+

WO1999033598A1 - Method of producing metal powder - Google Patents

Method of producing metal powder Download PDF

Info

Publication number
WO1999033598A1
WO1999033598A1 PCT/JP1998/005867 JP9805867W WO9933598A1 WO 1999033598 A1 WO1999033598 A1 WO 1999033598A1 JP 9805867 W JP9805867 W JP 9805867W WO 9933598 A1 WO9933598 A1 WO 9933598A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
molten metal
cooling liquid
nozzle
present
Prior art date
Application number
PCT/JP1998/005867
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Kikukawa
Shigemasa Matsunaga
Tsuneta Inaba
Osamu Iwatsu
Tohru Takeda
Original Assignee
Fukuda Metal Foil & Powder Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil & Powder Co., Ltd. filed Critical Fukuda Metal Foil & Powder Co., Ltd.
Priority to DE69936711T priority Critical patent/DE69936711T2/en
Priority to PCT/JP1999/003338 priority patent/WO2000038865A1/en
Priority to KR1020007003025A priority patent/KR100548213B1/en
Priority to EP99926764A priority patent/EP1063038B1/en
Priority to US09/509,592 priority patent/US6336953B1/en
Priority to JP2000590804A priority patent/JP3999938B2/en
Priority to CNB998014036A priority patent/CN100364700C/en
Publication of WO1999033598A1 publication Critical patent/WO1999033598A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • the present invention relates to a method for producing a metal powder, and more particularly, to a method for producing a metal powder that is fine, pseudo spherical, and has a narrow particle size distribution.
  • metal powders for manufacturing products such as injection molding materials, magnetic materials, and conductive materials have a significant effect on the characteristics of products manufactured using them, resulting in higher quality.
  • metal powder that is fine, pseudo-spherical and has a narrow particle size distribution.
  • the atomizing method of producing a metal powder by spraying a cooling medium (spraying medium) onto a molten metal stream is known as the ⁇ method of efficiently producing metal powders.
  • the atomization method using a gas as a cooling medium is called a gas atomization method
  • the atomization method using a liquid as a cooling medium is called a liquid atomization method.
  • the gas atomization method for example, a method using a nozzle described in U.S. Pat. No. L659.291 and U.S. Pat. No. 3,235.783 is known.
  • the dispersed molten metal droplet before solidification concentrates near the collision part of the liquid jet and the liquid jet. Cooling suddenly due to intense contact with Therefore, the dispersed molten metal droplet force, the metal powder obtained to contact and stick in a tuft
  • the end contains coarse particles, is irregularly shaped, and has a wide particle size distribution 0
  • Japanese Patent No. 552253 Japanese Patent Publication No. 43-6389
  • Japanese Patent Publication No. 3-55522 Japanese Patent Publication No. 2-56403
  • improvements of a conical jet type liquid atomizing method for example, Japanese Patent No. 552253 (Japanese Patent Publication No. 43-6389), Japanese Patent Publication No. 3-55522 and Japanese Patent Publication No. 2-56403 describe improvements of a conical jet type liquid atomizing method.
  • the invention described in Japanese Patent Publication No. 2-56403 is a technology for generating a liquid jet by injecting a cooling liquid from a tangential direction and a normal direction of a nozzle. Under such conditions, only coarse powder and metal powder can be obtained.
  • the present invention develops a new liquid jet having a form different from that of a conventional liquid jet, and applies the special liquid jet to a liquid atomization method to thereby obtain a conventional liquid jet. It is an object of the present invention to provide a technology capable of efficiently producing a finer, pseudospherical, and narrower particle size distribution metal powder than the atomization method.
  • the inventor of the present application has conducted various studies to solve the above-described problems, and as a result, in a metal powder manufacturing method of manufacturing a metal powder by spraying a cooling liquid onto a flowing molten metal stream, the cooling liquid includes the molten metal stream.
  • the cooling liquid includes the molten metal stream.
  • FIG. 1 is a transverse sectional view (a) and a longitudinal sectional view (b) of an operating state of an annular nozzle attached to a metal powder production apparatus of the present invention.
  • FIG. 2 is a perspective view conceptually showing a one-lobe hyperboloid liquid jet discharged from the annular nozzle shown in FIG.
  • FIG. 3 is an electron micrograph of a metal powder produced according to the present invention and the prior art.
  • FIG. 4 is a view showing a conventional liquid atomizing method.
  • FIG. 1 shows an embodiment of an annular nozzle 1 for carrying out the method for producing metal powder of the present invention.
  • FIG. 1 (a) is a cross-sectional view of the annular nozzle, and FIG. It is a longitudinal cross-sectional view.
  • the annular nozzle 1 shown in FIG. 1 is attached to a metal powder production apparatus such that the flowing molten metal stream 6 passes through the hole 2 of the annular nozzle.
  • the annular nozzle 1 has an inlet 3, a swirl chamber 4, and an annular slit 5.
  • the coolant injected from the inlet 3 swirls inside the swirl chamber 4 and then passes through the hole 2.
  • the molten metal is discharged from the ring-shaped slit 5 toward the molten metal flow.
  • this annular nozzle 1 Will be described in more detail.
  • the inlet 3 is provided along the diagonal of the swirl chamber 4 of the present nozzle, the coolant can be injected into the swirl chamber 4 at a high pressure.
  • the annular nozzle of the present invention it is sufficient for the annular nozzle of the present invention to have at least one inlet, but in the present embodiment, two inlets are provided so that the coolant can be introduced at a high E.
  • the inlet is not necessarily formed along the tangential direction of the swirl chamber, but may be formed in the normal direction of the swirl chamber.
  • the swirling chamber 4 is formed so as to surround the periphery of the hole 2 of the annular nozzle 1. Therefore, the cooling liquid injected into the swirling chamber 4 is discharged after swirling the periphery of the molten metal flow 6 passing through the litter section 2 in advance.
  • the outer peripheral portion in the swirling chamber 4 has a cavity region 7 free from obstacles so that the coolant injected from the inlet spreads throughout the swirling chamber. Therefore, the coolant can be injected into the annular nozzle at a high pressure.
  • a plurality of guide wings 8 are provided inside the above-mentioned hollow area ⁇ in the swirl chamber 4.
  • the guide vanes 8 serve to stabilize the flow of the coolant and to guide the coolant further inward while swirling. Then, the coolant is discharged from each part of the annular slit 5 formed along the inner surface of the hole 2 at a substantially uniform pressure.
  • a passage or a groove for turning the coolant into the swirl chamber is provided. It may be rotated in the evening or the like.
  • the coolant is guided toward the annular slit 5 while swirling in the swirl chamber 4, and the inside of the swirl chamber 4 gradually becomes narrower as approaching the annular slit 5.
  • the cooling liquid is discharged from the annular slit 5 as a high-speed liquid jet. If the liquid jet is released toward the molten gold flow passing through the hole 2, the position of the annular slit is not limited to the inner surface of the hole, but may be on the lower surface of the annular nozzle 1. It may be formed. Further, the present invention is not limited to a circular annular slit as shown in the drawings, but may have other shapes (for example, an elliptical shape or a rectangular shape). Etc.) may be used.
  • the liquid jet 13 discharged from the annular nozzle 1 has a single-leaf hyperboloid 9 as shown in FIG.
  • a virtual line 10 indicating the discharge direction of the liquid jet discharged from each part of the annular slit 5 is described in the one-lobe hyperboloid liquid jet shown in FIGS. 1 and 2.
  • the liquid jets 13 (imaginary lines 10) discharged from the respective portions of the annular slit 5 approach each other once, but flow so as to be crowded without colliding with each other.
  • the method for producing metal powder of the present invention is not limited to a method using an annular nozzle having a swirling chamber 4 and an annular slit 5 as shown in FIG.
  • the outlets of a plurality of pencil jet type nozzle parts 14 are arranged in an annular shape along the annular slit 5 in FIG. 1, and the liquid from each pencil jet type nozzle part along the imaginary line 10 is shown.
  • the jet may be emitted in a one-lobe hyperboloid.
  • a plurality of pencil jet type nozzle parts arranged in a ring form the ring nozzle of the present invention.
  • the use of the metal powder manufacturing apparatus having the annular nozzle 1 as described above makes it possible to efficiently produce a finer, pseudo-spherical, and narrower particle size distribution metal powder than the conventional liquid atomization method. .
  • the metal powder is produced as follows.
  • the liquid jet is discharged in a one-lobe hyperboloidal shape as described above.
  • this liquid jet is composed of an incompressible fluid, the energy density is high, and the liquid jet is in the middle. It can flow stably all the time without colliding with each other
  • the pressure inside the one-hyperboloid formed by the high-speed liquid jet decreases rapidly as it approaches the constriction. Therefore, the molten metal flow
  • the molten metal flow 6 is regularly and continuously dispersed with uniform energy until passing through the constricted portion 11, and the fine molten metal flows. Drops.
  • the dispersed molten gold droplets solidify into gold m powder, or in the present invention, these molten metal droplets can be solidified gently without contacting each other. In other words, even if the molten metal droplets become fine as described above, if the molten metal droplets come into contact with each other before solidification, the resulting gold powder becomes an irregular shape.
  • the molten metal droplet can pass through the constricted portion and move to the lower part of the one-lobe hyperboloid without contacting each other.
  • the molten metal droplet before solidification according to the present invention is essentially one-lobe hyperbolic; it is relatively slowly cooled without traversing, so that it becomes a sphere due to surface tension.
  • the molten gold droplets which are finely dispersed regularly and continuously at a uniform energy by the liquid jet are solidly and gently solidified without contacting each other. Therefore, it is considered that the present invention can efficiently produce a finer, pseudospherical, and narrower particle size distribution metal powder than the conventional method.
  • the flow rate of the liquid jet 13 is not particularly limited, but is not less than 10 Om / sec, more preferably not less than 130 m / sec, most preferably not less than I5 Om / sec, and more preferably Is preferably 20 m / sec or more.
  • the pressure inside the constricted part 11 of the liquid jet is 50 to 750 mmHg with respect to the atmospheric pressure.
  • the pressure is reduced to 100 to 750 mmHg, and optimally to 150 to 700 tnmHg (that is, 1 to 5 (h ⁇ -750 mmHg, more preferably to 100 to ⁇ 750 mmHg, optimally to 0 to Because the vapor pressure of the liquid exists, for example, when using water at normal temperature (2 O'C) as the cooling liquid, the pressure inside the constricted section should be large.
  • the discharge direction of the liquid jet is not particularly limited as long as the liquid jet is discharged in a one-lobe hyperboloidal shape. However, preferably, the liquid jet is discharged at a descent angle 0 and a swirl angle ⁇ described below.
  • the descending angle 0 and the turning angle ⁇ are defined as follows.
  • the velocity V of the liquid jet is defined as the velocity component V x in the tangential direction of the annular slit (X-axis direction in Fig. 4), the velocity component V in the normal direction of the circular slit (Y-axis direction in Fig. 4), , And the velocity component V, in the vertical direction (the z-axis direction in Fig. 3).
  • the turning angle ⁇ is defined as an angle formed by the resultant force of V x and V, with respect to the y-axis.
  • the descending angle 0 is defined as the angle formed by the resultant force of V y and V, with respect to the z-axis.
  • the turning angle ⁇ is 1 ° 30 °, and 3 ° ⁇ 20. Optimally, it is preferable that 5 ° ⁇ ⁇ ⁇ 20 °.
  • the descent angle 0 is 5 ° 60
  • the amount of coolant (ie, liquid jet) released per unit time with respect to the amount of molten metal flowing down per unit time is not particularly limited, and can be set arbitrarily.
  • (Flow rate of molten gold): (coolant discharge rate) is preferably 1: 2 to 100, more preferably 1: 3 to 50, and most preferably 1: 5 to 30. ing.
  • the present invention can be applied to any metal including a metal element, a metal compound, an alloy and an intermetallic compound. Further, according to the present invention, it is possible to produce a metal powder having desired characteristics by setting atomizing conditions according to the characteristics of a metal.
  • the relative apparent density of the metal powder obtained by the present invention is preferably 28% or more, more preferably 30 or more, and optimally 32% or more.
  • the relative tab density of the metal powder obtained by the present invention is preferably 45% or more, more preferably 50% or more, and most preferably 55% or more.
  • the median diameter of the metal powder is preferably 50 ⁇ or less, more preferably 35 m or less, optimally 25 // m or less, and most optimally 15 / m or less.
  • the metal powder has a median diameter of 25 m or less, the following fine powder having a specific particle size is contained in a predetermined ratio.
  • It contains at least 20% by weight, preferably 40% by weight or more, and most preferably 45% by weight or more of fine powder having a particle size of less than ⁇ 0 fim.
  • Fine powder having a diameter of IQ um or less is preferably at least 35% by weight or more. More than 45% by weight, optimally more than 50% by weight.
  • Fine powder having a particle size of 1 ⁇ m or less is contained at least 0.01% by weight or more, preferably 0.05% by weight or more, and most preferably 0.1% by weight or more.
  • the geometric standard deviation of the metal powder obtained by the present invention is preferably 3.0 or less, more preferably 2.5 or less, and most preferably 2.3 or less.
  • the width of the particle size distribution can be evaluated by the geometric standard deviation.
  • the specific surface area of the metal powder obtained by the present invention is preferably 4000 cm 2 / g or less, more preferably 3000 cmVg or less, and most preferably 2500 cm 2 / g or less.
  • metal powder was manufactured according to the conventional method using a conventional nozzle for generating a conical jet (Comparative Examples 1 to 8). Table 1 shows these atomizing conditions.
  • the pressure in the constriction was measured using a pipe with a cross-sectional area of 20 mm or less of the cross-sectional area in the constriction.
  • a pressure gauge is connected to one opening of the pipe. Then, the pipe was inserted from above along the central axis 12 of the one-lobe hyperboloid such that the other opening of the pipe was positioned inside the constricted portion 11. Also The velocity of the liquid jet was calculated from the cooling injection pressure measured at the inlet 3 by using Bernoulli's theorem.
  • the relative tap density was calculated based on (tap density) x 10 (true density) x 100.
  • the median diameter was measured using a laser diffraction scattering method (volume) using a micro track manufactured by Nikkiso Co., Ltd.
  • the content of fine powder having a diameter of 10 m, 5 m and 1 / m or less in the metal powder was measured by using a laser diffraction scattering method (volume%).
  • the specific surface area was measured according to the BET method of the gas phase adsorption method.
  • the oxygen content was measured according to the non-dispersive infrared absorption method.
  • Yield is the percentage of the metal powder having a particle size of 45 / m or less in the metal powder having a particle size of 1 mm or less selected according to J ISZ8801.
  • the metal powder according to the present invention is significantly different from the metal powder of the comparative example in that the metal powder contains a through powder of 1 m or less within a range that can be confirmed by a laser diffraction scattering method.
  • the geometric standard deviation of the metal powder according to the invention is smaller than in the comparative example. This indicates that the width of the abundance distribution of the metal powder obtained by the present invention is narrower than that of the metal powder of the comparative example.
  • the oxygen content of the metal powder according to the present invention is smaller than that of the comparative example. This is considered to be because the metal powder of the present invention has a pseudospherical shape, so that the surface contact is small and oxidation is difficult.
  • the yield according to the invention is higher than in the comparative example.
  • the molten metal stream is regularly and continuously dispersed by the liquid jet, and the dispersed molten metal is cooled slowly without contacting each other. From the t electron micrograph, it is clear that the edges of the metal powder of the present invention have been removed, and that the metal powder of the present invention is more pseudospherical than the metal powder of the comparative example.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

A method of producing metal powder by spraying a cooling liquid to a molten metal flowing down, characterized in that the cooling liquid is continuously discharged towards the molten metal flow passing through a ring-like nozzle from the ring-like nozzle so disposed as to encompass the molten metal flow so that the cooling liquid encompasses the molten flow in the shape of a hyperboloid of one sheet. This invention can efficiently produce metal powder which is very fine and pseudo-spherical and moreover has a small width of particle distribution.

Description

明細: 金厲粉末製造方法 技術分野  Description: Gold powder production method
本発明は、 金属粉末の製造方法に関し、 さらに詳しくは、 細かく、 擬球形で、 しかも粒度分布の幅の狭い金属粉末の製造方法に関する。 従来の技術  The present invention relates to a method for producing a metal powder, and more particularly, to a method for producing a metal powder that is fine, pseudo spherical, and has a narrow particle size distribution. Conventional technology
射出成型材料、 磁性材料および導霪材料等の製品を製造するための金属粉末の 形状ゃ拉度分布等はそれを使用して製造される製品の特性に大きく影響するもの であり、 より高品質の製品を製造するためには、 細かく、 擬球形で、 しかも粒度 分布の幅の狭い金属粉末を使用する必要がある。  The shape and shape distribution of metal powders for manufacturing products such as injection molding materials, magnetic materials, and conductive materials have a significant effect on the characteristics of products manufactured using them, resulting in higher quality. In order to manufacture such products, it is necessary to use metal powder that is fine, pseudo-spherical and has a narrow particle size distribution.
従来より金属粉末を製造する技術は多数存在するが、 溶融金属流に冷却媒体 ( 噴霧媒体) を吹き付けて金属粉末を製造するァトマイズ法が金属粉末を効率的に 製造する方法の ^として知られている。 一般的に、 冷却媒体が気体のアトマイ ズ法をガスァトマイズ法、 冷却媒体が液体のアトマイズ法を液体ァトマイズ法と 呼んでいる。 ガスアトマイズ法としては、 例えば米国特許第 L 659. 291 号および米国特許第 3, 235. 783号に記載のノズルを使用する方法が知られている。 このようなガスァ トマイズ法によるガスジヱットは目視できなレ、が、 シユリ一レン法で確認すると 、 ノズルから放出されたガスジヱットは単調に拡がっている。 これは、 圧縮性流 体であるガスジヱッ 卜がノズルから出た瞬間に断熱膨張するためと考えられる。 この断熱膨張によってガスジ Xッ 卜のエネルギー密度は急激に低下するため、 ガ スァトマイズ法では細かい金厲粉末を効率よく?辱ることは困難であり、 また得ら れた金属粉末は粒度分布の幅が広くなる。 また、 ガスジヱットは棼囲気ガスを卷 き込みやすいので、 ガスァ卜マイズ法には溶融金属の吹き上げという問題が伴う しかしな力《ら、 冷却媒体として使用されている気体は、 冷却能力が比較的低い ため、 ガスジエツ卜によって分散された溶融金属滴は、 表面張力によって球状ィ匕 してから固化する。 従って、 ガスアトマイズ法によって得られた金属粉末は比較 的擬球形になっている。 There are many techniques for producing metal powders in the past, but the atomizing method of producing a metal powder by spraying a cooling medium (spraying medium) onto a molten metal stream is known as the ^ method of efficiently producing metal powders. I have. Generally, the atomization method using a gas as a cooling medium is called a gas atomization method, and the atomization method using a liquid as a cooling medium is called a liquid atomization method. As the gas atomization method, for example, a method using a nozzle described in U.S. Pat. No. L659.291 and U.S. Pat. No. 3,235.783 is known. Such a gas jet by the gas atomization method is not visible, but when confirmed by the shurilen method, the gas jet discharged from the nozzle is monotonically expanding. This is probably because the gas jet, which is a compressible fluid, adiabatically expands as soon as it comes out of the nozzle. This adiabatic expansion sharply lowers the energy density of the gas jet, so the gas atomization method can efficiently produce fine gold powder. It ’s difficult to humiliate, The resulting metal powder has a broad particle size distribution. In addition, since the gas jet easily entrains the ambient gas, the gas atomization method has a problem of blowing up molten metal.However, the gas used as a cooling medium has a relatively low cooling capacity. Therefore, the molten metal droplets dispersed by the gas jet are spheroidized by surface tension and then solidified. Therefore, the metal powder obtained by the gas atomization method has a relatively pseudospherical shape.
なお、上記の米国特許第 1, 659, 291号および米国特許第 3, 235, 783号に記載の ノズルは、 ノズルの接線方向にガスの導入口を ISけたりノズルの内部に羽根を設 けることによって、 ノズルから放出されるガスジエツトをノズル中心に対して同 —方向に変位させている。 この変位によって、 ガスジェット力 <雰囲気ガスを卷き 込んで溶融金属が ^Lhがるのを抑制していると考えられる。 液体アトマイズ法としては、 液体ジエツトを線状衝突させる Vジエツ卜型液体 アトマイズ法 (図 4 (a) または図 4 (b) ) 、環:^ノズル 1 5から放出される液体 ジエツトを一点衝突させるコニカルジエツト型液体アトマイズ法 (図 4 (c) )、 またはペンシルジェッ卜型ノズル部品 1 4から放出される液体ジエツ卜を一点衝 突させるペンシルジヱッ 卜型液体アトマイズ法 (図 4 (d) ) 力 <知られている。 液体ァトマイズ法の冷却媒体は非圧縮性流体であるため、 溶 金属流 6を分散 させるための液体ジエツ卜のエネルギー密度は、 ガスジエツ卜のエネルギー密度 よりも遙かに大きい。 従って、 液体アトマイズ法によると、 ガスアトマイズ法の 場合よりも細かい金属粉末を得ることができる。  The nozzles described in the above-mentioned U.S. Pat.No. 1,659,291 and U.S. Pat. As a result, the gas jet discharged from the nozzle is displaced in the same direction with respect to the center of the nozzle. It is thought that this displacement suppresses ^ Lh of the molten metal by entraining gas jet force <atmospheric gas. As the liquid atomization method, a V-jet type liquid atomization method (FIG. 4 (a) or FIG. 4 (b)) in which a liquid jet is linearly collided, a ring: ^ a single point collision of the liquid jet discharged from the nozzle 15 Conical jet-type liquid atomization method (Fig. 4 (c)) or pencil jet-type liquid atomization method (Fig. 4 (d)) in which a liquid jet emitted from a pencil jet type nozzle part 14 collides at a single point. Have been. Since the cooling medium of the liquid atomization method is an incompressible fluid, the energy density of the liquid jet for dispersing the molten metal stream 6 is much larger than the energy density of the gas jet. Therefore, according to the liquid atomization method, finer metal powder can be obtained than in the case of the gas atomization method.
し力、しな力 ら、線状衝突または一点衝突を伴う従来の液体アトマイズ法では、 分散された固化前の溶融金属滴が、 液体ジ ッ卜の衝突部分の近傍に集中すると ともに、 液体ジヱットとの激しい接触交差によって急激に冷却ざれる。 従って、 分散された溶融金属滴力、'互いに接触して房状に固着するために、 得られる金属粉 末は、 粗大な粒子を含み、 不規則な形状で、 しかも粒度分布の幢が広くなつてい る 0 In the conventional liquid atomization method involving linear collision or single point collision, the dispersed molten metal droplet before solidification concentrates near the collision part of the liquid jet and the liquid jet. Cooling suddenly due to intense contact with Therefore, the dispersed molten metal droplet force, the metal powder obtained to contact and stick in a tuft The end contains coarse particles, is irregularly shaped, and has a wide particle size distribution 0
それゆえ、 擬球形の金属粉末が要求される場合や、 粒度分布の幅の狭い金属粉 末が要求される場合には、 更に分別処理や機械的処理を施す必要があり、 製造コ ストが上がってしまう。 液体ァトマイズ法における上記のような問 sを解決するために、 従来から種々 の改良が試みられている。  Therefore, when pseudo-spherical metal powder is required, or when metal powder with a narrow particle size distribution is required, it is necessary to further perform separation treatment and mechanical treatment, which increases the production cost. Would. Various improvements have been attempted in the past to solve the above-mentioned problem s in the liquid atomization method.
例えば、 Vジエツトゃコ二力ルジェフトの焦点の頂角を小さくする試みがある For example, there is an attempt to reduce the apex of the focal point of the V-jet
。 これによつて液体ジエツトの衝突エネルギーが小さくなつて分散された溶融金 属滴の変形は小さくなると考えられたが、 実際にはこのような改良では金厲粉末 の形状を十分に擬球形にすることは困難であった。 またノズルから衝突地点まで の距離が長くなるとエネルギーロスが大きくなり、 得られる金属粉末は、 粗く、 しかも粒度分布の幅が広くなつてしまった。 . It was thought that this reduced the collision energy of the liquid jet and reduced the deformation of the dispersed molten metal droplets.In practice, however, such an improvement would make the shape of the gold powder sufficiently pseudo-spherical It was difficult. Also, the energy loss increased as the distance from the nozzle to the collision point increased, and the resulting metal powder was coarse and the particle size distribution became wider.
また、 例えば日本特許第 552253号(特公昭 43-6389号) 、 特公平 3-55522号お よび特公平 2-56403号には、 コニカルジヱット型液体ァトマイズ法の改良が記載 されている。 なお、 特公平 2-56403号に記載の発明は、 ノズルの接線方向と法線 方向とから冷却液を注入して液体ジエツトを発生させる技術であるが、 液体ジ: L ットに孔ができるような条件では粗レ、金属粉末しか得られない。 技術的課題  Further, for example, Japanese Patent No. 552253 (Japanese Patent Publication No. 43-6389), Japanese Patent Publication No. 3-55522 and Japanese Patent Publication No. 2-56403 describe improvements of a conical jet type liquid atomizing method. In addition, the invention described in Japanese Patent Publication No. 2-56403 is a technology for generating a liquid jet by injecting a cooling liquid from a tangential direction and a normal direction of a nozzle. Under such conditions, only coarse powder and metal powder can be obtained. Technical issues
本発明は、 従来の液体ジエツ卜の形態とは異なる形態を有する新規な液体ジェ ッ トを開発するとともに、 この斩規な液体ジ ッ卜を液体アトマイズ法に応用す ることによって、 従来の液体アトマイズ法よりも、 細かく、 擬球形で、 しかも粒 度分布の幅の狭い金属粉末を効率よく製造できる技術を提供することを課題をす る 解決方法 The present invention develops a new liquid jet having a form different from that of a conventional liquid jet, and applies the special liquid jet to a liquid atomization method to thereby obtain a conventional liquid jet. It is an object of the present invention to provide a technology capable of efficiently producing a finer, pseudospherical, and narrower particle size distribution metal powder than the atomization method. Solution
本願発明者は上記の課題を解决するため検討を重ねた結果、 流下する溶融金属 流に冷却液を吹き付けて金属粉末を製造する金属粉末製造方法において、 前記冷 却液は、 前記溶融金属流を取り囲むように設けた環状ノズルから、 前記環状ノズ ルを通過した前記溶融金)!流に向けて、 前記溶融金厲流を一葉^曲面状に取り囲 むように、 連統的に放出されることを特徴とする金厲粉末製造方法とすることに よつて上記課題は解决されることを見レ、だした。  The inventor of the present application has conducted various studies to solve the above-described problems, and as a result, in a metal powder manufacturing method of manufacturing a metal powder by spraying a cooling liquid onto a flowing molten metal stream, the cooling liquid includes the molten metal stream. (Molten gold that has passed through the annular nozzle from the annular nozzle provided to surround it)! The above problem is solved by a method for producing a metal powder characterized by being continuously discharged so as to surround the molten metal flow in a single-leaf curved surface toward the flow. Look at it.
次に本発明を更に詳細に説明する。 図面の説明  Next, the present invention will be described in more detail. Description of the drawings
図 1は本発明の金属粉末製造装置に取り付けられている環状ノズルの作動状態 の横断面図 (a ) および縦断面図 (b ) である。  FIG. 1 is a transverse sectional view (a) and a longitudinal sectional view (b) of an operating state of an annular nozzle attached to a metal powder production apparatus of the present invention.
図 2は、 図 1に記載の環状ノズルから放出された一葉双曲面状の液体ジヱット を概念的に示す斜視図である。  FIG. 2 is a perspective view conceptually showing a one-lobe hyperboloid liquid jet discharged from the annular nozzle shown in FIG.
図 3は、 本発明および従来技術に従って製造された金属粉末の電子顕微鏡写真 である。  FIG. 3 is an electron micrograph of a metal powder produced according to the present invention and the prior art.
図 4は従来の液体ァトマイズ法を示す図である。 図 1は、 本発明の金属粉末製造方法を実施するための環状ノズル 1の一実施例 であり、 (a ) は環状ノズルの横断面図であり、 (b ) は (a ) の y軸における 縱断面図である。 図 1に記載の環状ノズル 1は、 流下する溶融 厲流 6が環状ノ ズルの孔部 2を通過するように金属粉末製造装置に取り付けられる。  FIG. 4 is a view showing a conventional liquid atomizing method. FIG. 1 shows an embodiment of an annular nozzle 1 for carrying out the method for producing metal powder of the present invention. FIG. 1 (a) is a cross-sectional view of the annular nozzle, and FIG. It is a longitudinal cross-sectional view. The annular nozzle 1 shown in FIG. 1 is attached to a metal powder production apparatus such that the flowing molten metal stream 6 passes through the hole 2 of the annular nozzle.
この環状ノズル 1は、 導入口 3と旋回室 4と環状スリッ ト 5とを有しており、 導入口 3から注入された冷却液は、 旋回室 4内を旋回した後に、 孔部 2を通過し た溶融金属流に向けて環伏スリット 5から放出される。 次に、 この環状ノズル 1 を更に詳しく説明する。 The annular nozzle 1 has an inlet 3, a swirl chamber 4, and an annular slit 5. The coolant injected from the inlet 3 swirls inside the swirl chamber 4 and then passes through the hole 2. The molten metal is discharged from the ring-shaped slit 5 toward the molten metal flow. Next, this annular nozzle 1 Will be described in more detail.
導入口 3は現伏ノズルの旋回室 4の接棣に沿って設けられているため、 冷却液 を高圧で旋回室 4内に注入することができ、 しかも注入された冷却液は旋回室 4 内を旋回する。 本発明の環状ノズルは少なくとも 1個の導入口が設けられていれ ば十分であるが、 本実施例では冷却液を高 Eで ^入できるように 2個の導入口が 設けられている。 なお、 導入口は、 必ずしも旋回室の接線方向に沿って形成され ている必要はなく、 例えば旋回室の法線方向に形成されていてもよレ、。  Since the inlet 3 is provided along the diagonal of the swirl chamber 4 of the present nozzle, the coolant can be injected into the swirl chamber 4 at a high pressure. To turn. It is sufficient for the annular nozzle of the present invention to have at least one inlet, but in the present embodiment, two inlets are provided so that the coolant can be introduced at a high E. The inlet is not necessarily formed along the tangential direction of the swirl chamber, but may be formed in the normal direction of the swirl chamber.
旋回室 4は、 環状ノズル 1の孔部 2の周囲を取り囲むように形成されている。 従って、 旋回室 4内に注入された冷却液は、 孑し部 2を通過する溶融金属流 6の周 囲を予め旋回してから放出される。 旋回室 4内の外側周縁部は、 導入口から注入 された冷却液が旋回室内の全体に広がるように、 障害物がない空洞領域 7を有し ている。 このため、 環状ノズル内に高圧で冷却液を注入できる。  The swirling chamber 4 is formed so as to surround the periphery of the hole 2 of the annular nozzle 1. Therefore, the cooling liquid injected into the swirling chamber 4 is discharged after swirling the periphery of the molten metal flow 6 passing through the litter section 2 in advance. The outer peripheral portion in the swirling chamber 4 has a cavity region 7 free from obstacles so that the coolant injected from the inlet spreads throughout the swirling chamber. Therefore, the coolant can be injected into the annular nozzle at a high pressure.
旋回室 4内の上記の空洞領域 Ίの内側には、 複数枚の案内羽 8が設けられて いる。 この案内羽根 8は、 冷却液の流れを安定化させるとともに、 冷却液を旋回 させながら更に内側に誘導する役目を果たす。 そして、 冷却液は、 孔部 2の内側 面に沿って形成された環状スリット 5の各部分から略均一な圧力で放出される。 なお、 上記の案内羽根に加えて、 または上記の案内羽根に代えて、 冷却液を旋回 室内におし、て旋回させるための通路や溝を設けたり、 さらに案内羽根や通路や溝 をモ一夕一等によって回転させてもよい。  A plurality of guide wings 8 are provided inside the above-mentioned hollow area 内 in the swirl chamber 4. The guide vanes 8 serve to stabilize the flow of the coolant and to guide the coolant further inward while swirling. Then, the coolant is discharged from each part of the annular slit 5 formed along the inner surface of the hole 2 at a substantially uniform pressure. In addition, in addition to or instead of the above-mentioned guide vanes, a passage or a groove for turning the coolant into the swirl chamber is provided. It may be rotated in the evening or the like.
上記のように、 冷却液は旋回室 4内を旋回しながら環状スリツト 5に向かって 誘導されるが、 この旋回室 4の内部は環状スリツト 5に近づくにつれて徐々に狭 くなつている。 これによつて冷却液は、 環状スリツ ト 5から高速の液体ジエツ ト として放出される。 なお、 孔部 2を通過した溶融金厲流に向けて液体ジヱットが 放出されるようになっていれば、 環状スリツトの位置は、 孔部 ©内側面に限定さ れず、 環状ノズル 1の下面に形成されていてもよい。 また、 本発明は、 図面に記 載するような円形の環状スリッ 卜に限定されず、 他の形状 (例えば楕円形や矩形 等) の環状スリッ トであってもよい。 上記の環状ノズル 1から放出された液体ジヱット 1 3は、 図 2に示すような一 葉双曲面 9状になる。 図 1および図 2に示す一葉双曲面状の液体ジエツ 卜には、 理解を容易にするために、 環状スリッ ト 5の各部分から放出された液体ジヱット の放出方向を表す仮想線 1 0が記載されている。 本発明によると、 環状スリット 5の各部分から放出された液体ジヱット 1 3 (仮想線 1 0 ) は、 一旦は互いに近 づくが衝突することなく雜れるように流れるために、 括れ部 1 1を形成する。 なお、 本発明の金属粉末の製造方法は、 図 1に記載するような旋回室 4と環状 スリッ ト 5とを有する環状ノズルを使用するものには限定されない。 例えば、 複 数個のペンシルジェット型ノズル部品 1 4の放出口を図 1の環状スリツ ト 5に沿 うように環状に配列させて、 各ペンシルジヱット型ノズル部品から仮想線 1 0に 沿うような液体ジェットを一葉双曲面状に放出してもよい。 この場合、 環状に配 列された複数個のペンンシルジヱット型ノズル部品が本発明の環状ノズルを構成 する。 上記のような環状ノズル 1を備えた金属粉末製造装置を使用すると、 従来の液 体アトマイズ法よりも、 細かく、 擬球形で、 しかも粒度分布 ©嗨の狭い金属粉末 を効率よく製造することができる。 As described above, the coolant is guided toward the annular slit 5 while swirling in the swirl chamber 4, and the inside of the swirl chamber 4 gradually becomes narrower as approaching the annular slit 5. As a result, the cooling liquid is discharged from the annular slit 5 as a high-speed liquid jet. If the liquid jet is released toward the molten gold flow passing through the hole 2, the position of the annular slit is not limited to the inner surface of the hole, but may be on the lower surface of the annular nozzle 1. It may be formed. Further, the present invention is not limited to a circular annular slit as shown in the drawings, but may have other shapes (for example, an elliptical shape or a rectangular shape). Etc.) may be used. The liquid jet 13 discharged from the annular nozzle 1 has a single-leaf hyperboloid 9 as shown in FIG. In order to facilitate understanding, a virtual line 10 indicating the discharge direction of the liquid jet discharged from each part of the annular slit 5 is described in the one-lobe hyperboloid liquid jet shown in FIGS. 1 and 2. Have been. According to the present invention, the liquid jets 13 (imaginary lines 10) discharged from the respective portions of the annular slit 5 approach each other once, but flow so as to be crowded without colliding with each other. Form. The method for producing metal powder of the present invention is not limited to a method using an annular nozzle having a swirling chamber 4 and an annular slit 5 as shown in FIG. For example, the outlets of a plurality of pencil jet type nozzle parts 14 are arranged in an annular shape along the annular slit 5 in FIG. 1, and the liquid from each pencil jet type nozzle part along the imaginary line 10 is shown. The jet may be emitted in a one-lobe hyperboloid. In this case, a plurality of pencil jet type nozzle parts arranged in a ring form the ring nozzle of the present invention. The use of the metal powder manufacturing apparatus having the annular nozzle 1 as described above makes it possible to efficiently produce a finer, pseudo-spherical, and narrower particle size distribution metal powder than the conventional liquid atomization method. .
特定の考察に束縛されるわけではないが、 本 明によると金属粉末は以下のよ うにして製造されるものと考えられる。 本発明によると、 液体ジ ットは上記のように一葉双曲面状に放出されるが、 この液体ジヱットは非圧縮性流体から構成されているためにエネルギー密度が高 く、 しかも液体ジエツトは途中で互いに衝突することなく終始安定的に流れるこ とが可能であり、 さらに高速の液体ジュットによって形成された一葉双曲面の内 部では括れ部に近づくにつれて圧力が急激に低下している。 従って、 溶融金属流Without being bound by any particular consideration, according to the present invention, it is considered that the metal powder is produced as follows. According to the present invention, the liquid jet is discharged in a one-lobe hyperboloidal shape as described above. However, since this liquid jet is composed of an incompressible fluid, the energy density is high, and the liquid jet is in the middle. It can flow stably all the time without colliding with each other The pressure inside the one-hyperboloid formed by the high-speed liquid jet decreases rapidly as it approaches the constriction. Therefore, the molten metal flow
6を一葉双曲面の括れ部 1 1に向けて流下すると、 この溶融金属流 6は、 括れ部 1 1を通過するまでに均等なエネルギーで規則的かつ連続的に分散されて、 細か い溶融金属滴になる。 When the molten metal 6 flows down toward the constricted portion 11 of the one-lobe hyperboloid, the molten metal flow 6 is regularly and continuously dispersed with uniform energy until passing through the constricted portion 11, and the fine molten metal flows. Drops.
そして、 分散された溶融金厲滴は固化して金 m粉末になるか、 本発明では、 こ の溶融金属滴は、 互いに接触することなく、 しかも緩やかに固化することが可能 である。 即ち、 上記のようにして細かい溶融金属滴になったとしても、 溶融金属 滴が固化前に互いに接触してしまうと、 得られる金厲粉末は不規則な形状になつ てしまう力、'、 本発明では括れ部 1 1を設けることによって、 融金属滴は互いに 接触することなく括れ部を通過して一葉双曲面の下部に移動できる。 しかも、 本 発明における固化前の溶融金属滴は、 一葉双曲 を本質的には;横切らずに比較的 緩やかに冷却されるため、 表面張力によって球; (犬化することが ¾1能になる。  Then, the dispersed molten gold droplets solidify into gold m powder, or in the present invention, these molten metal droplets can be solidified gently without contacting each other. In other words, even if the molten metal droplets become fine as described above, if the molten metal droplets come into contact with each other before solidification, the resulting gold powder becomes an irregular shape. In the present invention, by providing the constricted portion 11, the molten metal droplet can pass through the constricted portion and move to the lower part of the one-lobe hyperboloid without contacting each other. Moreover, the molten metal droplet before solidification according to the present invention is essentially one-lobe hyperbolic; it is relatively slowly cooled without traversing, so that it becomes a sphere due to surface tension.
この点に関して、 分散された溶融金属滴が液体ジエツトの衝突部分の近傍で互 いに接触し、 しかも液体ジヱッ卜との激しい接触交差によって急激に冷却される 従来の液体アトマイズ法とは顕著に相違する。  In this regard, there is a significant difference from the conventional liquid atomization method in which the dispersed molten metal droplets come into contact with each other near the collision portion of the liquid jet, and are rapidly cooled by violent contact intersection with the liquid jet. I do.
以上を纏めると、 本発明によると、 液体ジヱットによって均^なエネルギーで 規則的かつ連铳的に細かく分散された溶融金厲滴は、 互いに接触することなく、 しかも緩やかに袷却固化される。 従って、 本発明は、 従来法よりも、 細かく、 擬 球形で、 しかも粒度分布の幅の狭い金属粉末を効率的に製造できるものと考えら れる。 本発明においては液体ジヱッ ト 1 3の流速は、 特に限定されないが、 1 0 O m/ sec以上、 更には 1 3 0 m/sec以上、 最適には I 5 O m/sec以上、 さらに最適に は 2 0 O m/sec以上であることが好ましい。  In summary, according to the present invention, the molten gold droplets which are finely dispersed regularly and continuously at a uniform energy by the liquid jet are solidly and gently solidified without contacting each other. Therefore, it is considered that the present invention can efficiently produce a finer, pseudospherical, and narrower particle size distribution metal powder than the conventional method. In the present invention, the flow rate of the liquid jet 13 is not particularly limited, but is not less than 10 Om / sec, more preferably not less than 130 m / sec, most preferably not less than I5 Om / sec, and more preferably Is preferably 20 m / sec or more.
また、 液体ジヱッ卜の括れ部 1 1内の圧力は、 大気圧に対して、 50〜750mmHg 、 更には 100〜750mmHg、 最適には 150 ~700tnmHg に減圧されている (即ち、 大 気圧に対して、 一 5(h ^- 750mmHg、 更には一 100 ^ ^— 750mmHg、 最適には— 0 〜― 700mmHg になっている) ことが好ましい。 なお、 液体の蒸気圧が存在するた め、 例えば冷却液として常温 (2 O 'C) の水を使用する場合には、 括れ部内の圧 力を大気圧に対して 7 5 O mmHg以上減圧することは困難である。 また、 本発明は液体ジ ットが一葉双曲面伏に放出されるものであれば、 液体 ジエツ 卜の放出方向は特に限定されないが、 好ましくは、 液体ジュッ トは後述の 下降角度 0および旋回角度 ωで放出される。 The pressure inside the constricted part 11 of the liquid jet is 50 to 750 mmHg with respect to the atmospheric pressure. The pressure is reduced to 100 to 750 mmHg, and optimally to 150 to 700 tnmHg (that is, 1 to 5 (h ^-750 mmHg, more preferably to 100 to ^ 750 mmHg, optimally to 0 to Because the vapor pressure of the liquid exists, for example, when using water at normal temperature (2 O'C) as the cooling liquid, the pressure inside the constricted section should be large. It is difficult to reduce the pressure to 75 O mmHg or more with respect to the atmospheric pressure.In the present invention, the discharge direction of the liquid jet is not particularly limited as long as the liquid jet is discharged in a one-lobe hyperboloidal shape. However, preferably, the liquid jet is discharged at a descent angle 0 and a swirl angle ω described below.
本発明においては、 上記の下降角度 0および旋回角度 ωは次のように定義され る。 まず、 液体ジュットの速度 Vを、 環状スリットの接線方向(図 4における X 軸方向) の速度成分 V x 、 円形の環状スリツトの法線方向 (図 4における y軸方 向) の速度成分 V , 、 および鉛直方向 (図 3における z軸方向) の速度成分 V , に分解する。 ここで、 旋回角度 ωは、 V x と V , との合力が y軸に対して作る角 度であると定義される。 また下降角度 0は、 V y と V , との合力が z軸に対して 作る角度であると定義される。 In the present invention, the descending angle 0 and the turning angle ω are defined as follows. First, the velocity V of the liquid jet is defined as the velocity component V x in the tangential direction of the annular slit (X-axis direction in Fig. 4), the velocity component V in the normal direction of the circular slit (Y-axis direction in Fig. 4), , And the velocity component V, in the vertical direction (the z-axis direction in Fig. 3). Here, the turning angle ω is defined as an angle formed by the resultant force of V x and V, with respect to the y-axis. The descending angle 0 is defined as the angle formed by the resultant force of V y and V, with respect to the z-axis.
旋回角度 ωは、 1 ° 3 0 ° 、 更には 3 ° ≤ω≤ 2 0。 、 最適には 5 ° ≤ ω≤ 2 0 ° になっていることが好ましい。 また、 下降角度 0は、 5 ° 6 0 The turning angle ω is 1 ° 30 °, and 3 ° ≤ω≤20. Optimally, it is preferable that 5 ° ≤ ω ≤ 20 °. The descent angle 0 is 5 ° 60
° 、 更には 7。 ≤ 0≤ 5 5。 、 最適には 8 ° ≤ 0≤ 4 0 ° になっていることが好 ましい。 液体ジエツ卜が上記の範囲の旋回角度 ωおよび下降角度 0で放出された 場合には、 特に良好な金属粉末が得られる。 また、 本発明においては、 単位時間あたりにおける溶融金属流の流下量に対す る冷却液 (即ち液体ジ ッ ト) の放出量も、 特に限定されず、 任意に設定するこ とが可能であるが、 (溶融金厲流の流下量) : (冷却液の放出量) は、 好ましく は 1 : 2〜 1 0 0、 更には 1 : 3〜5 0 , 最適には 1 : 5〜3 0になっている。 冷却液の放出量を上記の範囲に設定することによって、 良好な金属粉末を効率よ く省エネルギーで製造できる。 本発明は、 金属元素、 金属化合物、 合金および金属間化合物を含む任意の金厲 に適用することが可能である。 また、 本発明によると、 金属の特性に応じたアト マィズ条件を設定することによって、 所望の特徵を有する金厲粉末を製造するこ とが可能になる。 °, and even 7. ≤ 0 ≤ 5 5. Optimally, it is preferable that 8 ° ≤ 0≤ 40 °. Particularly good metal powders are obtained when the liquid jet is discharged at a swirl angle ω and a descent angle 0 within the above ranges. In the present invention, the amount of coolant (ie, liquid jet) released per unit time with respect to the amount of molten metal flowing down per unit time is not particularly limited, and can be set arbitrarily. , (Flow rate of molten gold): (coolant discharge rate) is preferably 1: 2 to 100, more preferably 1: 3 to 50, and most preferably 1: 5 to 30. ing. By setting the discharge amount of the cooling liquid within the above range, good metal powder can be efficiently produced with energy saving. The present invention can be applied to any metal including a metal element, a metal compound, an alloy and an intermetallic compound. Further, according to the present invention, it is possible to produce a metal powder having desired characteristics by setting atomizing conditions according to the characteristics of a metal.
本発明によって得られる金属粉末の好適な特徵の一例を以下に記載する。 なお 、 付記しない限りは、 以下の各特徴は、 本発明の液体アトマイズ法を使用した後 に J I SZ- 8801 に従って選別された 1画以下の粒径を有する金展粉末について記述 したものである。  Preferred examples of the metal powder obtained by the present invention are described below. Unless otherwise specified, the following features describe gold-extended powders having a particle size of not more than one stroke selected according to JIS Z-8801 after using the liquid atomizing method of the present invention.
① 本発明によって得られる金属粉末の相対見掛密度は、 好ましくは 28%以上 、 更には 30以上、 最適には 32%以上である。  (1) The relative apparent density of the metal powder obtained by the present invention is preferably 28% or more, more preferably 30 or more, and optimally 32% or more.
② 本発明によって得られる金属粉末の相対タッブ密度は、 好ましくは 45%以 上、 更には 50%以上、 最適には 55%以上である。  (2) The relative tab density of the metal powder obtained by the present invention is preferably 45% or more, more preferably 50% or more, and most preferably 55% or more.
③ 金属粉末のメジアン径は、 好ましくは 50 πι以下、 更には 35 m以下、 最 適には 25 // m以下、 更に最適には 15 / m以下である。  3) The median diameter of the metal powder is preferably 50 πι or less, more preferably 35 m or less, optimally 25 // m or less, and most optimally 15 / m or less.
④ 金属粉末のメジアン径が 25 m以下である場合には、 次のような特定の粒 径を有する微粉末が所定比率で含まれている。  場合 When the metal powder has a median diameter of 25 m or less, the following fine powder having a specific particle size is contained in a predetermined ratio.
1 ) \0 fi m以下の粒径を有する微粉末が、 少なくとも 20重量%以上、 好まし くは 40重量%以上、 '最適には 45重量%以上含まれている。  1) It contains at least 20% by weight, preferably 40% by weight or more, and most preferably 45% by weight or more of fine powder having a particle size of less than \ 0 fim.
2) 5 μ ιη以下の粒径を有する微粉末が、 少なくとも 3重量%以上、 好まし くは 10重量%以上、 最適には 18重量%以上含まれている。  2) At least 3% by weight, preferably at least 10% by weight, and optimally at least 18% by weight of fine powder having a particle size of 5 μιη or less.
⑤ 金属粉末のメジアン径が m以下である場合には、 次のような特定の粒 径を有する微粉末が所定比率で含まれている。  場合 When the median diameter of the metal powder is less than m, fine powder having the following specific particle size is contained at a predetermined ratio.
1 ) I Q u m以下の拉径を有する微粉末が、 少なくとも 35重量%以上、 好まし くは 45重量%以上、 最適には 50重量%以上含まれている。 1) Fine powder having a diameter of IQ um or less is preferably at least 35% by weight or more. More than 45% by weight, optimally more than 50% by weight.
2) 5 以下の粒径を有する徹粉末が、 少なくとも 10重量 ½以上、 好まし くは 重量%以上、 最適には 20重量%以上含まれている。  2) Contains at least 10% by weight, preferably at least 10% by weight, and optimally at least 20% by weight of a powder having a particle size of 5 or less.
3) 1 u m以下の粒径を有する微粉末が、 少なくとも 0. 01重量%以上、 好ま しくは 0. 05重量%以上、 最適には 0. 1 重量%以上含まれている。  3) Fine powder having a particle size of 1 μm or less is contained at least 0.01% by weight or more, preferably 0.05% by weight or more, and most preferably 0.1% by weight or more.
⑥ 本発明によって得られる金属粉末の幾何摞準偏差は、 好ましくは 3. 0以下 、 更には 2. 5以下、 最適には 2. 3以下である。 なお、 幾何標準偏差によって 、 粒度分布の幅を評価できる。  金属 The geometric standard deviation of the metal powder obtained by the present invention is preferably 3.0 or less, more preferably 2.5 or less, and most preferably 2.3 or less. The width of the particle size distribution can be evaluated by the geometric standard deviation.
⑦ 本発明によって得られる金属粉末の比表面積は、 好ましくは 4000cm2/g以 下、 更には 3000cmVg以下、 最適には 2500cm2/g以下である。 実施例 The specific surface area of the metal powder obtained by the present invention is preferably 4000 cm 2 / g or less, more preferably 3000 cmVg or less, and most preferably 2500 cm 2 / g or less. Example
次に、 本発明を実施例に基づいて更に詳紬に税明する。 次の実施例は、 出願時 における発明者が最良実施形態であると認識するものであるが、 本発明はこれに 限定されない。 水を冷却液として使用して、 Cu、 Cu-10 n合金、 Cr-Ni -Mo合金および Fe-Si.-Co 合金の金属粉末を製造した。 本発明に従う種々のァトマイズ条件を採用して金属 粉末を製造した (実施例 1〜 8 ) 。  Next, the present invention will be described in more detail based on examples. The following examples are recognized by the inventor at the time of filing as being the best embodiment, but the present invention is not limited thereto. Water was used as a coolant to produce metal powders of Cu, Cu-10n alloy, Cr-Ni-Mo alloy and Fe-Si.-Co alloy. Metal powders were produced using various atomizing conditions according to the present invention (Examples 1 to 8).
また、 従来のコニカルジヱットを発生するノズルを使用して、 従来法に従って 金属粉末を製造した (比較例 1〜8 ) 。 これらのアトマイズ条件を表 1に記載す る。  In addition, metal powder was manufactured according to the conventional method using a conventional nozzle for generating a conical jet (Comparative Examples 1 to 8). Table 1 shows these atomizing conditions.
なお、 括れ部内の圧力は、 括れ部内の横断面積の 20¾以下の断面積を有するパ イブを使用して行った。 このパイブの一方の開口部には圧力計が接梡されている 。 そして、 このパイブの他方の開口部が括れ部 1 1内に位 Sするように、 パイプ を一葉双曲面の中心軸 12に沿って上方から挿入することによって測定した。 また 、 液体ジヱッ卜の速度は、 導入口 3において測定された冷却 の注入圧力からベ ルヌーィの定理を使用することによって、 算出した。 The pressure in the constriction was measured using a pipe with a cross-sectional area of 20 mm or less of the cross-sectional area in the constriction. A pressure gauge is connected to one opening of the pipe. Then, the pipe was inserted from above along the central axis 12 of the one-lobe hyperboloid such that the other opening of the pipe was positioned inside the constricted portion 11. Also The velocity of the liquid jet was calculated from the cooling injection pressure measured at the inlet 3 by using Bernoulli's theorem.
J 1 SZ8801に従って選別された 1顏以下の粒径を有する金属粉末に対して、 表 1 に記載の分析項目について分析試験を行った。 その分析結果を表 1に併せて記載 する。 尚、 これらの分析は以下の手段で行った。 Analytical tests were performed on the metal powders having a particle size equal to or less than 1 face selected according to J 1 SZ8801 for the analytical items described in Table 1. The results of the analysis are also shown in Table 1. In addition, these analyzes were performed by the following means.
•見掛密度は、 I S O— 3 9 2 3に従って測定した。  • The apparent density was measured in accordance with ISO-3923.
'タップ密度は、 I S〇— 3 9 5 3に従って測定した。  'Tap density was measured according to IS〇-3953.
-相対見掛密度は、 (見掛密度) ÷ (真密度) X 1 0 0に従って算出した。 -Relative apparent density was calculated according to (apparent density)) (true density) × 100.
•相対タップ密度は (タップ密度) 十 (真密度) X 1 0 0に徒って算出した。• The relative tap density was calculated based on (tap density) x 10 (true density) x 100.
• メジアン径は、 日機装 (株) 製のマイクロトラックを使用して、 レーザー回 折散乱法(体積 を採用することによって測定した。 • The median diameter was measured using a laser diffraction scattering method (volume) using a micro track manufactured by Nikkiso Co., Ltd.
-金属粉末中に占める 10 m 、 5 mおよび 1 / m以下の拉径を有する微粉末 の含有量を、 レーザー回折散乱法(体積%〉 を採用することによって、 測定 した。  -The content of fine powder having a diameter of 10 m, 5 m and 1 / m or less in the metal powder was measured by using a laser diffraction scattering method (volume%).
•幾何標準偏差は、 メジアン径の測定結果における累積 50%径 Z累積 . 87 % に従って算出した。  • The geometric standard deviation was calculated according to the cumulative 50% diameter Z cumulative .87% in the median diameter measurement results.
-比表面積は、 気相吸着法の B E T法に従って測定した。  -The specific surface area was measured according to the BET method of the gas phase adsorption method.
•酸素量は、 非分散赤外線吸収法に従って測定した。  • The oxygen content was measured according to the non-dispersive infrared absorption method.
•収率は、 J ISZ8801に従って選別された 1 mm以下の粒径を有する金属粉末中に 占める 45 /m以下の粒径を有する金属粉末の割合を百分率で示したものであ る。  • Yield is the percentage of the metal powder having a particle size of 45 / m or less in the metal powder having a particle size of 1 mm or less selected according to J ISZ8801.
'電子顕微鏡写真は、 (株) 日立製作所製の走査霪子顕微敏を使用して撮影し  'Electron micrographs were taken using a scanning microscope manufactured by Hitachi, Ltd.
表 1に記載の分析結果から、 同種の金属粉末で比較した場合、 本発明には以下 の効果があると考えられる。 本発明による金属粉末の見掛密度およびタップ密度は、 比較例よりも高く、 し かも本発明による金属粉末の相対見掛密度および相対夕ッブ密度も、 比較例より も高くなつている。 これは、 本発明によって製造され金厲粉末が、 従来法に従つ て製造された金属粉末よりも擬球形になつていることを示している。 本発明による金属粉末のメジアン径は比較例よりも小さい。 これは、 本発明に よって得られる金属粉末は、 比較例の金属粉末よりも細かいことを示している。 本発明による金属粉末は、 従来法による金厲粉末よりも多くの微粉末を含むこ とが確認された。 特に、 本発明による金厲粉末は、 レーザー回折散乱法によって 確認可能な範囲で、 1 m 以下の徹粉末を含む点で、 比較例の金属粉末と顕著に 相違する。 本発明による金属粉末の幾何標準偏差は、 比較例よりも小さくなつている。 こ れは、 本発明によって得られた金属粉末の拉度分布の幅は、 比較例の金属粉末よ りも狭いことを示している。 本発明による金属粉末の酸素量は、 比較例よりも小さくなつている。 これは、 本発明の金属粉末は擬球形であるために表面接が小さく酸化され難いからである と考えられる。 本発明による収率は、 比較例よりも高くなつている。 これは、 本発明によると 、 溶融金属流は液体ジェッ トによって規則的かつ連铳的に分散され、 しかも分散 された溶融金厲痫は互いに接触することなく緩やかに冷却されるためと考えられ る t 電子顕微鏡写真より、 本発明の金属粉末は、 エッジが除去されており、 比較例 の金属粉末よりも擬球形であることは明らかである。 From the analysis results shown in Table 1, when compared with the same type of metal powder, the present invention It is thought that there is an effect. The apparent density and tap density of the metal powder according to the present invention are higher than those of the comparative example, and the relative apparent density and relative evening density of the metal powder according to the present invention are higher than those of the comparative example. This indicates that the metal powder produced according to the present invention is more pseudospherical than the metal powder produced according to the conventional method. The median diameter of the metal powder according to the invention is smaller than in the comparative example. This indicates that the metal powder obtained by the present invention is finer than the metal powder of the comparative example. It has been confirmed that the metal powder according to the present invention contains more fine powder than the metal powder according to the conventional method. In particular, the metal powder according to the present invention is significantly different from the metal powder of the comparative example in that the metal powder contains a through powder of 1 m or less within a range that can be confirmed by a laser diffraction scattering method. The geometric standard deviation of the metal powder according to the invention is smaller than in the comparative example. This indicates that the width of the abundance distribution of the metal powder obtained by the present invention is narrower than that of the metal powder of the comparative example. The oxygen content of the metal powder according to the present invention is smaller than that of the comparative example. This is considered to be because the metal powder of the present invention has a pseudospherical shape, so that the surface contact is small and oxidation is difficult. The yield according to the invention is higher than in the comparative example. This is considered to be because according to the present invention, the molten metal stream is regularly and continuously dispersed by the liquid jet, and the dispersed molten metal is cooled slowly without contacting each other. From the t electron micrograph, it is clear that the edges of the metal powder of the present invention have been removed, and that the metal powder of the present invention is more pseudospherical than the metal powder of the comparative example.
Figure imgf000016_0001
Figure imgf000016_0001

Claims

請求の範囲 流下する溶融金属流に冷却液を吹き付けて金属粉末を製造する金厲粉末製 造方法において、 Claims A method for producing a metal powder by spraying a cooling liquid onto a flowing molten metal flow to produce a metal powder,
前記冷却液は、 前記溶融金属流を取り囲むように設けた環状ノズルから、 前記環状ノズルを通過した前記溶融金厲流に向けて、 前記溶融金属流を一葉 双曲面状に取り囲むように、 連続的に放出されることを特徴とする金属粉末 製造方法。  The cooling liquid is continuous from an annular nozzle provided to surround the molten metal flow toward the molten metal flow passing through the annular nozzle so as to surround the molten metal flow in a single-blade hyperbolic shape. A method for producing metal powder, characterized in that the metal powder is released to the atmosphere.
前記冷却液は、 前記環伏ノズルから 1 0 O m/sec以上の速度で放出される ことを特徴とする請求項 1に記載の方法。  The method according to claim 1, wherein the cooling liquid is discharged from the ring-shaped nozzle at a rate of 10 Om / sec or more.
旋回角度 ωが 1 ° ≤ω ^ 30° であり、 下降角度 0が 5 ° ≤ Θ ^ 6 0 ° であ るように前記冷却液は放出されることを特徴とする請求項 1または 2に記載 の方法。  The cooling liquid is discharged such that the turning angle ω is 1 ° ≤ω ^ 30 ° and the descending angle 0 is 5 ° ≤ Θ ^ 60 °. the method of.
請求項 1から 3のいずれか 1項に記載の方法によって製造された金属粉末 であって、 メジアン径が 5 0 m以下であり、 幾何標準偏差が 3 . 0以下で あり、 しかも擬球形であることを特徵とする金属粉末。  A metal powder produced by the method according to any one of claims 1 to 3, having a median diameter of 50 m or less, a geometric standard deviation of 3.0 or less, and a pseudospherical shape. A metal powder characterized in that:
流下する溶融金属に冷却液を吹き付けるための環状ノズルを備えた金属粉 末製造装 Sであって、  A metal powder manufacturing apparatus S provided with an annular nozzle for spraying a cooling liquid onto the flowing molten metal,
前記環状ノズルは前記溶融金属流を取り囲むように配 Sされており、 前記 環状ノズルは、 前記溶融金属流の回りを前記冷却液が旋回するための旋回室 と、 前記旋回室で旋回された前記冷却液を前記溶融金属流に向けて放出する ための環伏スリットとを備えており、  The annular nozzle is arranged so as to surround the molten metal flow, the annular nozzle includes a swirl chamber for swirling the coolant around the molten metal flow, and the swirl chamber swirled in the swirl chamber. An annular slit for discharging a coolant toward the molten metal stream,
前記環状スリッ卜から放出される前記冷却液は前記溶融金厲流を一葉双曲 面状に取り囲むことを特徴とする金属粉末製造装置。  The metal powder producing apparatus according to claim 1, wherein the coolant discharged from the annular slit surrounds the molten metal stream in a one-lobe hyperbolic shape.
PCT/JP1998/005867 1997-12-25 1998-12-24 Method of producing metal powder WO1999033598A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69936711T DE69936711T2 (en) 1998-12-24 1999-06-23 METHOD AND DEVICE FOR PRODUCING METAL POWDER
PCT/JP1999/003338 WO2000038865A1 (en) 1998-12-24 1999-06-23 Method of manufacturing metal powder
KR1020007003025A KR100548213B1 (en) 1998-12-24 1999-06-23 Method and apparatus for manufacturing metal powder
EP99926764A EP1063038B1 (en) 1998-12-24 1999-06-23 Method and apparatus for manufacturing metal powder
US09/509,592 US6336953B1 (en) 1998-12-24 1999-06-23 Method for preparing metal powder
JP2000590804A JP3999938B2 (en) 1998-12-24 1999-06-23 Metal powder manufacturing method
CNB998014036A CN100364700C (en) 1998-12-24 1999-06-23 Method for producing metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/356473 1997-12-25
JP35647397 1997-12-25

Publications (1)

Publication Number Publication Date
WO1999033598A1 true WO1999033598A1 (en) 1999-07-08

Family

ID=18449196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005867 WO1999033598A1 (en) 1997-12-25 1998-12-24 Method of producing metal powder

Country Status (1)

Country Link
WO (1) WO1999033598A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031462A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Production method of water atomization metal powder
JP6533352B1 (en) * 2018-07-27 2019-06-19 株式会社東北マグネットインスティテュート High-speed fluid injection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123012A (en) * 1987-11-09 1989-05-16 Kawasaki Steel Corp Nozzle for manufacturing fine powder
JPH04131451U (en) * 1991-05-24 1992-12-03 三井三池化工機株式会社 nozzle structure
JPH0622338U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123012A (en) * 1987-11-09 1989-05-16 Kawasaki Steel Corp Nozzle for manufacturing fine powder
JPH04131451U (en) * 1991-05-24 1992-12-03 三井三池化工機株式会社 nozzle structure
JPH0622338U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031462A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Production method of water atomization metal powder
JP6533352B1 (en) * 2018-07-27 2019-06-19 株式会社東北マグネットインスティテュート High-speed fluid injection device
WO2020021701A1 (en) * 2018-07-27 2020-01-30 株式会社東北マグネットインスティテュート High-speed fluid jetting device

Similar Documents

Publication Publication Date Title
JP3999938B2 (en) Metal powder manufacturing method
CA2018017C (en) Method for producing powder by gas atomization
KR101825252B1 (en) External mixing pressurized two-fluid nozzle and a spray drying method
JP3858275B2 (en) Metal powder manufacturing method and apparatus by atomizing method
KR102546750B1 (en) Method for producing atomization of high melting point metal or alloy powder
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
KR101431584B1 (en) generating module of micro bubble
KR20210101086A (en) fluid spraying nozzle assembly
JPH06340904A (en) Preparation of metal particle from molten metal
US10391558B2 (en) Powder manufacturing apparatus and powder forming method
CN201693177U (en) Atomizing nozzle for preparing metal superfine powder
WO1999033598A1 (en) Method of producing metal powder
CN119304195A (en) A new type of double annular gap atomizer and atomizing device
JP2004107740A (en) Method and apparatus for producing metal powder by water atomization method, metal powder, and parts
JP2703378B2 (en) Method and apparatus for atomizing a liquid, preferably a melt
JP3554302B2 (en) Method for converting liquid into fine particles and nozzle used for the method
CN106623954B (en) A kind of molten drop atomization protection gas hood
JP2001226704A (en) Apparatus and method for producing metal powder
JPH0649512A (en) Device for producing gas-atomized metal powder
JP2606318Y2 (en) Two-fluid spray nozzle
JPS6350404A (en) Spray nozzle for metal powder production
CN114786845A (en) Metal powder manufacturing device
JPH0873905A (en) Equipment for producing fine metal powder
KR102870458B1 (en) Atomizing assembly and metal powder manufacturing device comprising the same
CN222588123U (en) A gas atomizing nozzle for preparing metal powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000526321

Format of ref document f/p: F

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载