZJ mouse splenocytes with 3 0 0 0 R The mouse single cells described above were cultured at 37 ° C in a 5% carbon dioxide atmosphere (antigen stimulation) in the presence of), and after about one week, the medium was replaced with a subculture medium. The cells were cultured at 37 ° C for about 1 week in a 5% carbon dioxide atmosphere. This was defined as one cycle of culture, and the culture cycle was repeated every two weeks. The number of cells to be planted during the passage was gradually reduced, and subculture was finally performed at 2.5 to 5 × 10 5 cells / ml.
こ の培養を 3サイ クル繰 り返した後、 限外希釈によ リ個々 のク ローンに分割した。 単離したク ローンの中で、 in vitro で M B P抗原べプチ ドに反応する ものを選び、 次にそのク ローンをマウスに注入し、 E A Eの発症 (尾部の緊張喪出及 び後肢麻痺) に基づき 目的のク ローンを選択した。 その う ち の 1 ク ローンを 4 R 3 1 2株と命名 した。 4 R 3 1 2株も上 記と 同様に培養サイ ク ルを繰リ返して拡大培養 し、 以降の実 験に用いた。 After repeating this culture for 3 cycles, each clone was divided into individual clones by ultra-dilution. Select clones that respond to the MBP antigen peptide in vitro, and then inject the clones into mice to develop EAE (tail loss of tail tone and hind limb paralysis). The target clone was selected based on this. That way One clone was named 4R312 strain. The 4R312 strain was also subjected to expanded culture by repeating the same culture cycle as described above, and used in subsequent experiments.
( 4 R 3 1 2株の E A E発症性の確認) (Confirmation of AE onset of 4R312 strain)
4 R 3 1 2株を拡大培養し、 抗原刺激後 3 日 目 の 4 R 3 1 2株細胞 5 X 1 0 6個を 2匹の S J L Z J マウス ( 8週齢、 メ ス ; チヤ一ルス リ バ一社よ リ購入) に尾静脈よ リ 注入した。 肉眼によ る症状観察にょ リ 、 一匹は 5 日 目 に、 も う 一匹は 6 日 目 に E A Eの発症が観察された。 4 R 3 1 culture expanded the two strains, 4 R 3 1 2 strain cells 5 X 1 0 6 pieces of 2 mice SJLZJ mice (8 weeks of age 3 days after antigen stimulation, main scan; Chiya one pulse Li server Was injected into the tail vein. EAE onset was observed on day 5 in one animal and on day 6 in the other animal by visual observation.
(マ ウ ス由来の新規 7 回膜貫通型受容体蛋白質の c D N A断 片の取得) (Acquisition of cDNA fragment of novel seven-transmembrane receptor protein derived from mouse)
マ ウ ス 4 R 3 1 2株を拡大培養し、 全体で約 1 X 1 0 7 個 の細胞を培養して材料と して使用 した。 ピベッティ ングによ リ 、 細胞を懸濁後、 1 0 0 0 r p mで 1 5分の遠心 ( K S — 8 3 0 0型、 日本国、 久保田製作所製 ; R S 3 0 0 0 / 6型 口一ターを使用) 後、 上清を吸引 ' 廃棄し、 P B S (Phosph ate Buf f ered Sa l ine) (日本国、 大日本製薬 (株) 製、 Caし No . 28- 103 -05 ) を 3 0 m 1 加え懸濁後、 再度同 じ条件で遠 心した。 以下、 Qu i ck Prep mRNA Pur i f i cat i on Ki t (ス ゥェ —デン国、 Pharmac i a Bi ot ech社製) を用い、 製造者のプロ ト コノレ (Rev.4. XV— 025— 00— 07) の 1 1 〜 1 4 頁 ίこ従って m R N Aを抽出 した (但し、 s econd co l umn pu r i f i c a t i on ίまネ亍わ なかった) 。 エタ ノ ール沈殿後、 Mo l ecu l a r C l on i ng, A l ab o r a t o r manua l , (1989) , Samb r ook, J . , Fr i t s ch, E. F. , and M a n i a t i s , T . Eds . , Co l d Sp r i ng ha r bo r Labo r a t o r y Pr es s の E5, Sp ec t ro pho t ome t r i c De t e rm i na t i on o f t he Amount o f DNA o r RNAに従って R N Aを定量した。 得られた R N A約 2 μ g を用レヽ、 Supe rsc r i p t Cho i c e Sys t em f o r cDNA Syn t h e s i s (米国、 L i f e T e c h n o 1 o g i e s社製) 添付の 5 X F i r s t s t r and bu f f e r Ι Ο μ Ι , 0 . I m M D T T 5 ^ 1 . RNa s i n (米国、 P r omega社製) 5 μ 1 、 R as e f r e e DNas e ( ドィ ッ国、 Bo e rh i nge r社製) 1 μ 1 を加え、 滅菌水で全量を 5 0 μ 1 に し、 室温で 5分間放置した。 その後、 フ エノール ' ク ロ ロ フオルム抽出、 エタ ノール沈殿後、 次のよ う に c D N A 合成を行った。 Ma c scan 4 R 3 1 culture expanded 2 strain was used as a material by culturing about 1 X 1 0 7 cells in total. After suspending the cells by pipetting, centrifuge at 100 rpm for 15 minutes (KS-8300, manufactured by Kubota Seisakusho, Japan; RS300 / 6/6) ), Aspirate the supernatant, discard the supernatant, and apply PBS (Phosphate Buffered Saline) (Dainippon Pharmaceutical Co., Ltd., Japan; Ca. No. 28-103-05) 30 m After adding 1 suspension, it was centrifuged again under the same conditions. Hereafter, the manufacturer's protocol (Rev.4. XV—025—00—) was used using Quick Prep mRNA Purifi cat on Kit (Spain, manufactured by Pharmacia Biotech). 1 1 to 1 page 4 of 07) ί this therefore m R NA was extracted (however, s econd columum purification was not extracted). After ethanol precipitation, Moecullar Cloning, Alaborator manua l, (1989), Sambrook, J., Fr its ch, EF, and Maniatis, T. Eds., RNA was quantified according to E5, Spec tro pho to ome tric e ti n a tio n Amount of DNA or RNA of Cold Spirng Harbor Labo r espresses. Approximately 2 μg of the obtained RNA was used as a suspension, and 5 XF irststr and bufffer Ο, μ Ι, 0 Su Im MDTT 5 ^ 1. Add 5 μl of RNa sin (Promega, USA) and 1 μl of Rasefree DNase (Boehr inger, Germany) and sterilize. The total volume was adjusted to 50 μl with water and left at room temperature for 5 minutes. After that, phenol-chloroform extraction and ethanol precipitation were performed, and cDNA synthesis was performed as follows.
Supe r sc r i p t Cho i c e Sys t em f o r c DNA S n t he s i s (米国、 U i e Techno l og i e s製) を用いて c D N A合成を行った。 プ 口 ト コノレの 1 1 〜 1 7 頁 (Pro t oco l 1 および 2 ) に従い、 o l i go (dT) プライ マーを用いて 2重鎖 ( d s ) D N Aを合成 した。 その後、 フエ ノ ール ' ク ロ ロ フォルム抽出、 エタ ノ ー ル沈殿後、 4 0 μ 1 の滅菌水に合成した c D N Aを溶解した (これを c D N Aサンプルと呼ぶ) 。  CDNA synthesis was performed using Supe r sc r ip pt Cho ic Sys tem fo rc DNA Snt he s ys (manufactured by Uie Technolog ies, USA). A double-stranded (ds) DNA was synthesized using oligo (dT) primer in accordance with pages 11 to 17 (Protocol 1 and 2) of P. Tokonore. Then, after phenol / chloroform extraction and ethanol precipitation, the synthesized cDNA was dissolved in 40 μl of sterilized water (this is referred to as a cDNA sample).
この c D N Aサンプルの う ち 4 1 を用いて P C R ( po l y m e r a s e cha i n r eac t i on) 行った„ P C Rは T a q ポ リ メ ラ一ゼ (日本国、 宝酒造社製、 コー ド R 0 0 1 A) を用いた。 酵素に添付のバッ ファーを 5 μ 1 , 酵素に添付の dNTP m i X t u re 4 μ 1 と配列表の配列番号 5 に示した合成オリ ゴヌ ク レ ォチ ド Α および、 配列表の配列番号 6 に示 した合成オリ ゴ ヌ ク レオチ ド B をそれぞれ 2 0 0 p m o 1 力 Dえ、 最終容量 5 0 μ 1 と した。 PCR (Polymerase cha in reaction) was performed using 41 of the cDNA samples. Raze (Code R001A, manufactured by Takara Shuzo, Japan) was used. 5 μl of the buffer attached to the enzyme, 4 μl of the dNTP mixture attached to the enzyme and the synthetic oligonucleotide Α shown in SEQ ID NO: 5 in the Sequence Listing, and SEQ ID NO in the Sequence Listing Each of the synthetic oligonucleotides B shown in Fig. 6 was subjected to a force of 200 pmo1, and the final volume was set to 50 µl.
この混合物を、 TaKaRa PCR thermal Cyc ler 480 (日本国、 宝酒造社製) を用いて、 9 5 °C 1 分、 4 0 °C 2分、 7 2 °C 3 分を 5 サイ ク ル行ったのち、 9 5 °C 1 分、 5 0 °C 2分、 7 2 °C 3分を 2 5 サイ クル行った。 得られた P C R産物の一部を 1 . 5 %ァガロース . ゲル中で電気泳動を行い、 ェチジゥム ブロマイ ド ( 日本国、 日本ジーン社製) にて染色後、 紫外線 下で観察し、 約 7 0 0 b p の c D N Aが増幅されてレ、る こ と を確認した。 このバン ドをゲル力 ^ら切 リ 出 して Sup〖ec01 ( 日本国、 宝酒造社製) で精製後、 TA c loningキ ッ ト (オラ ン ダ国、 I n V i t f 0 g e n社製) を用いてク ローユングした。 The mixture was subjected to 95 ° C for 1 minute, 40 ° C for 2 minutes, and 72 ° C for 3 minutes for 5 cycles using TaKaRa PCR thermal Cycler 480 (Takara Shuzo, Japan). This was performed for 25 minutes at 95 ° C for 1 minute, at 50 ° C for 2 minutes, and at 72 ° C for 3 minutes. A part of the obtained PCR product was subjected to electrophoresis in a 1.5% agarose gel, stained with ethidium bromide (manufactured by Nippon Gene, Japan), and observed under ultraviolet light. It was confirmed that bp cDNA was amplified. The bands the gel force ^ et al switching Li out to Sup 〖ec01 (Japan, Takara Shuzo Co., Ltd.) after purification by, TA c loning kit (Ola down da country, I n V itf made 0 gen Co., Ltd.) Crowjung was used.
具体的には、 ベク ターと して p C R I I V e c t o r (オラ ンダ国、 Invit rogen社製、 以下 p C R I I とい う) を 用レヽ、 ベク タ一と先の D N A と をそのモル比が 1 : 3 と なる よ う に混ぜ合わせて、 T 4 D N A リ ガーゼ (オラ ンダ国、 Invi trogen社製) を用いてべク ターに D N Aを組み込んだ。 D N Aが組み込まれたべク ター p C R I I を大腸菌 One Shot Competent Ce l ls 1NVひ F' (オラ ンダ国、 Inv i ogen社製) に遺伝子導入 し、 アンピシ リ ン (米国、 S i gma社製) 5 0 μ g Z m l を含む L — B r o t h ( 日本国、 宝酒造社製) 半固 型培地のプ レー 卜 に蒔き、 1 2 時間程度 3 7 °Cに放置した。 現れてきたコ ロ ニーを無作為選択し、 同濃度のアンピシリ ン を含む L一 B r 0 t h液体培地 2 m 1 に植え付け、 8 時間程 度 3 7 °Cで震と う培養した。 次に、 菌体を回収し、 ウイザ一 ドミ ニプレ ッ プ (米国、 Pr omega社製) を用いて添付の説明 書に従ってプラス ミ ドを分離した。 このプラス ミ ドを制限酵 素 E c 0 R I にて消化した結果、 約 7 0 0 b p の D N Aが切 リ 出されて く る こ と で該 P C R産物が組み込まれているこ と を確認し、 確認されたク ローンについて、 組み込まれている c D N Aの塩基配列を決定した。 Specifically, the vector used was pCRIIVector (Invitrogen, The Netherlands; hereinafter, referred to as pCRII), and the vector and the preceding DNA had a molar ratio of 1: 3. The DNA was mixed into the vector, and the DNA was incorporated into the vector using T4 DNA ligase (Invitrogen, The Netherlands). The vector with the DNA incorporated, pCRII, was transformed into Escherichia coli One Shot Competent Cells 1NV F '(manufactured by Inviogen, The Netherlands). L-Broth (Takara Shuzo Co., Ltd., Japan) containing 50 μg Z ml of ampicillin (Sigma, USA) was seeded on a plate of semi-solid medium. It was left at 37 ° C for about an hour. The colonies that appeared were randomly selected, inoculated in 2 ml of L-Br0th liquid medium containing the same concentration of ampicillin, and cultured with shaking at 37 ° C for about 8 hours. Next, the cells were collected and plasmid was separated using Withomi Dopply (Promega, USA) according to the attached instructions. Digestion of this plasmid with the restriction enzyme Ec0RI revealed that approximately 700 bp of DNA was cut out, confirming that the PCR product had been incorporated. The nucleotide sequence of the incorporated cDNA was determined for the confirmed clone.
挿入 した c D N A断片の塩基配列の決定は、 米国、 App l i e d Biosys t ems社製の蛍光シークェンサ一を用いて実施した。 シーク ェ ンスサンプルの調製は PRISM, Ready React ion Dye Terminator Cyc l e Sequenc ing Ki t (米国、 App l i ed B i o s y s t ems社製) を用いて行なった。 0 . 5 m l 容のマイ ク ロチュ ーブに 9 . 5 μ 1 の反応ス ト ッ ク 液、 4 . Ο μ ΐ の 0 . 8 ρ m o I / ;" 1 の一 2 1 M 1 3 ユニバーサル ' プライマー (米 国、 App l i ed Biosyst ems社製) および 6 . 5 μ 1 の 0 . 1 6 μ g / μ 1 のシーク ェンス用銪型 D N Aを加えて混合 し、 1 Ο Ο μ Ι の ミ ネ ラルオイノレを重層後、 9 6 °C 3 0秒、 5 5 。C 1 5秒および 6 0 °C 4分を 1 サイ ク ルとする P C R増幅反応 を 2 5 サイ ク ル行ない、 4 °Cで 5 分間保温した。 反応後、 8 0 μ 1 の滅菌精製水を加えて攪拌し、 遠心分離後、 その水層 に対 して 3 回のフ エ ノ ール · ク ロ 口 ホルム抽出を行なった。 1 0 0 μ 1 の水層に 1 0 μ 1 の 3 Μ酢酸ナ ト リ ウム ( ρ Η 5 . 2 ) および 3 0 0 μ 1 のエタ ノールを加えて攪拌後、 室温、 1 4 , 0 0 0 r p mにて 1 5分間の遠心を行ない沈殿を回収 した。 沈殿を 7 5 %エタ ノールで洗浄後、 真空下に 2分間静 置して乾燥させ、 シーク ェンス用サンプルと した。 シ一クェ ンスサ ンプルは、 4 μ 1 の l O mMの E D T Aを含むホルム ア ミ ドに溶解して 9 0 °Cで 2分間で変性後、 氷中で冷却して シーク ェンス に供した。 The nucleotide sequence of the inserted cDNA fragment was determined using a fluorescent sequencer manufactured by Applied Biosystems, USA. Sequence samples were prepared using PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (manufactured by Applied Biosystems, USA). In a 0.5 ml microtube, 9.5 μl of reaction stock solution, 4.5 μμΟ of 0.8 ρmoI /; Primer (manufactured by Applied Biosystems, Inc., USA) and 6.5 μl of 0.16 μg / μ1 sequence type DNA for sequencing are added and mixed, and 1 μm of mineral is added. After lamination of Larnoinore, PCR amplification reaction is performed at 96 ° C for 30 seconds and 55 ° C for 15 seconds and at 60 ° C for 4 minutes. Was performed for 25 cycles and kept at 4 ° C for 5 minutes. After the reaction, 80 μl of sterilized purified water was added and stirred, and after centrifugation, the aqueous layer was subjected to three times phenol / close-mouth extraction. To the 100 μl aqueous layer, add 10 μl of sodium triacetate (ρρ5.2) and 300 μl of ethanol, stir, and then add room temperature to room temperature. The precipitate was collected by centrifugation at 0 rpm for 15 minutes. After the precipitate was washed with 75% ethanol, it was allowed to dry under vacuum for 2 minutes to obtain a sequence sample. The sequence sample was dissolved in formamide containing 4 μl of lOmM EDTA, denatured at 90 ° C. for 2 minutes, cooled on ice, and subjected to a sequence.
7 5個のク ローンについて D N A配列を決定したと こ ろ、 2個のク ローンが配列番号 3 の D N A配列の 1 番目の丁から 6 2 7番目 の Cに対応する配列を有していた (両端のプライ マーの配列を含まない) 。 GenBankリ リ ース 100.0, Apr i l, 1 997年に対してサーチを行った結果、 この配列は 7 回膜貫通 型受容体群と類似している こ とが判明 した 〔以下、 取得した 断片をマ ウス型 E 丁 ( E A E発症性 T細胞由来) 2 4 0断片 と よぶ〕 。  When the DNA sequence was determined for 75 clones, two clones had a sequence corresponding to the 6th to 627th C of the DNA sequence of SEQ ID NO: 3 ( It does not include the sequences of the primers at both ends). A search for GenBank release 100.0, April, 1997, showed that this sequence was similar to the seven transmembrane receptor group. Mouse-type E-clone (derived from EAE-causing T cells) 240 fragment].
(マ ウ ス由来の新規 7 回膜貫通型受容体蛋白質 E T 2 4 0断 片の C末端領域を含む配列の取得) (Acquisition of a sequence containing the C-terminal region of a mouse-derived novel seven-transmembrane receptor protein ET240 fragment)
上記で得られたマ ウス由来 E T 2 4 0断片 c D N A配列を も と にマ ウスの E S T (Expr es sed Sequence Tag) データべ ース (GenBankリ リ ース 100, 0, Apr i l , 1997年) をサーチし た。 この結果、 ほぼ同一の遺伝子をコー ド している と考えら れるマウスの E S T断片と して、 エン ト リ ー A A 0 1 4 3 7 3 と A A 0 5 0 2 7 3 の 2種 (両者と も 13.5 d p c と 14.5 dpcの embryo の等量混合のライ ブラ リ 一由来) 発見した。 これらの配列を利用する こ と によって、 配列番号 3 の D N A 配歹 Uの 5 0 1 塩基目 の G以降の c D N A配列を取得した。 The mouse-derived ET240 fragment cDNA sequence obtained above was We originally searched the mouse's EST (Expressed Sequence Tag) database (GenBank release 100, 0, April, 1997). As a result, two types of EST fragments, mouse AA 0143733 and AA0550273, which are considered to encode almost the same gene, were used. From 13.5 dpc and 14.5 dpc embryos). By using these sequences, the cDNA sequence of the DNA sequence U of SEQ ID NO: 3 from the 501st base G onward was obtained.
上記で得られたマウス型 E T 2 4 0 の配列と E S T断片の 配列を接続し、 配列番号 3 に示した D N A配列、 即ち、 マウ ス由来の新規 7 回膜貫通型受容体蛋白質 E T 2 4 0 の c D N A配列の一部を得た。 また、 その配列をア ミ ノ酸に翻訳し、 配列番号 4 に示したマウス由来の新規 7 回膜貫通型受容体蛋 白質 E T 2 4 0 のア ミ ノ 酸配列の一部を得た。  The sequence of the mouse type ET240 obtained above and the sequence of the EST fragment were connected, and the DNA sequence shown in SEQ ID NO: 3, that is, a novel mouse-derived seven-transmembrane receptor protein ET240 was obtained. A portion of the cDNA sequence was obtained. In addition, the sequence was translated into amino acid to obtain a part of the amino acid sequence of the novel seven-transmembrane receptor protein ET240 derived from mouse shown in SEQ ID NO: 4.
なお、 上記した E S Tデータベースのェ ン ト リ ー 2者はい ずれも配列番号 3 の D N A配列の 5 9 8塩基目 の Gにあたる 残基が C と なってぉ リ 、 配列番号 3 に示した配列と は異なつ ていた。 実施例 2 ヒ ト型 7 回膜貫通型受容体蛋白質の取得  In addition, in each of the two entries of the above-mentioned EST database, the residue corresponding to G at the 598th base in the DNA sequence of SEQ ID NO: 3 becomes C, and the sequence shown in SEQ ID NO: 3 Was different. Example 2 Acquisition of human seven-transmembrane receptor protein
(ヒ ト 由来の新規 7 回膜貫通型受容体蛋白質をコー ドする c D N A断片の取得)  (Acquisition of a cDNA fragment encoding a novel human seven-transmembrane receptor protein)
実施例 1 で得られたマウス型 E T 2 4 0 断片の c D N A配 列をも と にヒ ト の E S T (E p r e s s ed Sequenc e Tag) データ ベース (GenBankリ リ ース 100.0, Ap r i l , 1997年) をサーチ した。 この結果、 2種の E S T断片、 A A 2 1 5 5 7 7 ( t o n s l 1 1 a r c e l l s enr i ched f o r ge rmi na l c ent e r B ce l l s by f l ow s o r t i ng ( C D 2 0 十, I g D— )のライブラ リ ー由来〕 と H 6 7 2 2 4 (We i zmann Ol f ac t o r y Ep i e l i umのライブラ リ ー由来) が得られた。 CDNA sequence of mouse ET240 fragment obtained in Example 1 Based on the columns, we searched the human EST (Epressed Sequence Tag) database (GenBank release 100.0, April, 1997). As a result, two types of EST fragments, AA 2 1 5 5 7 7 (tonsl 11 arcells enr iched for germi nalc ent er B ce lls by flow sorti ng (CD20, IgD—) And H67224 (derived from the library of Weismann Olfactory Epielium).
こ の 2種の断片の配列を元に、 オリ ゴヌク レオチ ド F 1 (配歹 IJ番号 7 : 5' GCTGTAGCAG ATTTACTCCT TCTATTCAC 3' ; H 6 7 2 2 4 の配列の一部でぁリ 、 配列番号 1 の 2 5 9塩基目 の G力 ら 2 8 7塩基目 の Cに対応) とオリ ゴヌ ク レオチ ド R 1 (配歹 iJ番号 8 : 5' GCCGATGTCC ATGCGTTTGC TCATGTC 3' ; 配列番号 1 の 8 3 5塩基目 の Gカゝら 8 6 1塩基目 の C の相補 鎖に対応するが、 A A 2 1 5 5 7 7 の配列の相補鎖の一部を 用いたため、 8 6 0塩基目 の Cに対応する塩基 (配列番号 8 の 2塩基目 に対応) が相補する Gではな く Cになっている) を作製し、 ヒ ト 由来のゲノ ム D N A (米国、 C l on t ech社製、 Ca t . No . 6550 - 1 ) を铸型と して P C R ( po 1 yme r as e cha i n r eac t i on) 法にて遺伝子の増幅を行い、 遺伝子配列の解析に 供した。  Based on the sequences of these two fragments, the oligonucleotide F1 (system IJ number 7: 5 'GCTGTAGCAG ATTTACTCCT TCTATTCAC 3'; a part of the sequence of H67224; 1: 259th G force to 287th base C to C) and oligonucleotide R1 (system iJ number 8: 5 'GCCGATGTCC ATGCGTTTGC TCATGTC 3'; SEQ ID NO: 1 8 35 Corresponding to the complementary strand of the C base of the 86th base, from the G base at the 5th base, but since a part of the complementary strand of the sequence of AA2155577 was used, the C base of the 860th base was used. Base (corresponding to the second base of SEQ ID NO: 8), instead of complementary G, is now C), and human-derived genomic DNA (Clontech, USA) No. 6550-1) was used as a 铸 type to amplify the gene by PCR (Polymerase), and used for gene sequence analysis.
P C Rには T a q ポ リ メ ラーゼ ( 日本国、 宝酒造社製) を用いた。 c D N Aライ ブラ リ ー溶液 1 μ 1 と脱イ オン水 3 8 . 5 μ 1 を混合 した後 9 5 °Cで 7分間加熱したものに、 T a q ポ リ メ ラーゼに添付のノく ッフ ァー 5 l と 、 2 . 5 m M dNTP mi x t u r e ( 日本国、 宝酒造社製) 4 μ 1 と 、 オリ ゴヌ ク レオチ ド F 1 および R 1 をそれぞれ 2 0 p m 0 1 を加え、 9 5 °〇 3分間加熱後丁 3 9 ポリ メ ラーゼ 0 . 5 μ 1 を力 Βえ、 最終容量 5 0 μ 1 と した。 Taq polymerase (Takara Shuzo, Japan) was used for PCR. c Mix 1 μl of DNA library solution and 38.5 μl of deionized water and heat at 95 ° C for 7 minutes. aq Polymerase 5 l attached to polymerase, 2.5 μM dNTP mixture (Takara Shuzo Co., Ltd., Japan) 4 μl, and oligonucleotides F 1 and R 1 After adding 20 pm 01 each, heating at 95 ° C. for 3 minutes, 0.5 μl of 39 polymerase was added to make a final volume of 50 μl.
この混合物を、 TaKaRa PCR t he rma l Cyc l e r 480を用いて、 9 4 °C 1 分、 6 5 °C 2分、 7 2 °C 3分を 5 サイ クノレ 、 9 4 °C 1 分、 6 3 °C 2分、 7 2 °C 3分を 5 サイ クル、 9 4 °C 1 分、 6 0 °C 2分、 7 2 °C 3分を 5 サイ クル行ったのち、 9 5 °C 1 分、 5 0 °C 2分、 7 2 °C 3分を 2 5サイ クル行い、 最後に 7 2 °C 7分を 1 サイ クル行った。 この P C R産物を 1 %ァガロ ース · ゲル中で電気泳動を行い、 ェチジゥムブ口マイ ド (日 本国、 日本ジーン社製) にて染色後、 紫外線下で観察した。 約 6 0 0 b p の P C R産物をゲルから切 り 出し、 TaKaRa Sup r ecOlを用いて、 D N Aの精製を行った。 この精製 D N Aを T Aク ローニングキ ッ ト ( I n V i t 0 r 0 g e n社製) を用い、 添付 のプロ ト コールに従って、 p C R 2 . 1 ベク ターに組み込ん だ。 D N Aを組み込んだ p C R 2 . 1 ベク ターを大腸菌 INV c F' Compe t ent Ce l l s ( I nv i t o rogen社製) に遺伝子導入した。 ア ン ピシ リ ン (米国、 S i gma社製) を 5 0 μ g Zm 1 含むい B ro t h ( 日本国、 宝酒造社製) 半固型培地のプ レー トに遺伝子 導入した大腸菌を蒔き 、 1 2時間程度 3 7 °Cに放置して現れ てきたコ ロニーを無作為選択して 1 0 0 μ g / m 1 のアンピ シ リ ンを含む L- B r Q t h液体培地 2 m 1 に植え付けた。 1 8 時 間程度 3 7 °Cで振と う培養して菌体を回収し、 ウイ ザー ドミ ニプレ ッ プ (米国、 Pr omega社製) を用いて添付の説明書に 従ってプラス ミ ドを分離した。 分離したプラス ミ ドの塩基配 列を決定した。 3個のク ローンの D N A配列を D N Aシーク ェンサ一によ り解析し、 得られたコ ンセ ンサス配列を c D N A配列と して用い、 配列番号 1 にある D N A配列の 2 8 8番 目の Tから 8 3 4番目の Cまでの塩基配列を決定した (両端 のプライマー配列を含まない) 。 こ の配列は、 実施例 1 で得 られたマ ウス型の 7 回膜貫通型受容体蛋白質 E T 2 4 0 の c D N A配列と強く 類似していた。 Using a TaKaRa PCR template 480, this mixture was subjected to 94 ° C for 1 minute, 65 ° C for 2 minutes, and 72 ° C for 3 minutes to 5 cycles, 94 ° C for 1 minute, 6 ° C. 3 ° C 2 min, 72 ° C 3 min 5 cycles, 94 ° C 1 min, 60 ° C 2 min, 72 ° C 3 min 5 cycles, then 95 ° C 1 Min, 50 ° C for 2 minutes, and 72 ° C for 3 minutes for 25 cycles, and finally, 72 ° C for 7 minutes for 1 cycle. The PCR product was subjected to electrophoresis in 1% agarose gel, stained with ethidium Muvuchi Mide (manufactured by Japan Gene, Japan), and observed under ultraviolet light. A PCR product of about 600 bp was cut out from the gel, and the DNA was purified using TaKaRa SuperECOl. This purified DNA was incorporated into a pCR2.1 vector using a TA cloning kit (InVit0rogen) according to the attached protocol. The pCR2.1 vector into which the DNA was incorporated was transfected into E. coli INV cF 'Competent Cells (manufactured by Invitrogen). Bacterium containing 50 μg Zm1 of Ampicillin (Sigma, USA) and Broth (Takara Shuzo, Japan) Transfected E. coli on a plate of semi-solid medium. 1 Approximately 2 hours Leave the colony at 37 ° C and select it randomly. The cells were inoculated on 2 ml of L-BrQth liquid medium containing silicon. The cells are recovered by shaking culture at 37 ° C for about 18 hours, and the plasmid is separated using Wizard Dominipple (Promega, USA) according to the attached instructions. did. The base sequence of the separated plasmid was determined. The DNA sequence of the three clones was analyzed using a DNA sequencer, and the obtained consensus sequence was used as a cDNA sequence. And the nucleotide sequence from the C to the 834th C was determined (excluding the primer sequences at both ends). This sequence was strongly similar to the cDNA sequence of mouse-type seven-transmembrane receptor protein ET240 obtained in Example 1.
こ の よ う に して得られた D N A断片を ヒ ト型 E T 2 4 0 断 片と命名 した。  The DNA fragment obtained in this manner was designated as a human ET240 fragment.
なお、 公知のエン ト リ ー H 6 7 2 2 4 では、 配列番号 1 の D N A配列の 5 6 4塩基目以降の CCCATTTTCCCCCに対応する 部分力; NCCATTTTTCCCCCとなってぉ リ 、 配列番号 3 に示 した酉己 列と は異なっていた。 また、 公知のエン ト リ ー A A 2 1 δ 5 7 7 には、 配列番号 3 の D Ν Α配列の 7 4 4塩基目 の Cにあ たる塩基のあ と に余分な Aが挿入されてお リ 、 7 7 7 、 7 8 7 、 8 0 7 、 8 2 7塩基目 にあたる と こ ろは N (即ち、 A、 G、 C又は T ) と なってぉ リ 、 配列番号 3 に示した配列と は 異なっていた。 (ヒ ト型 7 回膜貫通型受容体蛋白質 E T 2 4 0全長遺伝子配 列の決定) In the known entry H67224, a partial force corresponding to CCCATTTTCCCCC at the 564th and subsequent nucleotides of the DNA sequence of SEQ ID NO: 1; NCCATTTTTCCCCC, which is shown in SEQ ID NO: 3 It was different from the rooster. In addition, in the known entry AA21δ5777, an extra A is inserted after the base corresponding to the base C at the 744th base of the DΝII sequence of SEQ ID NO: 3. The nucleotides corresponding to the bases 777, 787, 807, and 807 become N (that is, A, G, C or T), and the sequence shown in SEQ ID NO: 3 Was different. (Determination of human full-length transmembrane receptor protein ET240 full-length gene sequence)
ヒ ト肺由来の c D N Aライ ブラ リ 一 (CL0NTECH社製、 CatK HL 5030 t ) を铸型と して P C R ( po 1 yme r a s e cha in react ion) 法にて遺伝子の増幅を行い、 遺伝子配列の解析に供した。  Using a human lung-derived cDNA library (CL0NTECH, CatK HL 5030 t) as a type III gene, the gene was amplified by PCR (po1 ymerase cha in reaction), and the gene sequence was analyzed. It was subjected to analysis.
ヒ ト 7 回膜貫通型受容体蛋白質 E T 2 4 0遺伝子の 5 ' 末 の決定には以下のよ う な方法を用いた。  The following method was used to determine the 5 'end of the human transmembrane receptor protein ET240 gene.
P C Rには T a q ポリ メ ラ一ゼ (日本国、 宝酒造社製) を 用いた。 こ の c D N Aライ ブラ リ 一溶液 1 1 と脱イオン水 3 8 . 5 μ 1 を混合 し 9 5 °Cで 7 分間加熱したものに、 T a qポ リ メ ラーゼに添付のノく ッファ一 5 μ 1 と 、 2 . 5 mM d NTP mixture (日本国、 宝酒造社製) 4 μ 1 と 、 こ の c D N Aラ イ ブラ リ ーのベク ターのアーム配列を利用 したオ リ ゴヌ ク レオチ ド L D— 5 : 5' CTC GGG AAG CGC GCC ATT GTG TTG GT 3' (配列番号 9 ) 、 およびオリ ゴヌ ク レオチ ド R 3 : 5 ' G TG TGT ACA AGG CTG AAG TTA TTT TGC AC 3' (配歹 1J番号 1 0 ; 配列番号 1 の 3 4 2番目 の Gから 3 7 0番目 の Cの塩基配列 のア ンチセ ンス配列) を、 それぞれ 2 0 p m o l を加え、 9 5 °C 3分間加熱後 T a q ポ リ メ ラーゼ 0 . 5 μ 1 を加え、 最 終容量 5 0 μ 1 と した (こ の反応液を反応液 R 3 とする) 。 同時にオ リ ゴヌ ク レオチ ド R 3 の代わり に、 オ リ ゴヌ ク レオ チ ド R 2 : 5' GCA TTA ACA GCC CAA AAA GGC AGA GTG 3' (配 列番号 1 1 ; 配列表配列番号 1 の 2 8 5 番目の C カゝら 3 1 1 番目 の Gの塩基配列のアンチセ ンス配列) を用いた反応液も 調製した (こ の反応液を反応液 R 2 とする) 。 Taq polymerase (Takara Shuzo, Japan) was used for PCR. Mix the cDNA library solution 11 with 38.5 μl of deionized water, heat at 95 ° C for 7 minutes, and add the buffer attached to the Taq polymerase 5 μ 1 and 2.5 mM d NTP mixture (Takara Shuzo Co., Ltd., Japan) 4 μ 1 and the oligonucleotide LD using the vector arm sequence of this cDNA library — 5: 5 'CTC GGG AAG CGC GCC ATT GTG TTG GT 3' (SEQ ID NO: 9), and oligonucleotide R3: 5 'GTG TGT ACA AGG CTG AAG TTA TTT TGC AC 3' (distribution system) 1J No. 10; the nucleotide sequence of the nucleotide sequence from 342nd G to 370th C of SEQ ID No. 1) was added at 20 pmol each, and the mixture was heated at 95 ° C for 3 minutes. 0.5 μl of polymerase was added to make a final volume of 50 μl (this reaction solution is referred to as reaction solution R3). At the same time, instead of the oligonucleotide R3, the oligonucleotide R2: 5 'GCA TTA ACA GCC CAA AAA GGC AGA GTG 3' (SEQ ID NO: 11; SEQ ID NO: 1) 2 8 5th C Capra 3 1 1 A reaction solution using the G sequence (antisense sequence of the base sequence of G) was also prepared (this reaction solution is referred to as reaction solution R 2).
こ の両方の混合物それぞれを、 TaKaRa PCR thermal Cyc le r 480を用いて、 9 4 °C 1 分、 7 2 °C 4分を 5 サイ クル、 9 4 °C 1 分、 6 8 °C 2分、 7 2 °C 3 分を 5 サイ クル、 9 4 °C 1 分、 6 5 °C 2分、 7 2 °C 3 分を 5 サイ クル行ったのち、 9 5 °C 1 分、 5 5 °C 2分、 7 2 °C 3 分を 2 0サイ クル行い、 最後 に 7 2 °C 7分を 1 サイ クル行った。 この P C R産物を 1 . 5 %ァガロース · ゲル中で電気泳動を行い、 ェチジゥムブロマ ィ ド ( 日本国、 日本ジーン社製) にて染色後、 紫外線下で観 察した。 ある程度はっき リ と したバン ドと して検出されたバ ン ドを反応液 R 3 と R 2 で比較し、 反応液 R 2 で約 4 5 0 b P 、 反応液 R 3 でそれよ リ も約 6 0塩基長い約 5 0 0 b p の バン ドを見出し、 その P C R産物をゲルから切 リ 出 して、 Ta KaRa SuprecOlを用いて、 D N Aの精製を行った。 得られた 精製 D N Aをそれぞれ T Aク ローニングキッ ト (オラ ンダ国、 Invi rogen社製) を用い、 添付のプロ ト コ一ノレに従って、 p C R I I ベク タ一に組み込んだ。 D N Aを組み込んだ p C R I I ベク ター 2種をそれぞれ大腸菌 INV a F' Competent Ce 1 Is (オラ ンダ国、 1 n v i r o g e n社製) に遺伝子導入した。 ァ ン ピシ リ ン (米国、 Sigma社製) を 5 0 g / m 1 含むい B【o th (日本国、 宝酒造社製) 半固型培地のプ レー ト に遺伝子導 入した大腸菌をそれぞれ蒔き 、 1 2 時間程度 3 7 °Cに放置し た。 現れてき たコ ロ ニーをそれぞれ 2個ずつ無作為選択し、 同濃度のア ンピシ リ ンを含む L- B r 0 t h液体培地 2 m 1 に植え 付け、 1 8 時間程度 3 7 °Cで振と う培養 した後、 菌体を回収 した。 ウ イ ザー ドミ ニプレップ (米国、 Pr omega社製) を用 いて添付の説明書に従ってプラス ミ ドを分離し、 D N Aの塩 基配列を決定した。 ク ロー ンの D N A配列は、 実施例 1 と同 様に D N Aシークェンサ一によ リ解析した。 Each of these two mixtures was subjected to TaKaRa PCR thermal Cycler 480 for 1 minute at 94 ° C, 4 minutes at 72 ° C for 5 cycles, 1 minute at 94 ° C, and 2 minutes at 68 ° C. 5 minutes at 72 ° C for 3 minutes, 1 minute at 94 ° C, 2 minutes at 65 ° C, 5 cycles at 72 ° C for 3 minutes, then 1 minute at 95 ° C and 55 ° C C 2 minutes, 72 ° C 3 minutes were performed for 20 cycles, and finally 72 ° C 7 minutes were performed for 1 cycle. This PCR product was subjected to electrophoresis in 1.5% agarose gel, stained with ethidium bromide (manufactured by Nippon Gene, Japan), and observed under ultraviolet light. The band detected as a somewhat clear band is compared between the reaction solutions R 3 and R 2, and about 450 bP for the reaction solution R 2 and about 450 bP for the reaction solution R 3. A band of about 500 bp which was 60 bases long was found, the PCR product was cut out from the gel, and DNA was purified using Ta KaRa SuprecOl. Each of the obtained purified DNAs was incorporated into a pCRII vector according to the attached protocol using a TA cloning kit (Invitrogen, The Netherlands). Each of the two pCRII vectors containing the DNA was transfected into E. coli INV aF 'Competent Ce 1 Is (1 nvirogen, The Netherlands). B [o th (Takara Shuzo, Japan) containing 50 g / m 1 of ampicillin (Sigma, USA). And leave it at 37 ° C for about 12 hours. Was. Two colonies that appeared each were randomly selected, inoculated in 2 ml of L-Br0th liquid medium containing the same concentration of ampicillin, and shaken at 37 ° C for about 18 hours. After culturing, the cells were collected. Plasmid was separated using Wizard Dominiprep (Promega, USA) according to the attached instructions, and the nucleotide sequence of DNA was determined. The clone DNA sequence was analyzed using a DNA sequencer in the same manner as in Example 1.
その結果、 反応液 R 3 由来の 1 ク ローンのみがプライマー 部分の他に、 上記で得られたヒ ト型 E T 2 4 0断片の配列と 共通する配列を もってお リ 、 それは配列番号 1 にある D N A 配列の 1 番目 の Aから 3 4 1 番目の Tまでの D N A配列であ つた。  As a result, only one clone derived from the reaction solution R3 had, in addition to the primer portion, a sequence common to the sequence of the human ET240 fragment obtained above, which is shown in SEQ ID NO: 1. It was a DNA sequence from the first A to the 34th T of the DNA sequence.
さ らにヒ ト 7 回膜貫通型受容体蛋白質 E T 2 4 0遺伝子の 3 ' 末の決定を 5 ' 末の取得と 同様の方法を用いて以下のよ う に 亍つた。  In addition, the determination of the 3 'end of the human seven-transmembrane receptor protein ET240 gene was determined using the same method as that for obtaining the 5' end as follows.
5 ' 末の取得の際のプライマー L D — 5 のかゎ リ に、 c D N Aライブラ リ ーのベク ターのアーム配列を利用 したオリ ゴ ヌ ク レオチ H : ATACGACTCACTATAGGGCGAATTGGC ( §己歹 ij番号 1 2 ) を用い、 オリ ゴヌ ク レオチ ド R 3 、 R 2 のかわ り にそ れぞれォ リ ゴヌ ク レオチ ド F 3 : GCTGCGACATGAGCAAACGCATGG AC (配列番号 1 3 ; 配列番号 1 の 8 3 0番目 の Gカゝら 8 5 5 番目の Cに対応する塩基配列) とオリ ゴヌ ク レオチ ド F 2 : GTCAGTTATAGTTTTCATTGTCACTCAACTG (酉己歹リ番号 1 4 ; 酉己歹リ番 号 1 の 7 4 2 番目 の Gカゝら 7 7 1 番目 の Gに対応する配列で あるが、 GenBankェン ト リ ー A A 2 1 5 5 7 7 の配列を用い たため配列番号 1 4 の 4塩基目 に余分な Aが含まれている) を用いた。 電気泳動の後、 オリ ゴヌ ク レオチ ド F 3 を用いた 反応液由来の約 4 0 0 b p の断片と 、 それよ リ も約 1 1 0 b P長い、 オリ ゴヌ ク レオチ ド F 2 を用いた反応液由来の約 5 1 0 b P の断片をゲルから切り 出 した。 得られた断片をそれ ぞれ 5 ' 末の取得と 同様にク ロ ーユングし、 それぞれ現れて きたコ ロ ニーを無作為に 2個ずつ選択し、 D N A配列を決定 した。 その結果、 オ リ ゴヌ ク レオチ ド F 2 を用いた反応液由 来の 1 ク ロ ー ンのみがプライマー部分の他に上記で得られた 配列と共通する配列をもっておリ 、 配列番号 1 にある D N A 配列の 7 7 2番目 の塩基 から 1 1 5 0番目 の塩基 Aまでの 塩基配列であった。 なお、 エン ト リ ー A A 2 1 5 5 7 7 では 配列番号 1 にある D N A配列の 8 5 9番目 の塩基 Gから 8 7 0番目 の塩基 Cまでの塩基酉己歹 IJ力 ^GGCNATCCAAGTNと なってお リ 、 配列番号 1 の配列と異なっていた。 In order to obtain the 5 'end of primer LD-5, use oligonucleotide vector H using ATACGACTCACTATAGGGCGAATTGGC (§self ij number 12), using the arm sequence of the vector of the cDNA library. , And oligonucleotides R 3 and R 2, respectively, instead of oligonucleotides F 3: GCTGCGACATGAGCAAACGCATGG AC (SEQ ID NO: 13; 8th G protein in SEQ ID NO: 1) And the nucleotide sequence corresponding to the 8th and 5th C) and the oligonucleotide F2: GTCAGTTATAGTTTTCATTGTCACTCAACTG (No. 14; No. 1; No. 1) No. 1 7 4 2nd G-para 7 1 This is the sequence corresponding to the 1st G, but since the sequence of GenBank entry AA 2 1 5 5 7 7 was used, SEQ ID No. 14 4 4 (Excess A is included at the base). After the electrophoresis, an approximately 400 bp fragment derived from the reaction using the oligonucleotide F 3 and an oligonucleotide F 2 that is approximately 110 bP longer were obtained. A fragment of about 5100 bP derived from the reaction solution used was cut out from the gel. The obtained fragments were each cloned in the same manner as in the acquisition of the 5'-end, and the colonies that appeared in each case were randomly selected two by two, and the DNA sequence was determined. As a result, only one clone derived from the reaction solution using the oligonucleotide F2 had a sequence common to the above-obtained sequence in addition to the primer portion. It was the nucleotide sequence from the 772nd base to the 115th base A of a certain DNA sequence. In the entry AA2155557, the base sequence from the 859th base G to the 870th base C of the DNA sequence in SEQ ID NO: 1 becomes the IGG force ^ GGCNATCCAAGTN. This was different from the sequence of SEQ ID NO: 1.
これらの配列と上記で得られた配列をつなぎあわせる こ と によって、 配列番号 1 の D N A配列を得、 それを さ らにア ミ ノ酸に翻訳する こ と によ リ 配列番号 2 のア ミ ノ 酸配列を得た。  By joining these sequences and the above-obtained sequence, the DNA sequence of SEQ ID NO: 1 was obtained, which was further translated into amino acid to obtain the amino acid sequence of SEQ ID NO: 2. The acid sequence was obtained.
実施例 3 E T 2 4 0 が発現しているマ ウ ス組織の解析 実施例 1 で得られた 4 R 3 1 2 細胞株由来のマウス型 7 回 膜貫通型受容体蛋白質 E T 2 4 0 の各臓器における遺伝子発 現をノ ーザンハイブ リ ダイゼーシ ョ ンにて解析した。 Mu 1に 1 p 1 e Ti ssue Northern (MTN) Blotフ ィ ルター (CLONTECH社製、 コー ド Π 762- 1) を用い、 5倍濃度の S S P E溶液 ( 1 倍濃 度の S S P E溶液は 0 . 1 5 M N a C 1 , 1 0 m M N a H P O 1 mM E D T A , p H 7 . 4 ) 、 1 0倍濃度の デンハル ト液 ( 日本国、 和光純薬社製) 、 2 % S D S ( ドデ シル硫酸ナ ト リ ウム、 日本国、 和光純薬社製) 、 終濃度 5 0 %ホルムア ミ ド (日本国、 和光純薬社製) 、 及び 1 0 0 μ g Z m 1 の沸縢水浴によ り変性したサケ精子 D N A (米国、 Si gm a社製) を含むハイ ブリ ダィゼーシ ヨ ン液中に浸し、 4 2 °Cにて 2時間振と う した。 Example 3 Analysis of Mouse Tissue Expressing ET240 The expression of the mouse-type seven transmembrane receptor protein ET240 derived from the 4R312 cell line obtained in Example 1 in each organ was analyzed by Northern hybridization. Using a 1 p 1 e Tissue Northern (MTN) Blot filter (manufactured by CLONTECH, code: 762-1) for Mu 1, a 5-fold concentration of SSPE solution (a 1-fold concentration of SSPE solution is 0.1%). 5 MNaCl, 10 mM NaHPO 1 mM EDTA, pH 7.4), Denhardt's solution at 10 times concentration (Wako Pure Chemical Industries, Japan), 2% SDS (dodecyl sulfate) Sodium, Wako Pure Chemical Industries, Japan), final concentration 50% formamide (Wako Pure Chemical Industries, Japan), and 100 μg Zm1 boiling water bath The cells were immersed in a hybridization solution containing denatured salmon sperm DNA (manufactured by Sigma, USA) and shaken at 42 ° C for 2 hours.
放射性同位元素32 P にて標識されたマウス由来 E T 2 4 0 断片プローブを以下のよ う に作製 した。 マウス E T 2 4 0 断 片が組み込まれたベク ター p C R I I ょ リ 、 制限酵素 E c o R I にてベク ターよ リ挿入断片を切 リ 出 し、 0 . 8 %ァガロ ース · ゲル中で電気泳動を行った。 泳動後のゲルをェチジゥ ムブロマイ ド (日本国、 日本ジー ン社製) にて染色後、 紫外 線下で観察し、 約 6 0 0 b p のバ ン ドをゲルから切 リ 出して GENECLEANM I Ki t (ョ本国、 フナコ シ社製) を用いて精製し た。 得られた D N A断片を D N Aラベリ ングキ ッ ト ( M e g a p r ime DNA label ing system; 英国、 Amersham社製、 コー ド RPN 1607 ) を用いて標識した。 すなわち、 D N A l O O n g にプ ライ マー液 1 0 μ 1, 5 Χ反応緩衝溶液 2 0 μ 1 及び脱ィォ ン水を加えて全量を 8 6 μ 1 と して沸縢水浴を 5分間行い、 その後、 α — 3 2 Ρ — d C T P (アマ一シャ ム社製、 コー ド A A 0 0 0 5 ) 1 0 μ 1 , 及び K l e n o w酵素溶液 4 μ 1 を加えて、 3 7 °Cで 1 0分間水浴し、 放射標識したマ ウス E T 2 4 0断片を合成した。 更にその後、 Sephadex カラム (Q u i c k Sp i n Co 1 umn Sephadex G— 50; ドイ ツ国、 ベー リ ンガー マ ンハイ ム社製) で精製し、 5 分間沸騰水浴を したのち、 2 分間氷冷後使用 した。 Mouse-derived ET 2 4 0 fragment probe labeled with radioisotope 32 P was prepared in the Hare good follows. The vector containing the mouse ET240 fragment was pCRII, and the inserted fragment was excised from the vector with the restriction enzyme EcoRI and electrophoresed in a 0.8% agarose gel. Was done. The gel after electrophoresis was stained with ethidium bromide (manufactured by Nippon Gene, Japan), observed under ultraviolet light, and a band of about 600 bp was cut out from the gel to remove GENECLEANM I Kit (Funakosi, Japan). The obtained DNA fragment was used as a DNA labeling kit (Megaprime DNA labeling system; Amersham, UK, code RPN). 1607). That is, add 10 μl of the primer solution, 5 μl of the reaction buffer solution and 20 μl of the reaction buffer solution to 100 ng of DNA, make the total volume 86 μl, and perform a boiling water bath for 5 minutes. Then, add α-32 2- d CTP (manufactured by Amersham, code AA00005) (10 μl) and Klenow enzyme solution (4 μl), and add at 37 ° C. After water bath for 0 minutes, radiolabeled mouse ET240 fragment was synthesized. After that, the product was purified using a Sephadex column (Quick Spin Co 1um Sephadex G-50; manufactured by Boehringer Mannheim, Germany), boiled in a water bath for 5 minutes, and then cooled for 2 minutes on ice. .
作製した32 P標識されたマウス E T 2 4 0遺伝子断片プロ 一ブをハイ ブ リ ダイゼーショ ン液に添加し、 4 2 °Cにて さ ら に 1 6 時間振と う し、 ハイブ リ ダィゼーシ ヨ ンを行った。 The prepared 32 P-labeled mouse ET240 gene fragment probe was added to the hybridization solution, and the mixture was further shaken at 42 ° C for 16 hours, followed by hybridization. Was done.
次に、 0 . 1 % S D S を含む 2倍濃度の S S C溶液に浸し、 室温で 3 回洗浄後、 さ らに同溶液を用いて室温で 1 5 分間洗 浄した。 さ らに、 0 . 1 % S D S を含む 0 , 2倍濃度の S S C溶液を用いて室温で 1 5分間洗浄を行った。 洗浄を終了 し たフ ィ ルターを増感スク リ ーンを使用 して、 一 8 5 °Cでォ一 ト ラジオグラ フィーを行った。 その結果、 全ての レー ンで 1 . 5〜 2 . 2 k b付近のバン ドが認められ、 特に肺、 心、 肝で 強いバン ドが観察された。 実施例 4 E T 2 4 0 が発現している ヒ ト組織の解析 実施例 2 で得られた ヒ ト型 7 回膜貫通型受容体蛋白質 E T 2 4 0 の各臓器における遺伝子発現を ノ ーザンハイプ リ ダイ ゼーシ ョ ンにて解析した。 Next, the plate was immersed in a double concentration SSC solution containing 0.1% SDS, washed three times at room temperature, and further washed with the same solution at room temperature for 15 minutes. Furthermore, washing was performed at room temperature for 15 minutes using a 0.2% or twice concentration SSC solution containing 0.1% SDS. After the washing, the filters were subjected to autoradiography at 185 ° C using an intensifying screen. As a result, bands around 1.5 to 2.2 kb were observed in all lanes, and strong bands were observed particularly in the lungs, heart, and liver. Example 4 Analysis of Human Tissue Expressing ET240 The gene expression of the human seven-time transmembrane receptor protein ET240 obtained in Example 2 in each organ was analyzed by Northern hybridization.
Mu l t i p l e T i s sue o r t he rn (MTN) B 1 o t フ イ ノレタ ー (CLONT ECH社製、 コー ド #7760- 1 ) を用い、 5倍濃度の S S P E溶 液 ( 1 倍濃度の S S P E溶液は 0 . 1 5 M N a C 1 , 1 0 m M N a H 2 P O l m M E D T A , p H 7 . 4 ) 、 1 0倍濃度のデンハル ト液 ( 日本国、 和光純薬社製) 、 2 % S D S ( ドデシル硫酸ナ ト リ ウム、 日本国、 和光純薬社製) 、 終濃度 5 0 %ホルムア ミ ド (日本国、 和光純薬社製) 、 及び 1 0 0 μ g / m 1 の沸騰水浴によ リ変性したサケ精子 D N A (米国、 S i gma社製) を含むハイブリ ダィゼーシヨ ン液中に 浸し、 4 2 °Cにて 2 時間振と う したのち、 実施例 3 と 同様の 方法で32 P標識された ヒ ト E T 2 4 0遺伝子断片プローブを 調製し、 ハイ ブ リ ダィゼーシヨ ン液に添加し、 4 2 °Cにて 1 6時間振と う し、 ハイ ブ リ ダイゼーショ ンを行った。 Using a Multiple Tis sue ort hern (MTN) B 1 ot filter (CLONT ECH, code # 7760-1), use a 5x SSPE solution (1x SSPE solution is 0%). . 1 5 MN a C 1, 1 0 m MN a H 2 PO lm MEDTA, p H 7. 4), 1 0 -fold concentration Denharu preparative liquid (Japan, manufactured by Wako Pure Chemical Industries, Ltd.), 2% SDS (dodecyl Sodium sulfate, manufactured by Wako Pure Chemical Industries, Japan), final concentration 50% formamide (manufactured by Wako Pure Chemical Industries, Japan), and a boiling water bath of 100 μg / m 1. denatured salmon sperm DNA (US, S i gma Ltd.) soaked in hybridization Dizeshiyo down solution containing, after cormorants preparative vibration for 2 hours at 4 2 ° C, is 32 P-labeled by the same method as in example 3 The resulting human ET240 gene fragment probe was prepared, added to a hybridization solution, and shaken at 42 ° C for 16 hours to perform hybridization.
次に、 0 . 1 % S D S を含む 2倍濃度の S S C溶液に浸し、 室温で 3 回洗浄後、 さ らに同溶液を用いて室温で 1 5 分間洗 浄した。 さ らに、 0 . 1 % S D S を含む 0 . 2倍濃度の S S C溶液を用いて室温で 1 5分間洗浄を行った。 洗浄を終了 し たフイ ノレタ ーを増感ス ク リ ーンを使用 して、 一 8 5 °Cでォー ト ラ ジオグラ フ ィーを行った。 その結果、 前立腺を除く 全て のレー ンで 1 . 5 〜 2 . 2 k b付近のバン ドが認め られ、 特 に心、 小腸で強いバン ドが観察された。 実施例 5 E T 2 4 0 を発現しているマ ウス組織の P C R による解析 Next, the plate was immersed in a double concentration SSC solution containing 0.1% SDS, washed three times at room temperature, and further washed with the same solution at room temperature for 15 minutes. Further, washing was performed at room temperature for 15 minutes using a 0.2-fold concentration SSC solution containing 0.1% SDS. After the washing, the finalizer was subjected to autoradiography at 185 ° C using a sensitizing screen. As a result, bands around 1.5 to 2.2 kb were observed in all lanes except the prostate. A strong band was observed in the heart and small intestine. Example 5 Analysis of Mouse Tissue Expressing ET240 by PCR
腸管および舌におけるマ ウス型 E T 2 4 0遺伝子の発現を P C Rによって調べた。  The mouse ET240 gene expression in the intestine and tongue was examined by PCR.
腸管 リ ンパ球の調製は C u r r e n t Protocols in Immunology, Supp lement 15, 3 · 19.1〜 3.19 · 4に従った。  Preparation of intestinal lymphocytes was in accordance with the Current Protocols in Immunology, Supplement 15, 3 / 19.1 to 3.19 / 4.
具体的には、 C 3 HZH e マ ウス (メ ス、 1 2週齢) 2 匹 をエーテル麻酔下で頸椎脱臼によ り屠殺 し、 開腹後小腸よ リ パイエル板を切除し切開 した後、 内容物を洗い、 得られた小 腸を約 1 . 5 c m長に切断して三角フ ラ ス コ中に集めた。 フ ラ スコに終濃度 2 %の F C S (米国、 GIBCO BRL社製) を加 えた R P M I 1 6 4 0培地 (米国、 GIBCO BRL社製) を 4 5 m 1 カ卩え、 3 7 °Cにて 3 0分間攪拌した。 その後、 茶こ し を用いて濾液を回収 した。 茶こ しに残った残渣を 5 0 m 1 の 遠心管に入れ、 R P M I 1 6 4 0培地を 1 5 m l カ卩え、 激 しく 1 5秒振リ 、 茶こ しを用いて濾液を回収 した。 これを 3 回繰リ 返した。 これらの濾液を合わせ、 グラス ウールのカ ラ ムに通した後、 遠心 し細胞を沈殿させペ レ ツ 卜 の細胞を回収 して 1 5 m 1 の R P M I 1 6 4 0培地に再懸濁した。 懸濁 液を再度フ ラ ス コ に戻し、 フ ラ ス コ内での攪拌に始ま る手続 き を 2 回繰リ 返して、 細胞を回収 した。 これらの細胞回収液を遠心して細胞を再度集め、 一つのス ト ツ ク と し、 さ らに 2 回 P B S (Phospha t e Buf f ered Sa l in e) (日本国、 大日本製薬 (株) 製、 Caし o. 28 - 103-05 ) で洗った。 こ の細胞を 8 m 1 の 4 0 % P e r c 011溶液 ( R P M I 1 6 4 0培地中) に懸濁後、 半量ずつ 2 m l の 7 5 %Specifically, two C3HZH e mice (male, 12 weeks old) were sacrificed by cervical dislocation under ether anesthesia. After washing, the obtained small intestine was cut into a length of about 1.5 cm and collected in a triangular flask. RPMI 164 medium (manufactured by GIBCO BRL, USA) supplemented with 45% FCS (manufactured by GIBCO BRL, USA) in a flask at 37 ° C Stirred for 30 minutes. Thereafter, the filtrate was recovered using a tea strainer. The residue remaining in the tea strainer was placed in a 50 ml centrifuge tube, and 15 ml of RPMI 1640 medium was shaken, shaken vigorously for 15 seconds, and the filtrate was collected using a tea strainer. . This was repeated three times. These filtrates were combined, passed through a glass wool column, centrifuged to precipitate the cells, and the cells in the pellet were collected and resuspended in 15 ml RPMI 1640 medium. The suspension was returned to the flask again, and the procedure of starting stirring in the flask was repeated twice to collect the cells. The cell recovered solution is centrifuged to collect the cells again to form one stock, and twice more with PBS (Phosphate Buffered Saline) (Dainippon Pharmaceutical Co., Ltd., Japan). , Ca o. 28-103-05). After suspending the cells in 8 ml of 40% Perc 011 solution (in RPMI 1640 medium), halve 2 ml of 75%
Pe rco l l溶液 ( R P M I 1 6 4 0培地中) に重層 し、 室 温で 8 0 0 X g で 2 0分間遠心した。 4 0 %溶液と 7 5 %溶 液の境界面の細胞画分を I E L ( Int raep i the l i a l Lymphocy t e s ) と して回収した。 It was overlaid on a Percoll solution (in RPMI 1640 medium) and centrifuged at 800 X g for 20 minutes at room temperature. The cell fraction at the interface between the 40% solution and the 75% solution was collected as IEL (Integral Lymphocy tes).
得られた 5 X 1 0 6 個の I E Lを回収し Qu ickPrep Tot a l RNA ex t rac t ion k i t (ス ウェーデン国、 Pharmac i a社製) を 用いて製造者のプロ ト コルに従って全 R N Aを精製した。 The obtained 5 × 10 6 IELs were recovered, and total RNA was purified using a QuickPrep Total RNA extraction kit (Pharmacia, Sweden) according to the manufacturer's protocol. .
舌については、 開頭後舌全部を切 リ 取リ 、 手術用はさみで 細かく 切断し、 以下 Qu i ckPrep Tot a l RNA ex t rac t i on k i t (ス ウ ェーデン国、 Pharmac i a社製) を用いて製造者のプロ ト コルに従って全 R N Aを精製した。  For the tongue, the entire tongue was cut off after the craniotomy, cut into small pieces with surgical scissors, and manufactured using the QuickPrep Total RNA extraction kit (Pharmacia, Sweden). Total RNA was purified according to the manufacturer's protocol.
これらの R N A力、ら、 Supersc r i pt Preamp l i i 'i cat ion (米 国、 GIBCO BRし, Cat . No. 18089-011 ) のキ ッ ト を用いて c D N Aを合成した。  CDNA was synthesized using a kit of these RNA force, Superscript Preampli i'i cation (GIBCO BR, USA, Cat. No. 18089-011).
また、 マウス D N Aゲノ ムは米国、 C 10 n t e c h社よ リ 購入し た (Caし o. 6650-1 ) 。  The mouse DNA genome was purchased from C10ntech in the United States (Ca. 6650-1).
上記の c D N A 3 / l (ゲノ ム D N Aは l O O n g 相当を 3 μ 1 に希釈した。 また、 ネガティ ブコ ン ト ロ ールには同量 の水を加えた) に 7 / l の d N T P混合物、 4 μ 1 の 1 0 X 緩衝液、 2 μ 1 の 2 5 m M M g C l 2溶液、 l l ずつ ( 2 0 p m o 1 ずつ) のプライマー m 2 4 0 F (配列番号 1 5 : 5' GCTCATCAAG ATGCCCAACA TTAAAAAGTC TC 3'、 配歹 'J番号 3 の 塩基配列の 4 1 7番目 の Gカゝら 4 4 8番目 の Cに対応) 、 プ . ライマー m 2 4 O R (酉己歹 ij番号 1 6 : 5 ' TTAAATGGTAAAAG AACT GGTTGGCTCTGTAG3'、 酉己歹 IJ番号 3 の塩基配歹 Uの 7 6 1 番目の C か Ί 8 9番目 の Tおよびス ト ップコ ドン T A Aの相補鎖に 対応) を加え、 P C R混合液と した。 この混合液を、 TaKaRaThe above cDNA 3 / l (genomic DNA was diluted to 100 μg equivalent to 3 μl. The same amount was used for negative control) Primers d NTP mixture 7 / l in water was added), 4 mu 1 of 1 0 X buffer, 2 mu 1 of 2 5 m MM g C l 2 solution, by ll of (2 0 pmo by 1) m240F (SEQ ID NO: 15: 5 'GCTCATCAAG ATGCCCAACA TTAAAAAGTC TC 3', corresponding to the 4th 17th G protein from the 4th sequence of the base sequence of J number 3) Limer m 2 4 OR (Robot system ij number 16: 5 'TTAAATGGTAAAAG AACT GGTTGGCTCTGTAG3', Robot system IJ No. 3 base sequence 7 U 1 C or Ί 9 9 T and st (Corresponding to the complement of the codon TAA) to obtain a PCR mixture. This mixture is
PCR e rma l Cyc l e r 480を用いて、 9 4 °C 1 分、 5 5 °C 2 分、 7 2で 3 分を 3 0サイ クル行ったのち、 7 2 °C 7 分の反 応を行った。 この P C R産物を ◦ . 8 %ァガロース · ゲル中 で電気泳動を行い、 ェチジゥムブ口マイ ド (日本国、 日本ジ ーン社製) にて染色後、 紫外線下で観察した。 その結果、 ネ ガティ ブコ ン ト ロールを除く 3 つのサンプルで約 4 0 0 b p の同 じ移動度のバン ドが観察された。 このバン ドのサイ ズは、 実施例 1 で得られたマウス断片のサイ ズ ( 3 7 5 b p ) と よ く 一致し、 同一の遺伝子である と 考えられた。 実施例 6 7回膜貫通型受容体蛋白質 E T 2 4 0発現べク ターの作製 Using PCR eCycler 480, 30 cycles of 1 minute at 94 ° C, 2 minutes at 55 ° C, and 3 minutes at 72 were performed, followed by a reaction at 72 ° C for 7 minutes. Was. This PCR product was subjected to electrophoresis in a 0.8% agarose gel, stained with ethidium mouth mold (manufactured by Nippon Gene, Japan), and observed under ultraviolet light. As a result, a band with the same mobility of about 400 bp was observed in the three samples excluding the negative control. The size of this band closely matched the size of the mouse fragment (375 bp) obtained in Example 1, and was considered to be the same gene. Example 6 Preparation of 7 Transmembrane Receptor Protein ET240 Expression Vector
ヒ ト肺由来の c D N Aライ ブラ リ ー (CLONTECH社製、 Ca t I HL 5030 を铸型と して全長 E T 2 4 0遺伝子の P C R ( po 1 yme r a s e cha in reac t i on) を行っ た。 0 1 こ(,ま11'1811 Fide l i t y T a qポ リ メ ラーゼ ( ドイ ツ国、 ベー リ ンガーマ ンハイ ム 社製) を用いた。 こ のフ ァ ージライブラ リ ー溶液 2 μ 1 と脱 イ オン水 3 6 μ 1 を混合し 9 5 °Cで 7分間加熱 したものに、 T a q ポリ メ ラーゼ 1 μ 1 と 、 T a q ポ リ メ ラーゼに添付の ノく ッ フ ァー 5 μ 1 と 、 2 . 5 m M dNTP mixt ure ( 日本国、 宝酒造社製) 4 μ 1 と 、 オリ ゴヌ ク レオチ ド F 4 (配列番号 1 7 : 5' ACTACAAAAGCTTGGAGCCATGGCTTTGGAAC 3' ; 酉己歹 IJ番号 1 の 2番目 の T力 ら 2 2番目 の Cまでの 2 1 塩基の 5 ' 側に 制限酵素 H i n d I I Iの認識部位を導入するための AAG (:、 ス ぺーサ一配列 ACTACAAを加えたもの) 、 およびオリ ゴヌ ク レ ォチ ド R 4 (配歹 ij番号 1 8 : 5' AAAAGCTCGAGCAGTTTTACCTTTAA ATGCTAAAAG 3' ; 配列番号 1 の 1 0 4 9番目 の C力 ら 1 0 7 6番目 の Cの塩基配列のアンチセンス配列の 5 ' 側に制限酵 素 X b a I の認識部位を導入するための CTC, スぺーサー配 列と しての AAAAGを力 []えたもの) を、 それぞれ 2 0 p m o 1 を加え、 最終容量 5 0 μ 1 と した。 Human lung-derived cDNA library (CLONTECH, Cat I HL 5030 type III, PCR of full-length ET240 gene (po 1 yme rase cha in reaction). 0 1 This was used (11'1811 Fidility Taq polymerase (Beringer Mannheim, Germany). 2 μl of this phage library solution and deionized water 36 Mix 1 μl, heat at 95 ° C for 7 minutes, add 1 μl of Taq polymerase, and 5 μl of buffer attached to Taq polymerase. 5 μM dNTP mixture (Takara Shuzo Co., Ltd., Japan) 4 μ 1 and Origo Nucleotide F 4 (SEQ ID NO: 17: 5 'ACTACAAAAGCTTGGAGCCATGGCTTTGGAAC 3'; AAG (: plus a spacer sequence, ACTACAA) to introduce a recognition site for the restriction enzyme HindIII on the 5 'side of the 21 bases from T force to the 2nd C, and oligo Nucleotide R 4 (system ij No. 18: 5 'AAAAGCTCGAGCAGTTTTACCTTTAA ATGCTAAAAG 3'; SEQ ID NO: 1 C base of the 10th ninth C to 107th C base CTC for introducing the recognition site of the restriction enzyme XbaI on the 5 'side of the antisense sequence and AAAAG as the spacer sequence []) were added to the psense of 20 pmo 1, respectively. In addition, the final volume was 50 μl.
この混合物を、 TaKaRa PCR therma l Cyc l e r 480を用いて、 9 5 °C 1 分、 6 5 °C 2分、 7 2 °C 3分を 5 サイ クル行ったの ち、 9 5 C 1 分、 6 2 °C 2分、 7 2 °C 3分を 5 サイ クノレ 、 さ らに 9 5 °C 1 分、 5 9 °C 2分、 7 2 °C 3 分を 5 サイ ク ル行レ、、 その後 9 5 。C 1 分、 5 0 °C 2分、 7 2 °C 3 分を 2 0サイ クル 行って、 最後に 7 2 °C 7分の反応を行った。 この P C R産物 を ◦ . 8 %ァガロ ース · ゲル中で電気泳動を行い、 ェチジゥ ムブロマイ ド ( 日本国、 日本ジー ン社製) にて染色後、 紫外 線下で観察 し、 約 1 0 0 0 b p の c D N Aが増幅されている こ と を確認した。 目的とする遺伝子産物をゲルから切 リ 出し、 Sup r e cO l ( 日本国、 宝酒造社製) を用いて、 D N Aの精製を 行った。 こ の精製 D N Aを Euka r yo t i c TA C l on i ng Ki t (ォ ラ ンダ国、 I n V i t r 0 g e n社製) を用い、 添付のプロ ト コールに 従って、 p C R 3 . 1 ベク タ一に組み込んだ。 D N Aが組み 込まれた p C R 3 . 1 を大腸菌 INV a F' Compe t en t Ce l l s (ォ ラ ンダ国、 1 n V i 10 r 0 g e n社製) に遺伝子導入し、 アンピシ リ ン (米国、 S i gma社製) を 5 0 g / m l 含むい Bro t h (日本 国、 宝酒造社製) 半固型培地のプ レー ト に蒔き 、 1 2 時間程 度 3 7 °Cに放置した。 現れてきたコ ロ ニーを無作為選択し、 選択したコ ロ ニ一を同濃度のアンピシリ ンを含む L — B r 0 t h液体培地 2 m 1 に植え付け、 1 8 時間程度 3 マ。 Cで振と う培養し、 菌体を回収した。 回収した菌体を、 ウ イ ザー ドミ ニプレップ (米国、 P r omega社製) を用いて添付の説明書に 従ってプラ ス ミ ドを分離した。 制限酵素 H i n d I 1 Iでの切 断によ リ 、 正しい方向に断片が挿入されている ものを選び出 し、 D N Aの塩基配列を決定した。 This mixture was subjected to 95 ° C for 1 minute, 65 ° C for 2 minutes, and 72 ° C for 3 minutes using TaKaRa PCR thermal Cycler 480, and then to 95C for 1 minute. 6 2 ° C for 2 minutes, 72 ° C for 3 minutes, 5 cycles, and 95 ° C for 1 minute, 59 ° C for 2 minutes, 72 ° C for 3 minutes, 5 cycles Then 95. C 1 minute, 50 ° C. 2 minutes, 72 ° C. 3 minutes were performed for 20 cycles, and finally a reaction was performed at 72 ° C. for 7 minutes. This PCR product Perform electrophoresis in 8% agarose gel, stain with ethidium bromide (manufactured by Nippon Gene, Japan), and observe under ultraviolet light. It was confirmed that the DNA was amplified. The target gene product was cut out from the gel, and DNA was purified using SuprecOl (Takara Shuzo, Japan). This purified DNA was purified using Euka Ryotic TACl on Ing Kit (manufactured by InVitrogen, The Netherlands) according to the attached protocol and the pCR3.1 vector. Incorporated into one. The DNA-incorporated pCR3.1 was transfected into E. coli INV aF's Competent Cells (manufactured by 1nVi10rogen, The Netherlands), and ampicillin (US Sigma) (50 g / ml) was plated on a plate of Broth (Takara Shuzo Co., Ltd.) semi-solid medium and left at 37 ° C. for about 12 hours. The colonies that appeared were randomly selected, and the selected colonies were inoculated in 2 ml of L-Br0th liquid medium containing the same concentration of ampicillin and left for about 18 hours. After culturing with shaking in C, the cells were collected. The recovered cells were separated from plasmid using Wizard Dominiprep (Promega, USA) according to the attached instructions. By cutting with the restriction enzyme HindI1I, one having the fragment inserted in the correct direction was selected, and the nucleotide sequence of the DNA was determined.
D N A塩基配列の決定は、 米国、 App l i e d B i o s ye t ems社製 の蛍光シークェンサ一を用いて、 実施例 1 と 同様に行った。 シーク ェンスプラ イ マーは Euka r yo t i c TA C l on i ng K i t (ォ ラ ンダ国、 1 n v i o g e n ) に添付のプライ マーと実施例 2 に記 載の F 1 および R 1 プライ マ一を用いた。 7 つのク ローンの 塩基配列を決定したと こ ろ、 そのコ ンセンサス配列は、 配列 番号 1 に示 した c D N Aの配列と 同一でぁ リ 、 そのコ ンセン サス配列を有する発現プラ ス ミ ドを P E T 2 4 0 H と命名 し た。 なお、 7 ク ローンの う ち 3 ク ローンは配列番号 1 の D N A配列の 6 7 8番目 の塩基 Aが Gに変わっていた。 この変化 は頻度が高いため、 ァ リ リ ッ ク変異である と判断した。 The determination of the DNA base sequence was performed in the same manner as in Example 1 using a fluorescent sequencer manufactured by Applied Biosystems, USA. The sequence primer is Euka ryotic TA C l on inng K it (O The primers attached to the Netherlands (1 nviogen) and the F1 and R1 primers described in Example 2 were used. When the nucleotide sequences of the seven clones were determined, the consensus sequence was identical to the sequence of the cDNA shown in SEQ ID NO: 1, and the expression plasmid having the consensus sequence was subjected to PET. It was named 240H. In addition, out of 7 clones, 3 clones had the base A at position 678 of the DNA sequence of SEQ ID NO: 1 changed to G. Since this change was frequent, it was determined to be an alias mutation.
なお、 こ のプラ ス ミ ド P E T 2 4 0 Hを大腸菌 I N V a F ' に導入した菌株 E . c o l i : I N V a F ' - ρ Ε Τ 2 4 0 Ηは日本国通商産業省工業技術院生命工学工業技術研究所に 受託番号 : F E RM B P — 6 2 1 3 と して寄託した。 The strain E. coli in which this plasmid PET 240H was introduced into E. coli INV aF ': Deposited with the National Institute of Advanced Industrial Science and Technology under the accession number: FE RM BP — 6 2 13
実施例 7 発現ベク ターの細胞への遺伝子導入とその発現 実施例 6 で作製した発現べク タ一を 2 9 3細胞 (日本国、 大日本製薬 (株) から入手可能、 原 A T C C番号 C R L — 1 5 7 3 ) に遺伝子導入した。 遺伝子導入前の細胞の継代に は、 MEM wi th Ear 1 es Sa l t s (M E Mアール液体培地、 日本 国、 大 日本製薬 (株) C . No. 12- 102- 54 CN) に 1 0 %馬血 清 (米国、 ICN Biomed i ca ls Inc. 社製, Caし No. 2921149 を 5 6 °Cで 2 0分間熱処理して非働化したもの) 、 1 0 0分 の 1 量の Pen i c i l l in-S eptoniyc in溶液 (日本国、 大日本製 薬 (株) Caし No. 16-70D-49DN) を加えたものを使用 した。 細胞は、 5 X 1 0 4 細胞/ m 1 カゝら 5 X 1 0 5 細胞 Z m 1 の 濃度で培地中に植え付け、 3 7 °C、 5 %二酸化炭素、 湿度 1 0 0 %で培養し、 コ ンフルェ ン トになるまで培養した。 培地 を吸弓 i · 廃棄し、 E D T A ト リ プシン液 (日本国、 Cosmo Bi o Co. , Lt d. 製) で処理する こ と によ リ 、 細胞をプレー ト底 面よ リ はが した。 上記の M E Mアール液体培地 (血清を含む) を加えて反応を停止させた。 その後、 ピペッティ ングによつ て細胞を均一に懸濁 し、 遠心して ( 1 0 0 0 r p m 1 5 分) ( K S — 8 3 0 0型、 日本国、 久保田製作所製 ; R S 3 0 0 0 / 6型口一ターを使用) 回収し、 新しい培地に再度懸濁し 継代した。 遺伝子導入は、 オラ ンダ国、 1 n V i t r 0 g e n社のキ ッ ト (Caし No. IV2780 - 1 ) を用い リ ン酸カル シ ウ ム共沈法に て行い (添付のプロ ト コル 6 ページ) 、 本発明の 7 回膜貫通 型受容体蛋白質 E T 2 4 0 をコ一 ドする D N Aを保持する形 質転換体を作成した。 D N Aは直径 3 5 m mのプレー ト あた リ 5 μ g を用いた。 Example 7 Transfection of Expression Vector into Cells and Its Expression The expression vector prepared in Example 6 was obtained from 293 cells (available from Dainippon Pharmaceutical Co., Ltd., Japan, original ATCC No. CRL— The gene was transfected into 1 5 7 3). For cell passage before transfection, 10% horses were collected in MEM Wis Ear One Salts (MEM Earl Liquid Medium, Japan, Dainippon Pharmaceutical Co., Ltd. C. No. 12-102-54CN). Serum (manufactured by ICN Biomedicals Inc., USA, Ca No. 2921149 heat-treated at 56 ° C for 20 minutes and inactivated), 1 volume of Penicill in- Septoniycin solution (Dainippon Pharmaceutical Co., Ltd., Japan; Ca No. 16-70D-49DN) was used. Cells planted in the medium at a concentration of 5 X 1 0 4 cells / m 1 Kakara 5 X 1 0 5 cells Z m 1, and incubated at 3 7 ° C, 5% carbon dioxide, humidity 1 0 0% The cells were cultured until they became confluent. The culture medium was discarded and discarded, and the cells were removed from the bottom of the plate by treating with EDTA trypsin solution (Cosmo Bio Co., Ltd., Japan). The reaction was stopped by adding the above MEM R liquid medium (including serum). Thereafter, the cells are uniformly suspended by pipetting, centrifuged (1000 rpm, 15 minutes) (KS-8300, Kubota Manufacturing Co., Ltd., Japan; RS300 / Collected, resuspended in fresh medium and subcultured. The gene transfer was carried out by the calcium phosphate coprecipitation method using a kit (Ca-No. IV2780-1) from 1 nV Itrogen in the Netherlands (protocol 6 Page) 7 times transmembrane of the present invention Transformants were prepared which harbor DNAs encoding the type receptor protein ET240. For the DNA, 5 μg of a plate having a diameter of 35 mm was used.
次に、 膜画分の調製を以下のよ う に行った。 P E T 2 4 0 を遺伝子導入 した細胞およびコ ン ト ロールと して p c D N A 3 プラス ミ ドを導入した細胞を 2 4〜 4 8 時間培養した。 そ の後、 培地はァス ピレータで吸引 して廃棄し、 P B S (日本 国、 大 日本製薬 (株) 製、 Caし No. 28 - 103 -05 ) を用いて細 月 を洗浄し、 その後 l m l プレー ト の P B S を加え、 Ce l l Scrape r- L ( 日 本国、 住友べ一ク ライ ト社製、 Caし No. MS - 93300 ) を用いてプレー トからはが した。 その後、 3 プレ一 トあた リ l m l の P B S を加え、 プレー ト を洗浄し、 回収し た細胞に加えた。 こ の細胞懸濁液を P Q t r 0 n (スイ ス国、 K I ΝΕΜΑΠΚΑ社製、 PT10- SK) で破砕し、 マイ ク ロチューブ用遠 心機 (M R X — 1 5 0型、 日本国、 ト ミ 一精ェ製) にて 4 °C , 1 3 0 0 0 X g で 1 5分間遠心した。 上清を捨て、 さ らに 2 度 P B S を加えて細胞を懸濁後、 同じ条件で遠心した。 米国、 B i o-Rad l abora to r ies 社のプロテイ ンア ツセィ キ ッ トを用 いて蛋白質を定量し、 蛋白質量が、 l m g Zm l になる よ う P B S を加えて調製した。 こ の懸濁液を膜画分調製液と した。 こ う して得られた膜画分調製液を用いてウ ェスタ ンプロ ッ ティ ング法にて 7 回膜貫通型受容体蛋白質 E T 2 4 0 の発現 を確認した。 膜画分を 日本国、 A C I ジャパン社製の S D S — P A G E用電気泳動槽及び S D S— P A G E用ポ リ アク リ ルア ミ ドゲル (グラ ジェン トゲル 5〜 1 5 % ) を用い、 添付 の取扱い説明書に従って S D S— P A G E をおこなった。 サ ンプルは 2—メノレカプ トエタノール ( 2— M E ) を加えて 5 分間の沸騰水浴加熱処理によ リ還元処理を行った。 マーカ一 と しては英国、 Ame r sham社製のレイ ンボーマーカ一 (高分子 量用) を用い、 サンプルバ ッ フ ァ ー、 泳動バ ッ フ ァ 一につレ、 ては添付の取扱い説明書に従って作製した。 S D S— P A G E終了後、 ァ ク リ ノレア ミ ドゲルを P V D F メ ンブラ ンフ ィ ノレ ター (米国、 Bio- R ad laborator ies 社製) に同社製ミ ニ ト ランスブロ ッ トセルにょ リ転写した。 Next, the membrane fraction was prepared as follows. Cells transfected with PET240 and cells transfected with pcDNA3 plasmid as a control were cultured for 24 to 48 hours. After that, the medium was aspirated with aspirator and discarded. The plate was added to PBS, and the plate was peeled off using Cell Scrape r-L (manufactured by Sumitomo Beilite Co., Ltd., Japan, Ca No. MS-93300). Thereafter, 1 ml of PBS was added to each of the three plates, and the plate was washed and added to the collected cells. This cell suspension is crushed with PQ tr0n (PT10-SK, manufactured by KI Corporation, Switzerland), and a microcentrifuge for microtubes (MRX-150, Tomi Issei, Japan) ) And centrifuged at 1300 Xg for 15 minutes at 4 ° C. The supernatant was discarded, the cells were suspended twice by adding PBS twice, and centrifuged under the same conditions. The protein was quantified using a protein assay kit from Bio-Rad Laboratories, USA, and PBS was added so that the protein content would be 1 mg Zml. This suspension was used as a membrane fraction preparation. Expression of ET240, a seven-transmembrane receptor protein, by Western blotting using the membrane fraction preparation thus obtained It was confirmed. Membrane fractions were analyzed using ADS Japan SDS-PAGE electrophoresis tank and SDS-PAGE polyacrylamide gel (gradient gel 5 to 15%) according to the attached instruction manual. SDS-PAGE was performed. The sample was treated with 2-menolecaptoethanol (2-ME) and reduced by heating in a boiling water bath for 5 minutes. As a marker, use Rainbow Marker 1 (for high molecular weight) manufactured by Amersham, UK, and use the attached instruction manual for each sample buffer and electrophoresis buffer. It was produced according to. After completion of SDS-PAGE, Acrynorea midgel was transferred to a PVDF membrane separator (Bio-Rad Laboratories, USA) using a mini trans blot cell.
このよ う に作製されたフィルターをブロ ッ クエース (日本 国、 大日本製薬社製) を含む T B S— T [ 2 0 mM T r i s · H C 1 , 1 3 7 mM N a C 1 ( p H 7 . 6 ) 、 0 . 1 % T w e e n 2 0〕 中にて 4 °Cでー晚振と う してブロ ッキ ングした。 E C L ウ ェ ス タ ンプロ ッテ ィ ング検出システム (英国、 Amersham社製) に添付の説明書に従い、 一次抗体と して実施例 1 1 に記載した抗 E T 2 4 0抗血清を用い、 二次 抗体と してペルォキシダ一ゼ標識抗マ ウス I g ロバ抗体 (英 国、 Amersham社製) を反応させた。  The filter prepared in this manner was treated with TBS-T [20 mM Tris · HC1, 1337 mM NaC1 (pH 7.0) containing Block Ace (Dainippon Pharmaceutical, Japan). 6), in 0.1% Tween 20] at 4 ° C with shaking. Using the anti-ET240 antiserum described in Example 11 as the primary antibody according to the instructions attached to the ECL Western blotting detection system (Amersham, UK), A peroxidase-labeled anti-mouse Ig donkey antibody (manufactured by Amersham, UK) was reacted as an antibody.
抗体の反応時間は各々室温で一時間でぁ リ 、 各反応間は T B S— Tにて 1 0分間室温で振と う 洗浄する操作を 3 回ずつ 繰り 返した。 最後の洗浄後、 フ イ ノレタ ーを E C L ウェス タ ン ブロ ッテイ ング検出システム (英国、 Amersham社製) の反応 液に 5 分間浸し、 ポ リ塩化ビニ リ デンラ ップに包んで X線フ イ ノレ ム に感光させた。 The reaction time of each antibody is 1 hour at room temperature. Repeated. After the last wash, the finolators are immersed in the reaction solution of ECL Western Blotting Detection System (Amersham, UK) for 5 minutes, wrapped in polyvinylidene wrap, and X-ray finol Exposed to light.
分子量マーカーとの比較の結果、 約 3 8 〜 4 2 k Dのバン ドが p E T 2 4 0 Hを遺伝子導入を したものについてのみ得 られ、 p c D N A 3 を導入した細胞には観察されなかった。 実施例 8 リ ガン ドのス ク リ ーニング  As a result of comparison with the molecular weight marker, a band of about 38 to 42 kD was obtained only for the pET240H transfected gene, but not observed for the pcDNA3 transfected cells. . Example 8 Screening of ligands
遺伝子を導入していない 2 9 3 細胞と E T 2 4 0形質転換 体 2 9 3細胞の膜画分を実施例 7 と 同様に調製した。 膜画分 調製液 5 0 μ 1 も しく は P B S 〔 日本国、 大日本製薬 (株) 製 Caし No. 28 - 103-05 ] に、 放射性標識された リ ガン ド候 補化合物 C G S 2 1 6 8 0 (米国、 Dupont NEN社製、 Cat No. NET- 1021 ) 5 0 μ I (終濃度 Ι Ο Ο η Μ) 、 P B S 5 0 μ 1 を加え、 全量を 1 5 0 μ 1 と した。 混合して候補化合 物と 7 回膜貫通型受容体蛋白質 Ε Τ 2 4 0 を接触させ、 3 7 °Cで 3 0分間保温した後、 マイ ク ロチューブ用遠心機 ( 日本 国、 ト ミ一精ェ製、 M R X— 1 5 0型) で室温、 1 5 0 0 0 g で 1 5分間遠心し、 E T 2 4 0蛋白質と結合した候補化 合物と結合していないものを分離した。 その上清を 1 と リ 、 1 0 m l の液体シンチ レ一ター用カ ク テル (EC0M0FLじ 0R -2, 米国、 Dupont NEN 社製) に加え、 混合した。 その後、 B e c kman LS6000LL型シンチレ一シヨ ンカ ウ ンター (米国、 Bee kman 社製) を使用 して放射活性をカ ウン ト し、 E T 2 4 0 遺伝子導入の有無で得られた放射活性を比較した。 The membrane fraction of the 293 cells into which the gene had not been introduced and the ET 240 transformant 293 cells was prepared in the same manner as in Example 7. 50 μl of membrane fraction preparation solution or PBS [Ca-No. 28-103-05, manufactured by Dainippon Pharmaceutical Co., Ltd., Japan], radiolabeled ligand candidate compound CGS 2 16 50 (manufactured by Dupont NEN, USA, Cat No. NET-1021) 50 μI (final concentration Ι Ο η η Μ) and 50 μl of PBS were added to make the total volume 150 μl. After mixing and bringing the candidate compound into contact with the transmembrane receptor protein 7 Τ 240 seven times, keeping the mixture at 37 ° C for 30 minutes, centrifuge for microtubes (Tomi Issei, Japan) Centrifugation at 1500 g for 15 minutes at room temperature at room temperature (MRX-150 type) to separate those not bound to the candidate compound bound to the ET240 protein. The supernatant was added to 1 and 10 ml of a liquid scintillator capsule (EC0M0FL-J0R-2, manufactured by Dupont NEN, USA) and mixed. Then B The radioactivity was counted using an ec kman LS6000LL scintillation counter (manufactured by Bee kman, USA), and the radioactivity obtained with and without the introduction of the ET240 gene was compared.
その結果、 得られた放射活性は E T 2 4 0遺伝子導入の有 無で差がなかった。 実施例 9 リ ガン ドのスク リ ーニング  As a result, there was no difference in the obtained radioactivity with or without the introduction of the ET240 gene. Example 9 Screening of ligands
実施例 6 で作製した発現ベク ターを C H O細胞 〔日本国、 大日本製薬 (株) から入手可能、 原 A T C C番号 C C L — 6 1 〕 に遺伝子導入した。  The expression vector prepared in Example 6 was transfected into CHO cells [original ATC No. CCL-61] [available from Dainippon Pharmaceutical Co., Ltd., Japan].
遺伝子導入前の細胞の継代は、 F- 12 Nut r i ent Mi x t u r e ( H A M培地、 GIBCO BRL Ca t . No . 11765-047 ) を用い、 最終 濃度 1 0 %の 8 3 ( Fe t a l Bov i ne Se rum; 米国、 GIBCO BR L 社製、 Ca t . No. 10099 - 141 ; 5 6 °Cで 2 0分間熱処理して 非働化したもの) 、 1 0 0分の 1 量の Pen i c i l l i n- S t r e p t omy c i n溶液 〔 日本国、 大日本製薬 (株) Caし NQ . 16-70D-49DN] を加えた。 細胞は、 5 X 1 0 4 細胞 m 1 カゝら 5 X 1 0 5 細 胞 / m 1 の濃度で培地中に植え付け、 3 7 °C、 5 %二酸化炭 素、 湿度 1 0 0 %で培養し、 コ ンフルェン ト になるまで培養 した。 培地は吸引 ' 廃棄し、 E D T A ト リ プシ ン液 ( 日本国、 Cosmo B i o Co . , Lt d. 社製) 処理にょ リ 、 細胞をプ レー ト底 面よ リ はが した。 上記の培地 (血清を含む) を加えて反応を 停止させた。 その後、 ピペッティ ングによ って細胞を均一に 懸濁し、 遠心 して ( 1 0 0 0 r p m 1 5分 ; K S — 8 3 0 0型、 日本国、 久保田製作所、 R S 3 0 0 0 Z 6型口一ター) 回収した。 新しい培地に再度懸濁し、 継代培養を行った。 No. 11765-047, F-12 Nutrient Mixture (HAM medium, GIBCO BRL Cat.No. 11765-047) was used for the passage of the cells before the gene transfer. No. 10099-141, manufactured by GIBCO BRL, USA; heat-treated at 56 ° C. for 20 minutes to render it inactive), 100 parts of Penicilli n-S A trept omy cin solution [Ca. Nippon Dainippon Pharma Co., Ltd. NQ. 16-70D-49DN] was added. Cells are seeded in medium at a concentration of 5 × 10 5 cells / m 1, 5 × 10 4 cells m 1, and cultured at 37 ° C., 5% carbon dioxide, 100% humidity. And cultured until confluent. The medium was aspirated, discarded, and treated with EDTA trypsin solution (Cosmo Bio Co., Ltd., Japan) to remove cells from the bottom of the plate. The reaction was stopped by adding the above medium (including serum). The cells are then evenly distributed by pipetting. The suspension was suspended and centrifuged (1000 rpm for 15 minutes; KS-8300, Kubota Seisakusho, Japan, RS3000 Z6). The cells were resuspended in a new medium and subcultured.
遺伝子導入は、 米国、 Bio- Rad l abo r ato r i es 社の GenePu 1 s e rを用いてエ レク ト ロ ポ レーシ ヨ ンで行っ た。 C Η Ο細胞 は上記のよ う に ト リ プシン処理を行いプ レー ト底面よ リ はが し、 エ レク ト ロポ レーシ ヨ ン用緩衝液 ( 2 7 2 mM S u e r o s e , 1 mM M g C l 2, 7 mM リ ン酸緩衝液) で 洗浄後、 5 X 1 0 6 細胞/ 5 0 0 μ 1 になる よ う 同 じエレク ト ロポレーシヨ ン用緩衝液に懸濁し、 GenePu l se r Cuvet te に分注した。 導入する遺伝子と しては、 実施例 6 で作製した プラ ス ミ ドの D N A p E T 2 4 0 H ( 5 μ g ) を CuveUe に添加した。 得られた混合液を 5分間氷冷後、 G e n e P u 1 s e r のセルチャ ンバ一に入れ、 3 F, 5 5 0 Vの条件で 2回パ ルスをかけた。 再度 5分間氷冷後、 3 7 °Cに保温した培地を 1 0 m 1 を Cuvet te に加え、 次に Cuvet t e 内の混合液を直 径 1 0 c mの細胞培養用シャー レに移し、 細胞を培養した。 約 2 4 時間後に培地を新しいものと交換し約 2 4 時間培養し た。 こ の細胞を、 種々 の細胞濃度で 4 0 0 μ g / m 1 の濃度 のネオマイ シン (Gene t i c iii) (米国、 GIBCO BRL 社製、 181 1 -023 ) を含む培地に植え替えた。 その後、 2週間前後培養 し増殖した細胞を ヒ ト E T 2 4 0蛋白質発現細胞と した。 以上のよ う に作成 した ヒ ト型 7 回膜貫通型受容体蛋白質 E T 2 4 0発現細胞を用いて、 化学遊走の測定を行った。 リ ガ ン ド候補物質と しては、 以下のよ う に作製した L P S ( リ ポ ポ リ サ ッカ ライ ド) 投与ラ ッ ト血清を用いた。 7週令の Wist arラ ッ ト を 日本国、 (株) 日本生物材料よ リ購入した。 サル モネラ ミ ネ ソタ R E 5 9 5 由来 L P S (米国、 Sigma社製) を 日本薬局方生理食塩水に最終濃度 l m g /m 1 になるよ う に懸濁 した。 懸濁液をソニケ一ター (日本国、 Branson社製) でソニケー ト し、 透明な液と した。 これを 日本薬局方生理食 塩水で 1 0倍に希釈し、 4 0 0 μ 1 を尾静脈よ リ 投与した。 投与後約 2 2 時間後のラ ッ ト をェ一テル麻酔後に開腹して心 臓よ リ採血した。 マイ ク ロチューブ用遠心機 ( 日本国、 ト ミ 一精ェ社製、 M R X— 1 5 0型) で 4 °C, l 3 0 0 0 X g で 1 5分間遠心し、 その上清を— 2 0 °Cで保存した。 これを被 検物質溶液と した。 Gene transfer was performed by electroporation using GenePu 1 ser from Bio-Rad Laboratories, USA. C Η Ο cells are treated with trypsin as described above, peeled off from the bottom of the plate, and electroporation buffer (272 mM Suerose, 1 mM MgCl 2, washed with 7 mM-phosphate buffer), 5 X 1 0 6 were suspended in the cell / 5 0 0 cormorants by becomes mu 1 same elect Roporeshiyo down buffer, the GenePu l se r Cuvet te Dispensed. As a gene to be introduced, the plasmid DNA pET240H (5 μg) prepared in Example 6 was added to CuveUe. The resulting mixture was ice-cooled for 5 minutes, placed in a GenePu1 ser cell chamber, and pulsed twice under the conditions of 3F and 550V. After cooling again on ice for 5 minutes, add 10 ml of the medium kept at 37 ° C to Cuvet te, and then transfer the mixture in Cuvet te to a 10 cm diameter cell culture dish. Was cultured. After about 24 hours, the medium was replaced with a new one and cultured for about 24 hours. The cells were replaced with a medium containing neomycin (Genetic iii) (181B-023, GIBCO BRL, USA) at various cell concentrations at a concentration of 400 μg / ml. Thereafter, the cells grown and cultured for about two weeks were designated as human ET240 protein-expressing cells. Human seven-time transmembrane receptor protein E prepared as described above Using T240-expressing cells, the measurement of chemical migration was performed. LPS (lipopolysaccharide) -administered rat serum prepared as follows was used as a candidate ligand. A 7-week-old Wistar rat was purchased from Japan Biological Materials Co., Ltd. in Japan. LPS (Sigma, USA) derived from Salmonella Minnesota RE595 was suspended in physiological saline in the Japanese Pharmacopoeia to a final concentration of lmg / m1. The suspension was sonicated with a sonicator (Branson, Japan) to obtain a clear liquid. This was diluted 10-fold with physiological saline in the Japanese Pharmacopoeia, and 400 μl was administered via the tail vein. Rats approximately 22 hours after administration were laparotomized after ether anesthesia and blood was collected from the heart. Centrifuge in a microtube centrifuge (MRX-150, manufactured by Tomi Issei Co., Ltd., Japan) at 4 ° C for 15 minutes at 300 xg and centrifuge the supernatant. Stored at 0 ° C. This was used as the test substance solution.
9 6 穴マイ ク ロ プ レー ト チャ ンバ一 〔 日 本国、 フナコ シ 9 6-hole microplate chamber [Funacosi, Japan
(株) 社製、 Cat. No . F E— 2 2 9 2 — 9 6 〕 に 9 6 穴マ イ ク 口 プレー ト 〔日本国、 フナコ シ (株) 社製、 Cat No. FE -2300-02 ] および 1 5 μ g / m 1 のフ イ ブロネ ク チン 〔米国、 Sigma 社製 ; PBS ( 日本国、 大日 本製薬 (株) 、 Cat No. 28 - 103-05 ) 中に溶解した〕 で処理した 8 μ mのポアサイ ズの フ レーム フ イ ノレタ ー 〔日本国、 フナコ シ (株) 社製、 Cat . 0. FE- 2340 - 08〕 を据え付けた。 下室には 0 . 1 5 % B S ACat. No. FE—2 292—96] manufactured by KK Co., Ltd. with a 96-hole microplate [Funakoshi KK, Japan, Cat No. FE-2300-02] ] And 15 µg / m 1 of fibronectin (manufactured by Sigma, USA; dissolved in PBS (Dainihon Pharmaceutical Co., Ltd., Japan, Cat No. 28-103-05)). A treated 8 μm pore size frame finoletor [Cat. FE-2340-08, manufactured by Funakoshi Co., Ltd., Japan] was installed. 0.15% B S A in lower chamber
(米国、 Sigma社製) を含む R P M I 1 6 4 0 (米国、 GIB CO BRL 社製、 Caし No . 22400-071 ) で被検物質溶液を 1 0 倍希釈して加えた。 上室には 0 . 1 5 % B S Aを含む R P M I 1 6 4 0 に懸濁した 7回膜貫通型受容体蛋白質 E T 2 4 0発現細胞を加え、 被検物質と E T 2 4 0蛋白質を接触させ た。 こ の状態の 9 6穴マイ ク ロプレー トチャ ンバ一を 5 %二 酸化炭素、 3 7 °Cで 5時間保温した。 フ ィ ルターを固定 · 染 色して顕微鏡下で観察した。 その結果、 化学遊走している細 胞が観察された。 実施例 1 0 リ ガン ドと拮抗する物質のス ク リ ーニ ングRPMI 1640 (Sigma, U.S.A.) The test substance solution was diluted 10-fold with Ca BRL Co., Ltd., Ca No. 22400-071) and added. To the upper chamber, ET240 expressing cells, a seven-transmembrane receptor protein suspended in RPMI 164 containing 0.15% BSA, are added, and the test substance is brought into contact with the ET240 protein. Was. The 96-well microplate chamber in this state was kept at 37 ° C for 5 hours at 5% carbon dioxide. The filter was fixed and stained and observed under a microscope. As a result, chemi-migrating cells were observed. Example 10 Screening of a substance antagonistic to ligand
E T 2 4 0形質転換 C H O細胞を用い形質転換体の化学遊 走試験を行った。 (i) 実施例 9で作製した E T 2 4 0形質 転換 C H O細胞に発現する 7回膜貫通型受容体蛋白質 E T 2 4 0 'と 、 実施例 9 に示した L P S投与ラ ッ ト血清を リ ガン ド と して用いて、 実施例 9 と 同様に化学遊走している細胞を観 察した。 さ らに、 ( ) 実施例 9の実験の際に上室および下 室に含まれる溶液に最終濃度 1 0 Ο μ Μの N—ェチルカルボ キシア ミ ドアデノ シン (米国、 Sigma社製) を加えて実施例 9 と同様に化学遊走している細胞を観察した。 そののち、 ( i ) と ( i i ) の結果を比較したが、 両者に差はなかった。 実施例 1 1 E T 2 4 0蛋白質を認識する抗体の作成 Using the E.sub.T240 transformed C.sub.HO cells, the transformant was subjected to a chemical migration test. (I) The seven-transmembrane receptor protein ET240 ′ expressed in the ET240 transformed CHO cells prepared in Example 9 and the LPS-treated rat serum shown in Example 9 were religated. As in Example 9, chemi-migrating cells were observed in the same manner as in Example 9. In addition, () N-ethylcarboxymide adenosine (manufactured by Sigma, USA) having a final concentration of 10 μm was added to the solutions contained in the upper and lower chambers in the experiment of Example 9. As in Example 9, chemi-migrating cells were observed. After that, the results of (i) and (ii) were compared, but there was no difference between them. Example 1 Preparation of Antibody Recognizing 1E T240 Protein
実施例 6で作製した発現ベク ターを B A L B / c 3 T 3 細胞 〔日本国、 大日本製薬 (株) から入手可能、 原 A T C C 番号 C C L — 1 6 3〕 に遺伝子導入した。 The expression vector prepared in Example 6 was replaced with BALB / c3T3 The gene was transfected into cells [available from Dainippon Pharmaceutical Co., Ltd., Japan, original ATCC No. CCL-163].
遺伝子導入前の細胞の継代は、 ダルべッ コ改変 M E M培地 ( D — M E M ; 米国、 GIBC0-BRL社製) を用い、 最終濃度 1 0 %の F B S (Fet a l Bov ine Serum) (米国、 GIBCO BRL 社 製、 Caし No. 10099- 141 ; 5 6 °Cで 2 0分間熱処理して非働 ィ匕 した もの) 、 1 0 0 分の 1 量の Peni c i 11 in— St reptomycin 溶液 〔 日本国、 大日本製薬 (株) 社製、 Caし No. 16-70D-49 DN] をカ卩えた。 細胞は、 5 X 1 0 4 細胞/ m 1 力 ら 5 X 1 0 5 細胞 Z m 1 の濃度で培地中に植え付け、 3 7 °C、 5 %二酸 化炭素、 湿度 1 0 0 %で培養し、 コンフルェン トになるまで 培養した。 培地は吸引 ' 廃棄し、 E D T A ト リ プシン液 (日 本国、 Cosmo Bio Co. , Lt d. 社製) 処理にょ リ 、 細胞をプレ — ト底面よ リ はが した。 上記の培地 (血清を含む) を加えて 反応を停止させた。 その後、 ピペッティ ングによって細胞を 均一に懸濁し、 遠心して ( l O O O r p m 1 5分) (K S 一 8 3 0 0型、 日本国、 久保田製作所社製 ; R S 3 0 0 0 / 6型ロータ一を使用) 細胞を回収した。 新しい培地に再度懸 濁し、 継代培養を行った。 Cells were passaged before gene transfer using Dulbecco's modified MEM medium (D-MEM; GIBC0-BRL, USA) at a final concentration of 10% FBS (Fetal Bovine Serum) (US, GIBCO BRL, Ca No. 10099-141; heat-treated at 56 ° C for 20 minutes and inactivated), a 1/100 amount of Penicci 11 in-St reptomycin solution [Japan Country, Dainippon Pharmaceutical Co., Ltd., Ca No. 16-70D-49 DN] was prepared. Cells planted in the medium at a concentration of 5 X 1 0 4 cells / m 1 Power et 5 X 1 0 5 cells Z m 1, incubated at 3 7 ° C, 5% diacid carbon, humidity 1 0 0% And cultured until confluent. The medium was aspirated and discarded, and treated with EDTA trypsin solution (Cosmo Bio Co., Ltd., Japan) to remove cells from the bottom of the plate. The reaction was stopped by adding the above medium (including serum). Thereafter, the cells are uniformly suspended by pipetting, and centrifuged (l OOO rpm 15 minutes) (KS-830, Kubota, Japan; RS300 / 6 rotor). Use) The cells were collected. The cells were resuspended in a new medium and subcultured.
遺伝子導入は、 米国、 Bio - R ad l aborator i es 社製の Gene Pu l serを用いてエ レク ト ロ ポ レーシ ヨ ンで行っ た。 B A L B / c 3 T 3細胞は上記のよ う に ト リ プシン処理を行いプレ ー ト底面よ リ はが し、 エ レ ク ト ロ ボ レ一シ ヨ ン用緩衝液 ( 2 7 2 m M Sucrose, 1 m M M g C 1 2 , 7 m M リ ン 酸緩衝液) で洗浄後、 5 X 1 06 細胞/ 5 0 0 1 になるよ う 同じエ レク ト ロ ポレ一シヨ ン用緩衝液に懸濁し、 G e n e P u 1 s er Cuvet te に分注した。 導入する遺伝子と しては、 実施例 6 で作製した E T 2 4 0発現ベク ターの D N Aを 5 g を C uvet t e に添加した。 得られた混合液を 5分間氷冷後、 G e n e P ulserのセルチャ ンバ一に入れ、 3 F, 5 5 0 Vの条件で 2 回パルスをかけた。 再度 5分間氷冷後、 3 7 °Cに保温した 培地を 1 0 m 1 を Cuvet te に加え、 次に Cuvet te 内の混合 液を直径 1 0 c mの細胞培養用シャー レに移し、 細胞を培養 した。 約 2 4 時間後に培地を新しいものと交換しさ らに約 2 4 時間培養した。 さ らに培養した細胞を、 種々 の細胞濃度で 4 0 0 μ g / m 1 の濃度のネオマイ シン (Gene cin) (米 国、 GIBCO BRL 社製、 1811 -023 ) を含む培地に植え替えた。 その後、 2週間前後培養し増殖した細胞を ヒ ト E T 2 4 0蛋 白質発現細胞と した。 Gene transfer was performed by electroporation using GenePulser manufactured by Bio-Rad Laboratories, USA. BALB / c3T3 cells are treated with trypsin as described above, the bottom of the plate is peeled off, and a buffer for electroboration (2 7 2 m M Sucrose, 1 m MM g C 1 2, 7 m M Li washed with phosphate buffer), 5 X 1 0 6 cells / 5 0 0 cormorants by becomes 1 the same d Lek collected by filtration Pollet one to The suspension was suspended in a buffer solution for use, and dispensed into Gene Puserservet. As a gene to be introduced, 5 g of the DNA of the ET240 expression vector prepared in Example 6 was added to Cuvette. The resulting mixture was ice-cooled for 5 minutes, placed in a Gene Pulser cell chamber, and pulsed twice under the conditions of 3 F and 550 V. After ice-cooling again for 5 minutes, add 10 ml of the medium kept at 37 ° C to Cuvet te, and then transfer the mixture in Cuvet te to a 10-cm-diameter cell culture dish, and transfer the cells. Cultured. After about 24 hours, the medium was replaced with a new one, and the cells were further cultured for about 24 hours. The further cultured cells were replaced with a medium containing neomycin (Gene cin) (GIBCO BRL, 1811-023) at a concentration of 400 μg / m 1 at various cell concentrations. . Thereafter, the cells grown and cultured for about two weeks were designated as human ET240 protein-expressing cells.
この細胞を B A L B Z c マウスに免疫する こ と によって本 発明のヒ ト由来の E T 2 4 0蛋白質の抗体を作製した。 B A L B / c マウス (チヤ一ルス リ バ一よ リ購入、 メ ス、 7週齢) の腹腔内に上記のよ う にして調製した 1 X 1 0 7 個の細胞を 投与し、 2週置きに 5 回繰り返し投与した。 最後の免疫は静 脈内に細胞を投与した。 7 日後に全採血を行い、 そこから得 られた血清を、 抗ヒ ト E T 2 4 0蛋白質抗血清と した。 産業上の利用可能性 The cells were immunized into a BALBZc mouse to prepare a human-derived ET240 protein antibody of the present invention. BALB / c mice (Chiya one pulse Li server one by Li purchased, main scan, 7 weeks old) 1 X 1 0 7 cells, prepared cormorants good in the intraperitoneally administered, every two weeks The administration was repeated 5 times. The last immunization administered the cells intravenously. Seven days later, whole blood was collected, and the serum obtained therefrom was used as anti-human ET240 protein antiserum. Industrial applicability
本発明のヒ ト 由来の新規な 7 回膜貫通型受容体蛋白質及び それをコー ドする D N Aを用いる と 、 自 己免疫性疾患などの、 白血球の機能が関与する疾患の治療又は予防に有用な物質の ス ク リ 一二ングや、 そのよ う な疾患の診断方法や診断剤を作 成する こ とが可能である。 更に、 本発明のマウス由来の新規 な 7 回膜貫通型受容体蛋白質の断片及びそれをコー ドする D N Aは、 新規なマウス型 7 回膜貫通型受容体蛋白質の全長及 びそれをコー ドする D N Aの同定及び単離に有用である。  Use of the novel seven-transmembrane receptor protein derived from human of the present invention and a DNA encoding the protein are useful for treating or preventing diseases associated with leukocyte functions, such as autoimmune diseases. It is possible to screen substances and to create diagnostic methods and diagnostic agents for such diseases. Furthermore, the novel seven-transmembrane receptor protein fragment derived from the mouse of the present invention and the DNA encoding the same encode the novel full-length mouse transmembrane receptor protein and encode the same. Useful for identification and isolation of DNA.

Claims

請 求 の 範 囲 The scope of the claims
1 . 配列番号 2 に記載のア ミ ノ酸配列を有する こ と を特徴と する実質的に純粋なヒ ト 由来の 7 回膜貫通型受容体蛋白質。 1. A substantially pure human-derived seven-transmembrane receptor protein having the amino acid sequence of SEQ ID NO: 2.
2 . 配列番号 2 に記載のア ミ ノ酸配列の少なく と も 5個のァ ミ ノ酸からなる部分配列である こ と を特徴とする実質的に純 粋なぺプチ ド。 2. A substantially pure peptide characterized by being a partial sequence consisting of at least five amino acids of the amino acid sequence of SEQ ID NO: 2.
3 . 請求項 1 に記載の 7 回膜貫通型受容体蛋白質をコー ドす る単離された D N A。 3. An isolated DNA encoding the seven-transmembrane receptor protein of claim 1.
4 . 配列番号 1 に記載の塩基配列を有する こ と を特徴とする 請求項 3 に記載の単離された D N A。 4. The isolated DNA of claim 3, which has the nucleotide sequence of SEQ ID NO: 1.
5 . 請求項 3 または 4 に記載の塩基配列の中の少なく と も 1 2個の塩基からなる D N Aあるいはその誘導体。 5. DNA or a derivative thereof comprising at least 12 bases in the base sequence according to claim 3 or 4.
6 . 請求項 3 または 4 に記載の塩基配列に相補的な D N Aの 中の少なく と も 1 2個の塩基からなる D N Aあるいはその誘 導体。 6. A DNA consisting of at least 12 bases in a DNA complementary to the base sequence according to claim 3 or 4, or a derivative thereof.
7 . 請求項 3 または 4 に記載の塩基配列に相補的な R N Aの 中の少なく と も 1 2個の塩基からなる R N Aあるいはその誘 導体。 7. An RNA complementary to the nucleotide sequence according to claim 3 or 4 RNA consisting of at least 12 bases or its derivative.
8 . 請求項 3〜 7のいずれかに記載の D N Aを複製可能な発 現ベク ターに組込んでなる複製可能な組換え体 D N A。 8. A replicable recombinant DNA comprising the DNA according to any one of claims 3 to 7 incorporated into a replicable expression vector.
9 . 請求項 8 に記載の複製可能な組換え体 D N Aで形質転換 された微生物又は細胞。 9. A microorganism or cell transformed with the replicable recombinant DNA of claim 8.
1 0. ( a ) 請求項 3又は 4に記載の D N Aを複製可能な発 現ベク ターに結合して、 該 D N Aと該複製可能な発現べク タ 一とを組込んでなる複製可能な組換え体 D N Aを得、 10. (a) A replicable set comprising the DNA according to claim 3 or 4 linked to a replicable expression vector and incorporating the DNA and the replicable expression vector. Get the recombinant DNA,
( b ) 該複製可能な組換え体 D N Aで微生物又は細胞を形質 転換させて形質転換体を形成せしめ、  (b) transforming a microorganism or a cell with the replicable recombinant DNA to form a transformant,
( c ) 該形質転換体を該微生物又は細胞の親細胞から選別し、  (c) selecting the transformant from the parent cell of the microorganism or cell,
( d ) 該形質転換体を培養して、 該形質転換体に該 D N Aを 発現させる、 (d) culturing the transformant to cause the transformant to express the DNA;
こ と を包含する方法によって該形質転換体の細胞膜表面に製 造された 7回膜貫通型受容体蛋白質。  A seven-transmembrane receptor protein produced on the cell membrane surface of the transformant by a method including the above.
1 1 . 7回膜貫通型受容体蛋白質と結合 し う る リ ガン ドをス ク リ ーニングする方法に して、 請求項 1 又は 1 0に記載の蛋 白質、 あるいは請求項 2 に記載のペプチ ドを、 サンプル材料 と接触せしめ、 該蛋白質又は該ぺプチ ドと リ ガン ドと の結合 に対応 して起き る変化を指標と して、 7 回膜貫通型受容体蛋 白質と結合し う る リ ガン ドを検出する こ と を包含する方法。 11. The method according to claim 1 or 10, wherein the method for screening for a ligand that binds to a 1.7-transmembrane receptor protein is used. White matter or the peptide according to claim 2 is brought into contact with the sample material, and transmembrane seven times using the change occurring in response to the binding of the protein or the peptide to the ligand as an index. A method comprising detecting a ligand capable of binding to a type receptor protein.
1 2 . 7 回膜貫通型受容体蛋白質と該蛋白質に対する リ ガン ドとの結合を阻害する物質をス ク リ ーニングする方法に して、 請求項 1 又は 1 0 に記載の蛋白質、 あるいは請求項 2 に記載 のべプチ ドと該リ ガン ドをサンプル材料と接触せしめ、 そ し て該蛋白質又は該ぺプチ ドと該リ ガン ドと の結合に対応して 起き る変化を指標と して、 7 回膜貫通型受容体蛋白質と リ ガ ン ドと の結合を阻害 し う る物質を検出する こ と を包含する方 法。 12. The protein according to claim 1 or 10, wherein said method is a method for screening a substance that inhibits binding of a 2.7 transmembrane receptor protein to a ligand for said protein. The peptide of 2 and the ligand are brought into contact with a sample material, and the change occurring in response to the binding of the protein or the peptide to the ligand is used as an index, A method comprising detecting a substance that inhibits binding between a seven-transmembrane receptor protein and a ligand.
1 3 . 請求項 1 に記載の 7 回膜貫通型受容体蛋白質と結合し う る抗体。 13. An antibody that binds to the seven-transmembrane receptor protein according to claim 1.
1 4 . 配列番号 4 に記載のア ミ ノ酸配列を有する こ と を特徴 とする実質的に純粋なマ ウス由来の 7回膜貫通型受容体蛋白 質の断片。 14. A substantially pure mouse-derived seven-transmembrane receptor protein fragment having the amino acid sequence of SEQ ID NO: 4.
1 5 . 請求項 1 4 に記載の 7 回膜貫通型受容体蛋白質の断片 をコー ドする単離された D N A。 15. An isolated DNA encoding the seven-transmembrane receptor protein fragment according to claim 14.
1 6 . 配列番号 3 に記載の塩基配列を有する こ と を特徴とす る請求項 1 5 に記載の単離された D N A。 16. The isolated DNA of claim 15, which has the nucleotide sequence of SEQ ID NO: 3.
PCT/JP1998/005886 1997-12-24 1998-12-24 Novel seven-pass transmembrane receptor protein WO1999033876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16888/99A AU1688899A (en) 1997-12-24 1998-12-24 Novel seven-pass transmembrane receptor protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/354537 1997-12-24
JP35453797A JP2002241399A (en) 1997-12-24 1997-12-24 Seven-transmembrane type receptor protein et240

Publications (1)

Publication Number Publication Date
WO1999033876A1 true WO1999033876A1 (en) 1999-07-08

Family

ID=18438225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005886 WO1999033876A1 (en) 1997-12-24 1998-12-24 Novel seven-pass transmembrane receptor protein

Country Status (3)

Country Link
JP (1) JP2002241399A (en)
AU (1) AU1688899A (en)
WO (1) WO1999033876A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899332A3 (en) * 1997-08-15 2000-07-05 Smithkline Beecham Corporation The G-protein coupled receptor HFIAO41
WO2000064941A3 (en) * 1999-04-23 2001-08-09 Curagen Corp G-protein coupled receptor and method of using same
WO2001066598A3 (en) * 2000-03-03 2002-05-16 Icos Corp Chemoattractant receptor characterization and cell selection materials and methods and chemokine receptor ccr11 materials and methods
JP2003512028A (en) * 1999-10-12 2003-04-02 ケモセントリックス, インコーポレイテッド Chemokine receptor
WO2004007716A1 (en) * 2002-07-17 2004-01-22 Nihon University Method of isolating gpcr gene and novel gpcr gene
US6835547B1 (en) 1999-10-12 2004-12-28 Chemocentryx, Inc. Methods for identifying modulators of CCX CKR activity
US6998239B1 (en) 1999-10-12 2006-02-14 Chemocentryx, Inc. Method for identifying a modulator of the binding of CCX CKR polypeptide to a chemokine
USRE39849E1 (en) 1999-10-12 2007-09-18 Chemocentryx, Inc. Methods for identifying modulators of CCX CKR activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUOKA, I. ET AL.: "Identification of novel members of G-protein coupled receptor subfamily", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, vol. 194., no. 01., 15 July 1993 (1993-07-15), US, pages 504 - 511., XP002102959, ISSN: 0006-291X, DOI: 10.1006/bbrc.1993.1848 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899332A3 (en) * 1997-08-15 2000-07-05 Smithkline Beecham Corporation The G-protein coupled receptor HFIAO41
WO2000064941A3 (en) * 1999-04-23 2001-08-09 Curagen Corp G-protein coupled receptor and method of using same
US6620615B1 (en) 1999-04-23 2003-09-16 Curagen Corporation G-protein coupled receptor—encoding nucleic acids
JP2003512028A (en) * 1999-10-12 2003-04-02 ケモセントリックス, インコーポレイテッド Chemokine receptor
US6835547B1 (en) 1999-10-12 2004-12-28 Chemocentryx, Inc. Methods for identifying modulators of CCX CKR activity
US6998239B1 (en) 1999-10-12 2006-02-14 Chemocentryx, Inc. Method for identifying a modulator of the binding of CCX CKR polypeptide to a chemokine
US7108990B2 (en) 1999-10-12 2006-09-19 Chemocentryx, Inc. Chemokine receptor
USRE39849E1 (en) 1999-10-12 2007-09-18 Chemocentryx, Inc. Methods for identifying modulators of CCX CKR activity
JP4754143B2 (en) * 1999-10-12 2011-08-24 ケモセントリックス, インコーポレイテッド Chemokine receptor
WO2001066598A3 (en) * 2000-03-03 2002-05-16 Icos Corp Chemoattractant receptor characterization and cell selection materials and methods and chemokine receptor ccr11 materials and methods
WO2004007716A1 (en) * 2002-07-17 2004-01-22 Nihon University Method of isolating gpcr gene and novel gpcr gene

Also Published As

Publication number Publication date
JP2002241399A (en) 2002-08-28
AU1688899A (en) 1999-07-19

Similar Documents

Publication Publication Date Title
WO1998055621A1 (en) Ntn-2 member of tnf ligand family
WO1998055620A1 (en) Ntn-2 member of tnf ligand family
Shao et al. Costimulatory function of Cd58/Cd2 interaction in adaptive humoral immunity in a zebrafish model
JPH10507646A (en) Chemokines and chemokine analogs derived from macrophages
JP2002539773A (en) Secreted proteins and nucleic acids encoding them
CA2299619A1 (en) Human orphan receptor ntr-1
CA2453985A1 (en) Receptors and membrane-associated proteins
Boshra et al. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species
WO1999033876A1 (en) Novel seven-pass transmembrane receptor protein
US6777204B1 (en) Receptor protein and method for diagnosing inflammatory diseases by using the same
US7998491B2 (en) Polypeptide ESDN, polynucleotides encoding the polypeptide, and utility of the polypeptide
US5688927A (en) Macrophage derived chemokine
JP3813156B2 (en) Opioid receptor, composition thereof and method for producing the same
US6210967B1 (en) DNA encoding a mammalian LPA receptor and uses thereof
JP2004516012A (en) New siglecs and their uses
JP2000023676A (en) Seven-pass transmembrane receptor protein erg 5
US7524622B2 (en) Methods for increasing production of IFN-gamma in natural killer cells expressing LLT1 receptor
US6500642B1 (en) Molecule associated with apoptosis
JP2000506743A (en) Novel receptors that cause cell death
JP2000023677A (en) Seven-pass transmembrane receptor protein erg 9
JPH10248582A (en) New membrane seven-transmembrane type receptor protein jeg18
JPH1132770A (en) Seven-transmembrane type receptor protein jeg62
WO2004005510A1 (en) NOVEL Nogo RECEPTOR-LIKE POLYPEPTIDE AND DNA THEREOF
JPH11155573A (en) 7 transmembrane receptor protein et 60
JPWO2002062852A1 (en) Receptor protein expressed on cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT GD)

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000526549

Format of ref document f/p: F

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载