+

WO1999031533A1 - Optische elemente - Google Patents

Optische elemente Download PDF

Info

Publication number
WO1999031533A1
WO1999031533A1 PCT/EP1998/008575 EP9808575W WO9931533A1 WO 1999031533 A1 WO1999031533 A1 WO 1999031533A1 EP 9808575 W EP9808575 W EP 9808575W WO 9931533 A1 WO9931533 A1 WO 9931533A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical elements
optical
elements according
fully aromatic
aromatic polyester
Prior art date
Application number
PCT/EP1998/008575
Other languages
English (en)
French (fr)
Inventor
Hartmut Krüger
Waltraud Neumann
Andreas BRÄUER
Peter Dannberg
Original Assignee
Alcatel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel filed Critical Alcatel
Priority to US09/581,627 priority Critical patent/US6333821B1/en
Priority to EP98966431A priority patent/EP1040373A1/de
Publication of WO1999031533A1 publication Critical patent/WO1999031533A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C09D167/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl - and the hydroxy groups directly linked to aromatic rings

Definitions

  • the invention relates to optical elements made of optically isotropic plastic and in particular those made of a fully aromatic polyester with a glass transition temperature T g > 180 ° C.
  • Organic polymers are increasingly interesting materials for applications in optics, micro-optics, integrated optics, optical communication technology and microsystem technology. They are used in a variety of ways in optical device parts and in special optics as lenses, lens arrays, prisms, mirrors and as a transparent coating material for optical components. There is a great need for optical components, above all in optical communications technology, optical connection technology and optical sensor technology. Required components are e.g. B. splitters, couplers, beam deflection units, optical switches and attenuators. In addition to typical semiconductor materials, organic polymers are particularly suitable for the production of these optical elements.
  • Polymers can generally be processed in a technologically advantageous manner, for example by injection molding, stamping technology or else from solution.
  • the desired characteristics of such polymers for optical applications are the lowest possible optical attenuation at the relevant wavelengths (preferably 1.3 or 1.5 ⁇ m in optical imaging technology), high moisture resistance, the highest possible temperature stability, in particular of the optical properties, and a refractive index variability to adapt to certain requirements of the component and a favorable processability.
  • the use as a waveguide places manifold demands on the polymer.
  • the refractive index of the material should be as variable as possible and adaptable to certain substrates.
  • low material absorptions at 1.3 and 1.5 ⁇ m are required, ie optical losses of less than 1.0 dB / cm.
  • the loss due to volume defects (inhomogeneities, microbubbles) must be minimized.
  • adapted expansion coefficients and low shrinkage are prerequisites for the use of polymers for waveguide structures in integrated optics.
  • thermal long-term stability of the mechanical and optical properties in the temperature range of> 80 ° C. is particularly desirable.
  • the known simple thermoplastic polymers with good optical properties such as polymethyl methacrylate or polycarbonate are unsuitable for such long-term use temperatures.
  • the glass transition temperatures of these polymers are only around 105 or 130 ° C., so that there is no longer any permanent stability.
  • polymers with glass transition temperatures of> 180 ° C are preferred.
  • high-performance plastics are polyimides, polyetherimides, polyaryl sulfones, polyaryl ether ketones or polyaryl ether sulfones.
  • these are mostly difficult or difficult to process due to their relatively limited solubility or a complicated tempering regime.
  • Polyesters are also known to have good optical properties, see EP-A-0 242 959, EP-A-0 184 716, EP-A-0 076 133.
  • glass transition temperatures of> 180 ° C are only acceptable to obtain fully aromatic polyesters or polyarylates.
  • polyarylates tend to form partially crystalline, liquid-crystalline or crystalline phases, which would significantly restrict their use as optical materials due to the high scattering losses which then occur.
  • the above-mentioned documents also only describe optically anisotropic polyesters.
  • isotropic, amorphous polyesters are required.
  • Isotropic polyesters which contain 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as the diol component, see EP-A-0 653 451, EP-A-0 396 418, EP-A-0 380 027.
  • EP-A-0 653 451, EP-A-0 396 418, EP-A-0 380 027 have relatively high optical losses at the wavelengths relevant to communications technology and z. T. clearly too low glass transition temperatures.
  • the invention was therefore based on the object of selecting those polyesters which are composed of the simplest possible monomer units which, on the one hand, have sufficient glass transition temperatures> 180 ° C. and a low optical one Attenuation at 1.3 or 1.5 microns and have good processability, but on the other hand show no crystalline, partially or liquid crystalline phases, and can be processed into optical elements.
  • the fully aromatic polyesters used according to the invention which have a glass transition temperature of T g > 180 ° C., are preferably fully aromatic copolyarylates. Of course, homopolyarylates can also be used.
  • the building blocks for the fully aromatic polyesters are in particular the aromatic dicarboxylic acids and aromatic dihydroxy compounds mentioned below.
  • copolyarylates found are preferably obtained from mixtures of aromatic dicarboxylic acids and aromatic dihydroxy compounds. These polyarylates are characterized by optically almost amorphous properties, by good solubility in paint solvents, by the low optical attenuation at 1.3 or 1.5 ⁇ m and by good film formation. The glass transition temperatures of these copolyarylates are above 180 ° C.
  • Dicarboxylic acids based on the following structures are particularly suitable for the optical elements according to the invention
  • R stands for hydrogen or fluorine
  • R can independently stand for H or F.
  • suitable for the production of the polyesters used according to the invention are derivatives of benzene, naphthalene, biphenyl, diphenyl ether, diphenyl sulfone and diphenylmethane, in each case with 2 hydroxyl or carboxy functions, which have one or more hydrogen atoms and / or fluorine atoms and / or methyl groups and / or may have trifluorenethyl groups as substituents.
  • polyesters used according to the invention advantageously have a molecular weight in the range from 8,000 to 250,000, preferably from 12,000 to 120,000.
  • the copolyesters produced by a polycondensation reaction have glass transition temperatures of T g > 180 ° C. They are readily soluble in customary paint solvents, such as cyclohexanone, ethoxyethyl acetate and methoxypropylacetate, and can be processed into transparent films or layers by spin coating or dip coating. Their refractive index at 633 nm is 1.4 to 1.6, preferably in the range from 1.45 to 1.57. According to the invention, under certain copolyester compositions, amorphous, non-crystalline polymers can be obtained which show little scatter at 1.3 or 1.5 ⁇ m. The optical losses at these wavelengths were determined to be 0.1 to 0.5 dB / cm.
  • polyesters are known in the art, but non-crystalline, amorphous, non-scattering optical materials can be produced in particular with the copolyester compositions mentioned.
  • copolyesters are for the production of waveguide structures, lenses, prisms, corrected "lens systems, optical fibers and carriers for optical layers as well as for many other needs.
  • the amorphous copolyesters found can be obtained by copolycondensing mixtures of aromatic dicarboxylic acids with mixtures of aromatic dihydroxy compounds.
  • the above-mentioned monomer units result in non-crystalline, amorphous polymers.
  • the refractive index of the copolyesters described can be adjusted by varying the copolymer composition, so that the refractive index meets certain requirements, e.g. B. substrate, waveguide configuration, tuning core and cladding material can be specifically adjusted.
  • the glass transition temperatures of the copolyesters according to the invention are in particular in the range from 180 to 270 ° C., but particularly preferably between 180 and 220 ° C.
  • the polyester materials described are characterized by very low losses at 1.3 or 1.5 ⁇ m in the range from 0.1 to 0.5 dB / cm.
  • the easy processability of the materials according to the invention is given by the fact that they are highly soluble in typical paint solvents, such as. B. cyclohexanone, ethoxyethyl acetate and methoxypropylacetate, and can thus be processed by spin coating or dip coating to form optical layers or films.
  • typical paint solvents such as. B. cyclohexanone, ethoxyethyl acetate and methoxypropylacetate
  • High-solid coatings with thixotropic adjustment can be produced from the copolyesters described, which allow processing by screen printing. On this basis, optical chips with the following shaping writing can be produced cost-effectively.
  • the copolyesters according to the invention can also be processed by molding and embossing technology and by injection molding.
  • the polyester obtained has a molecular weight of 48,000 g / mol and a glass transition temperature of 209 ° C.
  • Amorphous, optically isotropic films in the ⁇ m range are obtained from methoxypropyl acetate by spin coating.
  • An optical attenuation of 0.44 dB / cm and a refractive index at 633 nm of 1.540 are measured on planar waveguides at 1.55 ⁇ m.
  • Benzyltriethylammonium chloride are dissolved at 5 ° C in 21.2 ml of 1 molar sodium hydroxide solution. 5 mmol of terephthalic acid dichloride and 5 mmol of isophthalic acid dichloride, dissolved in 23 ml of dichloromethane, are added with vigorous stirring. After 40 minutes, the polyester obtained is precipitated in weakly hydrochloric acid hot water. The precipitated product is washed with hot water and dried. The polyester obtained is purified by dissolving in THF and precipitating in methanol. 3.88 g of polyester are isolated (83.2% of theory).
  • the polyester obtained has a molar mass of 107,220 g / mol and a glass transition temperature of 225 ° C.
  • Amorphous, optically isotropic films in the ⁇ m range are obtained from methoxypropylacetate by spin coating.
  • an optical attenuation of 0.45 dB / cm and a refractive index at 633 nm of 1.540 are measured at 1.55 ⁇ m.
  • polyester 5.9 g of polyester are insulated (87.7% of theory).
  • the polyester obtained has a molecular weight of 18,200 g / mol and a glass transition temperature of 148 ° C.
  • Amorphous, optically isotropic films in the ⁇ m range are obtained from methoxypropyl acetate by spin coating.
  • An optical attenuation of 0.32 dB / cm and a refractive index at 633 nm of 1.5139 are measured on planar waveguides at 1.55 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)

Abstract

Die Erfindung betrifft optische Elemente aus einem optischen isotropen vollaromatischen Polyester mit einer Glasübergangstemperatur Tg≥180 °C.

Description

„Optische Elemente"
Beschreibung
Die Erfindung betrifft optische Elemente aus optisch isotropem Kunststoff und insbesondere solche aus einem vollaromatischen Polyester mit einer Glasübergangstemperatur Tg > 180°C.
Organische Polymere sind zunehmend interessante Materiahen für Anwendungen in der Optik, Mikrooptik, integrierten Optik, der optischen Nachrichtentechnik und der Mikrosystemtechnik. Sie finden dabei vielfältige Verwendung in optischen Geräteteilen sowie in speziellen Optiken als Linsen, Linsenarrays, Prismen, Spiegel sowie als transparentes Beschichtungsmaterial für optische Bauelemente. Ein großer Bedarf an optischen Bauelementen ist vor allem in der optischen Nachrichtentechnik, der optischen Verbindungstechnik sowie in der optischen Sensorik vorhanden. Benötigte Bauelemente sind z. B. Verzweiger, Koppler, Strahlumlenkeinheiten, optische Schalter und Dämpfungsglieder. Für die Fertigung dieser optischen Elemente bieten sich neben typischen Halbleitermaterialien vor allem organische Polymere an.
Polymere lassen sich im allgemeinen technologisch vorteilhaft durch beispielsweise Spritzguß, Prägetechnik oder auch aus der Lösung verarbeiten.
Gewünschte Charakteristika solcher Polymere für optische Anwendungen ist eine möglichst niedrige optische Dämpfung bei den relevanten Wellenlängen (in der optischen Narichtentechnik vorzugsweise bei 1,3 bzw. 1,5 μm), eine hohe Feuchteresistenz, eine möglichst hohe Temperaturstabilität insbesondere der optischen Eigenschaften, eine Brechzahlvariabilität zur Anpassung an bestimmte Erfodernisse des Bauelements und ein günstige Verarbeitbarkeit. Insbesondere die Anwendung als Wellenleiter stellt manigfaltige Anforderungen an das Polymer. Die Brechzahl des Materials soll möglichst variierbar und an bestimmte Substrate anpaßbar sein. Bei einer Anwendung in der optischen Nachrichtentechnik werden geringe Materialabsorptionen bei 1,3 und 1,5 μm gefordert, d. h. optische Verluste von weniger als 1,0 dB/cm. Die Dämpfungsverluste durch Volumendefekte (Inhomogenitäten, Mikroblasen) müssen dazu minimiert werden. Neben bestimmten technologischen Anforderungen, wie Schichtherstellung und Strukturierbarkeit, sind insbesondere die thermische und thermo-mechanische Stabilität, angepaßte Ausdehnungskoeffizienten und ein geringer Schrumpf Voraussetzung für einen Einsatz von Polymeren für Wellenleiterstrukturen in der integrierten Optik.
Für viele der genannten Anwendungen von optischen Polymeren ist insbesondere eine thermische Langzeitstabilität der mechanischen und optischen Eigenschaften im Temperaturbereich von > 80°C anzustreben. Für solche Dauergebrauchstemperaturen sind die bekannten einfachen thermoplastischen Polymere mit guten optischen Eigenschaften wie Polymethylmethacrylat oder auch Polycarbonat ungeeignet. Die Glasübergangstemperaturen dieser Polymere liegen ledighch bei etwa 105 bzw. 130°C, so daß eine Dauerbeständigkeit nicht mehr gegeben ist.
Für solche Anwendungen sind Polymere mit Glasübergangstemperaturen von > 180°C zu bevorzugen. Beispiele für solche Hochleistungskunststoffe sind Polyimide, Polyetherimide, Polyarylsulfone, Polyaryletherketone oder Polyarylethersulfone. Diese lassen sich jedoch meistens, bedingt durch eine relativ eingeschränkte Löslichkeit oder durch ein kompliziertes Temperregime, schlecht oder nur aufwendig verarbeiten. Die Anwendung dieser Hoch-Tg- Polymere für optische Systeme wird in verschiedenen Patentschriften beschrieben, so in JP-A-61-144738, JP-A-61-005986, DE-A-3915734, US-A- 4477555, EP-A-0254275, DE-A-3429074, DE-A-3927498, DE-A-4228853, DE-A- 3636399. Ein weiterer Nachteil dieser Systeme ist die vergleichsweise hohe optische Dämpfung bei den nachrichtentechnisch relevanten Wellenlängen von 1,3 und 1,5 /xm. Zudem zeichnen sich diese Materialien häufig durch eine hohe Doppelbrechung aus. Sehr niedrige optische Dämpfungen werden mit Polycyanuraten gefunden (DE-C-4435992), jedoch zeigen diese Hochtemperaturnetzwerkpolymere bei der Verarbeitung durch z. B. Präge- oder Abformtechnik eine nicht immer zufriedenstellende Entformbarkeit vom Werkzeug, so daß ein technologisch vorteilhafte Verarbeitung durch diese Techniken nur schwierig möglich ist.
Von Polyestern ist gleichfalls bekannt, daß sie sich durch gute optische Eigenschaften auszeichnen, siehe EP-A-0 242 959, EP-A-0 184 716, EP-A-0 076 133. Allerdings sind Glasübergangstemperturen von > 180°C nur mit vollaromatischen Polyestern oder Polyarylaten zu erhalten. Polyarylate neigen jedoch zur Ausbildung von teilkristallinen, flüssigkristallinen oder kristallinen Phasen, was die Verwendung als optische Materialien, bedingt durch die dann auftretenden hohen Streuverluste, deutlich einschränken würde. Die oben erwähnten Schriften beschreiben auch nur optisch anisotrope Polyester. Für eine Anwendung als optisch transparente Materialien für z. B. die optische Kommunikationstechnik sind isotrope, amorphe Polyester erforderlich.
Beschrieben sind auch isotrope Polyester, die 9,9-Bis[4-(2- hydroxyethoxy)phenyl]fluoren als Diolkomponente enthalten, siehe EP-A-0 653 451, EP-A-0 396 418, EP-A-0 380 027. Diese weisen jedoch releativ hohe optische Verluste bei den nachrichtentechnisch relevanten Wellenlängen und z. T. deutlich zu niedrige Glasübergangstemperaturen auf.
Der Erfindung lag somit die Aufgabe zu Grunde, solche Polyester auszuwählen, die aus möglichst einfachen Monomerbausteinen aufgebaut sind, die einerseits ausreichende Glasübergangstemperaturen > 180°C, eine niedrige optische Dämpfung bei 1,3 bzw. 1,5 μm und eine gute Veraxbeitbarkeit aufweisen, andererseits jedoch keine kristallinen, teil- oder flüssigkristallinen Phasen zeigen, und zu optischen Elementen verarbeitet werden können.
berraschenderweise konnte diese Aufgabe durch die Verwendung vollaromatischer Polyester, insbesondere von Copolyarylaten, gelöst werden. Dabei handelt es sich überwiegend um bekannte Ausgangskomponenten. Die Verfahren zur Synthese solcher Pc^ester, z. B. durch wasserentziehende Mittel, durch Umsetzung von Dicarbonsäuren mit Bisphenolen oder von Bisphenolaten mit Dicarbonsäuredichl riden, sind an sich bekannt.
Die erfindungsgemäß zum Einsatz kommenden vollaromatischen Polyester, die eine Glasübergangstemperatur von Tg > 180°C aufweisen, sind vorzugsweise vollaromatische Copolyarylate. Selbstverständlich können auch Homopolyarylate eingesetzt werden. Als Bausteine für die vollaromatischen Polyester kommen insbesondere die nachstehend genannten aromatischen Dicarbonsäuren und aromatischen Dihydroxyverbindungen in Frage.
Die gefundenen Copolyarylate werden vorzugsweise aus Gemischen aromatischer Dicarbonsäuren und aromatischen Dihydroxyverbindungen erhalten. Diese Polyarylate zeichnen sich durch optisch nahezu amorphe Eigenschaften, durch eine gute Löslichkeit in Lacklösemitteln, durch die niedrige optische Dämpfung bei 1,3 bzw. 1,5 μm sowie eine gute Filmbildung aus. Die Glasübergangstemperaturen d eser Copolyarylate liegen oberhalb 180°C.
Besonders geeignet für die erfindungsgemäßen optischen Elemente sind Dicarbonsäuren auf Basis folgender Strukturen
Figure imgf000006_0001
Figure imgf000007_0001
worin R, jeweils für sich, für Wasserstoff oder Fluor steht.
Als aromatische Dihydroxyverbindungen sind folgende bevorzugt:
Figure imgf000007_0002
Figure imgf000007_0003
Figure imgf000007_0004
R kann dabei unabhängig voneinander für H oder F stehen. Generell geeignet für die Herstellung der erfindungsgemä-ß zum Einsatz kommenden Polyester sind Derivate von Benzol, Napthalin, Biphenyl, Diphenylether, Diphenylsulfon und Diphenylmethan, jeweils mit 2 Hydroxy- oder Carboxyfunktionen, die ein oder mehrere Wasserstoffatome und/oder Fluoratome und/oder Methylgruppen und/oder Trifluorenethylgruppen als Substituenten aufweisen können.
Die erfindungsgemäß zum Einsatz kommenden Polyester haben zweckmäßigerweise ein Molekulargewicht im Bereich von 8.000 bis 250.000, vorzugsweise von 12.000 bis 120.000.
Die durch eine Polykondensationsreaktion hergestellten Copolyester besitzen Glasübergangstemperaturen von Tg > 180°C. Sie sind in gebräuchlichen Lacklösemitteln, wie Cyclohexanon, Ethoxyethylacetat und Methoxypropylacetat, gut löslich und durch Spin-coating oder Dip-coating zu transparenten Filmen oder Schichten verarbeitbar. Ihr Brechungsindex bei 633 nm liegt bei 1,4 bis 1,6, vorzugsweise im Bereich von 1,45 bis 1,57. Erfindungsgemäß können unter bestimmten Copolyesterzusammensetzungen amorphe, nichtkristalline Polymere erhalten werden, die bei 1,3 bzw. 1,5 μm nur wenig Streuung zeigen. Die optischen Verluste bei diesen Wellenlängen wurden zu 0,1 bis 0,5 dB/cm bestimmt.
Die Polykondensationsverfahren zur Herstellung von Polyestern sind zwar einschlägig bekannt, jedoch gelingt es insbesondere mit den genannten Copolyersterzusammensetzungen nichtkristalline, amorphe, nichtstreuende optische Materialien herzustellen.
Diese Copolyester sind zur Herstellung von Wellenleiterstrukturen, Linsen, Prismen, korrigierten "Linsensystemen, optischen Lichtleitfasern und Trägern für optische Schichten sowie für zahlreiche andere Zwecke geeignet. Die gefundenen, amorphen Copolyester können dadurch erhalten werden, daß Gemische aromatischer Dicarbonsäuren mit Gemischen aromatischer Dihydroxyverbindungen copolykondensiert werden. Insbesondere die vorstehend genannten Monomerbausteine ergeben nichtkristalline, amorphe Polymere. Die Brechzahl der beschriebenen Copolyester läßt sich durch Variation der Copolymerzusammensetzung einstellen, so daß die Brechzahl an bestimmte Erfordernisse, z. B. Substrat, Wellenleiterkonfiguration, Abstimmung Kern- und Mantelmaterial, gezielt angepaßt werden kann. Die Glasübergangstemperaturen der erfindungsgemäßen Copolyester liegen insbesondere im Bereich von 180 bis 270°C, besonders bevorzugt jedoch zwischen 180 und 220°C. Die beschriebenen Polyestermaterialien zeichnen sich durch sehr niedrige Verluste bei 1,3 bzw. 1,5 μm im Bereich von 0,1 bis 0,5 dB/cm aus.
Die leichte Verarbeitbarkeit der erfϊndungsgemäßen Materiahen ist dadurch gegeben, daß sie sich durch eine hohe Löslichkeit in typischen Lacklösmitteln, wie z. B. Cyclohexanon, Ethoxyethylacetat und Methoxypropylacetat, auszeichnen und somit durch Spin-coating oder Dip-coating zu optischen Schichten oder Filmen verarbeitet werden können.
Aus den beschriebenen Copolyestern sind High-solid-Lacke mit thixotroper Einstellung herstellbar, die eine Verarbeitung durch Siebdruck erlauben. Auf dieser Basis sind kostengünstig optische Chips mit nachfolgendem Formbildungsschrift herstellbar. Die erfindungsgemäßen Copolyester sind ferner durch Abform- und Prägetechnik sowie durch Spritzguß verarbeitbar.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele Beispiel 1
34,74 g LiBr werden in 600 ml Pyridin (absolut) unter leichtem Erwärmen gelöst. Zu dieser Lösung wird eine Lösung von 139,69 g Phosphorsäurediphenylesterchlorid in 50 ml Pyridin gegeben. Dazu wird ein Gemisch von 16,612 g Isophthalsäure und 16,612 g Terephthalsäure gelöst in 400 ml Pyridin gegeben. Es wird 20 min bei Raumtemperatur, danach 10 min bei 120°C gerührt. Innerhalb von 10 bis 15 min wird eine Lösung von 67,25 g 4,4'- Hexafluoroisopropylidenbisphenol in 250 ml Pyridin zugetropft und für drei Stunden bei 120°C gerührt. Der Polyester wird in Methanol gefällt, filtriert und mit Methanol gewaschen. Die Ausbeute beträgt 86 g (92,2 % d. Th.).
Der erhaltene Polyester besitzt eine Molmasse von 48.000 g/mol und eine Glasübergangstemperatur von 209°C. Aus Methoxypropylacetat werden durch Spin-coating amorphe, optisch isotrope Filme im μm-Bereich erhalten. An planaren Wellenleitern wird bei 1,55 μm eine optische Dämpfung von 0,44 dB/cm und ein Brechzahl bei 633 nm von 1,540 gemessen.
Beispiel 2
10 mmol 4,4'-Hexafluoroisopropylidenbisphenol und 60 mg
Benzyltriethylammoniumchlorid werden bei 5°C in 21,2 ml 1 molarer Natronlauge gelöst. Dazu werden 5 mmol Terephthalsäuredichlorid und 5 mmol Isophthalsäuredichlorid, gelöst in 23 ml Dichlormethan, unter starkem Rühren gegeben. Nach 40 min wird der erhaltene Polyester in schwach salzsaurem heißem Wasser ausgefällt. Das ausgefallene Produkt wird mit heißem Wasser gewaschen und getrocknet. Durch Lösen in THF und Fälle in Methanol wird der erhaltene Polyester gereinigt. Es werden 3,88 g Polyester isoliert (83,2 % d. Th.). Der erhaltene Polyester besitzt eine Molmasse von 107.220 g/mol und eine Glasübergangstemperatur von 225°C. Aus Methoxypropylacetat werden durch Spin-coating amorphe, optisch isotrope Filme im μm-Bereich erhalten. An planaren Wellenleitern wird bei 1,55 μm eine optische Dämpfung von 0,45 dB/cm und ein Brechzahl bei 633 nm von 1,540 gemessen.
Beispiel 3
12,5 mmol 4,4'-Hexafluoroisopropylidenbisphenol und 75,2 mg Benzyltriethylammoniumchlorid werden bei 5°C in 26,5 ml 1 molarer Natronlauge gelöst. Dazu werden 6,25 mmol Tetrafluoroterephthalsäuredichlorid und 6,25 mmol Tetrafluoroisophthalsäuredichlorid, gelöst in 30 ml Dichlormethan, unter starkem Rühren gegeben. Nach 40 min wird der erhaltene Polyester in schwach salzsaurem heißem Wasser gefällt. Das ausgefallene Produkt wird mit heißem Wasser gewaschen und getrocknet. Durch Lösen in THF und Fällen in Methanol wird der erhaltene Polyester gereinigt. Es werden 5,9 g Polyester isohert (87,7 % d. Th.). Der erhaltene Polyester besitzt eine Molmasse von 18.200 g/mol und ein Glasübergangstemperatur von 148°C. Aus Methoxypropylacetat werden durch Spin-coating amorphe, optisch isotrope Filme im μm-Bereich erhalten. An planarern Wellenleitern wird bei 1,55 μm eine optische Dämpfung von 0,32 dB/cm und eine Brechzahl bei 633 nm von 1,5139 gemessen.

Claims

Patentansprüche
1. Optische Elemente aus einem optisch isotropen Kunststoff, dadurch gekennzeichnet, daß der Kunststoff ein vollaromatischer Polyester mit einer Glasübergangstemperatur Tg > 180°C ist.
2. Optische Elemente nach Anspruch 1, dadurch gekennzeichnet, daß der Kunststoff ein vollaromatischer Copolyester ist.
3. Optische Elemente nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der vollaromatische Polyester wenigstens eine aromatische Carbonsäure der nachstehenden Formeln enthält,
Figure imgf000012_0001
Figure imgf000012_0002
worin R, jeweils unabhängig voneinander für H und F steht.
4. Optische Elemente nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der vollaromatische Polyester wenigstens ein aromatisches Polyol der nachstehenden Formeln
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0003
enthält, worin R, jeweils unabhängig voneinander, für H oder F steht.
5. Optische Elemente nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Glasübergangstemperatur Tg von 180 bis 270°C, vorzugsweise 180 bis 220°C.
6. Optische Elemente nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine optische Dämpfung von 0,1 bis 1 dB/cm, vorzugsweise 0,1 bis 0,5 dB/cm bei 1,3 bzw. 1,5 μm.
7. Optische Elemente nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen Brechungsindex von 1,4 bis 1,6, vorzugsweise 1,45 bis 1,57 bei 630 nm.
8. Optische Elemente nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der vollaromatische Polyester ein Molekulargewicht im Bereich von 8.000 bis 250.000 hat.
9. Optische Elemente nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß sie durch Spin-coating oder Dip-Coating des gelösten vollaromatischen Polyesters in einem geeigneten Lösungsmittel erhalten wurden.
10. Optische Elemente nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie durch Abformen- bzw. Prägetechniken aus dem gelösten vollaromatischen Polyester erhalten wurden.
11. Wellenleiterstrukturen, Linsen, Prismen, korrigierte Linsensysteme, optische Lichtleitphaser und Träger für optische Schichten sowie Klebstoffe für optische Komponenten aus einem vollaromatischen Polyester, wie in einem der Ansprüche 1 bis 10 definiert.
12. Lacke zur Herstellung optischer Elemente nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie den vollaromatischen Polyester gelöst in einem geeigneten Lösungsmittel enthalten.
PCT/EP1998/008575 1997-12-15 1998-12-15 Optische elemente WO1999031533A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/581,627 US6333821B1 (en) 1997-12-15 1998-12-15 Optical elements
EP98966431A EP1040373A1 (de) 1997-12-15 1998-12-15 Optische elemente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19755627A DE19755627A1 (de) 1997-12-15 1997-12-15 Optische Elemente
DE19755627.2 1997-12-15

Publications (1)

Publication Number Publication Date
WO1999031533A1 true WO1999031533A1 (de) 1999-06-24

Family

ID=7851927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008575 WO1999031533A1 (de) 1997-12-15 1998-12-15 Optische elemente

Country Status (4)

Country Link
US (1) US6333821B1 (de)
EP (1) EP1040373A1 (de)
DE (1) DE19755627A1 (de)
WO (1) WO1999031533A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345137B2 (en) * 2004-10-18 2008-03-18 3M Innovative Properties Company Modified copolyesters and optical films including modified copolyesters
US7239785B2 (en) * 2004-12-30 2007-07-03 Corning Incorporated Method of preventing optical fiber failure in high power application
JPWO2006106758A1 (ja) * 2005-03-30 2008-09-11 大日本印刷株式会社 偏光板
FR2957152B1 (fr) 2010-03-04 2012-08-03 Christian Dalloz Sunoptics Nouveau materiau composite a usage optique ainsi que son procede d'obtention

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824211A (en) * 1970-11-13 1974-07-16 W Howerton Polyesters of 4,4'-hexafluoroisopropylidene diphenol
EP0003294A1 (de) * 1978-01-24 1979-08-08 Bayer Ag Verwendung von aromatischen Polyestern für optische Linsen
EP0323561A2 (de) * 1987-11-24 1989-07-12 Hoechst Celanese Corporation Polyester aus Bis(2-(4-hydroxyphenyl)hexafluoroisopropyl)-diphenyl-ether

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477555A (en) 1981-08-01 1984-10-16 Ricoh Co., Ltd. Optical information recording medium
US4370466A (en) 1981-09-28 1983-01-25 E. I. Du Pont De Nemours And Company Optically anisotropic melt forming polyesters
JPS615986A (ja) 1984-06-20 1986-01-11 Mitsui Toatsu Chem Inc 光記録媒体
DE3429074C2 (de) 1984-08-07 1986-12-11 Simro AG, Meilen Brillengestell und Teile davon
JPH0664219B2 (ja) 1984-12-12 1994-08-22 住友化学工業株式会社 光通信用ケ−ブル
JPS61144738A (ja) 1984-12-18 1986-07-02 Matsushita Electric Ind Co Ltd 光デイスク用基板
US4664972A (en) 1986-04-23 1987-05-12 E. I. Du Pont De Nemours And Company Optically anisotropic melt forming aromatic copolyesters based on t-butylhydroquinone
DE3915734A1 (de) 1989-05-13 1990-11-22 Hoechst Ag Verwendung von amorphen polyaryletherketonen fuer optische systeme
DE3927498C2 (de) 1989-08-21 2002-01-17 Merck Patent Gmbh Polyamidester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyimiden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824211A (en) * 1970-11-13 1974-07-16 W Howerton Polyesters of 4,4'-hexafluoroisopropylidene diphenol
EP0003294A1 (de) * 1978-01-24 1979-08-08 Bayer Ag Verwendung von aromatischen Polyestern für optische Linsen
EP0323561A2 (de) * 1987-11-24 1989-07-12 Hoechst Celanese Corporation Polyester aus Bis(2-(4-hydroxyphenyl)hexafluoroisopropyl)-diphenyl-ether

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHITAKA TAKEZAWA AND SHUICHI OHARA: "Polymer Optical Fiber for Near Infrared Use", JOURNAL OF APPLIED POLYMER SCIENCE., vol. 49, NEW YORK US, pages 169 - 173, XP002101145 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer
WO2002036659A3 (en) * 2000-11-03 2003-02-13 Corning Inc Highly-halogenated low optical loss polyester
US6610813B2 (en) 2000-11-03 2003-08-26 Corning Incorporated Highly-halogenated low optical loss polymer

Also Published As

Publication number Publication date
US6333821B1 (en) 2001-12-25
EP1040373A1 (de) 2000-10-04
DE19755627A1 (de) 1999-07-01

Similar Documents

Publication Publication Date Title
EP0856025B1 (de) Cholesterische phasen bildende polymere und ihre verwendung
DE69207605T2 (de) Fluorpolymermischungen und anti-reflektionsbeschichtungen und beschichtete gegenstände
DE60108992T2 (de) Polycarbonatharz und optischer Gegenstand daraus
DE69834372T2 (de) Flüssigkristalline Polyester Zusammensetzungen und Verwendung
US5064697A (en) Substrate with a liquid crystal polymeric thin film and method for manufacturing the same
US5746949A (en) Polarizer films comprising aromatic liquid crystalline polymers comprising dichroic dyes in their main chains
DE69123386T2 (de) Optischer Rotator
KR910004906B1 (ko) 액정전방향족 폴리에스터필름 및 그의 제조방법
EP0958316A1 (de) Chiral nematische polyester
DE69410250T2 (de) Polymeren mit nichtlinear optische eigenschaften
DE4435992C2 (de) Optische Elemente aus Kunststoff
US6610813B2 (en) Highly-halogenated low optical loss polymer
WO1999031533A1 (de) Optische elemente
DE19860843B4 (de) Bis(dialkylmaleimid)-Derivat und daraus hergestelltes Polyetherimid für die optische Nachrichtentechnik (Nachrichtenübertragung)
DE19717371A1 (de) Propargyl-terminierte, nematische oder cholesterische Polymere
DE69833963T2 (de) Flüssigkristallines Polyesterharz-Material und ein daraus hergestellter optischer Film
KR101042055B1 (ko) 광학 이방성 화합물 및 이를 포함하는 수지 조성물
EP0915927A1 (de) Chiral nematische polycarbonate
JPH0296101A (ja) 偏光性フィルムの製造方法
EP0557950B1 (de) Polyetherketone und Polyethersulfone auf Basis von Phenylindan und ihre Verwendung für optische Systeme
JP3358168B2 (ja) デンドリマ光導波路
EP0471703A1 (de) Indanhaltige polyaryletherketone und verwendung von amorphen polyaryletherketonen für optische systeme
US5707566A (en) Process for preparing high performance polarizer films
TWI577736B (zh) 聚醯亞胺/二氧化鋯混成材料、其用途以及製備方法
KR100226442B1 (ko) 열 경화성 에티닐기를 갖는 불소 치환 폴리아릴렌 에테르, 그의제조방법 및 그를 이용한 광소자

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998966431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581627

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998966431

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998966431

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载