WO1999032598A1 - Improved oxygen bleaching system - Google Patents
Improved oxygen bleaching system Download PDFInfo
- Publication number
- WO1999032598A1 WO1999032598A1 PCT/US1997/023480 US9723480W WO9932598A1 WO 1999032598 A1 WO1999032598 A1 WO 1999032598A1 US 9723480 W US9723480 W US 9723480W WO 9932598 A1 WO9932598 A1 WO 9932598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous component
- component chamber
- aqueous
- chamber
- separate chambers
- Prior art date
Links
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 112
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 239000001301 oxygen Substances 0.000 title claims abstract description 111
- 238000004061 bleaching Methods 0.000 title description 25
- 239000007844 bleaching agent Substances 0.000 claims abstract description 156
- 239000000203 mixture Substances 0.000 claims abstract description 152
- 150000004965 peroxy acids Chemical class 0.000 claims abstract description 28
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000012190 activator Substances 0.000 claims description 94
- 239000004094 surface-active agent Substances 0.000 claims description 48
- -1 polyethylene Polymers 0.000 claims description 40
- 239000004677 Nylon Substances 0.000 claims description 6
- 229920001778 nylon Polymers 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 5
- 239000002280 amphoteric surfactant Substances 0.000 claims description 3
- 239000003945 anionic surfactant Substances 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 2
- 239000002888 zwitterionic surfactant Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 238000004140 cleaning Methods 0.000 abstract description 52
- 239000000463 material Substances 0.000 description 32
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 30
- 102000004190 Enzymes Human genes 0.000 description 29
- 108090000790 Enzymes Proteins 0.000 description 29
- 229940088598 enzyme Drugs 0.000 description 29
- 108091005804 Peptidases Proteins 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 16
- 108010065511 Amylases Proteins 0.000 description 14
- 102000013142 Amylases Human genes 0.000 description 14
- 239000004365 Protease Substances 0.000 description 14
- 235000019418 amylase Nutrition 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 125000000217 alkyl group Chemical group 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 108090001060 Lipase Proteins 0.000 description 11
- 102000004882 Lipase Human genes 0.000 description 11
- 229940025131 amylases Drugs 0.000 description 11
- 239000003599 detergent Substances 0.000 description 11
- 230000002209 hydrophobic effect Effects 0.000 description 11
- 239000004615 ingredient Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000004367 Lipase Substances 0.000 description 10
- 239000002738 chelating agent Substances 0.000 description 10
- 235000019421 lipase Nutrition 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 102000035195 Peptidases Human genes 0.000 description 8
- 102000003992 Peroxidases Human genes 0.000 description 8
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 102000005575 Cellulases Human genes 0.000 description 7
- 108010084185 Cellulases Proteins 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 229920005646 polycarboxylate Polymers 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 125000002252 acyl group Chemical group 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 238000004851 dishwashing Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 108700020962 Peroxidase Proteins 0.000 description 5
- 229910000323 aluminium silicate Inorganic materials 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 150000004760 silicates Chemical class 0.000 description 5
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- MHKLKWCYGIBEQF-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-ylsulfanyl)morpholine Chemical compound C1COCCN1SC1=NC2=CC=CC=C2S1 MHKLKWCYGIBEQF-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000002877 alkyl aryl group Chemical group 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 3
- 102000016938 Catalase Human genes 0.000 description 3
- 108010053835 Catalase Proteins 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010056079 Subtilisins Proteins 0.000 description 3
- 102000005158 Subtilisins Human genes 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229940077388 benzenesulfonate Drugs 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 150000003951 lactams Chemical class 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000004702 methyl esters Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229960001922 sodium perborate Drugs 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 3
- 229920001567 vinyl ester resin Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 2
- CUVLMZNMSPJDON-UHFFFAOYSA-N 1-(1-butoxypropan-2-yloxy)propan-2-ol Chemical compound CCCCOCC(C)OCC(C)O CUVLMZNMSPJDON-UHFFFAOYSA-N 0.000 description 2
- CIEZZGWIJBXOTE-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)C(C)N(CC(O)=O)CC(O)=O CIEZZGWIJBXOTE-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- SHSGDXCJYVZFTP-UHFFFAOYSA-N 4-ethoxybenzoic acid Chemical compound CCOC1=CC=C(C(O)=O)C=C1 SHSGDXCJYVZFTP-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- GDFUWFOCYZZGQU-UHFFFAOYSA-N 4-propoxybenzoic acid Chemical compound CCCOC1=CC=C(C(O)=O)C=C1 GDFUWFOCYZZGQU-UHFFFAOYSA-N 0.000 description 2
- 108010025188 Alcohol oxidase Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- YZGQDNOIGFBYKF-UHFFFAOYSA-N Ethoxyacetic acid Chemical compound CCOCC(O)=O YZGQDNOIGFBYKF-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- BCXBKOQDEOJNRH-UHFFFAOYSA-N NOP(O)=O Chemical class NOP(O)=O BCXBKOQDEOJNRH-UHFFFAOYSA-N 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 229910001748 carbonate mineral Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 108010005400 cutinase Proteins 0.000 description 2
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004900 laundering Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UQDUPQYQJKYHQI-UHFFFAOYSA-N methyl laurate Chemical compound CCCCCCCCCCCC(=O)OC UQDUPQYQJKYHQI-UHFFFAOYSA-N 0.000 description 2
- JGHZJRVDZXSNKQ-UHFFFAOYSA-N methyl octanoate Chemical compound CCCCCCCC(=O)OC JGHZJRVDZXSNKQ-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 229940048086 sodium pyrophosphate Drugs 0.000 description 2
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 2
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- LVLQKFRSMSHJIE-UHFFFAOYSA-N (2-ethoxyethoxy)acetic acid Chemical compound CCOCCOCC(O)=O LVLQKFRSMSHJIE-UHFFFAOYSA-N 0.000 description 1
- LXSVWFRZICUOLU-ZCFIWIBFSA-N (2r)-2-butoxypropanoic acid Chemical compound CCCCO[C@H](C)C(O)=O LXSVWFRZICUOLU-ZCFIWIBFSA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- 125000006528 (C2-C6) alkyl group Chemical group 0.000 description 1
- RQRTXGHHWPFDNG-UHFFFAOYSA-N 1-butoxy-1-propoxypropan-1-ol Chemical compound CCCCOC(O)(CC)OCCC RQRTXGHHWPFDNG-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- GFJSEPREQTXWHA-UHFFFAOYSA-N 2,5-diphenyl-1,3-dihydropyrazole Chemical class C1C=C(C=2C=CC=CC=2)NN1C1=CC=CC=C1 GFJSEPREQTXWHA-UHFFFAOYSA-N 0.000 description 1
- MPJQXAIKMSKXBI-UHFFFAOYSA-N 2,7,9,14-tetraoxa-1,8-diazabicyclo[6.6.2]hexadecane-3,6,10,13-tetrone Chemical compound C1CN2OC(=O)CCC(=O)ON1OC(=O)CCC(=O)O2 MPJQXAIKMSKXBI-UHFFFAOYSA-N 0.000 description 1
- AFPUMZVFNSWMHG-UHFFFAOYSA-N 2-(1-ethoxypropan-2-yloxy)acetic acid Chemical compound CCOCC(C)OCC(O)=O AFPUMZVFNSWMHG-UHFFFAOYSA-N 0.000 description 1
- YFFWONKYNSJNQQ-UHFFFAOYSA-N 2-(1-methoxypropan-2-yloxy)acetic acid Chemical compound COCC(C)OCC(O)=O YFFWONKYNSJNQQ-UHFFFAOYSA-N 0.000 description 1
- XVOUVHUXQCZKEZ-UHFFFAOYSA-N 2-(1-propoxypropan-2-yloxy)acetic acid Chemical compound CCCOCC(C)OCC(O)=O XVOUVHUXQCZKEZ-UHFFFAOYSA-N 0.000 description 1
- MCORDGVZLPBVJB-UHFFFAOYSA-N 2-(2-butoxyethoxy)acetic acid Chemical compound CCCCOCCOCC(O)=O MCORDGVZLPBVJB-UHFFFAOYSA-N 0.000 description 1
- PDOJSJVNYFDULY-UHFFFAOYSA-N 2-(2-butoxypropoxy)acetic acid Chemical compound CCCCOC(C)COCC(O)=O PDOJSJVNYFDULY-UHFFFAOYSA-N 0.000 description 1
- QMBSJPZHUJCMJU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)propanoic acid Chemical compound CCOCCOC(C)C(O)=O QMBSJPZHUJCMJU-UHFFFAOYSA-N 0.000 description 1
- WEGPSEGBVLOGAN-UHFFFAOYSA-N 2-(2-ethoxypropoxy)acetic acid Chemical compound CCOC(C)COCC(O)=O WEGPSEGBVLOGAN-UHFFFAOYSA-N 0.000 description 1
- CLLLODNOQBVIMS-UHFFFAOYSA-N 2-(2-methoxyethoxy)acetic acid Chemical compound COCCOCC(O)=O CLLLODNOQBVIMS-UHFFFAOYSA-N 0.000 description 1
- ORNMFYLBXDZKLL-UHFFFAOYSA-N 2-(2-methoxypropoxy)acetic acid Chemical compound COC(C)COCC(O)=O ORNMFYLBXDZKLL-UHFFFAOYSA-N 0.000 description 1
- ZHBMRWPFBZGOII-UHFFFAOYSA-N 2-(2-propoxyethoxy)acetic acid Chemical compound CCCOCCOCC(O)=O ZHBMRWPFBZGOII-UHFFFAOYSA-N 0.000 description 1
- URFRRZSILVMDRN-UHFFFAOYSA-N 2-(2-propoxypropoxy)acetic acid Chemical compound CCCOC(C)COCC(O)=O URFRRZSILVMDRN-UHFFFAOYSA-N 0.000 description 1
- QAPVGLROIBGKRA-UHFFFAOYSA-N 2-[2-(1-methoxypropan-2-yloxy)ethoxy]acetic acid Chemical compound COCC(C)OCCOCC(O)=O QAPVGLROIBGKRA-UHFFFAOYSA-N 0.000 description 1
- OLUOIVJKRJJSKM-UHFFFAOYSA-N 2-[2-(1h-benzimidazol-2-yl)ethenyl]-1h-benzimidazole Chemical group C1=CC=C2NC(C=CC=3NC4=CC=CC=C4N=3)=NC2=C1 OLUOIVJKRJJSKM-UHFFFAOYSA-N 0.000 description 1
- FYRBJJHCFFXENF-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]acetic acid Chemical compound CCOCCOCCOCC(O)=O FYRBJJHCFFXENF-UHFFFAOYSA-N 0.000 description 1
- YHBWXWLDOKIVCJ-UHFFFAOYSA-N 2-[2-(2-methoxyethoxy)ethoxy]acetic acid Chemical compound COCCOCCOCC(O)=O YHBWXWLDOKIVCJ-UHFFFAOYSA-N 0.000 description 1
- NNNMVDKDSIVVBZ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)ethoxy]acetic acid Chemical compound COC(C)COCCOCC(O)=O NNNMVDKDSIVVBZ-UHFFFAOYSA-N 0.000 description 1
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 1
- JAONWSWNLZLNFS-UHFFFAOYSA-N 2-[4-(2-phenylethenyl)phenyl]benzo[e]benzotriazole Chemical compound C=1C=C(N2N=C3C4=CC=CC=C4C=CC3=N2)C=CC=1C=CC1=CC=CC=C1 JAONWSWNLZLNFS-UHFFFAOYSA-N 0.000 description 1
- HECHAOUMONWDAO-UHFFFAOYSA-N 2-[4-[2-[4-(triazol-2-yl)phenyl]ethenyl]phenyl]triazole Chemical class C=1C=C(N2N=CC=N2)C=CC=1C=CC(C=C1)=CC=C1N1N=CC=N1 HECHAOUMONWDAO-UHFFFAOYSA-N 0.000 description 1
- UGFSLKRMHPGLFU-UHFFFAOYSA-N 2-[5-(1,3-benzoxazol-2-yl)thiophen-2-yl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(S3)C=3OC4=CC=CC=C4N=3)=NC2=C1 UGFSLKRMHPGLFU-UHFFFAOYSA-N 0.000 description 1
- XBHQOMRKOUANQQ-UHFFFAOYSA-N 2-ethoxypropanoic acid Chemical compound CCOC(C)C(O)=O XBHQOMRKOUANQQ-UHFFFAOYSA-N 0.000 description 1
- ICPWFHKNYYRBSZ-UHFFFAOYSA-N 2-methoxypropanoic acid Chemical compound COC(C)C(O)=O ICPWFHKNYYRBSZ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SGUYGLMQEOSQTH-UHFFFAOYSA-N 2-propoxyacetic acid Chemical compound CCCOCC(O)=O SGUYGLMQEOSQTH-UHFFFAOYSA-N 0.000 description 1
- CPCVNVLTHQVAPE-UHFFFAOYSA-N 2-propoxypropanoic acid Chemical compound CCCOC(C)C(O)=O CPCVNVLTHQVAPE-UHFFFAOYSA-N 0.000 description 1
- CJAZCKUGLFWINJ-UHFFFAOYSA-N 3,4-dihydroxybenzene-1,2-disulfonic acid Chemical class OC1=CC=C(S(O)(=O)=O)C(S(O)(=O)=O)=C1O CJAZCKUGLFWINJ-UHFFFAOYSA-N 0.000 description 1
- NVTHWSJNXVDIKR-UHFFFAOYSA-N 3,5-dimethoxybenzonitrile Chemical compound COC1=CC(OC)=CC(C#N)=C1 NVTHWSJNXVDIKR-UHFFFAOYSA-N 0.000 description 1
- SSDNULNTQAUNFQ-UHFFFAOYSA-N 3,5-dinitrobenzonitrile Chemical compound [O-][N+](=O)C1=CC(C#N)=CC([N+]([O-])=O)=C1 SSDNULNTQAUNFQ-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- QWZHDKGQKYEBKK-UHFFFAOYSA-N 3-aminochromen-2-one Chemical class C1=CC=C2OC(=O)C(N)=CC2=C1 QWZHDKGQKYEBKK-UHFFFAOYSA-N 0.000 description 1
- FAGGUIDTQQXDSJ-UHFFFAOYSA-N 3-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCNC1=O FAGGUIDTQQXDSJ-UHFFFAOYSA-N 0.000 description 1
- APCMOTIDHJISLL-UHFFFAOYSA-N 4-(2-ethoxyethoxy)benzoic acid Chemical compound CCOCCOC1=CC=C(C(O)=O)C=C1 APCMOTIDHJISLL-UHFFFAOYSA-N 0.000 description 1
- LAUFPZPAKULAGB-UHFFFAOYSA-N 4-butoxybenzoic acid Chemical compound CCCCOC1=CC=C(C(O)=O)C=C1 LAUFPZPAKULAGB-UHFFFAOYSA-N 0.000 description 1
- ZEYHEAKUIGZSGI-UHFFFAOYSA-N 4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-N 0.000 description 1
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 1
- SFHBJXIEBWOOFA-UHFFFAOYSA-N 5-methyl-3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OC(C)COC(=O)C2=CC=C1C=C2 SFHBJXIEBWOOFA-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000750142 Auricula Species 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108010073997 Bromide peroxidase Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- XXAXVMUWHZHZMJ-UHFFFAOYSA-N Chymopapain Chemical compound OC1=CC(S(O)(=O)=O)=CC(S(O)(=O)=O)=C1O XXAXVMUWHZHZMJ-UHFFFAOYSA-N 0.000 description 1
- 239000004821 Contact adhesive Substances 0.000 description 1
- 241001459693 Dipterocarpus zeylanicus Species 0.000 description 1
- 241000237379 Dolabella Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 239000005641 Methyl octanoate Substances 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- PAXHKDWPIGQAGA-UHFFFAOYSA-N NCCCCCCCCCCC(=O)OC1=CC=CC=C1 Chemical compound NCCCCCCCCCCC(=O)OC1=CC=CC=C1 PAXHKDWPIGQAGA-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000006894 Primula auricula Nutrition 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 101710180012 Protease 7 Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000145542 Pseudomonas marginata Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- PCKSUVDVOPIZBJ-UHFFFAOYSA-N S(=O)(=O)(O)C1=CC=C(C=C1)C(=O)O.C(CC)[Na] Chemical compound S(=O)(=O)(O)C1=CC=C(C=C1)C(=O)O.C(CC)[Na] PCKSUVDVOPIZBJ-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101001069700 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharolysin Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical class [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 241000223258 Thermomyces lanuginosus Species 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- 239000001083 [(2R,3R,4S,5R)-1,2,4,5-tetraacetyloxy-6-oxohexan-3-yl] acetate Substances 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical group OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- IKJFYINYNJYDTA-UHFFFAOYSA-N dibenzothiophene sulfone Chemical compound C1=CC=C2S(=O)(=O)C3=CC=CC=C3C2=C1 IKJFYINYNJYDTA-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- PMPJQLCPEQFEJW-GNTLFSRWSA-L disodium;2-[(z)-2-[4-[4-[(z)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C/C1=CC=C(C=2C=CC(\C=C/C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-GNTLFSRWSA-L 0.000 description 1
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000000514 hepatopancreas Anatomy 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FDVKPDVESAUTEE-UHFFFAOYSA-N hexane-1,6-diol;2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O.OCCCCCCO FDVKPDVESAUTEE-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical compound COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical class CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical class OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- 229940044652 phenolsulfonate Drugs 0.000 description 1
- RRCSSMRVSNZOFR-UHFFFAOYSA-N phenyl 3,5,5-trimethylhexanoate;sodium Chemical compound [Na].CC(C)(C)CC(C)CC(=O)OC1=CC=CC=C1 RRCSSMRVSNZOFR-UHFFFAOYSA-N 0.000 description 1
- FCJSHPDYVMKCHI-UHFFFAOYSA-N phenyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OC1=CC=CC=C1 FCJSHPDYVMKCHI-UHFFFAOYSA-N 0.000 description 1
- VVTMNCICAIKIRN-UHFFFAOYSA-N phenyl benzoate;sodium Chemical compound [Na].C=1C=CC=CC=1C(=O)OC1=CC=CC=C1 VVTMNCICAIKIRN-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- QSKQNALVHFTOQX-UHFFFAOYSA-M sodium nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O QSKQNALVHFTOQX-UHFFFAOYSA-M 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- BYMHXIQVEAYSJD-UHFFFAOYSA-M sodium;4-sulfophenolate Chemical compound [Na+].OC1=CC=C(S([O-])(=O)=O)C=C1 BYMHXIQVEAYSJD-UHFFFAOYSA-M 0.000 description 1
- 239000013042 solid detergent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- WEZYFYMYMKUAHY-UHFFFAOYSA-N tert-butyl 2,4-dibenzylpiperazine-1-carboxylate Chemical compound C1C(CC=2C=CC=CC=2)N(C(=O)OC(C)(C)C)CCN1CC1=CC=CC=C1 WEZYFYMYMKUAHY-UHFFFAOYSA-N 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical group NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- DAFQZPUISLXFBF-UHFFFAOYSA-N tetraoxathiolane 5,5-dioxide Chemical compound O=S1(=O)OOOO1 DAFQZPUISLXFBF-UHFFFAOYSA-N 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
Definitions
- the present invention relates to methods for making and using oxygen bleaches. Specifically, the present invention relates to methods for making and using oxygen bleaching systems in cleaning compositions, and a kit for making such oxygen bleaching systems.
- BACKGROUND Bleaching agents are highly desired in cleaning compositions because they provide improved whitening and cleaning.
- consumers desire oxygen bleaches, because they are generally safe on fibers and fabrics, as well as hard surfaces. They are compatible with enzymes present in cleaning compositions, tend not to damage colored and/or brightly dyed fabrics, and do not damage fabric if there is accidental overuse of the oxygen bleach.
- the cleaning and bleaching efficacy of bleaching agents, and in particular oxygen bleaches can be significantly increased by combining a bleach activator with the bleaching agent. Therefore, oxygen bleaches often consist of at least an active oxygen source and a bleach activator. In the presence of an alkalinity source and moisture, these active oxygen sources and bleach activators evolve available peroxyacid oxygen. While not intending to be limited by theory, it is believed that it is the production of this available peroxyacid oxygen which provides effective oxygen bleaching activity.
- Non-granular cleaning compositions are sometimes preferred over granular detergents, because they have good dispersion and solubility in the wash solution.
- the active oxygen source and/or the bleach activator contained in these non-granular cleaning compositions can sometimes degrade over time, because they are usually mixed together with the alkalinity source. This equates to a limited shelf-life for compositions containing these bleaching materials, as well as a drop in cleaning performance over time. It is therefore desired to maintain the stability of oxygen bleaches over time.
- the present invention relates to a method for providing a plurality of separate chambers to make and use an activated bleach mixture.
- the separate chambers include an aqueous component chamber which has from about 10% to about 90% moisture and an aqueous component, and a non-aqueous component chamber which has a non-aqueous solvent and a non-aqueous component.
- the separate chambers maintain the contents of the aqueous component chamber and the non-aqueous component chamber in a substantially unmixed state.
- an alkalinity source is also provided.
- An activated bleach mixture is made by commingling the contents of the aqueous component chamber, the non-aqueous component chamber, and the alkalinity source. This forms an activated bleach mixture having an available peroxyacid oxygen level of at least about 200 ppm. The activated bleach mixture can then be used in a cleaning application.
- the current invention also provides for a kit for making and using an activated bleach mixture.
- Fig. 1 shows a dual chamber embodiment of the current invention.
- Fig. 2 shows a cross-sectional view of Fig. 1 as seen along line 1-1.
- Fig. 3 shows a triple chamber embodiment of the current invention.
- Fig. 4 shows a triple chamber embodiment of the current invention.
- the above drawings are for reference purposes only, and not necessarily drawn to scale.
- DETAILED DESCRIPTION it has been found that an oxygen bleaching system can possess surprising stability over time in a cleaning composition and have improved cleaning properties.
- the oxygen bleaching system herein physically separates at least one of the active oxygen source, the bleach activator, and the alkalinity source, until they are commingled to form an activated bleach mixture.
- the activated bleach mixture can then be used in a cleaning application. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (°C) unless otherwise specified. All documents cited are incorporated herein by reference.
- low-polarity indicates those non-aqueous solvents which have little, if any, tendency to dissolve the preferred types of particulate materials which can be suspended in the compositions prepared herein, e.g., the active oxygen sources, sodium perborate or sodium percarbonate.
- moisture as used herein includes both free and bound moisture, as well as free and bound water.
- non-aqueous refers to compositions having less than about 5% moisture, preferably less than about 1% moisture by weight.
- ppm as used herein is an acronym for "parts per million.”
- the bleaching system has at least two separate chambers, containing an active oxygen source, a bleach activator, moisture, and an alkalinity source.
- the separate chambers provide a means to maintain the contents thereof in a substantially unmixed state until the user is ready to activate and use the bleaching system.
- the user commingles the contents of the separate chambers. This commingling combines the active oxygen source, the bleach activator, the alkalinity source, and moisture, which in turn forms the activated bleach mixture.
- the formed activated bleach mixture has an available peroxyacid oxygen level of at least 200 ppm.
- the bleaching system of the invention is based upon three basic principles: (1) there must be at least one aqueous component chamber and at least one non-aqueous component chamber (hereinafter, "principle 1"); (2) there must be an active oxygen source, a bleach activator, and an alkalinity source (hereinafter, “principle 2"); and (3) the active oxygen source, the bleach activator, and the alkalinity source should not all be in the same separate chamber (hereinafter, "principle 3").
- the active oxygen source, bleach activator, and alkalinity source are separated by placing them in at least two separate chambers.
- at least one separate chamber is an aqueous component chamber which contains from about 10% to about 90% moisture and an aqueous component.
- At least one other separate chamber is a non-aqueous component chamber containing a non-aqueous solvent and a non-aqueous component.
- the active oxygen source can be in one of the above chambers, and a bleach activator can be in the other chamber.
- an alkalinity source which, subject to principle 3, can be in either of the separate chambers, or both of the separate chambers.
- the active oxygen source is part of the aqueous component and located within the aqueous component chamber, while the bleach activator and the alkalinity source are part of the non- aqueous component and located in the non-aqueous component chamber.
- the alkalinity, moisture, bleach activator, and active oxygen source cause either the active oxygen source and/or the bleach activator to degrade.
- the separate chambers of the invention help to maintain oxygen bleaching system stability, because they maintain the alkalinity, bleach activator, and active oxygen source in a substantially unmixed state.
- the contents of the separate chambers can have many physical forms such as, for example, liquids, gels, pastes, suspensions of particles in a liquid, suspensions of particles in a gel, emulsions, etc. Least preferred for use in the separate chambers are granular and solid forms.
- the contents of the separate chambers are commingled. This commingled mixture then forms an activated bleach mixture having an available peroxyacid oxygen level of at least 200 ppm.
- the activated bleach mixture is then ready to be used in a cleaning application.
- the activated bleach mixture can then be used in a laundry application as either a pre-treater, and/or added to the wash cycle. It is preferred that the activated bleach mixture be removed from the separate chambers for use and that the separate chambers do not enter the wash cycle; in a preferred embodiment, the activated bleach mixture is poured from the separate chambers into the wash cycle.
- each separate chamber can be either an aqueous component chamber, or a non-aqueous component chamber; however, as noted in principle 1 , there must be at least one aqueous component chamber and at least one non- aqueous component chamber.
- Aqueous components and moisture are only found in aqueous component chambers.
- Non-aqueous components and non- aqueous solvents are only found in non-aqueous component chambers. Accordingly, the total number of separate chambers is variable, but must be at least two, because of principle 1.
- the contents of each corresponding aqueous component and each specific non-aqueous component are also variable.
- the active oxygen source, the bleach activator, and the alkalinity source should be divided among the aqueous component chamber(s) and the non-aqueous component chamber(s) according to principle 3, so as to provide maximum stability. It is preferred that the active oxygen source and the bleach activator be located in separate chambers.
- the aqueous component can contain either one or two of the following: the active oxygen source, the bleach activator, and the alkalinity source. Accordingly, the non-aqueous component, subject to principle 2 and principle 3, would contain at a minimum the other remaining compound, or remaining two compounds.
- Table 1 shows four preferred embodiments having only two chambers, with the alkalinity source contained therein.
- AOS indicates the active oxygen source
- BA indicates the bleach activator
- AS indicates the alkalinity source.
- the alkalinity source should be in at least one of the separate chambers.
- Other non-listed embodiments are also included herein, such as, for example, when the aqueous component chamber contains an active oxygen source and bleach activator, and the non- aqueous component chamber contains an alkalinity source and a bleach activator. If a surfactant component is included, then it can be included in either the aqueous chamber, the non-aqueous chamber, or both.
- Embodiments of the invention which have only two chambers are referred to as “dual chamber” embodiments.
- each chamber holds either an active oxygen source, a bleach activator, or a surfactant component.
- triple chamber embodiments not shown in Table 2 are also operable and included herein.
- Table 2 assumes that the active oxygen source, the bleach activator, and the surfactant component are located in three separate chambers.
- the presence of the alkalinity source is not specifically indicated; however, it will be recognized that because the bleach activator and the active oxygen source are already separated, the alkalinity source can be in any, multiple, or even all three of the separate chambers. Table 2
- embodiment 1 in Table 2 has two aqueous component chambers (the first containing the active oxygen source, and the second containing the bleach activator), and one non-aqueous component chamber (containing the surfactant component).
- triple chamber package embodiments are described in Fig. 3 and Fig. 4.
- the active oxygen source, the bleach activator, the alkalinity source, and the surfactant component are located in four separate chambers. Because each separate chamber can be either aqueous or non- aqueous (subject to principle 1), the possible permutations of these further embodiments increase exponentially. It is preferred that the bleaching system described herein have from about 2 to about 5 separate chambers.
- the separate chambers can be positioned in many different arrangements. For example, they can be made as unattached chambers, or as a single package having attached chambers and an adjoining partition, as seen for example in Fig. 1.
- the separate chambers can also be constructed so as to be rigid, flexible, or both, as desired. Furthermore, depending upon the relative amounts and concentrations of the contents of thereof, the separate chambers can be made to contain the same volume, or different volumes.
- the bleaching system can be designed such that the activated bleach mixture can be made either outside of the separate chambers or within a package which is divided into separate chambers, such as described below. Gas-generating ingredients, such as oxygen bleach precursors can be and are intended for use herein. Therefore, if the activated bleach mixture is to be made within the package, it is preferred that the separate chambers of the package be made or filled so as to take into account gas evolution therein.
- a single package is divided into separate chambers via an adjoining partition, and the activated bleach mixture is made in the single package. If gas is evolved therein, the separate chambers should be sealed such that the separate chambers do not prematurely rupture due to internal pressure.
- the separate chambers can be made of many materials, so long as the separate chambers maintain the contents thereof in a substantially unmixed state.
- Preferred separate chamber materials are materials which are clear, flexible, and/or water and solvent-impervious. Examples of preferred separate chamber materials useful herein are plastics, coated papers, foils, membranes, nylon, and combinations thereof. More preferred separate chamber materials include laminated nylon, thin plastics, and combinations thereof.
- the separate chambers can be made of the same materials or of different materials, as desired.
- the means to seal the separate chambers also varies according to the type of material, but preferred sealing means for flexible portions of the separate chambers are heat sealing, ultrasonic sealing, adhesives, and combinations thereof. Preferred sealing means for rigid portions of the separate chambers are threaded screws, adhesives, hinges, snap-type closures, and combinations thereof.
- the separate chambers are made of a flexible material, because they allow the contents of the separate chambers to be easily commingled when the seal is broken or removed. Flexible materials also allow the activated bleach mixture to be easily dispensed for use.
- the separate chambers are made from a flexible material and are heat sealed to form one or more outer seals. An embodiment of such a seal is seen for example, in Fig. 1 at 3.
- the separate chambers have at least one spout and/or perforation to facilitate dispensing of the contents.
- the separate chambers may also contain, in addition to the outer seal, breaking seals and non-breaking seals to further partition the package.
- the total number of seals present can vary according to the type of materials used for the separate chambers, the number of separate chambers, their alignment, etc.
- one of more breaking seals can be used, especially between separate chambers which are made with a flexible material. Breaking seals are intended to prevent commingling but to give way, for example, upon the exertion of manual pressure, when the activated bleaching mixture is to be made and used. Breaking seals are therefore intended to be weaker than the outer seal.
- Breaking seals can be achieved in many ways, such as for example, using a laminate or film which has a strong adhesive on one side and a weak adhesive on the other, a seal which is much thinner than the outer seal, weakly heat- sealing the separate chamber, utilizing a different sealing method than in the outer seals and non-breaking seals, etc.
- a breaking seal as seen, for example, in Fig. 1 at 4, is used as an adjoining partition between the separate chambers; thus the breaking seal provides a means for forming separate chambers which possess a relatively weak seal at one or more points therebetween.
- a non-breaking seal is shown, for example, in Fig. 4, at 20, and should be at least stronger than any breaking seals.
- any non-breaking seals are as strong as the outer seal(s).
- all seals, including breaking seals, outer seals, or non-breaking seals should be substantially solvent-tight and/or water-tight.
- the separate chambers must have at least one aqueous component chamber containing from about 10% to about 90% moisture and an aqueous component.
- Moisture is the aqueous solvent, and the aqueous component can be dissolved in solution and/or suspended therein.
- the aqueous component chamber contains from about 10% to about 99%, preferably from about 50% to about 95%, and more preferably from about 70% to about 95% moisture, by weight.
- the aqueous component chamber also contains from about 1% to about 90%, preferably from about 5% to about 50%, and more preferably from about 5% to about 30% of an aqueous component, by weight.
- the aqueous component can be either one or two components selected from the active oxygen source, the bleach activator, and the alkalinity source, subject to principle 3.
- the aqueous component can be dissolved and/or suspended in the aqueous solvent.
- the aqueous component chamber can also contain a surfactant component, and/or other detersive ingredients.
- the aqueous component contains one or two of: the active oxygen source, the bleach activator, and the alkalinity source, while the remaining compound(s) is/are located in the non-aqueous component chamber, as described below.
- the aqueous component for any given chamber can contain one or more of the following: the active oxygen source, the bleach activator, the alkalinity source, and the surfactant component.
- the possible permutations of the invention increase dramatically, but the three basic principles remain constant; (1) there must be at least one aqueous component chamber and at least one non-aqueous component chamber; (2) there must be an active oxygen source, a bleach activator, and an alkalinity source; and (3) the active oxygen source, the bleach activator, and the alkalinity source should not all be in the same separate chamber.
- the bleaching system of the current invention must also have at least one non- aqueous component chamber (principle 1).
- the non-aqueous component chamber contains a non-aqueous solvent and a non-aqueous component.
- the non-aqueous component can be dissolved and/or suspended in the non-aqueous solvent.
- Preferred non-aqueous solvents useful herein are those which are thermally stable, do not degrade the container, are easily dispersible in aqueous solution, and have less than about 5% free moisture, preferably less than about 1% free moisture, by weight of the solvent.
- the non-aqueous component chamber contains from about 45% to about 95%, preferably from about 50% to about 95%, and more preferably from about 50% to about 70%, by weight, of a non-aqueous solvent.
- a preferred non-aqueous solvent useful herein is one having a low polarity, such as non-vicinal C4-C8 alkylene glycol, alkylene glycol mono lower alkyl ether, lower molecular weight polyethylene glycol, lower molecular weight methyl ester and amide, and the like, and mixtures thereof.
- a preferred type of non-aqueous, low-polarity solvent for use in the compositions prepared herein comprises non-vicinal C -C8 branched or straight chain alkylene glycol.
- hexylene glycol (4-methyl-2,4-pentanediol), 1 ,6- hexanediol, 1 ,3-butylene glycol and 1 ,4-butylene glycol.
- Hexylene glycol is very preferred.
- Another preferred non-aqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra- C2-C3 alkylene glycol mono C2-C6 alkyl ethers.
- the specific examples of such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropolyene glycol monoethyl ether, and dipropylene glycol monobutyl ether.
- Diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether and butoxy-propoxy- propanol (BPP), and mixtures thereof are especially preferred.
- Compounds of the type have been commercially marketed under the tradenames Dowanol, Carbitol, and Cellosolve.
- non-aqueous, low-polarity organic solvent useful herein comprises the lower molecular weight polyethylene glycols (PEGs).
- PEGs polyethylene glycols
- Such materials are those having an average molecular weight of at least about 150.
- Yet another preferred non-aqueous solvent comprises the lower molecular weight methyl esters.
- Such materials are those of the general formula: R ⁇ -C(O)- OCH3 wherein R 1 ranges from 1 to about 18.
- suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, methyl dodecanoate, and mixtures thereof.
- non-aqueous solvent employed should, of course, be compatible and non-reactive with other composition components, e.g., the active oxygen source and/or bleach activators, used herein.
- a more preferred non-aqueous solvent includes glycerol, PEG having an average molecular weight of between about 150 and about 600, 1 ,3-butylene glycol, and mixtures thereof.
- the non-aqueous component can also contain a surfactant component, and/or other detersive ingredients.
- the non-aqueous component chamber also contains from about 5% to about 55%, preferably from about 5% to about 50%, and more preferably from about 30% to about 50% of a non-aqueous component.
- the exact composition of any specific non-aqueous component depends upon the aqueous component, the number of aqueous component chambers, and the number of non-aqueous component chambers.
- dual- chamber embodiments contain in the non-aqueous component the active oxygen source, the bleach activator, and/or the alkalinity source; whichever compound(s) is/are not contained in the aqueous component chamber.
- non-aqueous component chamber containing the same or different non-aqueous solvent(s), and non-aqueous component(s).
- the activated bleach mixture is made by commingling the contents the aqueous component chamber, the non-aqueous component chamber, and the alkalinity source. This can occur, for example, by moving a partition, by squeezing the contents of a separate chamber into another, by pouring the contents of one separate chamber into another, by breaking the barrier between separate chambers, and/or otherwise causing the contents of the aqueous component chamber(s) and the non-aqueous component chamber(s) to combine.
- the commingling causes the bleach activator, the active oxygen source, and the alkalinity source to mix with moisture, to make the activated bleach mixture.
- the active oxygen source and the bleach activator will then begin generating available peroxyacid oxygen.
- the active oxygen source and bleach activator begin to produce available peroxyacid oxygen in the activated bleach mixture.
- the available peroxyacid oxygen level in the activated bleach mixture is at least 200 ppm, preferably from about 200 ppm to about 2000 ppm, more preferably from about 400 ppm to about 1000 ppm.
- the available peroxyacid oxygen level is typically measurable by standard methods such as iodide/thiosulfate and/or eerie sulfate titration.
- oxygen bleach is a peroxygen compound, it contains -O-O- linkages with one O in each such linkage being "active.”
- Most available oxygen measurement methods measure the total available oxygen.
- the total available oxygen is equal to the available peroxide oxygen plus the available peroxyacid oxygen. Therefore, to determine the available peroxyacid oxygen level, it is necessary to remove the available peroxide oxygen. This can be done, for example, by destroying the peroxide by adding catalase.
- an aliquot of the solution is removed, and the peroxide destroyed by adding catalase.
- the solution can then be reacted with iodide at about 80°C under argon, and further titrated with thiosulfate. The titration can be done in aqueous solution, or the solution can be extracted with propyl acetate.
- Iodine formation can be measured by measuring absorption at 420 nm, using a spectrometer, and the concentration calculated by multiplying by the dilution factor. Electrometric titration methods can also be used to determine the available peroxyacid titration level.
- the activated bleach mixture is ready and can be used in a cleaning application.
- the active oxygen source useful herein includes compounds which form available peroxyacid oxygen when exposed to a bleach activator, an alkalinity source, and moisture.
- An active oxygen source can be hydrophilic, hydrophobic, or both.
- the active oxygen source useful in the present invention can be any of the oxidizing agents known for laundry, hard surface cleaning, automatic dishwashing, or denture cleaning purposes, including oxygen.
- a preferred active oxygen source of the peroxygen type includes hydrogen peroxide, inorganic per- compounds, inorganic peroxohydrates, organic peroxohydrates, and mixtures thereof; a more preferred active oxygen source includes hydrogen peroxide, perborate, percarbonate, and mixtures thereof.
- an active oxygen source is also useful herein as an active oxygen source.
- the inorganic peroxides such as Na2 ⁇ 2, superoxides such as KO2, organic hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide, and the inorganic peroxoacids and their salts such as the peroxosulfuric acid salts, especially the potassium salts of peroxodisulfuric acid and mixtures thereof; more preferably, of peroxomonosulfuric acid including the commercial triple-salt form sold as OXONETM by DuPont and also any equivalent commercially available forms such as CUROXTM from Akzo or CAROATTM from Degussa.
- organic peroxides such as dibenzoyl peroxide
- a preferred active oxygen source includes peroxohydrates, sometimes known as peroxyhyd rates or peroxohydrates. These are organic or, more commonly, inorganic salts capable of releasing hydrogen peroxide readily. They include types in which hydrogen peroxide is present as a true crystal hydrate, and types in which hydrogen peroxide is incorporated covalently and is released chemically, for example by hydrolysis. Typically, peroxohydrates deliver hydrogen peroxide readily enough that it can be extracted in measurable amounts into the ether phase of an ether/water mixture.
- Peroxohydrates are characterized in that they fail to give the Riesenfeld reaction, in contrast to certain other active oxygen sources. Peroxohydrates are the most common examples of "hydrogen peroxide source” materials and include the perborates, percarbonates, perphosphates, and persilicates.
- peroxohydrates include sodium carbonate peroxyhydrate and equivalent commercial "percarbonate” bleaches, and any of the so-called sodium perborate hydrates, the "tetrahydrate” and “monohydrate” being preferred; though sodium pyrophosphate peroxyhydrate can be used.
- Many such peroxohydrates are available in processed forms with coatings, such as of silicate and/or borate and/or waxy materials and/or surfactants, or have particle geometries, such as compact spheres, which improve storage stability.
- Percarbonate bleach includes, for example, dry particles having an average particle size in the range from about 500 micrometers to about 1 ,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1 ,250 micrometers. These percarbonates are compatible with non-aqueous solvents. Percarbonates and perborates are widely available in commerce, for example from FMC, Solvay and Tokai Denka.
- Another suitable hydrogen peroxide generating system is a combination of a C1-C4 alkanol oxidase and a C1-C4 alkanol, especially a combination of methanol oxidase (MOX) and ethanol (the corresponding bleach activators).
- MOX methanol oxidase
- ethanol the corresponding bleach activators.
- enzymatic materials related to bleaching such as peroxidases, haloperoxidases, oxidases, superoxide dismutases, catalases and their enhancers or, more commonly, inhibitors, may be used as optional ingredients in the instant compositions.
- a preferred active oxygen source includes perborate, percarbonate, and mixtures thereof. If an active oxygen source is present in a aqueous component chamber, then a preferred active oxygen source is hydrogen peroxide.
- the active oxygen source herein can have any physical form compatible with the intended application; more particularly, liquid-forms and solid-forms.
- Liquids can be included in solid detergents, for example by adsorption onto an inert support; and solids can be included in liquid detergents, for example by use of compatible suspending agents.
- An active oxygen source will typically be at a level of from about 1% to about 30%, more typically from about 5% to about 20%, of the cleaning composition, especially for fabric laundering.
- a bleach activator useful herein includes amides, imides, esters, anhydrides, and mixtures thereof.
- at least one substituted or unsubstituted acyl moiety is present, covalently connected to a leaving group as in the structure R-C(O)-L.
- the atom in the leaving group connecting to the peracid-forming acyl moiety R(C)O- is most typically O or N.
- a bleach activator can have non-charged, positively or negatively charged peracid- forming moieties and/or noncharged, positively or negatively charged leaving groups.
- One or more peracid-forming moieties or leaving-groups can be present. See, for example, U.S. 5,595,967 to Kellett, et al., issued January 21 , 1997, U.S. 5,561 ,235 to Burns, et al., issued October 1 , 1996, U.S. 5,560,862 to Burns, et al., issued October 1 , 1996 or the bis-(peroxy-carbonic) system of U.S. 5,534,179 to Kellett, et al., issued July 9, 1996.
- Examples of a cationic bleach activator includes quaternary carbamate-, quaternary carbonate-, quaternary ester-, quaternary amide-, and mixtures thereof, delivering a range of cationic peroxyimidic, peroxycarbonic or peroxycarboxylic acids to the wash.
- An analogous but non-cationic palette of bleach activators is available when quaternary derivatives are not desired.
- examples of a cationic bleach activator includes the quaternary ammonium-substituted bleach activators of WO 96-06915 to Baillely, et al., published March 7, 1996, U.S.
- cationic nitriles as disclosed in EP-B1 -303,520 to Aoyagi, et al., issued April 20, 1994 and in European Patent Specification 458,396 to Oakes, et al., published November 27, 1991 and 464,880 to Adams, et al., issued December 14, 1994.
- Other nitrile types such as 3,5- dimethoxybenzonitrile and 3,5-dinitrobenzonitrile can also be used.
- bleach activator disclosures include GB 836,988 to Davies, et al., published June 9, 1960; GB 864,798 to Hampson and McDonnell, published April 6,1961 ; GB 907,356 to Maddox, et al., published October 3, 1962; GB 1 ,003,310 to Chase and Samuels, published September 2, 1965 and GB 1 ,519,351 to Wellwood, published July 26, 1978; German Patent 3,337,921 to Balzer, et al., published May 2, 1985; EP-B-0185522 to Fong and Kong, issued November 7, 1990; EP-B-0174132 to Divo, issued December 14, 1988; U.S. Pat. No.
- Suitable bleach activators include any acetylated diamine types, whether hydrophilic or hydrophobic in character.
- Japanese Laid-Open Patent Application (Kokai) No. 4-28799 to Yamada, et al., published January 31 , 1992 for example describes a bleaching agent and a bleaching cleaning composition comprising an organic peracid precursor described by a general formula and illustrated by compounds which may be summarized more particularly as conforming to the formula:
- L is sodium p-phenolsulfonate
- R 1 is CH3 or C12H25 and R 2 is H.
- Analogs of these compounds having any of the leaving-groups identified herein and/or having R1 being linear or branched C6-C16 are also useful.
- Another bleach activator herein are those derivable from acyclic imidoperoxycarboxylic acids and salts thereof of the formula: and (iii) mixtures of said compounds, (i) and (ii); wherein M is selected from hydrogen and bleach-compatible cations having charge q; and y and z are integers such that said compound is electrically neutral; E, A and X comprise hydrocarbyl groups; and said terminal hydrocarbyl groups are contained within E and A.
- the structure of the corresponding bleach activator is obtained by deleting the peroxy moiety and the metal and replacing it with a leaving-group L, which can be any of the leaving-group moieties defined elsewhere herein.
- X is a linear C3-C8 alkyl; A is selected from:
- Another suitable bleach activator includes sodium-4-benzoyloxy benzene sulfonate (SBOBS); sodium-1-methyl-2-benzoyloxy benzene-4-sulphonate; sodium-4-methyl-3-benzoyloxy benzoate; trimethyl ammonium toluyloxy- benzene sulfonate; sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate (STHOBS), and mixtures thereof.
- SBOBS sodium-4-benzoyloxy benzene sulfonate
- STHOBS 3,5,5-trimethyl hexanoyloxybenzene sulfonate
- a preferred bleach activator includes N,N,N'N'-tetraacetyl ethylene diamine (TAED) or any of its close relatives including the triacetyl or other unsymmetrical derivatives, and mixtures thereof.
- TAED and the acetylated carbohydrates such as glucose pentaacetate and tetraacetyl xylose are preferred.
- acetyl triethyl citrate a liquid, also has some utility, as does phenyl benzoate.
- a highly preferred bleach activator useful herein is amide-substituted and has either of the formulae:
- a preferred bleach activator includes those of the formulae, hereinabove, for example the amide-substituted formulae,
- R is a linear or branched alkyl, aryl, or alkaryl
- R is an alkyl chain
- Preferred solubilizing groups include -SO3 " M + , -CO2 " M + , -SO4 " M + , -N + (R)4X " and O ⁇ - N(R 3 )2, more preferably -SO3 " M + and -CO2 " M + wherein R 3 is an alkyl chain containing from about 1 to about 4 carbon atoms, M is a bleach-stable cation and X is a bleach-stable anion, each of which is selected consistent with maintaining solubility of the bleach activator.
- a preferred bleach activator also includes those of the above general formula wherein L is selected from the group consisting of:
- hydrophobic activator NOBS and the hydrophilic TAED activator are typical, and mixtures thereof can also be used.
- a preferred bleach activator includes para- acetoxybenzene sulphonate, triacetyl cyanurate, and tetra acetyl glycol uril.
- acyl lactam bleach activators are also very useful herein, especially the acyl caprolactams (see for example WO 94-28102 A to Burns, et al., published December 8, 1994) and acyl valerolactams (see ) of the formulae:
- R ⁇ is H, alkyl, aryl, alkoxyaryl, an alkaryl group containing from 1 to about 12 carbon atoms, or substituted phenyl containing from about 6 to about 18 carbons.
- acyl caprolactams including benzoyl caprolactam adsorbed into sodium perborate.
- a NOBS, lactam bleach activator, imide bleach activator, or amide- functional bleach activator, especially the more hydrophobic derivatives are desirably combined with a hydrophilic bleach activator such as TAED, typically at weight ratios of hydrophobic bleach activator : TAED in the range of 1:5 to 5:1 , preferably about 1 :1.
- lactam bleach activator alpha-modified, see WO 96-22350 A1 to Burekett, et al., published July 25, 1996.
- a lactam bleach activator, especially the more hydrophobic types, are desirably used in combination with TAED, typically at weight ratios of amido- derived or caprolactam bleach activator : TAED in the range of 1 :5 to 5:1 , preferably about 1 :1.
- TAED typically at weight ratios of amido- derived or caprolactam bleach activator : TAED in the range of 1 :5 to 5:1 , preferably about 1 :1.
- the bleach activator having a cyclic amidine leaving-group disclosed in U.S. 5,552,556 to Burns, et al., issued September 3, 1996.
- An additional bleach activator useful herein include those of U.S. 5,545,349 to Itoh, et al., issued August 13, 1996.
- Examples include esters of an organic acid and ethylene glycol, diethylene glycol or glycerin, or the acid imide of an organic acid and ethylenediamine; wherein the organic acid is selected from methoxyacetic acid, 2-methoxypropionic acid, p-methoxybenzoic acid, ethoxyacetic acid, 2-ethoxypropionic acid, p-ethoxybenzoic acid, propoxyacetic acid, 2-propoxypropionic acid, p-propoxybenzoic acid, butoxyacetic acid, 2- butoxypropionic acid, p-butoxybenzoic acid, 2-methoxyethoxyacetic acid, 2- methoxy-1-methylethoxyacetic acid, 2-methoxy-2-methylethoxyacetic acid, 2- ethoxyethoxyacetic acid, 2-(2-ethoxyethoxy)propionic
- the bleach activator may be used in an amount of up to about 20%, preferably from about 0.1% to about 10% by weight, of the activated bleach mixture, though higher levels, such as 40% or more, are acceptable in highly concentrated bleaching systems.
- the method for making and using the activated bleach mixture of the current invention includes the step of providing an alkalinity source.
- the bleach activator requires an alkalinity source to rapidly activate the active oxygen source and rapidly evolve available peroxyacid oxygen.
- the alkalinity source should be in one or more of the separate chambers.
- An alkalinity source useful herein is one which maintains the commingled contents of the aqueous component chamber, if it is present therein, at a pH of from about 7 to about 14, preferably from about 9 to about 12.
- a preferred alkalinity source maintains the pH of the activated bleach mixture at from about 7 to about 14, preferably from about 9 to about 12.
- a preferred alkalinity source useful herein includes sodium and potassium hydroxide, carbonate, and mixtures thereof. Generally, the higher the pH of the commingled contents of the separate chambers, the faster the evolution of available peroxyacid oxygen.
- An optional feature of the invention described herein is the providing of a surfactant component to improve cleaning efficacy, and the making of an activated bleach mixture by commingling the contents of the aqueous component chamber, the non-aqueous component chamber, the alkalinity source, and the surfactant component.
- the surfactant component can be included with the aqueous component and/or with the non-aqueous component.
- the surfactant component can be contained within a separate surfactant component chamber which is distinct from both the active oxygen source and the bleach activator.
- the surfactant component can contain any surfactants useful in cleaning applications.
- a preferred surfactant component is selected from amphoteric surfactants, anionic surfactants, cationic surfactants, nonionic surfactants, zwitterionic surfactants, and mixtures thereof.
- Nonlimiting examples of a surfactant component particularly useful in the cleaning composition includes, the conventional C-
- the conventional nonionic and amphoteric surfactants such as the C-12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12- 18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like, can also be included in the overall compositions.
- the C10-C-I8 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C-12- 18 N-methylglucamides.
- sugar- derived surfactant component includes the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide.
- the N-propyl through N-hexyl C12-C18 glucamides can be used for low sudsing.
- C10- 20 conventional soaps may also be used. If high sudsing is desired, the branched- chain C-10-C16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
- the cleaning composition preferably comprises at least about 1%; more preferably at least about 10%; more preferably at least about 20%; more preferably still, from about 20% to about 60% of a surfactant component, by weight of the activated bleach mixture.
- Surfactant Component Chamber preferably comprises at least about 1%; more preferably at least about 10%; more preferably at least about 20%; more preferably still, from about 20% to about 60% of a surfactant component, by weight of the activated bleach mixture.
- An optional feature of the bleaching system described herein is a surfactant component chamber. While not required, it is preferred that when more than two separate chambers are present, the surfactant component is located in a surfactant component chamber.
- This chamber is a separate chamber which preferably contains a solvent and a surfactant component.
- the solvent can be either aqueous or non- aqueous.
- the surfactant component chamber comprises moisture as a solvent.
- the surfactant component chamber can further contain a bleach activator, an active oxygen source, and/or an alkalinity source.
- the surfactant component chamber can contain other detersive ingredients.
- the contents of the surfactant component chamber can be commingled with the contents of the other separate chambers to produce the activated bleach mixture.
- the contents of the surfactant component chamber can be used separately in a cleaning application, such as, for example, when the activated bleach mixture is used as a pre-treater, while the contents of the surfactant component chamber are used in the regular wash cycle. It is preferred that the contents of the surfactant component chamber be commingled with the contents of the other separate chambers so as to form the activated bleach mixture.
- Optional Detersive Ingredients The following illustrates various other optional detersive ingredients which may be used herein, but is not intended to be limiting thereof. Viscosity Controller
- a viscosity controller such as a polymer, or mixtures of polymers can be optionally included in the contents of the separate chambers described herein. They can serve to increase or decrease the viscosity of the contents of any separate chamber. It is preferred that a viscosity controller be used in non- aqueous component chambers to adjust the viscosity of the contents thereof.
- polyethylene glycols PEGs
- Preferred PEGs have an average molecular weight of from about 100 to 1500, more preferably from about 200 to about 600.
- a detergent builder can optionally be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces.
- the builder can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to the precipitation of hardness ions than the surfaces of articles to be cleaned.
- Builder level can vary widely depending upon end use and physical form of the composition.
- Built detergents typically comprise at least 1% builder.
- Liquid cleaning compositions typically comprise 5% to 50%, more typically 5% to 35% builder by weight. Lower or higher levels of builders are not excluded.
- a suitable builder herein can be selected from the group consisting of phosphates and polyphosphates, especially the sodium salts; silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured- liquid types; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate; aluminosilicates; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
- silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured- liquid types
- borates e.g., for pH-buffering purposes
- sulfates especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing cleaning compositions.
- Builder mixtures sometimes termed “builder systems” can be used and typically comprise two or more conventional builders, optionally complemented by chelants, alkalinity sources or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein.
- Suitable silicate builders include alkali metal silicates, particularly those liquids and solids having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 , including, particularly for automatic dishwashing purposes, solid hydrous 2-ratio silicates marketed by PQ Corp. under the tradename BRITESIL®, e.g., BRITESIL H2O; and layered silicates, e.g., those described in U.S. 4,664,839, May 12, 1987, H. P. Rieck. NaSKS-6, sometimes abbreviated "SKS-6", is a crystalline layered aluminium-free ⁇ -Na2Si ⁇ 5 morphology silicate marketed by Hoechst.
- silicates may also be useful, such as magnesium silicate, which can serve as a crispening agent in granules, as a stabilising agent for bleaches, and as a component of suds control systems.
- magnesium silicate which can serve as a crispening agent in granules, as a stabilising agent for bleaches, and as a component of suds control systems.
- synthesized crystalline ion exchange materials or hydrates thereof as taught in U.S. 5,427,711 , Sakaguchi et al, June 27, 1995.
- Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973, although sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, and other carbonate minerals may be useful.
- Aluminosilicate builders are can also be incorporated in liquids, pastes or gels. Suitable for the present purposes are those having empirical formula: [M z (Al ⁇ 2)z(Si ⁇ 2) ]'*H2 ⁇ wherein z and v are integers of at least 6, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264.
- Aluminosilicates can be crystalline or amorphous, naturally-occurring or synthetically derived.
- Preferred synthetic crystalline aluminosilicate ion exchange materials are available as Zeolite A, Zeolite P (B), Zeolite X and, to whatever extent this differs from Zeolite P, the so-called Zeolite MAP. Natural types, including clinoptilolite, may be used. Zeolite A has the formula: Na-
- 2[( l ⁇ 2)i2(Si ⁇ 2)i2] xH2 ⁇ wherein x is from 20 to 30, especially 27. Dehydrated zeolites (x 0 - 10) may also be used.
- the aluminosilicate has a particle size of 0.1-10 microns in diameter.
- Suitable organic detergent builders include ether polycarboxylates, polycarboxylate, including water-soluble nonsurfactant dicarboxylate and tricarboxylate compounds. More typically builder polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Suitable builders are the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether; 1 , 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid; carboxymethyloxysuccinic acid; the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid; as well as mellitic acid, succinic acid, polymaleic acid, benzene 1 ,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citrates e.g., citric acid and soluble salts thereof are important carboxylate builders e.g., for heavy duty liquid detergents, due to their availability from renewable resources and biodegradability.
- compositions herein will typically comprise from 0.001% to 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation.
- Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
- AU Anson units
- proteases include ALCALASE® and SAVINASE® from Novo and MAXATASE® from International Bio-Synthetics, Inc., The Netherlands; as well as Protease A as disclosed in EP 130,756 A, January 9, 1985 and Protease B as disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo. Enzymatic compositions comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo.
- proteases include those of WO 9510591 A to Procter & Gamble .
- a protease having decreased adsorption and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble.
- a recombinant trypsin-like protease for compositions suitable herein is described in WO 9425583 to Novo.
- Any other oxidative stability-enhanced amylases can also be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. See also WO 9509909 A to Novo.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
- U.S. 4,435,307, Barbesgoard et al, March 6, 1984 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander.
- Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832.
- CAREZYME® and CELLUZYME® are especially useful. See also WO 9117243 to Novo. Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.
- Peroxidase enzymes may be used as oxygen bleach activators in combination with oxygen precursors, e.g., percarbonate, perborate, hydrogen peroxide, etc., for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution.
- oxygen precursors e.g., percarbonate, perborate, hydrogen peroxide, etc.
- Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo-peroxidase.
- Peroxidase-containing cleaning compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO 8909813 A to Novo.
- a range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101 ,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid cleaning compositions, and their incorporation into such compositions, are disclosed in U.S. 4,261 ,868, Hora et al, April 14, 1981. Enzymes for use in cleaning compositions can be stabilised by various techniques.
- Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971 , Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo. Enzyme Stabilizing System
- Stabilizing systems of certain cleaning compositions may further comprise from 0 to 10%, preferably from 0.01 % to 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions.
- Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
- SRA polymeric soil release agent
- SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the composition.
- SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures.
- SRA's can include a variety of charged, e.g., anionic or even cationic (see U.S. 4,956,447), as well as noncharged monomer units and structures may be linear, branched or even star-shaped.
- Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide.
- esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without of course forming a densely crosslinked overall structure.
- Suitable SRA's include: a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyi and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451 , November 6, 1990 to Scheibel and Gosselink.
- SRA's also include simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; and the C1-C4 alkylcelluloses and C4 hydroxyalkyl celluloses; see U.S. 4,000,093, December 28, 1976 to Nicol, et al.
- Suitable SRA's characterised by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., Ci-C ⁇ vinyl esters, preferably poly(vinyl acetate), grafted onto polyalkylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al. Commercially available examples include SOKALAN SRA's such as SOKALAN HP-22, available from BASF, Germany. Other SRA's are polyesters with repeat units containing 10-15% by weight of ethylene terephthalate together with 90- 80% by weight of polyoxyethylene terephthalate, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Commercial examples include ZELCON 5126 from Dupont and MILEASE T from ICI. Clav Soil Removal/Anti-redeposition Agents
- compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and anti-redeposition properties.
- a preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine.
- Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1 , 1986.
- Also preferred are the cationic compounds disclosed in European Patent Application 111 ,965, Oh and Gosselink, published June 27, 1984; the ethoxylated amine polymers disclosed in European Patent Application 111 ,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985.
- CMC carboxy methyl cellulose
- optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from 0.01% to 1.2%, by weight, into the cleaning compositions herein.
- Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents," M. Zahradnik, Published by John Wiley & Sons, New York (1982).
- optical brighteners useful herein are identified in U.S. Patent 4,790,856, to Wixon, issued December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artie White CC and Artie White CWD, the 2-(4- styryl-phenyl)-2H-naptho[1 ,2-djtriazoles; 4,4'-bis-(1 ,2,3-triazol-2-yl)-stilbenes; 4,4'-bis(styryl)bisphenyls; and the aminocoumarins.
- these brighteners include 4-methyl-7-diethyl- amino coumarin; 1 ,2-bis(benzimidazol-2- yl)ethylene; 1 ,3-diphenyl-pyrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2- styryl-naptho[1,2-d]oxazole; and 2-(stilben-4-yl)-2H-naphtho[1 ,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Dye Transfer Inhibiting Agents
- compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process.
- dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof.
- Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
- suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. If used, these agents typically comprise from 0.01% to 10% by weight of the composition, preferably from 0.01 % to 5%, and more preferably from 0.05% to 2%.
- Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraamine- hexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
- a preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins; also preferred are water- soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates. If utilized, these chelating agents will generally comprise from 0.1 % to
- the chelating agents will comprise from 0.1% to 3.0% by weight of such compositions.
- Alkoxylated Polycarboxylates Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., incorporated herein by reference. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula -(CH2CH2O) m (CH2)nCH3 wherein m is 2-3 and n is 6-12.
- the side-chains are ester-linked to the polyacrylate "backbone” to provide a "comb” polymer type structure.
- the molecular weight can vary, but is typically in the range of 2000 to 50,000.
- Such alkoxylated polycarboxylates can comprise from 0.05% to 10%, by weight, of the compositions herein.
- compositions herein A wide variety of other ingredients useful in cleaning compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, etc.
- suds boosters such as the C ⁇ ⁇ o-C-
- the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
- water-soluble magnesium and/or calcium salts such as MgC , MgSO4, CaC-2 CaSO4, can be added at levels of, typically, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
- Fig. 1 shows a package, 1 , having separate chambers, 2.
- the outer seal, 3, runs along the outside edge of the package, 1 , while a breaking seal, 4, separates the package, 1 , into separate chambers, 2.
- Breaking seal, 4, is weaker than outer seal, 3, so as to allow the contents of the separate chambers, 2, to be commingled by using pressure to cause the breaking seal, 4, to give way, thereby creating one large chamber from the two separate chambers, 2.
- the commingling can be enhanced by, for example, shaking, squeezing, or agitating the package.
- Fig. 1 also shows a perforation, 5, at which the package, 1 , can be torn and/or cut so as to allow the contents thereof to be dispensed.
- Fig. 2 is a cross-sectional view of Fig. 1 as seen along line 1-1.
- Fig. 2 shows that the package, 1 , is constructed of a top layer, 10, and a bottom layer, 1 1.
- the top layer, 10 and the bottom layer, 1 1 are each made of an outer layer,
- Fig. 4 shows a triple chamber embodiment having separate chambers, 2, separated by breaking seals, 4, and non-breaking seal 20.
- Non-breaking seal, 20, is stronger than the breaking seal, 4.
- Outer seal, 3, is formed so as to provide a spout, 15, from which the contents of the package, 1 , can be dispensed, for example, by cutting along line 3-3.
- the aqueous component chamber contains as its primary components, by weight: 50% moisture, 44% surfactant and builder, and 6% hydrogen peroxide as an active oxygen source, while the non-aqueous component chamber contains by weight, 87% glycerol as a non-aqueous solvent, 3% NOBS as a bleach activator, and 10% sodium bicarbonate as an alkalinity source.
- the breaking seal is broken and the contents of the aqueous component chamber and the non-aqueous component chamber commingle and form an activated bleach mixture having an available peroxyacid oxygen level of at least 200 ppm.
- the activated bleach mixture is then used in a cleaning application.
- a non-aqueous detergent paste is made by homogenizing in a blender the following ingredients: 60% base detergent powder, 10% alkalinity source, 5% nonionic surfactant, 5% of polyethylene glycol (molecular weight of about 300), 0.1% suds supressor, 4.9% bleach activator, and 15% glycerol. This paste is sealed into a non-aqueous component chamber.
- the aqueous component contains a 6% solution of hydrogen peroxide.
- the aqueous component is sealed into an aqueous component chamber.
- the two separate chambers are not connected.
- the contents of the non-aqueous component chamber are poured into the aqueous component chamber, and an available peroxyacid oxygen of greater than 400 ppm is formed therein.
- the activated bleach mixture is then added to the wash cycle of a laundry application.
- the aqueous component is made by making a 6% by weight solution of hydrogen peroxide. This is sealed into a first aqueous component chamber.
- a second aqueous component is made by preparing a mixture of 15% bleach activator (TAED) in distilled water. This is sealed into a second aqueous component chamber.
- TAED bleach activator
- the separate chambers are made as described in Example 1 , except that there are three adjoining chambers as described in Fig. 4.
- the volume ratio of the non-aqueous component chamber to first aqueous component chamber to second aqueous component chamber is about 8.5:2:1.
- the activated bleach mixture is made and used as a pre-treater in a laundry application.
- a clamp is attached to the end of the package opposite the spout. The spout is then cut open. The flexible package is then rolled around the clamp so that the package contents are forced out of the spout.
- a preferred dual chamber embodiment is made as in Example 1 , except that 3% TAED is used as a bleach activator.
- EXAMPLE 5 A preferred triple chamber embodiment is made as in Example 3, except that perborate is used in place of hydrogen peroxide, and instead of being placed in the first aqueous component chamber, the perborate is placed in the non- aqueous component chamber. Conversely, the alkalinity source is removed from the non-aqueous component chamber and placed in the first aqueous component chamber.
- the separate chambers are made as in Example 4, except that the outer seal and the non-breaking sea are ultrasonically sealed.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU57095/98A AU5709598A (en) | 1997-12-22 | 1997-12-22 | Improved oxygen bleaching system |
JP11509766A JP2000516299A (en) | 1997-12-22 | 1997-12-22 | Improved oxygen bleaching system |
PCT/US1997/023480 WO1999032598A1 (en) | 1997-12-22 | 1997-12-22 | Improved oxygen bleaching system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1997/023480 WO1999032598A1 (en) | 1997-12-22 | 1997-12-22 | Improved oxygen bleaching system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999032598A1 true WO1999032598A1 (en) | 1999-07-01 |
Family
ID=22262332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/023480 WO1999032598A1 (en) | 1997-12-22 | 1997-12-22 | Improved oxygen bleaching system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2000516299A (en) |
AU (1) | AU5709598A (en) |
WO (1) | WO1999032598A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061712A1 (en) * | 1999-04-12 | 2000-10-19 | Unilever N.V. | Multiple component hard surface cleaning compositions |
US6472360B1 (en) | 1999-04-12 | 2002-10-29 | Unilever Home & Personal Care Usa Division Of Conopco, Inc. | Multiple component hard surface cleaning compositions |
WO2004053042A1 (en) * | 2002-12-06 | 2004-06-24 | Henkel Kommanditgesellschaft Auf Aktien | Multicomponent liquid detergent |
WO2005035707A1 (en) * | 2003-10-06 | 2005-04-21 | The Procter & Gamble Company | Dual-compartment laundry composition containing peroxyacids |
WO2005035705A3 (en) * | 2003-10-06 | 2005-05-19 | Procter & Gamble | Dual-compartment laundry composition containing equilibrium peracid solution |
WO2011051415A1 (en) * | 2009-10-30 | 2011-05-05 | Henkel Ag & Co. Kgaa | Machine cleaning method |
WO2011051418A1 (en) * | 2009-10-30 | 2011-05-05 | Henkel Ag & Co. Kgaa | Machine cleaning method |
WO2011051417A1 (en) * | 2009-10-30 | 2011-05-05 | Henkel Ag & Co. Kgaa | Machine cleaning method |
US8729296B2 (en) | 2010-12-29 | 2014-05-20 | Ecolab Usa Inc. | Generation of peroxycarboxylic acids at alkaline pH, and their use as textile bleaching and antimicrobial agents |
US8822719B1 (en) | 2013-03-05 | 2014-09-02 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
US9242879B2 (en) | 2012-03-30 | 2016-01-26 | Ecolab Usa Inc. | Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water |
US9253978B2 (en) | 2008-03-28 | 2016-02-09 | Ecolab USA, Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US9288992B2 (en) | 2013-03-05 | 2016-03-22 | Ecolab USA, Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US9290448B2 (en) | 2008-03-28 | 2016-03-22 | Ecolab USA, Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US9321664B2 (en) | 2011-12-20 | 2016-04-26 | Ecolab Usa Inc. | Stable percarboxylic acid compositions and uses thereof |
US9540598B2 (en) | 2008-03-28 | 2017-01-10 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
US9763442B2 (en) | 2010-12-29 | 2017-09-19 | Ecolab Usa Inc. | In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof |
US10165774B2 (en) | 2013-03-05 | 2019-01-01 | Ecolab Usa Inc. | Defoamer useful in a peracid composition with anionic surfactants |
WO2020030517A1 (en) * | 2018-08-07 | 2020-02-13 | Henkel Ag & Co. Kgaa | Liquid bleach-precursor containing detergent or cleaning agent |
US12058999B2 (en) | 2018-08-22 | 2024-08-13 | Ecolab Usa Inc. | Hydrogen peroxide and peracid stabilization with molecules based on a pyridine carboxylic acid |
US12096768B2 (en) | 2019-08-07 | 2024-09-24 | Ecolab Usa Inc. | Polymeric and solid-supported chelators for stabilization of peracid-containing compositions |
US12203056B2 (en) | 2008-03-28 | 2025-01-21 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106860032B (en) * | 2016-10-25 | 2021-04-09 | 咏达生医材料股份有限公司 | A kind of gaseous skin oxygen supply whitening product and application thereof |
WO2018237255A1 (en) * | 2017-06-22 | 2018-12-27 | Ecolab Usa Inc. | Bleaching using peroxyformic acid and an oxygen catalyst |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0414462A2 (en) * | 1989-08-23 | 1991-02-27 | Unilever Plc | Laundry treatment product |
GB2254857A (en) * | 1991-02-22 | 1992-10-21 | Unilever Plc | Sachet for laundry treatment |
EP0744462A2 (en) * | 1995-05-25 | 1996-11-27 | The Clorox Company | Liquid peracid precursor colloidal dispersions: microemulsions |
WO1997031087A1 (en) * | 1996-02-23 | 1997-08-28 | The Clorox Company | Composition and apparatus for surface cleaning |
WO1997045519A2 (en) * | 1996-05-28 | 1997-12-04 | Warwick International Group Ltd. | Alkaline peroxide liquid detergent composition |
-
1997
- 1997-12-22 WO PCT/US1997/023480 patent/WO1999032598A1/en active Search and Examination
- 1997-12-22 AU AU57095/98A patent/AU5709598A/en not_active Abandoned
- 1997-12-22 JP JP11509766A patent/JP2000516299A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0414462A2 (en) * | 1989-08-23 | 1991-02-27 | Unilever Plc | Laundry treatment product |
GB2254857A (en) * | 1991-02-22 | 1992-10-21 | Unilever Plc | Sachet for laundry treatment |
EP0744462A2 (en) * | 1995-05-25 | 1996-11-27 | The Clorox Company | Liquid peracid precursor colloidal dispersions: microemulsions |
WO1997031087A1 (en) * | 1996-02-23 | 1997-08-28 | The Clorox Company | Composition and apparatus for surface cleaning |
WO1997045519A2 (en) * | 1996-05-28 | 1997-12-04 | Warwick International Group Ltd. | Alkaline peroxide liquid detergent composition |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061712A1 (en) * | 1999-04-12 | 2000-10-19 | Unilever N.V. | Multiple component hard surface cleaning compositions |
US6472360B1 (en) | 1999-04-12 | 2002-10-29 | Unilever Home & Personal Care Usa Division Of Conopco, Inc. | Multiple component hard surface cleaning compositions |
WO2004053042A1 (en) * | 2002-12-06 | 2004-06-24 | Henkel Kommanditgesellschaft Auf Aktien | Multicomponent liquid detergent |
WO2005035707A1 (en) * | 2003-10-06 | 2005-04-21 | The Procter & Gamble Company | Dual-compartment laundry composition containing peroxyacids |
WO2005035705A3 (en) * | 2003-10-06 | 2005-05-19 | Procter & Gamble | Dual-compartment laundry composition containing equilibrium peracid solution |
US9359295B2 (en) | 2008-03-28 | 2016-06-07 | Ecolab USA, Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10669512B2 (en) | 2008-03-28 | 2020-06-02 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10077415B2 (en) | 2008-03-28 | 2018-09-18 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
US12203056B2 (en) | 2008-03-28 | 2025-01-21 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US11827867B2 (en) | 2008-03-28 | 2023-11-28 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US11015151B2 (en) | 2008-03-28 | 2021-05-25 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US9253978B2 (en) | 2008-03-28 | 2016-02-09 | Ecolab USA, Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US9676711B2 (en) | 2008-03-28 | 2017-06-13 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US9290448B2 (en) | 2008-03-28 | 2016-03-22 | Ecolab USA, Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10323218B2 (en) | 2008-03-28 | 2019-06-18 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10017720B2 (en) | 2008-03-28 | 2018-07-10 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US9540598B2 (en) | 2008-03-28 | 2017-01-10 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
WO2011051415A1 (en) * | 2009-10-30 | 2011-05-05 | Henkel Ag & Co. Kgaa | Machine cleaning method |
WO2011051418A1 (en) * | 2009-10-30 | 2011-05-05 | Henkel Ag & Co. Kgaa | Machine cleaning method |
WO2011051417A1 (en) * | 2009-10-30 | 2011-05-05 | Henkel Ag & Co. Kgaa | Machine cleaning method |
US10477862B2 (en) | 2010-12-29 | 2019-11-19 | Ecolab Usa Inc. | In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof |
US9763442B2 (en) | 2010-12-29 | 2017-09-19 | Ecolab Usa Inc. | In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof |
US8729296B2 (en) | 2010-12-29 | 2014-05-20 | Ecolab Usa Inc. | Generation of peroxycarboxylic acids at alkaline pH, and their use as textile bleaching and antimicrobial agents |
US9902627B2 (en) | 2011-12-20 | 2018-02-27 | Ecolab Usa Inc. | Stable percarboxylic acid compositions and uses thereof |
US9321664B2 (en) | 2011-12-20 | 2016-04-26 | Ecolab Usa Inc. | Stable percarboxylic acid compositions and uses thereof |
US9242879B2 (en) | 2012-03-30 | 2016-01-26 | Ecolab Usa Inc. | Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water |
US9926214B2 (en) | 2012-03-30 | 2018-03-27 | Ecolab Usa Inc. | Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water |
US10017403B2 (en) | 2012-03-30 | 2018-07-10 | Ecolab Usa Inc. | Use of peracetic acid/hydrogen peroxide and peroxide-reducing enzymes for treatment of drilling fluids, frac fluids, flowback water and disposal water |
US10023484B2 (en) | 2012-03-30 | 2018-07-17 | Ecolab Usa Inc. | Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water |
US11939241B2 (en) | 2012-10-05 | 2024-03-26 | Ecolab Usa Inc. | Stable percarboxylic acid compositions and uses thereof |
US11180385B2 (en) | 2012-10-05 | 2021-11-23 | Ecolab USA, Inc. | Stable percarboxylic acid compositions and uses thereof |
US10031081B2 (en) | 2013-03-05 | 2018-07-24 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
US9288992B2 (en) | 2013-03-05 | 2016-03-22 | Ecolab USA, Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US10893674B2 (en) | 2013-03-05 | 2021-01-19 | Ecolab Usa Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US11026421B2 (en) | 2013-03-05 | 2021-06-08 | Ecolab Usa Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US9585397B2 (en) | 2013-03-05 | 2017-03-07 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
US11206826B2 (en) | 2013-03-05 | 2021-12-28 | Ecolab Usa Inc. | Defoamer useful in a peracid composition with anionic surfactants |
US8822719B1 (en) | 2013-03-05 | 2014-09-02 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
US10165774B2 (en) | 2013-03-05 | 2019-01-01 | Ecolab Usa Inc. | Defoamer useful in a peracid composition with anionic surfactants |
US9675076B2 (en) | 2013-03-05 | 2017-06-13 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
WO2020030517A1 (en) * | 2018-08-07 | 2020-02-13 | Henkel Ag & Co. Kgaa | Liquid bleach-precursor containing detergent or cleaning agent |
US12058999B2 (en) | 2018-08-22 | 2024-08-13 | Ecolab Usa Inc. | Hydrogen peroxide and peracid stabilization with molecules based on a pyridine carboxylic acid |
US12096768B2 (en) | 2019-08-07 | 2024-09-24 | Ecolab Usa Inc. | Polymeric and solid-supported chelators for stabilization of peracid-containing compositions |
Also Published As
Publication number | Publication date |
---|---|
JP2000516299A (en) | 2000-12-05 |
AU5709598A (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999032598A1 (en) | Improved oxygen bleaching system | |
JP5000060B2 (en) | Laundry additive pouch | |
CA2016030C (en) | Bleach activation and bleaching compositions | |
EP0807157B1 (en) | Detergent compositions comprising multiperacid-forming bleach activators | |
US5872092A (en) | Nonaqueous bleach-containing liquid detergent compositions | |
ES2333516T3 (en) | COMPOSITIONS IN BAG. | |
TW311932B (en) | ||
WO1995027774A1 (en) | Bleach compositions comprising metal-containing bleach catalysts and antioxidants | |
JP2001513844A (en) | Bleach composition | |
WO1996006913A1 (en) | Perhydrolysis-selective bleach activators | |
WO1995027775A1 (en) | Bleach compositions comprising metal-containing bleach catalysts | |
WO1999029827A1 (en) | Non-aqueous liquid detergent compositions containing ethoxylated quaternized amine clay compounds | |
CA2216937A1 (en) | Nonaqueous, particulate-containing liquid detergent compositions | |
JP2000502718A (en) | Cationic detergent compound | |
JPH09511773A (en) | Bleaching composition containing bleaching activator and bleaching catalyst | |
BR0312782B1 (en) | Composition for the treatment of stains | |
AU2003205759B2 (en) | Liquid cleaning compositions and their use | |
WO1995034629A1 (en) | Detergent compositions comprising large pore size redox catalysts | |
JP2000510902A (en) | Kit for pre-dissolving the detergent composition | |
CA2318559A1 (en) | Granular compositions having improved dissolution | |
JP2001502334A (en) | Asymmetric cationic bleach activator and composition using the same | |
JP2000503713A (en) | Detergent composition | |
WO1996006155A1 (en) | Bleach compositions comprising metal-containing bleach catalysts and ammonium salts | |
JP2000504064A (en) | Method for pre-dissolving a detergent composition | |
WO2000017311A1 (en) | Encapsulated materials and bar compositions containing such materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1999 509766 Kind code of ref document: A Format of ref document f/p: F |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WD | Withdrawal of designations after international publication |
Free format text: AL, AM, AT, AU, AZ, BA, BB, BG, BY, CH, CU, CZ, DE, DK, EE, ES, FI, GE, GH, GM, GW, HU, ID, IL, IS,KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW; AP (GH, GM, KE, LS, MW, SD, SZ, UG, ZW); EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM); EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE); OA (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG) |
|
NENP | Non-entry into the national phase |
Ref country code: CA |