WO1999031705A1 - Implanteur ionique et procede - Google Patents
Implanteur ionique et procede Download PDFInfo
- Publication number
- WO1999031705A1 WO1999031705A1 PCT/JP1997/004587 JP9704587W WO9931705A1 WO 1999031705 A1 WO1999031705 A1 WO 1999031705A1 JP 9704587 W JP9704587 W JP 9704587W WO 9931705 A1 WO9931705 A1 WO 9931705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- ion beam
- ion
- rotating disk
- ion implantation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 40
- 235000012431 wafers Nutrition 0.000 claims description 114
- 238000010884 ion-beam technique Methods 0.000 claims description 51
- 238000005468 ion implantation Methods 0.000 claims description 31
- 150000002500 ions Chemical class 0.000 claims description 31
- 230000007246 mechanism Effects 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- -1 oxygen ions Chemical class 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000007723 transport mechanism Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3171—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2001—Maintaining constant desired temperature
Definitions
- the present invention relates to an ion implantation apparatus and a method therefor, and more particularly to an ion implantation apparatus and a method suitable for implanting various ions, for example, oxygen ions, into a silicon wafer.
- SiM ⁇ X ion implanter for Separation by Implanted Oxygen
- the process of the above-described ion implantation apparatus for SiMOX is a high-temperature process in which an ion beam is implanted at a wafer temperature of several hundred degrees Celsius or higher and a uniform temperature within the wafer surface.
- the wafer temperature is an important factor, and various methods are used for heating the wafer and its heating structure.
- the wafer holder when irradiating an ion beam to a plurality of wafers arranged on a wafer holder serving as a wafer holding means, the wafer holder is rotated to reduce the thermal stress of the ion beam on the wafer. Intermittent irradiation of the ion beam onto the co-rotating wafer is performed. Sa Furthermore, when the ion beam intensity distribution does not satisfy the required uniformity of implantation, the ion beam is converged to some extent, and the beam is irradiated so that the ion beam relatively scans the wafer. There must be.
- a method in which the wafer side is fixed and the ion beam scans is called a beam scan method
- a method in which the ion beam is fixed and the wafer side scans is called a mechanical scan method.
- the wafer holder on which the wafer is mounted scans with the ion beam while rotating, it is difficult to arrange the heating mechanism for heating the wafer, and the scanning is usually performed on the wafer holder that scans.
- the heating mechanism is fixedly arranged in the middle of the orbit, and heating is performed when the wafer scans in the vicinity of the heating mechanism.
- the present invention has been made in view of the above points, and its object is to perform ion scanning even when the wafer holding unit performs a scanning motion.
- An injection device and a method thereof are provided. Disclosure of the invention
- the present invention provides a heating means for heating a wafer held by a wafer holding means in a plane substantially orthogonal to the ion beam.
- the ion implantation apparatus is provided in relative position changing means for changing the relative position between the wafer holding means and the ion beam, and the heating means and the relative position changing means move in synchronization.
- a rotating disk for holding the plurality of wafers on a circumference, and a relative rotating means for rotating the rotating disk in a plane substantially orthogonal to the ion beam;
- the rotating disk is constituted by a swinging means for swinging in a plane substantially orthogonal to the ion beam
- the heating device is provided in a swinging means, and the swinging means and the heating means are provided. It is characterized by moving synchronously.
- the rotating means for rotating the rotating disk rotates the rotating disk about a rotating shaft by a driving mechanism installed in a scan box, and the swinging means for swinging the rotating disk rotates the scan shaft.
- the heating means is provided in a swinging means, and the heating means is provided on the rotating disk. It is characterized in that it moves in synchronization with the scanning operation.
- the relative position of the ion beam is changed when the ion beam extracted from the ion source is separated into ions having a predetermined mass and implanted into a wafer.
- the wafer When the ion beam extracted from the ion source is separated into ions having a predetermined mass and implanted into the wafer, the wafer is rotated by a rotating disk that holds a plurality of wafers on a circumference, The same as the movement of the rocking means for rocking the rotating disk in a plane substantially perpendicular to the ion beam.
- An ion implantation method in which an ion beam is implanted into the heated wafer while being moved.
- a rotating disk that holds multiple wafers on the circumference is driven by the drive mechanism in the scan box.
- the wafer is rotated by rotating the wafer, and the scan box is reciprocated right and left with respect to the ion beam. Is implanted.
- the heating means performs the same scanning movement as the wafer holding means while maintaining the optimal heating position. This makes it possible to always perform optimal heating of the wafer regardless of the scanning position of the wafer holding means, thereby achieving the above object.
- FIG. 1 is an overall configuration diagram showing one embodiment of the ion implantation apparatus of the present invention
- FIG. 2 is a front view showing a rotating disk portion employed in one embodiment of the present invention
- FIG. 3 and
- FIG. 5 is a front view showing a scanning operation of a rotating disk in one embodiment of the present invention
- FIG. 5 is a device configuration diagram including a wafer transport mechanism according to one embodiment of the ion implantation device of the present invention.
- FIG. 1 shows a schematic configuration of a SiM ⁇ X ion implantation apparatus according to one embodiment of the present invention.
- the ion beam emitted from the ion source 1 is separated and extracted by a mass separator 2 into ions having a predetermined mass, that is, oxygen ions used for ion implantation, for example.
- the ion beam 3 extracted by the mass separator 2 enters the end station 4 from the entrance of the end station 4.
- the ion source 1, the mass separator 2, and the end station 4 are airtightly connected, and their interior is kept at a vacuum.
- a rotating disk 7 is installed in the end station 4, and a plurality of wafer holders 6 are arranged on the outer periphery of the rotating disk 7, and the wafer holder 6 holds a wafer 5 such as silicon.
- the wafer holder 6 holding the wafer 5 is arranged at a uniform pitch in the circumferential direction of a circular rotary disk 7, and the rotary disk 7 is rotated by a rotation motor 10 installed in a scan box 9. It is configured to rotate around 8.
- the scan box 9 is provided with a mechanism (oscillation means) for reciprocating scanning in the depth direction and the front direction of the drawing with the scan axis 13 located below.
- a relative position changing means is constituted by the rotation motor 10 and a mechanism (oscillating means) for reciprocating scanning around the scan shaft 13 as a center.
- the rotating disk 7 rotates and scans back and forth, so that the target ion Can be entered.
- a heater housing 11 is provided below the scan box 9 so as to face the wafer 5 and the heater housing 11 is provided.
- a heater 12 serving as a heating means is disposed at a part of the ring 11 facing the wafer 5 below the rotating disk 7.
- FIG. 2 shows the rotating disk 7 viewed from the front.
- a preparation room for loading and unloading the wafer 5 to be ion-implanted is connected to the rear of the end station 4, and a transfer robot for transferring the wafer 5 is provided in the preparation room.
- a storage cassette for storing the wafer 5, and the wafer 5 is arranged.
- the transfer robot takes out the wafer 5 stored in the storage cassette, inserts the tip into the end station 4, and mounts the wafer 5 on the wafer holder 6. Further, the transfer robot removes the wafer 5 from the wafer holder 6 after the completion of the ion implantation, and stores the wafer 5 in a storage force set.
- a wafer holder 6 holding a wafer 5 is arranged in a circumferential direction of a rotating disk 7, and one position of the wafer holder 6 is irradiated with an ion beam 3.
- the position of the ion beam 3 is fixed. is there.
- a heater 12 is built in and installed in the heater housing 11 so as to face the wafer 5 below the rotating disk 7.
- the rotating disk 7 rotates in the direction C in the figure around the rotating shaft 8 and then scans back and forth in the directions A and B around the scanning axis 13 in the figure. ing. While the rotating disk 7 rotates and scans, the wafer 5 is irradiated with the ion beam 3 and the wafer 5 hay ion is implanted. At this time, the heater 12 for heating the wafer 5 performs a scanning operation together with the rotary disk 7 so that the wafer 5 can be always heated.
- Figures 3 and 4 illustrate this.
- Fig. 3 shows the position when the rotating disk 7 in Fig. 2 moves in the direction A
- Fig. 4 shows the position when the rotating disk 7 in Is shown.
- the heater housing 11 since the heater housing 11 is installed in the scan box 9, even if the rotating disk 7 scans in the A direction and the B direction, it is synchronized with the rotating disk ⁇ in the same direction. Since the heater housing 11 performs the same scan operation as the moving scan box 9, the heater 12 performs a scan operation in the same manner as the rotating disk 7, and the relative positional relationship between the wafer 5 and the heater 12 is always the same.
- the heaters 12 can perform the same scanning movement as the rotating disk 7 while maintaining the optimum heating position. Since the optimal heating of the wafer 5 can be always performed regardless of the operation position, the wafer 5 can be uniformly heated at a high temperature.
- Fig. 5 shows a configuration diagram including the transport mechanism.
- the rotating disk 7, scan box 9, and heater housing 11 are tilted in the direction D in the figure as shown in the figure.
- the wafer 5 is carried out and carried in at positions E and E.
- the rotating disk 7, the rotating mechanism, the scanning mechanism, the tilt (tilting, erecting operation) mechanism, and the heating mechanism (heater 12) are installed, so that the wafer 5 can be rapidly cooled after ion implantation.
- the wafer heating operation for preventing the rotation can be performed simultaneously with the rotation operation of the rotating disk 7, and the processing time can be reduced.
- the heater housing 11 is at the upper position, so that the maintenance work of the heater 12 can be easily performed.
- the heating means for heating the wafer held by the wafer holding means includes the wafer holding means and the wafer holding means in a plane substantially orthogonal to the ion beam.
- An ion implanter provided in relative position changing means for changing the relative position of the ion beam,
- the heating means can perform the same scanning movement as the wafer holding means while maintaining the optimal heating position, so that the wafer holding means makes a scanning movement. Even if it does, there is an effect that the wafer can be uniformly heated at a high temperature regardless of the scanning movement of the wafer holding means.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
明 細 書
イオン注入装置及びその方法 技術分野
本発明はイオン注入装置及びその方法に係わり、 特に、 シリコンゥェ ハに各種イオン、 例えば酸素ィオンを打ち込むものに好適なイオン注入 装置及びその方法に関する。 背景技術
近年、 Separation by Implanted Oxygen (以下、 S i M〇Xと略称す る) 用のイオン注入装置が開発されているが、 この S i M O X用のィォ ン注入装置は、 シリコンウェハの所定の深さに酸素イオンを注入し、 そ の後、 ァニ一ル処理を行うことにより、 シリコンウェハ中に S i 〇2 の 層を形成するものである。 この S i 〇2 層を絶縁基板とすることにより. 従来のように S i 〇2 の基板上にシリコン層を形成するものに比べて高 速応答のウェハが実現できる。
上記した S i M O X用イオン注入装置のプロセスは、 ウェハ温度を数 1 0 0 °C以上で、 かつ、 ウェハ面内の温度を均一に保った状態でイオン ビームを注入する高温プロセスである。 特に、 ウェハ温度は重要な因子 でウェハの加熱方式、 及びその加熱構造には様々な方式が用いられてい る。
通常、 ウェハ保持手段であるウェハホルダに複数枚配置されているゥ ェハにイオンビームを照射する際には、 ウェハへのイオンビームの熱ス トレスを緩和するため、 ウェハホルダを回転させ、 このウェハと一緒に 回転するウェハにィォンビームを断続的に照射することが行われる。 さ
らに、 イオンビームの強度分布が、 必要とされる注入均一精度に満たな い場合には、 イオンビームをある程度収束させ、 ウェハ上をイオンビ一 ムが相対的に走査するようにビームを照射しなければならない。
この時、 ウェハ側が固定され、 イオンビームが走査する方式をビーム スキャン方式と言い、 反対にイオンビームが固定され、 ウェハ側が走査 する方式をメカニカルスキャン方式と言う。 後者の方式では、 ウェハが 搭載されたウェハホルダが回転しながらイオンビームに対し走査する形 となるため、 ウェハを加熱するための加熱機構の配置構成が難しく、 通 常は走査するウェハホルダに対し走査する軌道の途中に加熱機構を固定 配置し、 加熱機構近傍をウェハが走査する時に加熱する等の方式を採つ ている。
この従来の方式では、 加熱機構近傍以外でのウェハ加熱が不足するた め、 ウェハを高温で、 かつ、 均一に加熱することができず、 低効率のィ オン注入となリ効率の悪いものとなっていた。 これを防止するためには. 加熱機構を大型化して加熱能力を高め、 時間をかけて加熱することが考 えられるが、 装置が大型化し、 しかも、 効率の極めて悪いものとなって しまう。
本発明は上述の点に鑑みなされたもので、 その目的とするところは、 ウェハ保持手段が走査運動するものであっても、 その走査運動によらず. 常にウェハの高温均一加熱が可能なイオン注入装置、 及びその方法を提 供するにある。 発明の開示
上記目的を達成するために、 本発明は、 ウェハ保持手段に保持されて いるウェハを加熱する加熱手段を、 イオンビ一ムにほぼ直交する平面内
でウェハ保持手段とイオンビームの相対位置を変化させる相対位置変化 手段に設け、 加熱手段と相対位置変化手段とが同期して動くイオン注入 装置としたことを特徴とする。
また、 前記ウェハ保持手段が複数枚のウェハを円周上に保持する回転 ディスクで構成され、 かつ、 前記相対位置変化手段が前記回転ディスク をイオンビームにほぼ直交する平面内で回転させる回転手段と、 前記回 転ディスクを前記イオンビームにほぼ直交する平面内で揺動する揺動手 段とから構成される場合には、 前記加熱装置を揺動手段に設け、 該揺動 手段と加熱手段とが同期して動く ことを特徴とする。
更に、 前記回転ディスクを回転させる回転手段がスキャンボックス内 に設置された駆動機構により回転軸を中心に回転ディスクを回転させる ものであると共に、 前記回転ディスクを揺動させる揺動手段がスキャン 軸を中心にイオンビ一ムに対して左右に往復動作することにより前記回 転ディスクをスキャンさせるものである場合には、 前記加熱手段が揺動 手段に設けられ、 かつ、 この加熱手段が前記回転ディスクのスキャン動 作と同期して動くことを特徴とする。
また、 本発明では、 上記目的を達成するために、 イオン源から取り出 されたイオンビームを、 所定の質量を有するイオンに分離してウェハに 打ち込む際に、 前記イオンビームの相対位置を変化させる相対位置変化 手段の動きと同期して動きながら加熱された前記ウェハにイオンビーム を打ち込むイオン注入方法。
イオン源から取り出されたイオンビームを、 所定の質量を有するィォ ンに分離してウェハに打ち込む際に、 複数枚のウェハを円周上に保持す る回転ディスクで該ウェハを回転させると共に、 前記回転ディスクを前 記イオンビームにほぼ直交する平面内で揺動させる揺動手段の動きと同
期して動きながら加熱された前記ウェハにイオンビームを打ち込むィォ ン注入方法。
イオン源から取り出されたイオンビームを、 所定の質量を有するィォ ンに分離してウェハに打ち込む際に、 複数枚のウェハを円周上に保持す る回転デイスクをスキャンボックス内の駆動機構により回転させて前記 ゥェハを回転させると共に、 前記スキャンボックスがイオンビームに対 して左右に往復動作することにより前記回転ディスクがスキャンするス キャン動作に同期して動きながら加熱された前記ウェハにイオンビーム を打ち込むイオン注入方法としたことを特徴とする。
上記のように構成することによリ、 ウェハを保持したウェハ保持手段 (回転ディスク) が走査運動をしても、 加熱手段は最適加熱位置を保つ たまま、 ウェハ保持手段と同一走査運動を行うことができ、 それにより、 ウェハ保持手段の走査位置にかかわらず常に最適なウェハの加熱を行う ことができるので、 上記目的が達成される。 図面の簡単な説明
第 1 図は本発明のイオン注入装置の一実施例を示す全体構成図、 第 2 図は本発明の一実施例に採用される回転ディスク部を示す正面図、 第 3 図、 及び第 4図は本発明の一実施例における回転ディスクのスキャン動 作を示す正面図、 第 5図は本発明のイオン注入装置の一実施例によるゥ ェハ搬送機構を含めた装置構成図である。 発明を実施するための最良の形態
以下、 図示した実施例に基づいて本発明のイオン注入装置の一実施例 を詳細に説明する。
第 1 図は本発明の一実施例である S i M〇X用イオン注入装置の概略 構成を示すものである。
該図に示す如く、 イオン源 1 から出射されたイオンビームは、 質量分 離器 2によって所定の質量を有するイオン、 即ちイオン注入に用いる例 えば、 酸素イオンが分離され取り出される。 質量分離器 2によって取り 出されたイオンビーム 3は、 ェン ドステーション 4の入射口からェン ド ステーション 4内に入射する。 イオン源 1 , 質量分離器 2, エン ドステ —シヨン 4は、 気密連結されており、 それらの内部は真空に保たれてい る。
エン ドステーション 4内には、 回転ディスク 7が設置され、 この回転 ディスク 7の外周に複数のウェハホルダ 6が配置されており、 このゥェ ハホルダ 6にシリコン等のウェハ 5が保持されている。 ウェハ 5が保持 されているウェハホルダ 6は、 円形の回転ディスク 7の円周方向に均等 のピッチで配置され、 この回転ディスク 7は、 スキャンボックス 9内に 設置された回転用モータ 1 0により回転軸 8 を中心に回転する構成とな つている。 このスキャンボックス 9は、 下方にあるスキャン軸 1 3 を中 心に紙面の奥方向と手前方向を往復スキャンする機構 (揺動手段) が設 置されている。 本実施例では、 回転用モータ 1 0とスキャン軸 1 3 を中 心に往復スキャンする機構 (揺動手段) とで相対位置変化手段を構成し ている。 通常、 イオンビーム 3の断面積は、 ウェハホルダ 6に固定され るウェハ 5の面積に比べて小さいため、 回転ディスク 7が回転、 及び往 復スキャンすることにより、 ウェハ 5の全表面に目的とするイオンを打 ち込むことができる。
さらに、 本実施例では、 スキャンボックス 9の下方には、 ヒータハウ ジング 1 1 がー部ウェハ 5 と対向するように設置され、 このヒータハウ
ジング 1 1 の回転ディスク 7の下方側のウェハ 5に対向した一部に加熱 手段であるヒータ 1 2が配置されている。 この回転ディスク 7 を正面か ら見たものが第 2図である。
尚、 特に図示しないが、 エン ドステーション 4の後方には、 イオン注 入対象物のウェハ 5 を出し入れする準備室が接続されており、 この準備 室には、 ウェハ 5の搬送を行う搬送ロボッ ト、 及びウェハ 5 を収納する 収納カセッ トが配置されている。 搬送ロボッ トは、 収納カセッ トに収納 されたウェハ 5 を取り出し、 その先端をェン ドステーション 4内に挿入 して、 ウェハ 5をウェハホルダ 6に装着する。 更に、 搬送ロボッ トは、 イオン注入の終了後、 ウェハホルダ 6からウェハ 5 を取り外し、 収納力 セッ 卜に収納するようになっている。
第 2図において、 回転ディスク 7の円周方向にウェハ 5 を保持したゥ ェハホルダ 6が配置され、 その 1 ケ所にイオンビーム 3が照射される位 置があり、 このイオンビーム 3の位置は固定である。 さらに回転ディス ク 7の下方にウェハ 5に対向するようにヒータ 1 2がヒータハウジング 1 1 に内蔵 · 設置されている。
この時の動作としては、 回転ディスク 7が回転軸 8 を中心に図中 C方 向に回転し、 さらにスキャン軸 1 3 を中心に図中 A方向、 及び B方向へ と往復スキャンする動作となっている。 回転ディスク 7が回転, スキヤ ン動作をする中でウェハ 5ヘイオンビーム 3が照射され、 ウェハ 5ヘイ オン注入が行われる。 その際、 ウェハ 5 を加熱するヒータ 1 2は、 回転 ディスク 7 と一緒にスキヤン動作を行い、 常にウェハ 5 を加熱できるよ うになつている。 それを図示したものが第 3図、 及び第 4図である。 第 3図は第 2図の回転ディスク 7が A方向に、 第 4図は第 2図の回転 ディスク 7が B方向にスキャン軸 1 3 を中心にスキヤン移動した時の位
置を示している。 これらの図から分かるように、 ヒータハウジング 1 1 がスキャンボックス 9に設置されているため、 回転ディスク 7が A方向、 及び B方向にスキャンした場合でも、 この回転ディスク Ί と同一方向に 同期して動くスキャンボックス 9 と同一スキャン動作をヒータハウジン グ 1 1 が行うため、 ヒータ 1 2が回転ディスク 7 と同じようにスキャン 動作を行い、 常にウェハ 5 とヒータ 1 2の相対位置関係は同一となる。
このようにすることにより、 ウェハ 5 を保持した回転ディスク 7が走 查運動しても、 ヒータ 1 2は最適加熱位置を保ったまま回転ディスク 7 と同一走査運動行うことができ、 回転ディスク 7の操作位置にかかわら ず常に最適なウェハ 5の加熱を行うことができるので、 ウェハ 5の高温 均一加熱が行える。
次に、 回転ディスク 7上に配置されたウェハ 5の搬送機構との関わり について説明する。 第 5図に搬送機構を含めた構成図を示す。 イオン注 入動作前後にウェハ 5の搭載, 搬出を行う際、 図のように、 チル卜軸 1 4 を中心に回転ディスク 7, スキャンボックス 9及びヒータハウジン グ 1 1 を図中 D方向に傾倒させ、 E位置にてウェハ 5の搬出, 搬入を行 うものである。
このように回転ディスク 7部に回転機構, スキャン機構, チルト (傾 倒, 正立動作) 機構、 さらに加熱機構 (ヒータ 1 2 ) を設置した構成と することにより、 ィオン注入後のウェハ 5の急冷を防ぐためのウェハヒ ― 卜動作は、 回転ディスク 7がチル卜動作と同時に実施することが可能 となり、 処理時間の短縮が可能となる。 また、 回転ディスク 7 を傾倒位 置 (チル卜) にするとヒータハウジング 1 1が上部位置になることをよ り、 ヒータ 1 2のメンテナンス作業が容易となる利点もあげられる。
産業上の利用可能性
以上説明した本発明のイオン注入装置、 及びその方法によれば、 ゥェ ハ保持手段に保持されているウェハを加熱する加熱手段を、 イオンビ一 ムにほぼ直交する平面内でウェハ保持手段と該ィォンビームの相対位置 を変化させる相対位置変化手段に設けたイオン注入装置、
及び、 イオン源から取り出されたイオンビ一ムを、 所定の質量を有す るイオンに分離した後ウェハに打ち込む際に、 前記イオンビームの相対 位置を変化させる相対位置変化手段の動きと同期して動きながら加熱さ れた前記ウェハにィォンビームを打ち込むィオン注入方法としたもので めるから、
ウェハを保持したウェハ保持手段が走査運動をしても、 加熱手段は最 適加熱位置を保ったまま、 ウェハ保持手段と同一走査運動を行うことが できるので、 ウェハ保持手段が走査運動するものであっても、 ウェハ保 持手段の走査運動によらず、 常にウェハの高温均一加熱が行えるという 効果がある。
Claims
1 . イオン源と、 該イオン源から出射されたイオンビ一ムを所定の質量 を有するイオンに分離する質量分離器と、 該質量分離器で所定の質量を 有するイオンに分離されたイオンビームが打ち込まれるウェハを収納す るエン ドステーションとから少なく とも構成され、 前記ェン ドステ一シ ヨンは、 前記ウェハを保持するウェハ保持手段と、 前記イオンビームに ほぼ直交する平面内で前記ウェハ保持手段と前記イオンビームの相対位 置を変化させる相対位置変化手段と、 前記ウェハ保持手段に保持されて いるウェハを加熱する加熱手段とを備えているイオン注入装置において、 前記加熱手段は、 前記相対位置変化手段に設けられ、 該相対位置変化 手段と同期して動くことを特徴とするイオン注入装置。
2 . 前記ウェハ保持手段は、 複数枚のウェハを円周上に保持する回転デ イスクであり、 かつ、 前記相対位置変化手段は、 前記回転ディスクを前 記イオンビームにほぼ直交する平面内で回転させる回転手段と、 前記回 転ディスクを前記イオンビームにほぼ直交する平面内で揺動する揺動手 段とを備えており、 前記加熱手段は、 前記揺動手段に設けられ、 該揺動 手段と同期して動く ことを特徴とする請求項 1記載のイオン注入装置。
3 . 前記回転ディスクを回転させる回転手段は、 スキャンボックス内に 設置された駆動機構により回転軸を中心に回転ディスクを回転させるも のであると共に、 前記回転ディスクを揺動させる揺動手段は、 前記スキ ヤンボックスがスキャン軸を中心にイオンビームに対して左右に往復動 作することにより前記回転ディスクをスキャンさせるものであり、 かつ、 前記加熱手段が前記揺動手段に設けられ、 この加熱手段が前記回転ディ スクのスキャン動作と同期して動くものであることを特徴とする請求項 2記載のイオン注入装置。
4 . 前記スキャンボックスの下方にヒータハウジングを一部前記ウェハ と対向するように設けると共に、 このヒータハウジングの前記ウェハと 対向する位置に前記加熱手段を設け、 該加熱手段が前記回転ディスクの スキャン動作と同期して動くことを特徴とする請求項 3記載のイオン注 入装置。
5 . 前記加熱手段はランプヒータであることを特徴とする請求項 4記載 のイオン注入装置。
6 . イオン源から取り出されたイオンビームを、 所定の質量を有するィ オンに分離してウェハに打ち込む際に、 前記イオンビームの相対位置を 変化させる相対位置変化手段の動きと同期して動きながら加熱された前 記ウェハにイオンビームを打ち込むことを特徴とするイオン注入方法。
7 . イオン源から取り出されたイオンビームを、 所定の質量を有するィ オンに分離してウェハに打ち込む際に、 複数枚のウェハを円周上に保持 する回転ディスクで該ウェハを回転させると共に、 前記回転ディスクを 前記イオンビームにほぼ直交する平面内で揺動させる揺動手段の動きと 同期して動きながら加熱された前記ウェハにイオンビームを打ち込むこ とを特徴とするイオン注入方法。
8 . イオン源から取り出されたイオンビームを、 所定の質量を有するィ オンに分離してウェハに打ち込む際に、 複数枚のウェハを円周上に保持 する回転ディスクをスキャンボックス内の駆動機構によリ回転させて前 記ゥェハを回転させると共に、 前記スキャンボックスがイオンビームに 対して左右に往復動作することによリ前記回転ディスクがスキャンする スキャン動作に同期して動きながら加熱された前記ウェハにイオンビー ムを打ち込むことを特徴とするイオン注入方法。
9 . 前記ウェハに打ち込まれるイオンは酸素ィオンであることを特徴と
する請求項 6, 7、 又は 8記載のイオン注入方法,
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/555,886 US6403969B1 (en) | 1997-12-12 | 1997-12-12 | Ion implantation system and ion implantation method |
PCT/JP1997/004587 WO1999031705A1 (fr) | 1997-12-12 | 1997-12-12 | Implanteur ionique et procede |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1997/004587 WO1999031705A1 (fr) | 1997-12-12 | 1997-12-12 | Implanteur ionique et procede |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999031705A1 true WO1999031705A1 (fr) | 1999-06-24 |
Family
ID=14181643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/004587 WO1999031705A1 (fr) | 1997-12-12 | 1997-12-12 | Implanteur ionique et procede |
Country Status (2)
Country | Link |
---|---|
US (1) | US6403969B1 (ja) |
WO (1) | WO1999031705A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6614190B2 (en) * | 2001-01-31 | 2003-09-02 | Hitachi, Ltd. | Ion implanter |
US20110186748A1 (en) * | 2008-08-15 | 2011-08-04 | John Ruffell | Systems And Methods For Scanning A Beam Of Charged Particles |
JP6266475B2 (ja) * | 2014-09-01 | 2018-01-24 | 東芝メモリ株式会社 | 半導体製造装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0366122A (ja) * | 1989-08-04 | 1991-03-20 | Hitachi Ltd | イオン打込み方法および装置ならびにそれを用いて製造される半導体集積回路装置 |
JPH08329879A (ja) * | 1995-05-29 | 1996-12-13 | Hitachi Ltd | イオン注入装置及びイオン注入方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4832777A (en) * | 1987-07-16 | 1989-05-23 | Texas Instruments Incorporated | Processing apparatus and method |
-
1997
- 1997-12-12 WO PCT/JP1997/004587 patent/WO1999031705A1/ja active Application Filing
- 1997-12-12 US US09/555,886 patent/US6403969B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0366122A (ja) * | 1989-08-04 | 1991-03-20 | Hitachi Ltd | イオン打込み方法および装置ならびにそれを用いて製造される半導体集積回路装置 |
JPH08329879A (ja) * | 1995-05-29 | 1996-12-13 | Hitachi Ltd | イオン注入装置及びイオン注入方法 |
Also Published As
Publication number | Publication date |
---|---|
US6403969B1 (en) | 2002-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3288554B2 (ja) | イオン注入装置及びイオン注入方法 | |
US7777203B2 (en) | Substrate holding apparatus | |
US6614190B2 (en) | Ion implanter | |
JP4598231B2 (ja) | イオン注入装置 | |
JPH02278643A (ja) | イオン注入機 | |
JP2000012647A (ja) | ウエハ搬送装置及びその方法 | |
JP4817480B2 (ja) | イオン注入装置 | |
WO1999031705A1 (fr) | Implanteur ionique et procede | |
US5932883A (en) | Ion implanter for implanting ion on wafer with low contamination | |
JP2010015774A (ja) | イオン注入装置 | |
JPH02139846A (ja) | イオン注入装置 | |
US6501080B1 (en) | Ion implanting apparatus and sample processing apparatus | |
JPH1064471A (ja) | イオン注入装置 | |
US6268609B1 (en) | Apparatus and method for reducing heating of a workpiece in ion implantation | |
JPH08134668A (ja) | イオンビームミリング方法および装置 | |
JP5171860B2 (ja) | イオン注入装置 | |
JP7256712B2 (ja) | イオン注入方法及びイオン注入装置 | |
JP2002231177A (ja) | イオン注入装置 | |
JP2010034004A (ja) | イオン注入装置及び方法 | |
JPH10326590A (ja) | イオン注入用ウエハスキャン装置 | |
JP2557301B2 (ja) | イオン注入装置 | |
JPH0754688B2 (ja) | イオン注入装置およびイオン注入方法 | |
JP2003045371A (ja) | イオン注入装置の基板支持部材およびイオン注入装置 | |
JP3382885B2 (ja) | イオン注入装置及びイオン注入方法 | |
JPH01146319A (ja) | レーザ熱処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09555886 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
122 | Ep: pct application non-entry in european phase |