WO1999028990A1 - Antenne de type f inversee pour frequences multiples - Google Patents
Antenne de type f inversee pour frequences multiples Download PDFInfo
- Publication number
- WO1999028990A1 WO1999028990A1 PCT/JP1998/005400 JP9805400W WO9928990A1 WO 1999028990 A1 WO1999028990 A1 WO 1999028990A1 JP 9805400 W JP9805400 W JP 9805400W WO 9928990 A1 WO9928990 A1 WO 9928990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor
- antenna
- frequency
- radiation
- radiation conductor
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 349
- 230000005855 radiation Effects 0.000 claims description 174
- 229940081330 tena Drugs 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 239000003989 dielectric material Substances 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 241000255925 Diptera Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
- H01Q5/371—Branching current paths
Definitions
- the present invention relates to a multi-frequency inverted-F antenna mainly used as a built-in antenna of a small and thin wireless communication terminal such as a mobile phone, and more specifically, to receive multi-frequency band radio waves without increasing the size.
- a multi-frequency inverted F antenna that can be used. Background art
- FIG. 21 is a perspective view showing a general configuration of a conventional inverted F antenna.
- the inverted F antenna 2 10 has a radiating conductor 2 12 disposed opposite the grounding conductor 2 1 1, and the radiating conductor 2 1 2 is grounded via the grounding conductor 2 1 3 Conductor 2 1 1 2 Connected.
- a feed point 2 12 a is provided on the radiation conductor 2 1 2, and the feed point 2 12 a is connected to the ground conductor 2 1 1 by a coaxial feed line 2 14 from the power supply 2 15. Power is supplied through the provided mosquitoes 2 1 1a.
- the inverted F antenna 210 has a length L 1 of about 4/4 (a person is a wavelength). It is known to resonate at the following frequency.
- an inverted F antenna that can receive two or more different frequency bands together may be required. is there.
- this multi-frequency inverted F antenna 2 220 has two radiating conductors 2 2 2—1 and 2 2—2 of different sizes arranged in parallel with respect to a ground conductor 2 2 1.
- the two radiating conductors 2 2 2—1 and 2 2 2—1 2 are connected to the grounding conductor 2 2 1 via the grounding conductors 2 2 3—1 and 2 2 3—2, respectively, and on the radiating conductor 2 2—1
- the feed point 2 2—1a is fed from the power source 2 2 5 _ 1 by the coaxial feed line 2 4—1 and the feed point 2 2 2—2a on the radiating conductor 2 2—2 is It is configured so that power is supplied from the power supply 2 2 5-2 by the coaxial feed line 2 2 4-2.
- FIG. 23 is a perspective view showing another conventional multi-frequency inverted F antenna capable of receiving two or more different frequency bands together.
- this multi-frequency inverted-F antenna 230 is formed by stacking two radiating conductors 232-2-1 and 232-2-2 having different sizes with respect to a grounding conductor 231.
- the two radiating conductors 2 3 2—1 and 2 3 2—2 are connected to the grounding conductor 2 3 1 via the grounding conductors 2 3 3—1 and 2 3 3—2, respectively, and the radiating conductors 2 3 2 —
- the mounting area and the mounting volume are larger than those of the conventional single frequency inverted F antenna.
- Small and thin wireless terminals that accommodate frequency inverted F antennas There was a problem that it would be an obstacle to type. Disclosure of the invention
- an object of the present invention is to provide a multi-frequency inverted F antenna capable of receiving radio waves in multi-frequency bands without increasing the size.
- the invention according to claim 1 further comprising: a grounding conductor, a short-circuiting plate implanted in the grounding conductor, one end connected to the short-circuiting plate, and a cutout portion therein.
- a first radiating conductor arranged to face the short-circuit plate; and a second radiator formed inside the cutout portion of the first radiating conductor and arranged to face the short-circuit plate.
- the invention according to claim 2 is the invention according to claim 1, wherein the first radiating conductor includes a feeding point connecting portion that connects a feeding point between the cutout portion and the short-circuit plate. It is characterized by.
- the invention according to claim 3 is the invention according to claim 1, wherein the second radiating conductor is formed integrally with the first radiating conductor.
- the invention according to claim 4 is the invention according to claim 1, wherein the second radiation conductor has a single protrusion, and the shape of the first radiation conductor and the second radiation conductor It operates in two frequency bands depending on the shape of.
- the invention according to claim 5 is the invention according to claim 4, wherein the first space between the first radiation conductor and the ground conductor, and the second space between the second radiation conductor and the ground conductor The second interval between them is set to be different from each other.
- the invention according to claim 6 is the invention according to claim 4, wherein at least between the first radiation conductor and the ground conductor and between the second radiation conductor and the ground conductor.
- a dielectric is disposed on one side, and a first dielectric constant between the first radiation conductor and the ground conductor, and a second dielectric constant between the second radiation conductor and the ground conductor It is characterized by being different.
- the invention according to claim 7 is the invention according to claim 1, wherein the second radiation conductor has a plurality of protrusions, and the shape of the first radiation conductor and the second radiation conductor It operates in a multi-frequency band depending on the shape of.
- the invention according to claim 8 is the invention according to claim 7, wherein the first gap between the first radiating conductor and the grounding conductor, and each of the protrusions of the second radiating conductor and The plurality of second intervals between the ground conductor and the ground conductor are set to different distances.
- the power supply point is provided at a center of the power supply point connection portion in the width direction of the first radiation conductor.
- the invention according to claim 12 is the invention according to claim 1, wherein the short-circuit plate is formed to have the same length as the width direction of the first radiation conductor.
- the short-circuit plate is formed to have a length shorter than a length of the first radiation conductor in a width direction, and a center of the short-circuit plate is the first radiation conductor.
- the radiating conductor is characterized in that the radiating conductor is offset from the center in the width direction.
- FIG. 1 is a perspective view showing a multi-frequency inverted F antenna according to a first embodiment of the present invention.
- FIG. 2 is a characteristic diagram showing frequency characteristics of the multi-frequency inverted F antenna 10 shown in FIG.
- FIG. 4 is a diagram showing a coordinate system for analyzing the radiation pattern of the multi-frequency inverted F antenna 300 shown in FIG.
- FIG. 5 is a characteristic diagram showing reflection characteristics at an antenna feed point when the characteristics of the multi-frequency inverted F antenna 300 shown in FIG. 3 are analyzed using electromagnetic field analysis (moment method).
- FIG. 6 is a radiation pattern diagram showing an analysis result of a radiation pattern (X-Y plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 800 MHz band.
- FIG. 7 is a radiation pattern diagram showing an analysis result of a radiation pattern (XZ plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 800 MHz band.
- FIG. 8 is a radiation pattern diagram showing an analysis result of a radiation pattern (YZ plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 800 MHz band.
- FIG. 9 is a radiation pattern diagram showing an analysis result of a radiation pattern (XY plane in FIG. 4)
- FIG. 10 is a radiation pattern diagram showing an analysis result of a radiation pattern (X-Z plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 1.9 GHz band.
- FIG. 11 is a radiation pattern diagram showing an analysis result of a radiation pattern (YZ plane in FIG. 4) in the 1.9 GHz band of the multi-frequency inverted F antenna 300 shown in FIG.
- FIG. 12 is a perspective view showing a multi-frequency inverted F antenna according to a second embodiment of the present invention.
- FIG. 13 is a perspective view showing a multi-frequency inverted F antenna according to a third embodiment of the present invention.
- FIG. 14 is a perspective view showing a multi-frequency inverted F antenna according to a fourth embodiment of the present invention.
- FIG. 15 is a perspective view showing a fifth embodiment of the multi-frequency inverted F antenna according to the present invention.
- FIG. 16 is a sectional view taken along the line AA (FIG. 16 (a)) and a sectional view taken along the line BB (FIG. 16 (b)) of the multi-frequency inverted F antenna shown in FIG.
- FIG. 17 shows that the second radiation conductor 15 2 _ 2 is provided with a lower portion 15 3 c instead of the rising portion 15 3 a of the second radiating conductor 15 2 _ 2 in the configuration shown in FIG.
- A-A sectional view (Fig. 17 (a)) and B-B corresponding to Fig. 16 configured so that the distance Hb between the conductor 152-2 and the ground conductor 15 1 can be adjusted It is a sectional view (Fig. 18 (b)).
- FIG. 18 is a cross-sectional view showing a sixth embodiment of the multi-frequency inverted F antenna configured by inserting a dielectric between the ground conductor, the first radiation conductor, and the second radiation conductor.
- FIG. 19 is a perspective view showing a multi-frequency inverted F antenna according to a seventh embodiment of the present invention.
- FIG. 20 is a perspective view showing an eighth embodiment of the multi-frequency inverted F antenna according to the present invention.
- FIG. 21 is a perspective view showing a general configuration of a conventional inverted F antenna.
- FIG. 22 is a perspective view showing a conventional multi-frequency inverted F antenna capable of receiving two or more different frequency bands together.
- FIG. 23 is a perspective view showing another conventional multi-frequency inverted F antenna capable of receiving two or more different frequency bands together.
- FIG. 1 is a perspective view showing a multi-frequency inverted F antenna according to a first embodiment of the present invention.
- this multi-frequency inverted-F antenna 10 has one end connected to a short-circuit plate 13 implanted in a ground conductor 11 and cut out into a radiation conductor 12 provided with a feed point 12 a.
- a first radiation conductor 12-1 and a second radiation conductor 12-2 resonating in different frequency bands are formed on the radiation conductor 12 respectively.
- Two different frequencies a first frequency band determined by the shape of the first radiating conductor 12-1 and a second frequency band determined by the shape of the second radiating conductor 12-2 Enables reception of radio waves in several bands. It is configured as follows.
- the first radiation conductor 1 2 — 1 having a resonance length LA in FIG. 1 a second radiation conductor 12-2 having a resonance length of LB is formed in FIG.
- One end of the radiating conductor 12 is connected to the ground conductor 11 via a short-circuit plate 13, and a single feed point 12 a of the radiating conductor 12 is coaxially connected to the power supply 15. Power is supplied through the hole 1 la provided in the ground conductor 11 by the power supply line 14.
- the multi-frequency inverted F antenna 10 resonates in the first frequency band where the length LA is about / 4 (or the wavelength) due to the first radiation conductor 12-1.
- the second radiating conductor 12-2 resonates in the second frequency band where the length LB is about human / 4 (human is the wavelength).
- this multi-frequency inverse F antenna The antenna 10 can receive radio waves of two frequency bands of the first frequency band and the second frequency band without increasing both the mounting area and the mounting volume.
- the multi-frequency inverted F antenna 10 shown in FIG. 1 is a conventional single-frequency inverted F antenna that resonates in the first frequency band where the length LA is about human / 4 (human is the wavelength) in terms of the mounting area.
- F is the same as the mounting area of the antenna, and the conventional single-frequency inverse F that resonates in the first frequency band where the length LA is approximately ⁇ / 4 (where ⁇ is the wavelength) even at the mounting height (mounting volume) It is equivalent to the mounting height (mounting volume) of the antenna. Therefore, compared to the conventional multi-frequency inverted F antenna shown in FIGS. 22 and 23, a multi-frequency inverted F antenna that is smaller and thinner can be realized. That is, the multi-frequency inverted F antenna 10 shown in FIG. 1 has a new mounting area and a new mounting volume for resonating in the second frequency band having a length LB of about ⁇ / 4 ( ⁇ is a wavelength). Requires no increase.
- FIG. 2 is a characteristic diagram showing frequency characteristics of the multi-frequency inverted F antenna 10 shown in FIG.
- the vertical axis represents the reflection coefficient (dB) at the feeding point 12a of the multi-frequency inverted F antenna 10, and the horizontal axis represents the frequency (Hz).
- this multi-frequency inverted F antenna 10 has two steep resonance points at the frequency A and the frequency B.
- the frequency A has a resonance length of the length LA.
- the frequency B is determined by the shape of the second radiation conductor 12-1 having a resonance length of LB.
- the multi-frequency inverted F antenna 10 shown in FIG. 1 is determined by the first frequency band determined by the shape of the first radiation conductor 12-1 and the shape of the second radiation conductor 12-2. It can be seen that it becomes possible to receive radio waves in two frequency bands of the second frequency band.
- FIG. 3 is a perspective view showing a multi-frequency inverted F antenna 30 configured by giving specific dimensions of the multi-frequency inverted F antenna 10 shown in FIG.
- a first U-shape having an outer width of 40 mm, an inner width of 25 mm, and a height of 70 mm connected to a feed point connection portion of 10 mm in width is formed.
- a second radiating conductor 32-2 having a rectangular shape of 20 mm x 30 mm connected to the radiating conductor 32-1 and the feed point connecting portion having a width of 10 mm is formed.
- the first radiating conductor 32-1 having a substantially U-shape having an outer width of 40 mm, an inner width of 25 mm, and a height of 70 mm connected to a feed point connection portion having a width of 10 mm is A first inverted-F antenna that resonates in the first frequency band, and is connected to a feed point connection with a width of 10 mm.
- the second radiating conductor 32-2 having a rectangular shape of 20 mm X 30 mm forms a second inverted-F antenna that resonates in a second frequency band.
- the feed point connecting portion having a width of 10 mm has a function of matching the first inverted F antenna and the second inverted F antenna.
- a single feed point 3 2a of the radiation conductor 32 is provided with a coaxial feed line from the power supply 35.
- the multi-frequency inverted F antenna 30 shown in Fig. 3 has two systems: GSM (Global System for Mobile Communication) and PHS (Personal Handyphone System). It is assumed that the mobile phone has a built-in antenna as a dual-mode terminal capable of transmitting and receiving signals.
- GSM Global System for Mobile Communication
- PHS Personal Handyphone System
- the first inverted F antenna and the second inverted F antenna described above use the GSM radio frequency 80 OMHz band and PHS radio frequency
- a multi-frequency inverted F antenna capable of receiving both 109 GHz bands has been realized.
- FIG. 4 is a diagram showing a coordinate system for analyzing the radiation pattern of the multi-frequency inverted F antenna 300 shown in FIG.
- the coordinate system for analyzing the radiation pattern of the multi-frequency inverted F antenna 300 shown in FIG. 3 is such that the direction perpendicular to the plane of the radiation conductor 302 is the Z axis, and the long axis direction of the radiation conductor 302 is The X axis is set and the short axis direction is set as Y.
- FIG. 5 is a characteristic diagram showing reflection characteristics at the antenna feed point when the characteristics of the multi-frequency inverted F antenna 300 shown in FIG. 3 are analyzed using electromagnetic field analysis (moment method).
- the vertical axis indicates the reflection characteristic at the antenna feeding point, that is, the S parameter (S11), and the horizontal axis indicates the frequency (GHz).
- the multi-frequency inverted F antenna 300 shown in FIG. 3 realizes a multi-frequency inverted F antenna capable of receiving both the GSM radio frequency of 80 OMHz band and the PHS radio frequency of 109 GHz band. You can see that there is.
- FIG. 6 is a radiation pattern diagram showing an analysis result of a radiation pattern (XY plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 80 OMHz band.
- FIG. 7 is a radiation pattern diagram showing an analysis result of a radiation pattern (X-Z plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 80 MHz band.
- FIG. 8 is a radiation pattern diagram showing an analysis result of a radiation pattern (YZ plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 80 OMHz band.
- the multi-frequency inverted F antenna 300 shown in FIG. 3 has a slight deterioration in the radiation pattern on the XZ plane and the radiation pattern on the YZ plane in the 80 OMHz band.
- the directivity is almost the same as the one-sided short-type patch. It can be seen that it has the same characteristics as the 800 MHz band single frequency inverted F antenna.
- FIG. 9 is a radiation pattern diagram showing an analysis result of a radiation pattern (XY plane in FIG. 4) in the 1.9 GHz band of the multi-frequency inverted F antenna 300 shown in FIG.
- FIG. 10 is a radiation pattern diagram showing an analysis result of a radiation pattern (X-Z plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 1.9 GHz band.
- FIG. 11 is a radiation pattern diagram showing an analysis result of a radiation pattern (YZ plane in FIG. 4) of the multi-frequency inverted F antenna 300 shown in FIG. 3 in the 1.9 GHz band.
- the multi-frequency inverted F antenna 300 shown in FIG. 3 has a slight radiation pattern in the X—Z plane and the radiation pattern in the YZ plane in the 1.9 GHz band. Degradation occurs, but it has almost the same directivity as a single-sided short-circuited patch, and it can be seen that it has the same characteristics as a 1.9 GHz band single-frequency inverted F antenna.
- the multi-frequency inverted F antenna 300 shown in FIG. 3 a small and thin multi-frequency inverted F antenna can be realized, and the multi-frequency inverted F antenna that can be adopted as a built-in antenna of various dual mode terminals.
- An antenna can be provided.
- FIG. 12 is a perspective view showing a multi-frequency inverted F antenna according to a second embodiment of the present invention.
- this multi-frequency inverted F antenna 120 has a radiating conductor having one end connected to a short-circuiting plate 123 implanted in a ground conductor 121 and a feed point 122a provided.
- a first radiation conductor 12-1 and an inverted L-shaped second radiation conductor 122-2 are formed on the radiation conductor 122, thereby forming a second radiation conductor 122-2.
- Radio waves in two different frequency bands can be received, the first frequency band determined by the shape of one radiation conductor 122-1 and the second frequency band determined by the shape of the second radiation conductor 122-2 It is configured to be.
- a single feed point 122a of the radiation conductor 122 is connected to a grounding conductor by a coaxial feed line 124 from a power supply 125. Power is supplied through a hole 1 2 1a provided in the body 1 2 1.
- the multi-frequency inverted F antenna 120 shown in FIG. 12 is different from the multi-frequency inverted F antenna 10 shown in FIG. This is different from the second radiation conductor 12-2 of the multi-frequency inverted F antenna 10 shown in FIG.
- the second radiation conductor 12-2 of the multi-frequency inverted F antenna 10 shown in FIG. 1 is formed in a rectangular shape
- the second radiating conductor 1 2 2-2 of the inverted F antenna 120 is formed in an inverted L-shape.
- the shape of the cutout portion 122 b of the antenna 120 is also different from the shape of the cutout portion 12 b of the multi-frequency inverted F antenna 10 shown in FIG.
- the multi-frequency inverted F antenna 120 resonates in the first frequency band in which the length LA is about / 4 (or wavelength) due to the first radiation conductor 122 1
- the second radiation conductor 1 2 2-2 resonates in the second frequency band where the length LB is about 1/4 (or the wavelength).
- the radio waves of the two frequency bands of the first frequency band and the second frequency band can be obtained without increasing both the mounting area and the mounting volume. Can be received.
- this multi-frequency inverted F antenna 130 is a radiation antenna having one end connected to a short-circuit plate 133 implanted in a ground conductor 131 and a feed point 132 a.
- the first radiation conductor 132-2 and the second radiation conductor 132 including the circular shape are formed on the radiation conductor 1332. 2 to form a first frequency band determined by the shape of the first radiating conductor 132-1 and a second frequency determined by the shape of the second radiating conductor 132-2 It is configured to be able to receive radio waves in two different frequency bands.
- a single feed point 1 32 a of the radiating conductor 13 2 is connected to a moss 13 1 a provided on the ground conductor 13 1 by a coaxial feed line 13 4 from a power supply 13 5. Powered through. Also in the multi-frequency inverted F antenna 130 of the third embodiment, the radio waves in the two frequency bands of the first frequency band and the second frequency band can be transmitted without increasing the mounting area and the mounting volume. It becomes possible to receive.
- the shapes of the second radiation conductors 12-2, 32-2, 122-2, 132-2 formed on the radiation conductors 12, 122, 132 are as follows.
- the shape is not limited to a shape including a circular shape having a simple curve, and any shape can be adopted.
- the shapes of the first radiation conductors 12-1, 122-1, 132-1 formed on the radiation conductors 12, 122, 132 are also limited to the shapes shown in the first to third embodiments. Instead, for example, any shape including a curve can be adopted.
- the first radiating conductors 12-1, 122-1, 132-1 and the second radiating conductors 12-2, 122-2, 132-2 are replaced by It was configured to be parallel to the ground conductors 11, 121, and 131, but is not limited to this.
- the first radiating conductors 12-1, 122-1, 132-1, and the second radiating conductors 12 2, 122-2, 132-2 need not be parallel to the ground conductors 11, 121, 131.
- FIG. 14 is a perspective view showing a multi-frequency inverted F antenna according to a fourth embodiment of the present invention.
- this multi-frequency inverted-F antenna 140 has one end connected to a short-circuit plate 143 implanted in a ground conductor 141, and a cutout 142b formed in a radiation conductor 142 provided with a feed point 142a.
- the first radiating conductor 142-1 and the second radiating conductor 142-2 and the second radiating conductor 142-3 are formed on the radiating conductor 142, thereby forming the first radiating conductor 142-1.
- the first frequency band determined by the shape of the second radiation band and the third frequency determined by the shape of the third radiation conductor 142-3, and the second frequency band determined by the shape of the second radiation conductor 142_2 It is configured to be able to receive radio waves in three different frequency bands. Further, power is supplied to a single feed point 142 a of the radiation conductor 142 through a hole 141 a provided in the ground conductor 141 by a coaxial feed line 144 from a power supply 145.
- the three frequency bands of the first frequency band, the second frequency band, and the third frequency band can be used without increasing both the mounting area and the mounting volume. It becomes possible to receive radio waves in the frequency band.
- the shapes of 142-2 and 142-3 are not limited to the rectangular shape shown in FIG. 14, and any shape can be adopted.
- the shape is not limited to the shape shown in FIG. 14, and any shape can be adopted.
- the cutout portion 142b is provided on the radiation conductor 142 to form the first to third radiation conductors 142-1, 142-2, and 142-3.
- a rectangular cutout or the like is formed on the radiating conductor 142, and thereafter, the second radiating conductor 142-2 and the third radiating conductor 142-3 are connected and formed in the cutout. May be configured.
- the first to third radiation conductors 142-1, 142-2, and 142-3 are formed in parallel with the ground conductor 141.
- the first to third radiation conductors 142-1, 142-2, 142-13 need not be parallel to the ground conductor 141.
- the first, second, and third frequency bands are configured to be able to receive radio waves. By forming, it can be configured to be able to receive radio waves in multiple frequency bands, such as four or more, four or five frequencies.
- a multi-frequency inverted F antenna capable of receiving radio waves in four or more multi-frequency bands without increasing both the mounting area and the mounting volume can be realized.
- FIG. 15 is a perspective view showing a fifth embodiment of the multi-frequency inverted F antenna according to the present invention.
- FIG. 16 is a sectional view taken along the line AA (FIG. 16 (a)) and a sectional view taken along the line BB (FIG. 16 (b)) of the multi-frequency inverted F antenna shown in FIG.
- the multi-frequency inverted F antenna 150 is configured such that the height of the rising portion 153b provided on the second radiation conductor 152-2 is changed so that the second radiation conductor 152-2 and the ground conductor 151 are formed.
- the distance H b By adjusting the distance H b, the bandwidth of the second frequency band determined by the shape of the second radiation conductor 152-2 can be varied. Cut.
- the distance Hb between the second radiation conductor 152-2 and the ground conductor 151 is related to the bandwidth of the second frequency band determined by the shape of the second radiation conductor 152-2. Therefore, for example, by increasing the distance Hb between the second radiation conductor 152_2 and the ground conductor 151, the bandwidth of the second frequency band determined by the shape of the second radiation conductor 152-2 is increased. By reducing the distance Hb between the second radiation conductor 152-2 and the ground conductor 151, the bandwidth of the second frequency band determined by the shape of the second radiation conductor 152-2 Can be narrowed.
- the height is determined by the shape of the first radiation conductor 152-1.
- the bandwidth of the first frequency band can be widened, and the distance Ha between the first radiating conductor 152-1 and the ground conductor 151 can be reduced so that the shape of the first radiating conductor 152-1 can be increased.
- the bandwidth of the determined first frequency band can be narrowed.
- FIG. 17 shows that, in the configuration shown in FIG. 15, the second radiation conductor 152-2 and the ground conductor 151 are formed by providing the lower part 153c instead of the upper part 153a of the second radiation conductor 152-2.
- FIG. 17 is a sectional view taken along the line A—A (FIG. 17 (a)) and a sectional view taken along the line B—B (FIG. 18 (b)) corresponding to FIG. 16 configured so that the distance Hb can be adjusted.
- the second frequency band determined by the shape of the second radiating conductor 152-2 is increased.
- the bandwidth can be widened, and the distance Hb between the second radiating conductor 152-2 and the ground conductor 151 can be reduced, so that the second radiating conductor 152 -The bandwidth of the second frequency band determined by the shape of (2) can be narrowed.
- the height of the short-circuiting plate 153 a the higher the distance Ha between the first radiating conductor 152- 1 and the ground conductor 151 is determined by the first radiation conductor 152-1 shape And the distance Ha between the first radiating conductor 152-1 and the ground conductor 151 can be reduced, thereby reducing the shape of the first radiating conductor 152-1.
- the bandwidth of the first frequency band determined by the above can be narrowed.
- the bandwidth of the second frequency band is wider than the bandwidth of the first frequency band determined by the shape of the first radiation conductor 12-1, but by adopting the configuration of FIG.
- the bandwidth of the frequency band and the bandwidth of the first frequency band can be set almost in the same manner.
- the volume of the multi-frequency inverted F antenna 150 increases by the height of the rising portion 153b provided in the second radiation conductor 152-2. In the configuration shown in (1), the volume does not increase.
- the ground conductors 11, 121, 131, 141, 151 and the first radiation conductors 12-1, 122-1, 131-1, 14 1-11 Insert a dielectric between the 151-1 and the second radiating conductor 12-2, 122-2, 131-2, 141-2, and 151-2 to change the resonance frequency and its bandwidth. Can be.
- the ground conductors 11, 121, 131, 141, 151 and the first radiating conductors 12-1, 122-1, 131-1, 141-1, 151-1, and the second radiating conductors 12-2, 122 — 2, 131— 2, 141—2, 151—2 By increasing the dielectric constant of the inserted dielectric, the resonance frequency can be lowered and the bandwidth can be narrowed.
- the ground conductors 11, 121, 131, 141, 151 and the first radiating conductors 12-1, 122-1, 131-1, 141-1, 151-1, and the second radiating conductor 12-2, 122—2, 131—2, 141- Reducing the dielectric constant of the dielectric material inserted between 2 s 15 1 and 2 can increase the resonance frequency and increase the bandwidth.
- FIG. 18 is a cross-sectional view showing a sixth embodiment of the multi-frequency inverted F antenna configured by inserting a dielectric between the ground conductor, the first radiating conductor, and the second radiating conductor.
- FIG. 18 (a) shows the ground conductor 11, the first radiating conductor 12-1, and the first radiating conductor 12-1 in the multi-frequency inverted F antenna 10 of the first embodiment shown in FIG. 1.
- 2 shows a multi-frequency inverted-F antenna in which dielectrics having different dielectric constants are inserted between the radiation conductors 1 2 and 2 of FIG.
- a first dielectric 17 _ 1 having a first dielectric constant is inserted between the ground conductor 11 and the first radiation conductor 12-1.
- a second dielectric 17-2 having a second dielectric constant is inserted between 11 and the second radiation conductor 12-2.
- the first dielectric constant of the first dielectric 17-1 inserted between the ground conductor 11 and the first radiating conductor 12-1 and the ground conductor 11 and the second radiation By appropriately selecting the second dielectric constant of the second dielectric 17-2 inserted between the conductor 12-2 and the conductor 12, the resonance frequency and the bandwidth of this multi-frequency inverted F antenna are selected. Can be varied.
- the bandwidth of the first frequency band and the second frequency band are reduced. Can be set in almost the same manner.
- FIG. 18 (b) shows the ground conductor 14 1 and the first radiating conductor 14 2 -1 in the multi-frequency inverted F antenna 140 of the fourth embodiment shown in FIG. 3 shows a multi-frequency inverted-F antenna in which dielectrics having different dielectric constants are inserted between a second radiation conductor 142-2 and a third radiation conductor 142-3.
- a first dielectric material 147-1 having a first dielectric constant is inserted between the ground conductor 141 and the first radiation conductor 142-1—
- a second dielectric 1 4 7 1 2 having a second dielectric constant is inserted between the ground conductor 1 4 1 and the second radiation conductor 1 4 2-2, and the ground conductor 1 4 1 and the 3 Between the radiation conductors 1 4 2— 3
- a third dielectric 147-3 having a dielectric constant is introduced.
- the first dielectric constant of the first dielectric 147-1 inserted between the ground conductor 141 and the first radiating conductor 142-1 and the ground dielectric 141 and the second radiating conductor 142-1
- the second dielectric 147-2 inserted between the second dielectric 147-2 and the ground conductor 141 and the third radiating conductor 142-3.
- each of the dielectrics 17-1, 17-2, 147-1, 147-2, 147-3 has a dielectric constant. May be the same, or at least one of them may be removed to obtain the dielectric constant of air.
- the multi-frequency inverted F antenna is inserted by inserting the dielectrics 17-1, 17-2, 147-1, 147-2, and 147-3.
- the thickness (volume) of the antenna can be further reduced, and each resonance frequency and its bandwidth can be individually adjusted.
- 143, 153a are configured to be connected over the entire width of the radiation conductors 12, 122, 132, 142, 152, but the short-circuit plates 13, 123, 133, 143,
- FIG. 19 is a perspective view showing a multi-frequency inverted F antenna according to a seventh embodiment of the present invention.
- a short-circuit plate 193 that is partially cut and shorter than the radiation conductor 192 is implanted in a ground conductor 191. Then, the radiation conductor 192 provided with the feeding point 192a is connected to the short-circuit plate 193.
- the radiating conductor 192 has a cutout 192b formed thereon, whereby the first radiating conductor 192-1 and the second radiating conductor 192— are formed on the radiating conductor 192. Formed two. As a result, two different frequency bands, the first frequency band determined by the shape of the first radiation conductor 192-1 and the second frequency band determined by the shape of the second radiation conductor 192-2, are obtained. Radio waves can be received. Further, a single feed point 192a of the radiation conductor 192 is supplied with power through a hole 191a provided in the ground conductor 191 by a coaxial feed line 194 from a power supply 195.
- the effective resonance length of the first radiating conductor 192-1 and the second radiating conductor 192-2 is changed, thereby making the multi-frequency inverted F antenna 190 more compact. Can be.
- the power supply points 12a, 122a are connected to the power supply points 12a, 122a,
- 132a, 142a, 152a, 192a are provided at the center of radiating conductors 12, 122, 132, 142, 152, 192, but feed points 12a, 122a, 132a,
- FIG. 20 is a perspective view showing an eighth embodiment of the multi-frequency inverted F antenna according to the present invention.
- this multi-frequency inverted F antenna 200 is formed by forming a cutout 202b in a radiation conductor 202 having one end connected to a short-circuit plate 203 implanted in a ground conductor 201.
- a first radiating conductor 202-1 and a second radiating conductor 202-2 are formed on the first radiating conductor 202-1 and the second radiating conductor 202-2, thereby forming a first frequency band and a second radiating conductor determined by the shape of the first radiating conductor 202-1. It is configured to be able to receive radio waves in two different frequency bands with the second frequency band determined by the shape of the two radiation conductors 202-2.
- the radiating conductor 202 is provided with a feed point 202 a at a position deviated by L from the center thereof.
- the feed point 202 a is provided on the ground conductor 201 by a coaxial feed line 204 from a power supply 205. Power is supplied through the hole 201a.
- the present invention is mainly used as a built-in antenna of a small and thin wireless communication terminal such as a mobile phone, and is capable of receiving a multi-frequency band radio wave without increasing its size. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Waveguide Aerials (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Description
明 細 書
多周波逆 Fアンテナ 技術分野
この発明は、 主として携帯電話機などの小型、 薄型の無線通信端末の内蔵アン テナとして使用される多周波逆 Fアンテナに関し、 詳しくは、 形状を大型化する ことなく多周波帯の電波を受信することができるようにした多周波逆 Fアンテナ に関する。 背景技術
一般に、 逆 Fアンテナは、 携帯電話機に代表される小型、 薄型の無線端末の内 臓アンテナとして優れた特性を有している。
図 2 1は、 従来の逆 Fアンテナの一般的構成を示す斜視図である。
図 2 1において、 この逆 Fアンテナ 2 1 0は、 接地導体 2 1 1に対向して放射 導体 2 1 2が配設され、 この放射導体 2 1 2は、 接地導体 2 1 3を介して接地導 体 2 1 1 2接続されている。
また、 放射導体 2 1 2上に給電点 2 1 2 aが設けられ、 この給電点 2 1 2 aに は、 給電源 2 1 5からの同軸給電線 2 1 4により、 接地導体 2 1 1に設けられた 孑し 2 1 1 aを通して給電される。
ここで、 放射導体 2 1 2の長さが図 2 1に示すように L 1であるとすると、 こ の逆 Fアンテナ 2 1 0は、 長さ L 1が約え / 4 (人は波長) となる周波数で共振 することが知られている。
ところで、 この種の無線端末においては、 例えば、 2以上のシステムに適用す ることができるようにするために、 異なる 2以上の周波数帯域を共に受信可能に した逆 Fアンテナが要求される場合がある。
逆 Fアンテナを用いて、 異なる 2以上の周波数帯域を共に受信可能にする従来 の構成としては、 図 2 2若しくは図 2 3に示す構成が知られている。
図 2 2は、 異なる 2以上の周波数帯域を共に受信可能にした従来の多周波逆 F
アンテナを示す斜視図である。
図 2 2において、 この多周波逆 Fアンテナ 2 2 0は、 接地導体 2 2 1に対して 大きさの異なる 2つの放射導体 2 2 2— 1および 2 2 2— 2を並列配置し、 これ ら 2つの放射導体 2 2 2— 1および 2 2 2一 2をそれぞれ接地導体 2 2 3 - 1 , 2 2 3— 2を介して接地導体 2 2 1に接続し、 放射導体 2 2 2— 1上の給電点 2 2 2— 1 aには給電源 2 2 5 _ 1から同軸給電線 2 2 4— 1により給電し、 放射 導体 2 2 2— 2上の給電点 2 2 2— 2 aには給電源 2 2 5— 2から同軸給電線 2 2 4— 2により給電するように構成されている。
すなわち、 図 2 2に示した多周波逆 Fアンテナ 2 2 0においては、 それそれ異 なる周波数帯域で共振する 2つの単周波逆 Fアンテナを隣接して配置した構成に なり、 この結果、 この 2つの単周波逆 Fアンテナの配置のために実装面積が大き くなるという問題がある。
図 2 3は、 異なる 2以上の周波数帯域を共に受信可能にした従来の他の多周波 逆 Fアンテナを示す斜視図である。
図 2 3 2おいて、 この多周波逆 Fアンテナ 2 3 0は、 接地導体 2 3 1に対して 大きさの異なる 2つの放射導体 2 3 2— 1および 2 3 2— 2を積み重ねて配置し、 これら 2つの放射導体 2 3 2— 1および 2 3 2— 2をそれそれ接地導体 2 3 3— 1、 2 3 3— 2を介して接地導体 2 3 1に接続し、 放射導体 2 3 2— 1上の給電 点 2 3 2— 1 aには給電源 2 3 5— 1から同軸給電線 2 3 4— 1により給電し、 放射導体 2 3 2一 2上の給電点 2 3 2 - 2 aには給電源 2 3 5— 2から同軸給電 線 2 3 4— 2により給電するように構成されている。
すなわち、 図 2 3に示した構成においては、 それぞれ異なる周波数帯域で共振 する 2つの単周波逆 Fアンテナが積み重ねられて配置された構成になり、 この結 果、 この 2つの単周波逆 Fアンテナを積み重ねて配置するための実装部分の高さ が高くなり、 その実装体積も大きくなるという問題がある。
このように、 従来の異なる 2以上の周波数帯域を共に受信可能にした多周波逆 Fアンテナにおいては、 従来の単周波逆 Fアンテナに比較してその実装面積、 実 装体積が大きくなり、 この多周波逆 Fアンテナを収容する無線端末の小型化、 薄
型化の障害になるという問題があった。 発明の開示
そこで、 この発明は、 形状を大型化することなく多周波帯の電波を受信するこ とができるようにした多周波逆 Fアンテナを提供することを目的とする。
上記目的を達成するため、 請求項 1記載の発明は、 接地導体と、 前記接地導体 に植設される短絡板と、 前記短絡板に一端が接続され、 その内部に切取部を有し、 前記短絡板に対向して配置される第 1の放射導体と、 前記第 1の放射導体の前記 切取部内部に形成され、 前記短絡板に対向して配置される第 2の放射体とを具備 することを特徴とする。
また、 請求項 2記載の発明は、 請求項 1記載の発明において、 前記第 1の放射 導体は、 前記切取部と前記短絡板との間に給電点を接続する給電点接続部を具備 することを特徴とする。
また、 請求項 3記載の発明は、 請求項 1記載の発明において、 前記第 2の放射 導体は、 前記第 1の放射導体と一体に形成されることを特徴とする。
また、 請求項 4記載の発明は、 請求項 1記載の発明において、 前記第 2の放射 導体は、 単一の突起部を有し、 前記第 1の放射導体の形状と前記第 2の放射導体 の形状に依存する 2周波帯で動作することを特徴とする。
また、 請求項 5記載の発明は、 請求項 4記載の発明において、 前記第 1の放射 導体と前記接地導体との間の第 1の間隔と、 前記第 2の放射導体と前記接地導体 との間の第 2の間隔とがそれそれ異なる距離に設定されていることを特徴とする。 また、 請求項 6記載の発明は、 請求項 4記載の発明において、 前記第 1の放射 導体と前記接地導体との間と、 前記第 2の放射導体と前記接地導体との間の少な くとも一方に誘電体を配置し、 前記第 1の放射導体と前記接地導体との間の第 1 の誘電率と、 前記第 2の放射導体と前記接地導体との間の第 2の誘電率とを異な らせたことを特徴とする。
また、 請求項 7記載の発明は、 請求項 1記載の発明において、 前記第 2の放射 導体は、 複数の突起部を有し、 前記第 1の放射導体の形状と前記第 2の放射導体
の形状に依存する多周波帯で動作することを特徴とする。
また、 請求項 8記載の発明は、 請求項 7記載の発明において、 前記第 1の放射 導体と前記接地導体との間の第 1の間隔と、 前記第 2の放射導体の各突起部と前 記接地導体との間の複数の第 2の間隔とがそれぞれ異なる距離に設定されている ことを特徴とする。
また、 請求項 9記載の発明は、 請求項 7記載の発明において、 前記第 1の放射 導体と前記接地導体との間と、 前記第 2の放射導体の各突起部と前記接地導体と の間の少なくとも 1つの間隙に誘電体を配置し、 前記第 1の放射導体と前記接地 導体との間の第 1の誘電率と、 前記第 2の放射導体の各突起部と前記接地導体と の間のそれそれの第 2の誘電率とを異ならせたことを特徴とする。
また、 請求項 1 0記載の発明は、 請求項 2記載の発明において、 前記給電点は、 前記給電点接続部の前記第 1の放射導体幅方向中央に設置されることを特徴とす る。
また、 請求項 1 1記載の発明は、 請求項 2記載の発明において、 前記給電点は、 前記給電点接続部の前記第 1の放射導体幅方向中央から所定距離偏倚した位置に 設置されることを特徴とする。
また、 請求項 1 2記載の発明は、 請求項 1記載の発明において、 前記短絡板は、 前記第 1の放射導体の幅方向の長さと同一の長さに形成されることを特徴とする。 また、 請求項 1 3記載の発明は、 請求項 1記載の発明において、 前記短絡板は、 前記第 1の放射導体の幅方向の長さより短い長さに形成され、 その中心は前記前 記第 1の放射導体の幅方向の中心から偏倚していることを特徴とする。 図面の簡単な説明
図 1は、 この発明に係わる多周波逆 Fアンテナの第 1の実施の形態を示す斜視 図である。
図 2は、 図 1に示した多周波逆 Fアンテナ 1 0の周波数特性を示す特性図であ る。
図 3は、 図 1に示した多周波逆 Fアンテナ 1 0の具体的寸法を与えて構成した
多周波逆 Fアンテナ 3 0を示す斜視図である。
図 4は、 図 3に示した多周波逆 Fアンテナ 3 0 0の放射パターンの解析のため の座標系を示す図である。
図 5は、 図 3に示した多周波逆 Fアンテナ 3 0 0の特性を電磁界解析 (モーメ ント法) を用いて解析した場合のアンテナ給電点での反射特性を示す特性図であ る。
図 6は、 図 3に示した多周波逆 Fアンテナ 3 0 0の 8 0 O MH z帯における放 射パターン (図 4の X— Y平面) の解析結果を示す放射パターン図である。 図 7は、 図 3に示した多周波逆 Fアンテナ 3 0 0の 8 0 0 MH z帯における放 射パターン (図 4の X— Z平面) の解析結果を示す放射パターン図である。 図 8は、 図 3に示した多周波逆 Fアンテナ 3 0 0の 8 0 0 MH z帯における放 射パターン (図 4の Y— Z平面) の解析結果を示す放射パターン図である。 図 9は、 図 3に示した多周波逆 Fアンテナ 3 0 0の 1 . 9 G H z帯における放 射パターン (図 4の X— Y平面) の解析結果を示す放射パターン図である。 図 1 0は、 図 3に示した多周波逆 Fアンテナ 3 0 0の 1 . 9 G H z帯における 放射パターン (図 4の X— Z平面) の解析結果を示す放射パターン図である。 図 1 1は、 図 3に示した多周波逆 Fアンテナ 3 0 0の 1 . 9 G H z帯における 放射パターン (図 4の Y— Z平面) の解析結果を示す放射パターン図である。 図 1 2は、 この発明に係わる多周波逆 Fアンテナの第 2の実施の形態を示す斜 視図である。
図 1 3は、 この発明に係わる多周波逆 Fアンテナの第 3の実施の形態を示す斜 視図である。
図 1 4は、 この発明に係わる多周波逆 Fアンテナの第 4の実施の形態を示す斜 視図である。
図 1 5は、 この発明に係わる多周波逆 Fアンテナの第 5の実施の形態を示す斜 視図である。
図 1 6は、 図 1 5に示した多周波逆 Fアンテナの A— A断面図 (図 1 6 ( a ) ) および B— B断面図 (図 1 6 ( b ) ) である。
図 1 7は、 図 1 5に示した構成において、 第 2の放射導体 1 5 2 _ 2の立上部 - 1 5 3 aに代えて立下部 1 5 3 cを設けることにより、 第 2の放射導体 1 5 2— 2と接地導体 1 5 1との距離 H bを調整することができるように構成した図 1 6 に対応する A— A断面図 (図 1 7 ( a ) ) および B— B断面図 (図 1 8 ( b ) ) である。
図 1 8は、 接地導体と第 1の放射導体および第 2の放射導体との間に誘電体を 挿入して構成した多周波逆 Fアンテナの第 6の実施の形態を示す断面図である。 図 1 9は、 この発明に係わる多周波逆 Fアンテナの第 7の実施の形態を示す斜 視図である。
図 2 0は、 この発明に係わる多周波逆 Fアンテナの第 8の実施の形態を示す斜 視図である。
図 2 1は、 従来の逆 Fアンテナの一般的構成を示す斜視図である。
図 2 2は、 異なる 2以上の周波数帯域を共に受信可能にした従来の多周波逆 F アンテナを示す斜視図である。
図 2 3は、 異なる 2以上の周波数帯域を共に受信可能にした従来の他の多周波 逆 Fアンテナを示す斜視図である。 発明を実施するための最良の形態
以下、 この発明に係わる多周波逆 Fアンテナの実施の形態を添付図面を参照し て詳細に説明する。
図 1は、 この発明に係わる多周波逆 Fアンテナの第 1の実施の形態を示す斜視 図である。
図 1において、 この多周波逆 Fアンテナ 1 0は、 接地導体 1 1に植設された短 絡板 1 3にその一端が接続され、 給電点 1 2 aが設けられた放射導体 1 2に切取 部 1 2 bを形成することでこの放射導体 1 2上にそれぞれ異なる周波数帯で共振 する第 1の放射導体 1 2— 1および第 2の放射導体 1 2— 2を形成し、 これによ り第 1の放射導体 1 2 - 1の形状によって決定される第 1の周波数帯と第 2の放 射導体 1 2— 2の形状によって決定される第 2の周波数帯との 2つの異なる周波
数帯の電波を受信可能にする。 ように構成される。
すなわち、 放射導体 1 2に略 U字状の切取部 1 2 bを形成することによって、 放射導体 1 2上に、 図 1中その共振長が長さ L Aの第 1の放射導体 1 2 — 1と図 1中その共振長がの長さ L Bの第 2の放射導体 1 2— 2を形成する。 そして、 この放射導体 1 2の一端は、 短絡板 1 3を介して接地導体 1 1に接続され、 この 放射導体 1 2の単一の給電点 1 2 aには、 給電源 1 5からの同軸給電線 1 4によ り、 接地導体 1 1に設けられた孔 1 l aを通して給電される。
このような構成において、 この多周波逆 Fアンテナ 1 0は、 第 1の放射導体 1 2— 1により、 長さ L Aが約え / 4 (えは波長) となる第 1の周波数帯で共振す るとともに、 第 2の放射導体 1 2— 2により、 長さ L Bが約人 / 4 (人は波長) となる第 2の周波数帯で共振することになり、 その結果、 この多周波逆 Fアンテ ナ 1 0は、 実装面積、 実装体積をともに増大させることなく第 1の周波数帯と第 2の周波数帯の 2つの周波数帯の電波を受信することが可能になる。
すなわち、 図 1に示した多周波逆 Fアンテナ 1 0は、 実装面積の上では、 長さ L Aが約人 / 4 (人は波長) となる第 1の周波数帯で共振する従来の単周波逆 F アンテナの実装面積と同等であり、 実装高さ (実装体積) の上でも、 長さ L Aが 約 λ/ 4 ( λは波長) となる第 1の周波数帯で共振する従来の単周波逆 Fアンテ ナの実装高さ (実装体積) と同等である。 したがって、 図 2 2および図 2 3で示 した従来の多周波逆 Fアンテナに比較して、 小型、 薄型化した多周波逆 Fアンテ ナが実現できる。 すなわち、 図 1に示した多周波逆 Fアンテナ 1 0は、 長さ L B が約 λ/ 4 ( λは波長) となる第 2の周波数帯で共振させるための新たな実装面 積および実装体積の増加を必要としない。
図 2は、 図 1に示した多周波逆 Fアンテナ 1 0の周波数特性を示す特性図であ る ο
図 2において、 縦軸は、 この多周波逆 Fアンテナ 1 0の給電点 1 2 aにおける 反射係数 (d B ) を示し、 横軸は、 周波数 (H z ) を示す。
図 2から明らかなように、 この多周波逆 Fアンテナ 1 0は、 周波数 Aと周波数 Bとで急峻な 2つの共振点を有し、 ここで、 周波数 Aは、 共振長が長さ L Aの第
1の放射導体 1 2— 1の形状によって決定され、 周波数 Bは、 共振長が長さ L B の第 2の放射導体 1 2— 1の形状によって決定される。
すなわち、 図 1に示した多周波逆 Fアンテナ 1 0は、 第 1の放射導体 1 2— 1 の形状により決定される第 1の周波数帯と第 2の放射導体 1 2— 2の形状により 決定される第 2の周波数帯の 2つの周波数帯の電波を受信することが可能になる ことがわかる。
図 3は、 図 1に示した多周波逆 Fアンテナ 1 0の具体的寸法を与えて構成した 多周波逆 Fアンテナ 3 0を示す斜視図である。
図 3において、 この多周波逆 Fアンテナ 3 0において、 放射導体 3 2は、 8 0 mm x 4 0 mmの大きさから構成され、 この放射導体 3 2の 4 0 mmの一辺は、 4 0 mm X 4 mmの短絡板 3 3を介して接地導体 3 1に接続される。 放射導体 3 2には、 給電点 3 2 aを形成するための幅 1 0 mmの給電点接続部を残して、 外幅 2 5 mm、 内幅 2 0 mm、 高さ 6 0 mmの略 U字状切取 3 2 bが形成される。 これにより、 放射導体 3 2上には、 幅 1 0 mmの給電点接続部に接続された外 幅 4 0 mm、 内幅 2 5 mm、 高さ 7 0 mmの略 U字状を有する第 1の放射導体 3 2— 1と幅 1 0 mmの給電点接続部に接続された 2 0 mm x 3 0 mmの矩形形状 を有する第 2の放射導体 3 2 - 2が形成されることになる。
ここで、 幅 1 0 mmの給電点接続部に接続された外幅 4 0 mm、 内幅 2 5 mm, 高さ 7 0 mmの略 U字状を有する第 1の放射導体 3 2— 1は、 第 1の周波数帯で 共振する第 1の逆 Fアンテナを構成し、 幅 1 0 mmの給電点接続部に接続された
2 0 mm X 3 0 mmの矩形形状を有する第 2の放射導体 3 2— 2は、 第 2の周波 数帯で共振する第 2の逆 Fアンテナを構成する。
また、 幅 1 0 mmの給電点接続部は、 上記第 1の逆 Fアンテナと第 2の逆 Fァ ンテナの整合を行う機能を有する。
また、 放射導体 3 2の単一の給電点 3 2 aには、 給電源 3 5からの同軸給電線
3 4により、 接地導体 3 1に設けられた孔 3 l aを通して給電される。
なお、 図 3に示した多周波逆 Fアンテナ 3 0は、 G S M(Global System for M obile co腿 unication)と P H S (Personal Handyphone System)の 2つのシステム
を送受可能なデュアルモ一ド端末としての携帯電話機の内蔵アンテナを想定して ' おり、 上記第 1の逆 Fアンテナおよび第 2の逆 Fアンテナにより、 GSMの無線 周波数 80 OMHz帯と PHSの無線周波数 109 GH z帯を共にに受信可能な 多周波逆 Fアンテナを実現している。
次に、 図 3に示した多周波逆 Fアンテナ 300の放射パターンの解析結果につ いて述べる。
図 4は、 図 3に示した多周波逆 Fアンテナ 300の放射パターンの解析のため の座標系を示す図である。
図 4において、 図 3に示した多周波逆 Fアンテナ 300の放射パターンの解析 のための座標系は、 放射導体 302の面に直交する方向を Z軸とし、 放射導体 3 02の長軸方向を X軸とし、 短軸方向を Yとして設定される。
図 5は、 図 3に示した多周波逆 Fアンテナ 300の特性を電磁界解析 (モーメ ント法) を用いて解析した場合のアンテナ給電点での反射特性を示す特性図であ る o
図 5において、 縦軸は、 アンテナ給電点での反射特性、 すなわち Sパラメ一夕 (S 1 1) を示し、 横軸は、 周波数 (GHz) を示す。
図 5から明らかなように、 図 3に示した多周波逆 Fアンテナ 300は、 GSM の無線周波数 80 OMHz帯と PHSの無線周波数 109GHz帯を共にに受信 可能な多周波逆 Fアンテナを実現していることがわかる。
図 6は、 図 3に示した多周波逆 Fアンテナ 300の 80 OMHz帯における放 射パターン (図 4の X— Y平面) の解析結果を示す放射パターン図である。
また、 図 7は、 図 3に示した多周波逆 Fアンテナ 300の 80 OMH z帯にお ける放射パターン (図 4の X— Z平面) の解析結果を示す放射パターン図である。 また、 図 8は、 図 3に示した多周波逆 Fアンテナ 300の 80 OMHz帯にお ける放射パターン (図 4の Y— Z平面) の解析結果を示す放射パターン図である。 図 6乃至図 8から明らかなように、 図 3に示した多周波逆 Fアンテナ 300は、 80 OMHz帯において、 X—Z平面の放射パターンおよび Y— Z平面の放射パ ターンにおいて若干の劣化は生じるが、 片側短絡型パツチとほぼ同様の指向性を
有しており、 800MHz帯の単周波逆 Fアンテナと同様の特性を有することが ' わかる。
図 9は、 図 3に示した多周波逆 Fアンテナ 300の 1. 9GHz帯における放 射パターン (図 4の X— Y平面) の解析結果を示す放射パターン図である。
また、 図 10は、 図 3に示した多周波逆 Fアンテナ 300の 1. 9 GHz帯に おける放射パターン (図 4の X— Z平面) の解析結果を示す放射パターン図であ る。
また、 図 1 1は、 図 3に示した多周波逆 Fアンテナ 300の 1. 9 GHz帯に おける放射パターン (図 4の Y— Z平面) の解析結果を示す放射パターン図であ る
図 9乃至図 1 1から明らかなように、 図 3に示した多周波逆 Fアンテナ 300 は、 1. 9 GHz帯において、 X— Z平面の放射パターンおよび Y— Z平面の放 射パターンにおいて若干の劣化は生じるが、 片側短絡型パッチとほぼ同様の指向 性を有しており、 1. 9 GHz帯の単周波逆 Fアンテナと同様の特性を有するこ とがわかる。
これにより、 図 3に示した多周波逆 Fアンテナ 300によれば、 小型かつ薄型 で多周波逆 Fアンテナを実現でき、 各種ディユアルモード端末の内蔵アンテナと して採用可能な多周波逆 Fアンテナを提供できる。
図 12は、 この発明に係わる多周波逆 Fアンテナの第 2の実施の形態を示す斜 視図である。
図 12において、 この多周波逆 Fアンテナ 120は、 接地導体 12 1に植設さ れた短絡板 123にその一端が接続され、 給電点 122 aが設けられた放射導体
122に切取部 122 bを形成することでこの放射導体 122上に第 1の放射導 体 1 2— 1および逆 L字形状の第 2の放射導体 122— 2を形成し、 これによ り第 1の放射導体 122— 1の形状によって決定される第 1の周波数帯と第 2の 放射導体 122— 2の形状によって決定される第 2の周波数帯との 2つの異なる 周波数帯の電波を受信可能にするように構成される。 また、 放射導体 122の単 一の給電点 122 aには、 給電源 125からの同軸給電線 1 24により、 接地導
体 1 2 1に設けられた孔 1 2 1 aを通して給電される。
ここで、 図 1 2に示した多周波逆 Fアンテナ 1 2 0は、 図 1に示した多周波逆 Fアンテナ 1 0と比較して、 第 2の放射導体 1 2 2— 2の形状が図 1に示した多 周波逆 Fアンテナ 1 0の第 2の放射導体 1 2— 2と異なる。
すなわち、 図 1に示した多周波逆 Fアンテナ 1 0の第 2の放射導体 1 2— 2は、 矩形状に形成されているが、 図 1 2に示した第 2の実施の形態の多周波逆 Fアン テナ 1 2 0の第 2の放射導体 1 2 2— 2は、 逆 L字形状に形成されており、 この 結果、 図 1 2に示した第 2の実施の形態の多周波逆 Fアンテナ 1 2 0における切 取部 1 2 2 bの形状も図 1に示した多周波逆 Fアンテナ 1 0の切取部 1 2 bの形 状と異なる。
上記構成において、 この多周波逆 Fアンテナ 1 2 0は、 第 1の放射導体 1 2 2 一 1により、 長さ L Aが約え / 4 (えは波長) となる第 1の周波数帯で共振する とともに、 第 2の放射導体 1 2 2— 2により、 長さ L Bが約 1/ 4 (えは波長) となる第 2の周波数帯で共振する。 そして、 この第 2の実施の形態の多周波逆 F アンテナ 1 2 0においても、 実装面積、 実装体積をともに増大させることなく第 1の周波数帯と第 2の周波数帯の 2つの周波数帯の電波を受信することが可能に なる。
図 1 3は、 この発明に係わる多周波逆 Fアンテナの第 3の実施の形態を示す斜 視図である。
図 1 3において、 この多周波逆 Fアンテナ 1 3 0は、 接地導体 1 3 1に植設さ れた短絡板 1 3 3にその一端が接続され、 給電点 1 3 2 aが設けられた放射導体 1 3 2に切取部 1 3 2 bを形成することでこの放射導体 1 3 2上に第 1の放射導 体 1 3 2— 1および円状形状を含む第 2の放射導体 1 3 2— 2を形成し、 これに より第 1の放射導体 1 3 2— 1の形状によって決定される第 1の周波数帯と第 2 の放射導体 1 3 2— 2の形状によって決定される第 2の周波数帯との 2つの異な る周波数帯の電波を受信可能にするように構成される。 また、 放射導体 1 3 2の 単一の給電点 1 3 2 aには、 給電源 1 3 5からの同軸給電線 1 3 4により、 接地 導体 1 3 1に設けられた孑し 1 3 1 aを通して給電される。
この第 3の実施の形態の多周波逆 Fアンテナ 130においても、 実装面積、 実 ' 装体積をともに増大させることなく第 1の周波数帯と第 2の周波数帯の 2つの周 波数帯の電波を受信することが可能になる。
なお、 上記第 1乃至第 3の実施の形態において、 放射導体 12、 122、 13 2上に形成される第 2の放射導体 12— 2、 32— 2、 122— 2、 132— 2 の形状は、 図 1に示した第 1の実施の形態のような矩形形状若しくは図 12に示 した第 2の実施の形態のような逆 L字形状若しくは図 13に示した第 3の実施の 形態のような曲線の円状形状を含む形状に限定されず、 任意の形状を採用するこ とができる。
また、 放射導体 12、 122、 132上に形成される第 1の放射導体 12— 1、 122— 1、 132— 1の形状も、 上記第 1乃至第 3の実施の形態に示した形状 に限定されず、 例えば曲線も含む任意の形状を採用することができる。
また、 第 1乃至第 3の実施の形態では、 放射導体 12、 122、 132上に切 取部 12 b、 122 b、 132 bを設けることで、 第 1の放射導体 12— 1、 1 22 - 1, 132— 1および第 2の放射導体 12— 2、 122— 2、 132-2 を形成するように構成したが、 放射導体 12、 122、 132上に矩形等の切取 部を形成し、 その後に、 該切取部の中に第 2の放射導体 12— 2、 122— 2、 132— 2を接続して形成するように構成してもよい。
また、 上記第 1乃至第 3の実施の形態においては、 第 1の放射導体 12— 1、 122— 1、 132— 1および第 2の放射導体 12— 2、 122— 2、 132- 2をそれそれ接地導体 1 1、 121、 131に平行になるように構成したが、 こ れに限定されず、 第 1の放射導体 12— 1、 122— 1、 132— 1および第 2 の放射導体 12— 2、 122— 2、 132— 2は、 接地導体 1 1、 121、 13 1に平行でなくてもよい。
また、 給電方法としても、 同軸線路を用いることに限定されず、 ストリップ線 路ゃ電磁結合に夜給電等を用いることができる。
図 14は、 この発明に係わる多周波逆 Fアンテナの第 4の実施の形態を示す斜 視図である。
図 14において、 この多周波逆 Fアンテナ 140は、 接地導体 141に植設さ れた短絡板 143にその一端が接続され、 給電点 142 aが設けられた放射導体 142に切取部 142 bを形成することでこの放射導体 142上に第 1の放射導 体 142— 1および第 2の放射導体 142— 2および第 2の放射導体 142— 3 を形成し、 これにより第 1の放射導体 142- 1の形状によって決定される第 1 の周波数帯と第 2の放射導体 142 _ 2の形状によって決定される第 2の周波数 帯と第 3の放射導体 142— 3の形状によって決定される第 3の周波数帯との 3 つの異なる周波数帯の電波を受信可能にするように構成される。 また、 放射導体 142の単一の給電点 142 aには、 給電源 145からの同軸給電線 144によ り、 接地導体 141に設けられた孔 141 aを通して給電される。
上記構成において、 この多周波逆 Fアンテナ 140は、 第 1の放射導体 142 一 1により、 長さ LAが約え /4 (人は波長) となる第 1の周波数帯で共振する とともに、 第 2の放射導体 142— 2により、 長さ LBが約人 /4 (λは波長) となる第 2の周波数帯で共振し、 さらに、 第 3の放射導体 142— 3により、 長 さ LCが約人 /4 (人は波長) となる第 3の周波数帯で共振する。
そして、 この第 2の実施の形態の多周波逆 Fアンテナ 120においては、 実装 面積、 実装体積をともに増大させることなく第 1の周波数帯と第 2の周波数帯と 第 3の周波数帯の 3つの周波数帯の電波を受信することが可能になる。
ここで、 放射導体 142上に形成される第 2の放射導体および第 3の放射導体
142— 2、 142-3の形状は、 図 14に示した矩形形状に限定されず、 任意 の形状を採用することができる。
また、 放射導体 142上に形成される第 1の放射導体 142— 1の形状も、 図
14に示した形状に限定されず、 任意の形状を採用することができる。
また、 第 4の実施の形態では、 放射導体 142上に切取部 142 bを設けるこ とで、 第 1乃至第 3の放射導体 142— 1、 142— 2、 142— 3を形成する ように構成したが、 放射導体 142上に矩形等の切取部を形成し、 その後に、 該 切取部の中に第 2の放射導体 142— 2および第 3の放射導体 142-3を接続 して形成するように構成してもよい。
また、 上記第 4の実施の形態においては、 第 1乃至第 3の放射導体 142— 1、 142— 2、 142-3を接地導体 141に平行に形成したが、 上記第 1乃至第 3の実施例と同様に、 第 1乃至第 3の放射導体 142— 1、 142— 2、 142 一 3は、 接地導体 141に平行でなくてもよい。
また、 図 14に示した第 4の実施の形態においては、 放射導体 142上に第 1 乃至第 3の放射導体 142— 1、 142 - 2, 142— 3の 3つの放射導体を形 成することで、 第 1の周波数帯と第 2の周波数帯と第 3の周波数帯の 3つの周波 数帯の電波を受信することができるように構成したが、 放射導体 142上に 4以 上の放射導体を形成すると、 4以上の 4周波数、 5周波数等の多周波数帯の電波 を受信することができるように構成することができる。
この場合においても、 実装面積、 実装体積をともに増大させることなく 4以上 の多周波数帯の電波を受信することが可能な多周波逆 Fアンテナを実現すること ができる。
図 15は、 この発明に係わる多周波逆 Fアンテナの第 5の実施の形態を示す斜 視図である。
また、 図 16は、 図 15に示した多周波逆 Fアンテナの A— A断面図 (図 16 (a) ) および B— B断面図 (図 16 (b) ) である。
図 15および図 16において、 この多周波逆 Fアンテナ 150は、 接地導体 1 51に植設された短絡板 153にその一端が接続され、 給電点 152 aが設けら れた放射導体 152に切取部 152 bを形成することでこの放射導体 152上に 第 1の放射導体 152— 1および第 2の放射導体 152— 2を形成し、 さらに第 2の放射導体 152— 2に立上部 153 bを設けることにより、 第 2の放射導体 152— 2と接地導体 151との距離 Hbを調整することができるように構成し たものである。
上記構成において、 この多周波逆 Fアンテナ 150は、 第 2の放射導体 152 —2に設けられた立上部 153bの高さを可変することにより、 第 2の放射導体 152— 2と接地導体 151との距離 H bを調整することで、 第 2の放射導体 1 52-2の形状によって決定される第 2の周波数帯の帯域幅を可変することがで
ぎる。
すなわち、 第 2の放射導体 152— 2と接地導体 151との距離 Hbは、 第 2 の放射導体 152— 2の形状によって決定される第 2の周波数帯の帯域幅に関係 する。 したがって、 例えば、 第 2の放射導体 152_2と接地導体 151との距 離 Hbを高くすることで、 第 2の放射導体 152— 2の形状によって決定される 第 2の周波数帯の帯域幅を広くすることができ、 また、 第 2の放射導体 152— 2と接地導体 151との距離 Hbを低くすることで、 第 2の放射導体 152— 2 の形状によって決定される第 2の周波数帯の帯域幅を狭くすることができる。 同様に、 短絡板 153 aの高さを調整することで、 第 1の放射導体 152— 1 と接地導体 151との距離 Haを高くすると、 第 1の放射導体 152— 1の形状 によって決定される第 1の周波数帯の帯域幅を広くすることができ、 また、 第 1 の放射導体 152- 1と接地導体 151との距離 Haを低くすることで、 第 1の 放射導体 152— 1の形状によって決定される第 1の周波数帯の帯域幅を狭くす ることができる。
なお、 図 15および図 16に示した代 5の実施の形態においては、 第 2の放射 導体 152— 2に立上部 153bを設けることにより、 第 2の放射導体 152— 2と接地導体 151との距離 Hbを調整することができるように構成した力 第 2の放射導体 152— 2に立下部を設けることにより、 第 2の放射導体 152— 2と接地導体 151との距離 Hbを調整することができるように構成してもよい。 図 17は、 図 15に示した構成において、 第 2の放射導体 152— 2の立上部 153 aに代えて立下部 153 cを設けることにより、 第 2の放射導体 152— 2と接地導体 151との距離 Hbを調整することができるように構成した図 16 に対応する A— A断面図 (図 17 (a) ) および B— B断面図 (図 18 (b) ) である。
図 17に示す構成においても、 第 2の放射導体 152— 2と接地導体 151と の距離 Hbを高くすることで、 第 2の放射導体 152— 2の形状によって決定さ れる第 2の周波数帯の帯域幅を広くすることができ、 また、 第 2の放射導体 15 2— 2と接地導体 151との距離 Hbを低くすることで、 第 2の放射導体 152
- 2の形状によって決定される第 2の周波数帯の帯域幅を狭くすることができる。 _ 同様に、 短絡板 153 aの高さを調整することで、 第 1の放射導体 152— 1 と接地導体 151との距離 Haを高くすると、 第 1の放射導体 152— 1の形状 によって決定される第 1の周波数帯の帯域幅を広くすることができ、 また、 第 1 の放射導体 152— 1と接地導体 151との距離 Haを低くすることで、 第 1の 放射導体 152— 1の形状によって決定される第 1の周波数帯の帯域幅を狭くす ることができる。
なお、 例えば、 図 3に示した第 1の実施の形態の多周波逆 Fアンテナ 30にお いては、 図 5に示したように、 第 2の放射導体 12— 2の形状によって決定され る第 2の周波数帯の帯域幅の方が第 1の放射導体 12— 1の形状によって決定さ れる第 1の周波数帯の帯域幅より広くなるが、 図 17の構成を採用することで、 第 2の周波数帯の帯域幅と第 1の周波数帯の帯域幅をほぼ同様に設定することが できる。
また、 図 15および図 16に示した構成においては、 第 2の放射導体 152— 2に設けられた立上部 153 bの高さの分だけ多周波逆 Fアンテナ 150体積が 増大するが、 図 17に示した構成においては、 上記体積の増加も生じない。
なお、 上記第 1乃至第 5の実施の形態において、 接地導体 1 1、 121、 13 1、 141、 151と第 1の放射導体 12— 1、 122— 1、 131— 1、 14 1一 1、 151— 1および第 2の放射導体 12— 2、 122— 2、 131— 2、 141-2, 151-2との間にそれぞれ誘電体を挿入し、 共振周波数およびそ の帯域幅を可変することができる。
すなわち、 接地導体 1 1、 121、 131、 141、 151と第 1の放射導体 12— 1、 122— 1、 131— 1、 141— 1、 151— 1および第 2の放射 導体 12— 2、 122— 2、 131— 2、 141— 2、 151— 2との間にそれ それ挿入される誘電体の誘電率を高くすると、 共振周波数を低くするとともに、 その帯域幅を狭くすることができ、 反対に、 接地導体 1 1、 121、 131、 1 41、 151と第 1の放射導体 12— 1、 122— 1、 131— 1、 141— 1、 151— 1および第 2の放射導体 12— 2、 122— 2、 131— 2、 141-
2 s 1 5 1— 2との間にそれそれ挿入される誘電体の誘電率を低くすると、 共振 周波数を高くするとともに、 その帯域幅を広くすることができる。
図 1 8は、 接地導体と第 1の放射導体および第 2の放射導体との間に誘電体を 揷入して構成した多周波逆 Fアンテナの第 6の実施の形態を示す断面図である。 図 1 8において、 図 1 8 ( a ) は、 図 1に示した第 1の実施の形態の多周波逆 Fアンテナ 1 0において、 接地導体 1 1と第 1の放射導体 1 2— 1および第 2の 放射導体 1 2— 2との間にそれぞれ異なる誘電率の誘電体を挿入して構成した多 周波逆 Fアンテナを示す。
図 1 8 ( a ) において、 接地導体 1 1と第 1の放射導体 1 2— 1との間には第 1の誘電率を有する第 1の誘電体 1 7 _ 1が揷入され、 接地導体 1 1と第 2の放 射導体 1 2— 2との間には第 2の誘電率を有する第 2の誘電体 1 7— 2が挿入さ れる。
係る構成において、 接地導体 1 1と第 1の放射導体 1 2— 1との間に挿入され る第 1の誘電体 1 7— 1の第 1の誘電率と接地導体 1 1と第 2の放射導体 1 2— 2との間に挿入される第 2の誘電体 1 7— 2の第 2の誘電率とをそれぞれ適宜選 択することにより、 この多周波逆 Fアンテナの共振周波数およびその帯域幅をそ れそれ可変することができる。
例えば、 第 1の誘電体 1 7— 1の第 1の誘電率を第 2の誘電体の第 2の誘電率 よりも低くすることによって、 第 1の周波数帯の帯域幅と第 2の周波数帯の帯域 幅をほぼ同様に設定することができる。
また、 図 1 8 ( b ) は、 図 1 4に示した第 4の実施の形態の多周波逆 Fアンテ ナ 1 4 0において、 接地導体 1 4 1と第 1の放射導体 1 4 2— 1、 第 2の放射導 体 1 4 2— 2、 第 3の放射導体 1 4 2— 3との間にそれぞれ異なる誘電率の誘電 体を挿入して構成した多周波逆 Fアンテナを示す。
図 1 8 ( b ) において、 接地導体 1 4 1と第 1の放射導体 1 4 2— 1との間に は第 1の誘電率を有する第 1の誘電体 1 4 7— 1が挿入され、 接地導体 1 4 1と 第 2の放射導体 1 4 2 - 2との間には第 2の誘電率を有する第 2の誘電体 1 4 7 一 2が挿入され、 接地導体 1 4 1と第 3の放射導体 1 4 2— 3との間には第 3の
誘電率を有する第 3の誘電体 147— 3が揷入される。
係る構成において、 接地導体 141と第 1の放射導体 142— 1との間に挿入 される第 1の誘電体 147— 1の第 1の誘電率と接地導体 141と第 2の放射導 体 142— 2との間に挿入される第 2の誘電体 147— 2の第 2の誘電率と接地 導体 141と第 3の放射導体 142— 3との間に挿入される第 3の誘電体 147 一 3の第 3の誘電率とをそれぞれ適宜選択することにより、 この多周波逆 Fアン テナの共振周波数およびその帯域幅をそれぞれ可変することができる。
なお、 図 18に示した第 6の実施の形態の多周波逆 Fアンテナにおいて、 各誘 電体 17— 1、 17— 2、 147— 1、 147— 2、 147— 3として、 その誘 電率が同一のものを用いてもよく、 また、 そのうちの少なくとも 1つを取除いて 空気の誘電率とすることもできる。
上記図 18に示した第 6の実施の形態の多周波逆 Fアンテナにおいては、 上記 誘電体 17— 1、 17-2, 147— 1、 147— 2、 147— 3の挿入により 多周波逆 Fアンテナの厚さ (体積) をさらに小さくすることができるとともに、 各共振周波数およびその帯域幅を個別に調整することが可能になる。
また、 上記第 1乃至第 6の実施の形態において、 短絡板 13、 123、 133、
143、 153 aは、 放射導体 12、 122、 132、 142、 152の幅全体 に亘つて接続されるように構成したが、 短絡板 13、 123、 133、 143、
153 aの長さを放射導体 12、 122、 132、 142、 152の長さより短 くし、 短絡板 13、 123、 133、 143、 153 aの中心を放射導体 12、 122、 132、 142、 152の中心から偏倚するように構成してもよい。 図 19は、 この発明に係わる多周波逆 Fアンテナの第 7の実施の形態を示す斜視 図である。
図 19において、 この多周波逆 Fアンテナ 190は、 接地導体 191に、 一部 が切り取られて放射導体 192より短かく構成された短絡板 193が植設される。 そして、 この短絡板 193に、 給電点 192 aが設けられた放射導体 192が接 続される。 この放射導体 192には、 切取部 192 bが形成され、 これによりこ の放射導体 192上に第 1の放射導体 192- 1および第 2の放射導体 192—
2を形成される。 これにより第 1の放射導体 192— 1の形状によって決定され ― る第 1の周波数帯と第 2の放射導体 192— 2の形状によって決定される第 2の 周波数帯との 2つの異なる周波数帯の電波を受信することが可能になる。 また、 放射導体 192の単一の給電点 192 aには、 給電源 195からの同軸給電線 1 94により、 接地導体 191に設けられた孔 191 aを通して給電される。
このような構成によると、 第 1の放射導体 192— 1および第 2の放射導体 1 92— 2の有効共振長が変化し、 これによりこの多周波逆 Fアンテナ 190をさ らに小型化することができる。
また、 上記第 1乃至第 7の実施の形態においては、 給電点 12 a、 122 a,
132 a, 142 a、 152 a, 192 aを放射導体 12、 122、 132、 1 42、 152、 192の中心に設けたが、 給電点 12 a、 122 a, 132 a,
142 a, 152 a、 192 aを放射導体 12、 122、 132、 142、 15 2、 192の中心から偏倚した位置に設けるように構成してもよい。
図 20は、 この発明に係わる多周波逆 Fアンテナの第 8の実施の形態を示す斜 視図である。
図 20において、 この多周波逆 Fアンテナ 200は、 接地導体 201に植設さ れた短絡板 203にその一端が接続された放射導体 202に切取部 202 bを形 成することでこの放射導体 202上に第 1の放射導体 202— 1および第 2の放 射導体 202— 2を形成し、 これにより第 1の放射導体 202— 1の形状によつ て決定される第 1の周波数帯と第 2の放射導体 202— 2の形状によって決定さ れる第 2の周波数帯との 2つの異なる周波数帯の電波を受信可能にするように構 成される。
また、 放射導体 202には、 その中心から Lだけ偏倚した位置に給電点 202 aが設けられ、 この給電点 202 aには、 給電源 205からの同軸給電線 204 により、 接地導体 201に設けられた孔 201 aを通して給電される。
このような構成によると、 その給電点 202 aの位置を調整することでこの多 周波逆 Fアンテナ 200を使用する図示しない送受信回路との整合をとることが 可能になる。
産業上の利用可能性
この発明は、 主として携帯電話機などの小型、 薄型の無線通信端末の内蔵アン テナとして使用され、 形状を大型化することなく多周波帯の電波を受信すること ができるようにした多周波逆 Fアンテナである。
この発明によれば、 接地導体に植設された短絡板にその一端が接続され、 給電点 が設けられた放射導体に切取部を形成することでこの放射導体上にそれそれ異な る周波数帯で共振する第 1の放射導体および第 2の放射導体を形成し、 これによ り第 1の放射導体の形状によって決定される第 1の周波数帯と第 2の放射導体の 形状によって決定される第 2の周波数帯との 2つの異なる周波数帯の電波を受信 可能にするように構成したので、 実装面積、 実装体積を共に増大することなく、 小型、 薄型の多周波逆 Fアンテナを低コストに実現することができる。
Claims
請 求 の 範 囲
( 1 ) 接地導体と、
前記接地導体に植設される短絡板と、
前記短絡板に一端が接続され、 その内部に切取部を有し、 前記短絡板に対向し て配置される第 1の放射導体と、
前記第 1の放射導体の前記切取部内部に形成され、 前記短絡板に対向して配置 される第 2の放射体と
を具備することを特徴とする多周波逆 Fアンテナ。
( 2 ) 前記第 1の放射導体は、
前記切取部と前記短絡板との間に給電点を接続する給電点接続部
を具備することを特徴とする請求項 1記載の多周波逆 Fアンテナ。
( 3 ) 前記第 2の放射導体は、
前記第 1の放射導体と一体に形成されることを特徴とする請求項 1記載の多周 波逆 Fアンテナ。
( 4 ) 前記第 2の放射導体は、
単一の突起部を有し、 前記第 1の放射導体の形状と前記第 2の放射導体の形状 に依存する 2周波帯で動作することを特徴とする請求項 1記載の多周波逆 Fアン テナ。
( 5 ) 前記第 1の放射導体と前記接地導体との間の第 1の間隔と、 前記第 2の放 射導体と前記接地導体との間の第 2の間隔とがそれそれ異なる距離に設定されて いることを特徴とする請求項 4記載の多周波逆 Fアンテナ。
( 6 ) 前記第 1の放射導体と前記接地導体との間と、 前記第 2の放射導体と前記 接地導体との間の少なくとも一方に誘電体を配置し、 前記第 1の放射導体と前記
接地導体との間の第 1の誘電率と、 前記第 2の放射導体と前記接地導体との間の ' 第 2の誘電率とを異ならせたことを特徴とする請求項 4記載の多周波逆 Fアンテ ナ。
( ) 前記第 2の放射導体は、
複数の突起部を有し、 前記第 1の放射導体の形状と前記第 2の放射導体の形状 に依存する多周波帯で動作することを特徴とする請求項 1記載の多周波逆 Fアン テナ。
( 8 ) 前記第 1の放射導体と前記接地導体との間の第 1の間隔と、 前記第 2の放 射導体の各突起部と前記接地導体との間の複数の第 2の間隔とがそれそれ異なる 距離に設定されていることを特徴とする請求項 7記載の多周波逆 Fアンテナ。
( 9 ) 前記第 1の放射導体と前記接地導体との間と、 前記第 2の放射導体の各突 起部と前記接地導体との間の少なくとも 1つの間隙に誘電体を配置し、 前記第 1 の放射導体と前記接地導体との間の第 1の誘電率と、 前記第 2の放射導体の各突 起部と前記接地導体との間のそれぞれの第 2の誘電率とを異ならせたことを特徴 とする請求項 7記載の多周波逆 Fアンテナ。
( 1 0 ) 前記給電点は、
前記給電点接続部の前記第 1の放射導体幅方向中央に設置されることを特徴と する請求項 2記載の多周波逆 Fアンテナ。
( 1 1 ) 前記給電点は、
前記給電点接続部の前記第 1の放射導体幅方向中央から所定距離偏倚した位置 に設置されることを特徴とする請求項 2記載の多周波逆 Fアンテナ。
( 1 2 ) 前記短絡板は、
前記第 1の放射導体の幅方向の長さと同一の長さに形成されることを特徴とす る請求項 1記載の多周波逆 Fアンテナ。
( 1 3 ) 前記短絡板は、
前記第 1の放射導体の幅方向の長さより短い長さに形成され、 その中心は前記 前記第 1の放射導体の幅方向の中心から偏倚していることを特徴とする請求項 1 記載の多周波逆 Fアンテナ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/355,525 US6195048B1 (en) | 1997-12-01 | 1998-12-01 | Multifrequency inverted F-type antenna |
JP53059799A JP3449484B2 (ja) | 1997-12-01 | 1998-12-01 | 多周波アンテナ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32982497 | 1997-12-01 | ||
JP9/329824 | 1997-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999028990A1 true WO1999028990A1 (fr) | 1999-06-10 |
Family
ID=18225648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/005400 WO1999028990A1 (fr) | 1997-12-01 | 1998-12-01 | Antenne de type f inversee pour frequences multiples |
Country Status (3)
Country | Link |
---|---|
US (1) | US6195048B1 (ja) |
JP (1) | JP3449484B2 (ja) |
WO (1) | WO1999028990A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001024314A1 (en) * | 1999-09-30 | 2001-04-05 | Harada Industries (Europe) Limited | Dual-band microstrip antenna |
GB2358963A (en) * | 2000-02-02 | 2001-08-08 | Nokia Mobile Phones Ltd | Mobile 'phone antenna |
WO2002035652A1 (en) * | 2000-10-05 | 2002-05-02 | Ace Technology | Internal antennas for portable terminals and mounting method thereof |
WO2002043182A1 (de) * | 2000-11-24 | 2002-05-30 | Siemens Aktiengesellschaft | Pifa-antennenvorrichtung für mobile kommunikationsendgeräte |
JP2002185238A (ja) * | 2000-12-11 | 2002-06-28 | Sony Corp | デュアルバンド対応内蔵アンテナ装置およびこれを備えた携帯無線端末 |
EP1108616A3 (en) * | 1999-12-13 | 2003-12-03 | ASK INDUSTRIES S.p.A. | Planar microstrip antenna for motor-vehicle system |
JPWO2002067379A1 (ja) * | 2001-02-23 | 2004-07-02 | 株式会社ヨコオ | フィルタ内蔵アンテナ |
WO2006098089A1 (ja) * | 2005-03-15 | 2006-09-21 | Matsushita Electric Industrial Co., Ltd. | アンテナ装置およびそれを用いた無線通信機 |
JP2006527557A (ja) * | 2003-06-11 | 2006-11-30 | ソニー エリクソン モバイル コミュニケーションズ, エービー | 複数の共振周波数帯域を有したループ型マルチ・ブランチ平面アンテナおよびそれを組み込んだ無線端末 |
CN100407495C (zh) * | 2000-12-20 | 2008-07-30 | Amc世纪公司 | 天线设备及调节所述天线设备的方法 |
JP2008245282A (ja) * | 2007-03-23 | 2008-10-09 | Research In Motion Ltd | マルチバンド無線デバイスのためのアンテナ装置および関連する方法論 |
US7679569B2 (en) | 2006-04-10 | 2010-03-16 | Hitachi Metals, Ltd. | Antenna device and multi-band type wireless communication apparatus using same |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI112982B (fi) * | 1999-08-25 | 2004-02-13 | Filtronic Lk Oy | Tasoantennirakenne |
MXPA02003084A (es) | 1999-09-20 | 2003-08-20 | Fractus Sa | Antenas multinivel. |
SE515832C2 (sv) * | 1999-12-16 | 2001-10-15 | Allgon Ab | Slitsantennanordning |
EP1592083B1 (en) | 2000-01-19 | 2013-04-03 | Fractus, S.A. | Space-filling miniature antennas |
GB2363910B (en) * | 2000-06-24 | 2002-06-05 | 3Com Corp | Antenna assembly |
US6573869B2 (en) * | 2001-03-21 | 2003-06-03 | Amphenol - T&M Antennas | Multiband PIFA antenna for portable devices |
FR2826185B1 (fr) * | 2001-06-18 | 2008-07-11 | Centre Nat Rech Scient | Antenne fil-plaque multifrequences |
FR2826186B1 (fr) * | 2001-06-18 | 2003-10-10 | Centre Nat Rech Scient | Antenne mulitfonctions integrant des ensembles fil-plaque |
BR0117154A (pt) * | 2001-10-16 | 2004-10-26 | Fractus Sa | Antena carregada |
US9755314B2 (en) | 2001-10-16 | 2017-09-05 | Fractus S.A. | Loaded antenna |
US6700540B2 (en) | 2002-02-14 | 2004-03-02 | Ericsson, Inc. | Antennas having multiple resonant frequency bands and wireless terminals incorporating the same |
US6822609B2 (en) * | 2002-03-15 | 2004-11-23 | Etenna Corporation | Method of manufacturing antennas using micro-insert-molding techniques |
US7081854B2 (en) * | 2002-05-02 | 2006-07-25 | Sony Ericsson Mobile Communications Ab | Printed built-in antenna for use in a portable electronic communication apparatus |
DE60204943T2 (de) * | 2002-05-02 | 2006-04-20 | Sony Ericsson Mobile Communications Ab | Gedrückte, eingebaute Antenne für ein tragbares elektronisches Kommunikationsgerät |
US6710748B2 (en) * | 2002-06-18 | 2004-03-23 | Centurion Wireless Technologies, Inc. | Compact dual band circular PIFA |
FR2841688B1 (fr) * | 2002-06-28 | 2006-06-30 | Antennes Ft | Antenne plane du type patch, notamment pour l'emission et/ou la reception de signaux de television terrestre numerique et/ou analogique |
WO2004010532A1 (en) * | 2002-07-15 | 2004-01-29 | Fractus, S.A. | Antenna with one or more holes |
USD490801S1 (en) | 2002-10-17 | 2004-06-01 | Matsushita Electric Industrial Co., Ltd. | Antenna |
CN1720639A (zh) | 2002-12-22 | 2006-01-11 | 碎云股份有限公司 | 移动通信装置的多频带单极天线 |
WO2005076407A2 (en) | 2004-01-30 | 2005-08-18 | Fractus S.A. | Multi-band monopole antennas for mobile communications devices |
USD501847S1 (en) | 2003-04-14 | 2005-02-15 | Matsushita Electric Industrial Co., Ltd. | Antenna |
USD502464S1 (en) | 2003-04-14 | 2005-03-01 | Matsushita Electric Industrial Co., Ltd. | Antenna |
JP4021814B2 (ja) * | 2003-06-30 | 2007-12-12 | 本田技研工業株式会社 | 車載アンテナ |
JP3866273B2 (ja) * | 2003-08-27 | 2007-01-10 | 松下電器産業株式会社 | アンテナおよびその製造方法 |
JP2005086335A (ja) * | 2003-09-05 | 2005-03-31 | Alps Electric Co Ltd | デュアルバンドアンテナおよびその共振周波数調整方法 |
WO2006042562A1 (en) * | 2004-10-23 | 2006-04-27 | Electronics Research Institute | Compact single feed quad band antenna for wireless communication systems |
KR100689475B1 (ko) * | 2005-04-27 | 2007-03-02 | 삼성전자주식회사 | 휴대 단말기의 내장형 안테나 장치 |
TWI275205B (en) * | 2005-12-07 | 2007-03-01 | Compal Electronics Inc | Planar antenna structure |
CN101093912B (zh) * | 2006-06-23 | 2011-06-22 | 仁宝电脑工业股份有限公司 | 平面天线结构 |
US7755547B2 (en) * | 2006-06-30 | 2010-07-13 | Nokia Corporation | Mechanically tunable antenna for communication devices |
US8738103B2 (en) | 2006-07-18 | 2014-05-27 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US7642964B2 (en) * | 2006-10-27 | 2010-01-05 | Motorola, Inc. | Low profile internal antenna |
EP1923951A1 (en) * | 2006-11-20 | 2008-05-21 | Motorola, Inc. | Antenna sub-assembly for electronic device |
US8193993B2 (en) * | 2006-11-20 | 2012-06-05 | Motorola Mobility, Inc. | Antenna sub-assembly for electronic device |
TWI369028B (en) * | 2007-09-10 | 2012-07-21 | Hon Hai Prec Ind Co Ltd | Multi-band antenna |
CN101388487B (zh) * | 2007-09-13 | 2012-07-04 | 富士康(昆山)电脑接插件有限公司 | 多频天线 |
WO2010001469A1 (ja) * | 2008-07-02 | 2010-01-07 | 三菱電機株式会社 | 無線通信装置 |
TWI374573B (en) * | 2008-08-22 | 2012-10-11 | Ind Tech Res Inst | Uwb antenna and detection apparatus for transportation means |
KR101615760B1 (ko) * | 2009-07-22 | 2016-04-27 | 삼성전자주식회사 | 이동통신 단말기의 안테나 장치 제조 방법 |
US8477069B2 (en) * | 2009-08-21 | 2013-07-02 | Mediatek Inc,. | Portable electronic device and antenna thereof |
US10109918B2 (en) * | 2016-01-22 | 2018-10-23 | Airgain Incorporated | Multi-element antenna for multiple bands of operation and method therefor |
JP6705435B2 (ja) * | 2017-10-27 | 2020-06-03 | Tdk株式会社 | パッチアンテナ及びこれを備えるアンテナモジュール |
JP6341399B1 (ja) * | 2018-03-14 | 2018-06-13 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61171307U (ja) * | 1985-04-15 | 1986-10-24 | ||
JPS648823U (ja) * | 1987-07-06 | 1989-01-18 | ||
JPH1093332A (ja) * | 1996-09-13 | 1998-04-10 | Nippon Antenna Co Ltd | 複共振逆f型アンテナ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH061848B2 (ja) * | 1984-09-17 | 1994-01-05 | 松下電器産業株式会社 | アンテナ |
JPS61171307A (ja) | 1985-01-25 | 1986-08-02 | 松下電工株式会社 | 化粧単板の製造方法 |
US4766440A (en) * | 1986-12-11 | 1988-08-23 | The United States Of America As Represented By The Secretary Of The Navy | Triple frequency U-slot microstrip antenna |
JPS648823A (en) | 1987-06-30 | 1989-01-12 | Mitsubishi Electric Corp | Internal abnormal state diagnosing device for sf6-filled electric apparatus |
US5400041A (en) | 1991-07-26 | 1995-03-21 | Strickland; Peter C. | Radiating element incorporating impedance transformation capabilities |
FR2752646B1 (fr) * | 1996-08-21 | 1998-11-13 | France Telecom | Antenne imprimee plane a elements superposes court-circuites |
-
1998
- 1998-12-01 WO PCT/JP1998/005400 patent/WO1999028990A1/ja active Application Filing
- 1998-12-01 JP JP53059799A patent/JP3449484B2/ja not_active Expired - Fee Related
- 1998-12-01 US US09/355,525 patent/US6195048B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61171307U (ja) * | 1985-04-15 | 1986-10-24 | ||
JPS648823U (ja) * | 1987-07-06 | 1989-01-18 | ||
JPH1093332A (ja) * | 1996-09-13 | 1998-04-10 | Nippon Antenna Co Ltd | 複共振逆f型アンテナ |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001024314A1 (en) * | 1999-09-30 | 2001-04-05 | Harada Industries (Europe) Limited | Dual-band microstrip antenna |
US7046196B1 (en) | 1999-09-30 | 2006-05-16 | Harada Industry Co., Ltd. | Dual-band microstrip antenna |
EP1108616A3 (en) * | 1999-12-13 | 2003-12-03 | ASK INDUSTRIES S.p.A. | Planar microstrip antenna for motor-vehicle system |
GB2358963A (en) * | 2000-02-02 | 2001-08-08 | Nokia Mobile Phones Ltd | Mobile 'phone antenna |
US6392605B2 (en) | 2000-02-02 | 2002-05-21 | Nokia Mobile Phones, Limited | Antenna for a handset |
WO2002035652A1 (en) * | 2000-10-05 | 2002-05-02 | Ace Technology | Internal antennas for portable terminals and mounting method thereof |
WO2002043182A1 (de) * | 2000-11-24 | 2002-05-30 | Siemens Aktiengesellschaft | Pifa-antennenvorrichtung für mobile kommunikationsendgeräte |
US7102575B2 (en) | 2000-11-24 | 2006-09-05 | Siemens Aktiengesellschaft | PIFA antenna apparatus for mobile communications terminals |
JP2002185238A (ja) * | 2000-12-11 | 2002-06-28 | Sony Corp | デュアルバンド対応内蔵アンテナ装置およびこれを備えた携帯無線端末 |
CN100407495C (zh) * | 2000-12-20 | 2008-07-30 | Amc世纪公司 | 天线设备及调节所述天线设备的方法 |
JPWO2002067379A1 (ja) * | 2001-02-23 | 2004-07-02 | 株式会社ヨコオ | フィルタ内蔵アンテナ |
JP2006527557A (ja) * | 2003-06-11 | 2006-11-30 | ソニー エリクソン モバイル コミュニケーションズ, エービー | 複数の共振周波数帯域を有したループ型マルチ・ブランチ平面アンテナおよびそれを組み込んだ無線端末 |
WO2006098089A1 (ja) * | 2005-03-15 | 2006-09-21 | Matsushita Electric Industrial Co., Ltd. | アンテナ装置およびそれを用いた無線通信機 |
US7679569B2 (en) | 2006-04-10 | 2010-03-16 | Hitachi Metals, Ltd. | Antenna device and multi-band type wireless communication apparatus using same |
EP2204881A1 (en) | 2006-04-10 | 2010-07-07 | Hitachi Metals, Ltd. | Wide-band antenna device comprising a U-shaped conductor antenna |
JP2008245282A (ja) * | 2007-03-23 | 2008-10-09 | Research In Motion Ltd | マルチバンド無線デバイスのためのアンテナ装置および関連する方法論 |
Also Published As
Publication number | Publication date |
---|---|
US6195048B1 (en) | 2001-02-27 |
JP3449484B2 (ja) | 2003-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999028990A1 (fr) | Antenne de type f inversee pour frequences multiples | |
JP3753436B2 (ja) | マルチバンドのプリント形モノポール・アンテナ | |
EP0655797B1 (en) | Quarter-wave gap-coupled tunable strip antenna | |
EP1368855B1 (en) | Antenna arrangement | |
JP3340374B2 (ja) | 多周波アンテナ | |
EP0777295B1 (en) | Antenna device having two resonance frequencies | |
US7439916B2 (en) | Antenna for mobile communication terminals | |
EP1118138B1 (en) | Circularly polarized dielectric resonator antenna | |
EP1202382B1 (en) | Antenna | |
US8098211B2 (en) | Antenna structure and radio communication apparatus including the same | |
JPH11150415A (ja) | 多周波アンテナ | |
WO1996034426A1 (fr) | Antenne microruban | |
KR101489182B1 (ko) | 무한 파장 안테나 장치 | |
US20040155823A1 (en) | Compact multiband antenna | |
JP2002319811A (ja) | 複共振アンテナ | |
KR20030082101A (ko) | 듀얼 피딩 포트를 갖는 멀티밴드 칩 안테나 및 이를사용하는 이동 통신 장치 | |
EP1469554A1 (en) | Dual-access monopole antenna assembly | |
KR20060050282A (ko) | 멀티 빔 안테나 | |
EP1469553A1 (en) | Monopole antenna assembly | |
EP1897171A1 (en) | A resonant, dual-polarized patch antenna | |
JP3839393B2 (ja) | 2周波共用アンテナ装置 | |
US8199065B2 (en) | H-J antenna | |
KR101049724B1 (ko) | 독립 조절이 가능하고 절곡부를 가지는 다중 대역 안테나 | |
JP4112136B2 (ja) | 多周波共用アンテナ | |
JP2003168916A (ja) | アンテナ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09355525 Country of ref document: US |