WO1999028492A1 - A method of finding agonist and antagonist to human 11cb splice variant - Google Patents
A method of finding agonist and antagonist to human 11cb splice variant Download PDFInfo
- Publication number
- WO1999028492A1 WO1999028492A1 PCT/US1998/025497 US9825497W WO9928492A1 WO 1999028492 A1 WO1999028492 A1 WO 1999028492A1 US 9825497 W US9825497 W US 9825497W WO 9928492 A1 WO9928492 A1 WO 9928492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- splice variant
- polynucleotide
- die
- lcb
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 106
- 239000005557 antagonist Substances 0.000 title claims abstract description 43
- 239000000556 agonist Substances 0.000 title claims description 34
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 273
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 259
- 229920001184 polypeptide Polymers 0.000 claims abstract description 253
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 130
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 130
- 239000002157 polynucleotide Substances 0.000 claims abstract description 129
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 18
- 201000010099 disease Diseases 0.000 claims abstract description 15
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 13
- 230000035772 mutation Effects 0.000 claims abstract description 11
- 238000011282 treatment Methods 0.000 claims abstract description 7
- 210000004027 cell Anatomy 0.000 claims description 115
- 230000027455 binding Effects 0.000 claims description 58
- 238000009739 binding Methods 0.000 claims description 58
- 239000003446 ligand Substances 0.000 claims description 53
- 239000013598 vector Substances 0.000 claims description 52
- 230000014509 gene expression Effects 0.000 claims description 50
- 108020004414 DNA Proteins 0.000 claims description 48
- 150000001413 amino acids Chemical class 0.000 claims description 44
- 150000001875 compounds Chemical class 0.000 claims description 42
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 34
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 26
- 239000002773 nucleotide Substances 0.000 claims description 26
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 25
- 230000004044 response Effects 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 15
- 238000001727 in vivo Methods 0.000 claims description 12
- 230000002068 genetic effect Effects 0.000 claims description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 7
- 210000000170 cell membrane Anatomy 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 5
- YVPYQUNUQOZFHG-UHFFFAOYSA-N amidotrizoic acid Chemical compound CC(=O)NC1=C(I)C(NC(C)=O)=C(I)C(C(O)=O)=C1I YVPYQUNUQOZFHG-UHFFFAOYSA-N 0.000 claims description 3
- 230000010807 negative regulation of binding Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 208000015181 infectious disease Diseases 0.000 abstract description 25
- 238000003556 assay Methods 0.000 abstract description 23
- 230000001580 bacterial effect Effects 0.000 abstract description 14
- 208000012902 Nervous system disease Diseases 0.000 abstract description 12
- 208000025966 Neurological disease Diseases 0.000 abstract description 12
- 208000028017 Psychotic disease Diseases 0.000 abstract description 12
- 230000002538 fungal effect Effects 0.000 abstract description 12
- 206010002383 Angina Pectoris Diseases 0.000 abstract description 11
- 208000019901 Anxiety disease Diseases 0.000 abstract description 11
- 208000035143 Bacterial infection Diseases 0.000 abstract description 11
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 abstract description 11
- 208000020925 Bipolar disease Diseases 0.000 abstract description 11
- 208000032841 Bulimia Diseases 0.000 abstract description 11
- 206010006550 Bulimia nervosa Diseases 0.000 abstract description 11
- 206010007556 Cardiac failure acute Diseases 0.000 abstract description 11
- 206010007559 Cardiac failure congestive Diseases 0.000 abstract description 11
- 206010012218 Delirium Diseases 0.000 abstract description 11
- 206010012289 Dementia Diseases 0.000 abstract description 11
- 208000012661 Dyskinesia Diseases 0.000 abstract description 11
- 206010017533 Fungal infection Diseases 0.000 abstract description 11
- 208000031886 HIV Infections Diseases 0.000 abstract description 11
- 206010019280 Heart failures Diseases 0.000 abstract description 11
- 241000713772 Human immunodeficiency virus 1 Species 0.000 abstract description 11
- 241000713340 Human immunodeficiency virus 2 Species 0.000 abstract description 11
- 208000023105 Huntington disease Diseases 0.000 abstract description 11
- 206010020751 Hypersensitivity Diseases 0.000 abstract description 11
- 206010020772 Hypertension Diseases 0.000 abstract description 11
- 208000001953 Hypotension Diseases 0.000 abstract description 11
- 208000031888 Mycoses Diseases 0.000 abstract description 11
- 206010028980 Neoplasm Diseases 0.000 abstract description 11
- 208000001132 Osteoporosis Diseases 0.000 abstract description 11
- 208000002193 Pain Diseases 0.000 abstract description 11
- 208000018737 Parkinson disease Diseases 0.000 abstract description 11
- 208000004403 Prostatic Hyperplasia Diseases 0.000 abstract description 11
- 208000010362 Protozoan Infections Diseases 0.000 abstract description 11
- 208000036623 Severe mental retardation Diseases 0.000 abstract description 11
- 208000025865 Ulcer Diseases 0.000 abstract description 11
- 206010046555 Urinary retention Diseases 0.000 abstract description 11
- 208000036142 Viral infection Diseases 0.000 abstract description 11
- 230000005856 abnormality Effects 0.000 abstract description 11
- 230000001154 acute effect Effects 0.000 abstract description 11
- 230000007815 allergy Effects 0.000 abstract description 11
- 208000022531 anorexia Diseases 0.000 abstract description 11
- 230000036506 anxiety Effects 0.000 abstract description 11
- 208000022362 bacterial infectious disease Diseases 0.000 abstract description 11
- 208000028683 bipolar I disease Diseases 0.000 abstract description 11
- 206010061428 decreased appetite Diseases 0.000 abstract description 11
- 206010012601 diabetes mellitus Diseases 0.000 abstract description 11
- 230000035622 drinking Effects 0.000 abstract description 11
- 210000002816 gill Anatomy 0.000 abstract description 11
- 230000036543 hypotension Effects 0.000 abstract description 11
- 208000010125 myocardial infarction Diseases 0.000 abstract description 11
- 201000000980 schizophrenia Diseases 0.000 abstract description 11
- 208000011580 syndromic disease Diseases 0.000 abstract description 11
- 231100000397 ulcer Toxicity 0.000 abstract description 11
- 230000009385 viral infection Effects 0.000 abstract description 11
- 208000008589 Obesity Diseases 0.000 abstract description 10
- 208000006673 asthma Diseases 0.000 abstract description 10
- 235000020824 obesity Nutrition 0.000 abstract description 10
- 230000001225 therapeutic effect Effects 0.000 abstract description 8
- 238000010188 recombinant method Methods 0.000 abstract description 2
- 102000005962 receptors Human genes 0.000 description 100
- 108020003175 receptors Proteins 0.000 description 100
- 108090000623 proteins and genes Proteins 0.000 description 81
- 102000004169 proteins and genes Human genes 0.000 description 56
- 235000018102 proteins Nutrition 0.000 description 54
- 239000012634 fragment Substances 0.000 description 50
- 235000001014 amino acid Nutrition 0.000 description 47
- 229940024606 amino acid Drugs 0.000 description 43
- 230000004075 alteration Effects 0.000 description 25
- 230000000694 effects Effects 0.000 description 23
- 101800002739 Melanin-concentrating hormone Proteins 0.000 description 22
- 239000002299 complementary DNA Substances 0.000 description 22
- 238000012216 screening Methods 0.000 description 22
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 21
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 21
- 102400001132 Melanin-concentrating hormone Human genes 0.000 description 21
- ORRDHOMWDPJSNL-UHFFFAOYSA-N melanin concentrating hormone Chemical compound N1C(=O)C(C(C)C)NC(=O)C(CCCNC(N)=N)NC(=O)CNC(=O)C(C(C)C)NC(=O)C(CCSC)NC(=O)C(NC(=O)C(CCCNC(N)=N)NC(=O)C(NC(=O)C(NC(=O)C(N)CC(O)=O)C(C)O)CCSC)CSSCC(C(=O)NC(CC=2C3=CC=CC=C3NC=2)C(=O)NC(CCC(O)=O)C(=O)NC(C(C)C)C(O)=O)NC(=O)C2CCCN2C(=O)C(CCCNC(N)=N)NC(=O)C1CC1=CC=C(O)C=C1 ORRDHOMWDPJSNL-UHFFFAOYSA-N 0.000 description 21
- 238000006467 substitution reaction Methods 0.000 description 20
- 238000012986 modification Methods 0.000 description 18
- 238000012217 deletion Methods 0.000 description 17
- 230000037430 deletion Effects 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 230000004913 activation Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 230000001177 retroviral effect Effects 0.000 description 15
- 108010029485 Protein Isoforms Proteins 0.000 description 13
- 102000001708 Protein Isoforms Human genes 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 239000000523 sample Substances 0.000 description 13
- 108091006027 G proteins Proteins 0.000 description 12
- 102000030782 GTP binding Human genes 0.000 description 12
- 108091000058 GTP-Binding Proteins 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- -1 e.g. Proteins 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 230000014616 translation Effects 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- 108700008625 Reporter Genes Proteins 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 230000026731 phosphorylation Effects 0.000 description 8
- 238000006366 phosphorylation reaction Methods 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- 102000030621 adenylate cyclase Human genes 0.000 description 7
- 108060000200 adenylate cyclase Proteins 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 210000003527 eukaryotic cell Anatomy 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 210000000287 oocyte Anatomy 0.000 description 7
- 239000013600 plasmid vector Substances 0.000 description 7
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 230000013595 glycosylation Effects 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 210000004962 mammalian cell Anatomy 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 210000005253 yeast cell Anatomy 0.000 description 6
- 101000958041 Homo sapiens Musculin Proteins 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000008827 biological function Effects 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 230000002759 chromosomal effect Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 102000046949 human MSC Human genes 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 108020005544 Antisense RNA Proteins 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 238000000636 Northern blotting Methods 0.000 description 4
- 102000006601 Thymidine Kinase Human genes 0.000 description 4
- 108020004440 Thymidine kinase Proteins 0.000 description 4
- 241000269370 Xenopus <genus> Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000003184 complementary RNA Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 230000004064 dysfunction Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 230000004481 post-translational protein modification Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 108020004491 Antisense DNA Proteins 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010001515 Galectin 4 Proteins 0.000 description 3
- 102100039556 Galectin-4 Human genes 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 108010067902 Peptide Library Proteins 0.000 description 3
- 241000725643 Respiratory syncytial virus Species 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000003816 antisense DNA Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000004077 genetic alteration Effects 0.000 description 3
- 108091008039 hormone receptors Proteins 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 238000004091 panning Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000027425 release of sequestered calcium ion into cytosol Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 230000009452 underexpressoin Effects 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 2
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 108010002724 Pheromone Receptors Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 101000741439 Rattus norvegicus Calcitonin receptor Proteins 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 102000014384 Type C Phospholipases Human genes 0.000 description 2
- 108010079194 Type C Phospholipases Proteins 0.000 description 2
- 102100038344 Vomeronasal type-1 receptor 2 Human genes 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007910 cell fusion Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002825 functional assay Methods 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 231100000118 genetic alteration Toxicity 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000003574 melanophore Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000002427 pheromone receptor Substances 0.000 description 2
- 230000010422 pheromone response pathway Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 150000003384 small molecules Chemical group 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- 238000010798 ubiquitination Methods 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001086 yeast two-hybrid system Methods 0.000 description 2
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102100026439 Adhesion G protein-coupled receptor E1 Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000713826 Avian leukosis virus Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108091007914 CDKs Proteins 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000015554 Dopamine receptor Human genes 0.000 description 1
- 108050004812 Dopamine receptor Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 101150106375 Far1 gene Proteins 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 229940123344 GPR antagonist Drugs 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000718225 Homo sapiens Adhesion G protein-coupled receptor E1 Proteins 0.000 description 1
- 101000887490 Homo sapiens Guanine nucleotide-binding protein G(z) subunit alpha Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000002397 Kinins Human genes 0.000 description 1
- 108010093008 Kinins Proteins 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000713883 Myeloproliferative sarcoma virus Species 0.000 description 1
- PYUSHNKNPOHWEZ-YFKPBYRVSA-N N-formyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC=O PYUSHNKNPOHWEZ-YFKPBYRVSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 102000010175 Opsin Human genes 0.000 description 1
- 108050001704 Opsin Proteins 0.000 description 1
- 102000016978 Orphan receptors Human genes 0.000 description 1
- 108070000031 Orphan receptors Proteins 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 108010001441 Phosphopeptides Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108091005682 Receptor kinases Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 102000004330 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 101150000919 STE23 gene Proteins 0.000 description 1
- 101150084266 STE3 gene Proteins 0.000 description 1
- 101100379247 Salmo trutta apoa1 gene Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000713896 Spleen necrosis virus Species 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical class C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000000464 adrenergic agent Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 210000004727 amygdala Anatomy 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 101150055766 cat gene Proteins 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 210000001159 caudate nucleus Anatomy 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 210000000877 corpus callosum Anatomy 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 108010041898 cytomegalovirus receptor Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 230000004590 drinking behavior Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000009762 endothelial cell differentiation Effects 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006126 farnesylation Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 229940028334 follicle stimulating hormone Drugs 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- YFHXZQPUBCBNIP-UHFFFAOYSA-N fura-2 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=3OC(=CC=3C=2)C=2OC(=CN=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 YFHXZQPUBCBNIP-UHFFFAOYSA-N 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 230000001279 glycosylating effect Effects 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 102000034345 heterotrimeric G proteins Human genes 0.000 description 1
- 108091006093 heterotrimeric G proteins Proteins 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 102000052301 human GNAZ Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000012133 immunoprecipitate Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 210000003140 lateral ventricle Anatomy 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 239000003176 neuroleptic agent Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000013116 obese mouse model Methods 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 235000008729 phenylalanine Nutrition 0.000 description 1
- 239000003016 pheromone Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 210000003370 receptor cell Anatomy 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000029556 regulation of feeding behavior Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000002821 scintillation proximity assay Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002265 sensory receptor cell Anatomy 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 210000003523 substantia nigra Anatomy 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 210000004281 subthalamic nucleus Anatomy 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/72—Receptors; Cell surface antigens; Cell surface determinants for hormones
- C07K14/721—Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- This invention relates, in part, to newly identified polynucleotides and polypeptides; variants and derivatives of the polynucleotides and polypeptides; processes for making the polynucleotides and the polypeptides, and their variants and derivatives; agonists and antagonists of the polypeptides; and uses of the polynucleotides, polypeptides, variants, derivatives, agonists and antagonists.
- the invention relates to polynucleotides and polypeptides of the human llcb splice variant.
- This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptides of the present invention are human 7-transmembrane receptors. The invention also relates to inhibiting or activating the action of such polypeptides.
- proteins participating in signal transduction pathways that involve G-proteins and/or second messengers, e.g., cAMP (Lefkowitz, Nature, (1991) 351.: 353-354).
- cAMP Lefkowitz, Nature, (1991) 351.: 353-354.
- proteins participating in pathways with G-proteins or PPG proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins.
- GPC receptors such as those for adrenergic agents and dopamine (Kobilka, B.K., et al, PNAS, (1987), 84: 46-50; Kobilka, B.K., et al, Science, (1987), 238: 650-656; Bunzow, J.R., et al, Nature, (1988), 336:783-787), G-proteins themselves, effector proteins, e.g., phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kinase A and protein kinase C (Simon, M.I., et al , Science, 252: 802-8 (1991)).
- GPC receptors such as those for adrenergic agents and dopamine (Kobilka, B.K., et al, PNAS, (1987), 84: 46-50; Kobilka, B.K.,
- the effect of hormone binding is activation of the enzyme, adenylate cyclase, inside the cell.
- Enzyme activation by hormones is dependent on the presence of the nucleotide GTP.
- GTP also influences hormone binding.
- a G- protein connects the hormone receptor to adenylate cyclase.
- G-protein was shown to exchange GTP for bound GDP when activated by a hormone receptor.
- the GTP-carrying form then binds to activated adenylate cyclase.
- Hydrolysis of GTP to GDP catalyzed by the G-protein itself, returns the G-protein to its basal, inactive form.
- the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
- G-protein coupled receptors The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane a-helices connected by extracellular or cytoplasmic loops. G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors.
- G-protein coupled receptors have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops.
- the G-protein family of coupled receptors includes dopamine receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders.
- members of this family include, but are not limited to, calcitonin, adrenergic, endothelin, cAMP, adenosine, muscarinic, acetylcholine, serotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins, endothelial differentiation gene-1 receptor, rhodopsins, odorant, cytomegalovirus receptors,.
- G-protein coupled receptors have single conserved cysteine residues in each of the first two extracellular loops which form disulfide bonds that are believed to stabilize functional protein structure.
- the 7 transmembrane regions are designated as TM1, TM2, TM3, TM4, TM5, TM6, and TM7.
- TM3 has been implicated in signal transduction.
- Phosphorylation and lipidation (palmitylation or farnesylation) of cysteine residues can influence signal transduction of some G-protein coupled receptors.
- Most G-protein coupled receptors contain potential phosphorylation sites within the third cytoplasmic loop and/or the carboxy terminus. For several G-protein coupled receptors, such as the b-adrenoreceptor, phosphorylation by protein kinase A and/or specific receptor kinases mediates receptor desensitization.
- the ligand binding sites of G-protein coupled receptors are believed to comprise a hydrophilic socket formed by several G-protein coupled receptor transmembrane domains, which socket is surrounded by hydrophobic residues of the G-protein coupled receptors.
- the hydrophilic side of each G-protein coupled receptor transmembrane helix is postulated to face inward and form a polar ligand binding site.
- TM3 has been implicated in several G-protein coupled receptors as having a ligand binding site, such as the TM3 aspartate residue.
- TM5 serines, a TM6 asparagine and TM6 or TM7 phenylalanines or tyrosines are also implicated in ligand binding.
- G-protein coupled receptors can be intracellularly coupled by heterotrimeric G-proteins to various intracellular enzymes, ion channels and transporters. See Johnson, et al, Endoc. Rev. , (1989) JO: 317-331). Different G-protein a-subunits preferentially stimulate particular effectors to modulate various biological functions in a cell. Phosphorylation of cytoplasmic residues of G- protein coupled receptors have been identified as an important mechanism for the regulation of G- protein coupling of some G-protein coupled receptors. G-protein coupled receptors are found in numerous sites within a mammalian host. Since, over the past 15 years, nearly 150 therapeutic agents targeting 7 transmembrane (7
- TM receptors have been successfully introduced onto the market. This indicates that these receptors have an established, proven history as therapeutic targets. Clearly, there is a need for identification and characterization of further receptors which can play a role in preventing, ameliorating or correcting dysfunctions or diseases, including, but not limited to, infections such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or
- HIV-2 pain; cancers; diabetes; obesity; feeding and drinking abnormalities, such as anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation, and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others.
- the polypeptide of the present invention has the conserved 7 transmembrane residues, and have amino acid sequence homology to known G-protein couples receptors.
- polypeptides inter alia, that have been identified as a novel human llcb splice variant by homology between the amino acid sequence set out in Figure 1 (SEQ ID NO: 2) and known amino acid sequences of other proteins such as mouse cDNA, rat calcitonin receptor A, rat calcitonin receptor B, and hormone receptor EMR1. It is a further object of the invention, moreover, to provide polynucleotides that encode this 1 lcb splice variant, particularly polynucleotides that encode the polypeptide herein designated 1 lcb splice variant.
- the polynucleotide comprises the region encoding the 1 lcb splice variant in the sequence set out in Figure 1 (SEQ ID NO: 1).
- nucleic acid molecules encoding this llcb splice variant, including mRNAs, cDNAs, genomic DNAs and, in further embodiments of this aspect of the invention, biologically, diagnostically, clinically or therapeutically useful variants, analogs or derivatives thereof, or fragments thereof, including fragments of the variants, analogs and derivatives.
- allelic variants of human 1 lcb splice variant are naturally occurring allelic variants of human 1 lcb splice variant.
- infections such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2
- pain cancers
- novel polypeptides referred to herein as 1 lcb splice variant as well as biologically, diagnostically or therapeutically useful fragments, variants and derivatives thereof, variants and derivatives of the fragments, and analogs of the foregoing.
- variants of llcb splice variant encoded by naturally occurring alleles of the l lcb splice variant gene are provided.
- methods of screening for compounds which bind to and activate (agonist) or inhibit activation (antagonist) of the receptor polypeptides of the present invention and for receptor ligands are provided.
- the preferred method for identifying agonist or antagonist of a receptor of the present invention comprises: contacting a cell expressing on the surface thereof the receptor, said receptor being associated with a second component capable of providing a detectable signal in response to the binding of a compound to said receptor, with a compound to be screened under conditions to permit binding to the receptor; and determining whether the compound binds to and activates or inhibits the receptor by measuring the level of a signal generated from the interaction of the compound with the receptor.
- the method further comprises conducting the identification of agonist or antagonist in the presence of labeled or unlabeled MCH.
- the ligand is MCH. Yet more preferably MCH is labeled.
- methods for producing the aforementioned 1 lcb splice variant polypeptides comprising culturing host cells having expressibly incorporated therein an exogenously-derived 1 lcb splice variant-encoding polynucleotide under conditions for expression of llcb splice variant in the host and then recovering the expressed polypeptide.
- products, compositions, processes and methods that utilize the aforementioned polypeptides and polynucleotides for research, biological, clinical and therapeutic purposes, inter alia.
- products, compositions and methods for, among other things: assessing l lcb splice variant expression in cells by determining llcb splice variant polypeptides or l lcb splice variant-encoding mRNA; to treat infections, such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; ; feeding and drinking abnormalities, such as anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psycho
- Huntington's disease or Gilles dela Tourett's syndrome among others, in vitro, ex vivo or in vivo by exposing cells to 1 lcb splice variant polypeptides or polynucleotides as disclosed herein; assaying genetic variation and aberrations, such as defects, in llcb splice variant genes; and administering an 1 lcb splice variant polypeptide or polynucleotide to an organism to augment llcb splice variant function or remediate llcb splice variant dysfunction.
- non- naturally occurring synthetic, isolated and/or recombinant l lcb splice variant polypeptides which are fragments, consensus fragments and/or sequences having conservative amino acid substitutions, of at least one domain of the 1 lcb splice variant of the present invention, such that the receptor may bind llcb splice variant ligands, or which may also modulate, quantitatively or qualitatively, 1 lcb splice variant ligand binding.
- synthetic or recombinant llcb splice variant polypeptides conservative substitution and derivatives thereof, antibodies thereto, anti-idiotype antibodies, compositions and methods that can be useful as potential modulators of llcb splice variant function, by binding to ligands or modulating ligand binding, due to their expected biological properties, which may be used in diagnostic, therapeutic and/or research applications.
- probes that hybridize to human 1 lcb splice variant sequences.
- antibodies against llcb splice variant polypeptides there are provided antibodies against llcb splice variant polypeptides.
- the antibodies are highly selective for human 1 lcb splice variant.
- llcb splice variant agonists are provided.
- preferred agonists are molecules that mimic the llcb splice variant, that bind to llcb splice variant-binding molecules or receptor molecules, and that elicit or augment llcb splice variant-induced responses.
- 1 lcb splice variant antagonists are those which mimic the l lcb splice variant so as to bind to the llcb splice variant receptor or binding molecules but not elicit an 1 lcb splice variant-induced response or more than one 1 lcb splice variant-induced response.
- molecules that bind to or interact with the l lcb splice variant so as to inhibit an effect of llcb splice variant or more than one effect of l lcb splice variant or which prevent expression of llcb splice variant.
- compositions comprising an 1 lcb splice variant polynucleotide or an llcb splice variant polypeptide for administration to cells in vitro, to cells ex vivo and to cells in vivo, or to a multicellular organism.
- the compositions comprise an llcb splice variant polynucleotide for expression of an 1 lcb splice variant polypeptide in a host organism for treatment of disease.
- Particularly preferred in this regard is expression in a human patient for treatment of a dysfunction associated with aberrant endogenous activity of the 1 lcb splice variant.
- Figure la and lb show the nucleotide and deduced amino acid sequence of the human llcb splice variant (SEQ ID NOS: land 2).
- Geneetic element generally means a polynucleotide comprising a region that encodes a polypeptide or a region that regulates replication, transcription or translation or other processes important to expression of the polypeptide in a host cell, or a polynucleotide comprising both a region that encodes a polypeptide and a region operably linked thereto that regulates expression.
- Genetic elements may be comprised within a vector that replicates as an episomal element; that is, as a molecule physically independent of the host cell genome. They may be comprised within mini-chromosomes, such as those that arise during amplification of transfected DNA by methotrexate selection in eukaryotic cells. Genetic elements also may be comprised within a host cell genome, not in their natural state but, rather, following manipulation such as isolation, cloning and introduction into a host cell in the form of purified DNA or in a vector, among others.
- Isolated means altered “by the hand of man” from its natural state; i.e., that, if it occurs in nature, it has been changed or removed from its original environment, or both.
- a naturally occurring polynucleotide or a polypeptide naturally present in a living animal in its natural state is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated", as the term is employed herein.
- Polynucleotide(s) generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
- Polynucleotides as used herein refers to, among others, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions.
- polynucleotide as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
- the strands in such regions may be from the same molecule or from different molecules.
- the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
- polynucleotide also includes DNAs or RNAs containing one or more modified bases.
- DNAs or RNAs with backbones modified for stability or for other reasons are polynucleotides as that term is intended herein.
- DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides.
- polynucleotide as it is employed herein, embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including inter alia simple and complex cells.
- polynucleotide as used herein, also embraces relatively short polynucleotides, often referred to as oligonucleotides.
- Polypeptides includes all polypeptides as described below. The basic structure of polypeptides is well known and has been described in the art. The term is used herein to refer to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types.
- Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids, and that many amino acids, including the terminal amino acids, may be modified in a given polypeptide, either by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques which are well known to the art. Even the common modifications that occur naturally in polypeptides are too numerous to list exhaustively here, but they are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and thus are well known to those of skill in the art.
- polypeptides of the present invention are, to name an illustrative few, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as
- Polypeptides are not always entirely linear.
- polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation events, including natural processing event and events brought about by human manipulation which do not occur naturally.
- Circular, branched and branched circular polypeptides may be synthesized by non-translation natural process and by entirely synthetic methods, as well.
- Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
- blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well.
- the amino terminal residue of polypeptides made in E. coli, prior to processing almost invariably will be N-formylmethionine.
- polypeptides made by expressing a cloned gene in a host for instance, the nature and extent of the modifications in large part will be determined by the host cell's posttranslational modification capacity and the modification signals present in the polypeptide amino acid sequence. For instance, as is well known, glycosylation often does not occur in bacterial hosts such as E. coli. Accordingly, when glycosylation is desired, a polypeptide should be expressed in a glycosylating host, generally a eukaryotic cell.
- Insect cells often carry out the same posttranslational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to express efficiently mammalian proteins having the native patterns of glycosylation, inter alia. Similar considerations apply to other modifications.
- polypeptide encompasses all such modifications, particularly those that are present in polypeptides synthesized by expressing a polynucleotide in a host cell.
- Variant(s), are polynucleotides or polypeptides that differ from a reference polynucleotide or polypeptide respectively. Variants in this sense are described below and elsewhere in the present disclosure in greater detail.
- Changes in the nucleotide sequence of the variant may alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Such nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below.
- a polypeptide that differs in amino acid sequence from another, reference polypeptide Generally, differences are limited so that the sequences of the reference and the variant are closely similar overall and, in many region, identical.
- a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination.
- a variant may also be a fragment of a polynucleotide or polypeptide of the invention that differs from a reference polynucleotide or polypeptide sequence by being shorter than the reference sequence, such as by a terminal or internal deletion.
- a variant of a polypeptide of the invention also includes a polypeptide which retains essentially the same biological function or activity as such polypeptide, e.g., proproteins which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
- a variant may also be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence.
- a variant of the polynucleotide or polypeptide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally.
- Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, including those applied to polynucleotides, cells or organisms, or may be made by recombinant means.
- polynucleotide variants in this regard are variants that differ from the aforementioned polynucleotides by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides.
- the variants may be altered in coding or non- coding regions or both. Alterations in the coding regions may produce conservative or non- conservative amino acid substitutions, deletions or additions. All such variants defined above are deemed to be within the scope of those skilled in the art from the teachings herein and from the art.
- Binding molecules refer to molecules, including ligands, that specifically bind to or interact with receptor polypeptides of the present invention. Such binding molecules are a part of the present invention. Binding molecules may also be non-naturally occurring, such as antibodies and antibody-derived reagents that bind specifically to polypeptides of the invention.
- Identity is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences.
- identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences.
- similarity between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide.
- Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol.
- the BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al. , J. Mol. Biol. 215: 403-410 (1990).
- the well known Smith Waterman algorithm may also be used to determine identity.
- Preferred parameters for polypeptide sequence comparison include the following:
- a program useful with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison WI.
- the aforementioned parameters are the default parameters for peptide comparisons (along with no penalty for end gaps).
- Preferred parameters for polynucleotide comparison include the following:
- Preferred polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide sequence having at least a 50, 60, 70, 80, 85, 90, 95, 97 or 100% identity to the reference sequence of SEQ ID NO:l, wherein said polynucleotide sequence may be identical to the reference sequence of SEQ ID NO: 1 or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO: l
- Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO: 2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
- a polynucleotide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:2, that is it may be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity.
- Such alterations are selected from the group consisting of at least one nucleic acid deletion, substitution, , including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleic acids in the reference sequence or in one or more contiguous groups within the reference sequence.
- Preferred polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 50,60, 70, 80, 85, 90, 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NO:2, wherein said polypeptide sequence may be identical to the reference sequence of SEQ ID NO: 2 or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non- conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of amino acid alterations is determined by multiplying the total number of amino acids in SEQ ID NO: 2 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ ID
- a polypeptide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:2, that is it may be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity.
- Such alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non- conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence.
- the invention relates, inter alia, to polypeptides and polynucleotides of a novel l lcb splice variant, which is related by amino acid sequence homology to the llcb splice variant encoded by mouse cDNA.
- the invention relates especially to the 1 lcb splice variant having the nucleotide and amino acid sequences set out in Figure 1 (SEQ ID NOS: 1 and 2).
- isolated polynucleotides which encode the llcb splice variant polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO: 2).
- the 1 lcb splice variant of the invention is structurally related to other proteins of the 7- transmembrane receptor family, as shown by the results of sequencing the cDNA.
- the cDNA sequence contains an open reading frame encoding a protein of 353 amino acids.
- the nucleotide sequence of the llcb splice variant of Figure 1 (SEQ ID NO: 1) has about 90% identity over its entirety with the original human 1 lcb clone of WO 96/18651, published June 20, 1996.
- Polynucleotides of the present invention may be in the form of RNA, such as RNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof.
- the DNA may be double-stranded or single-stranded.
- Single-stranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.
- the coding sequence which encodes the polypeptide may be identical over its entire length to the coding sequence of the polynucleotide shown in Figure 1 (SEQ ID NO: 1).
- polynucleotide with a different sequence, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of Figure 1 (SEQ ID NO: 2).
- Polynucleotides of the present invention which encode the polypeptide of Figure 1 (SEQ ID NO: 2).
- ID NO: 2 may include, but are not limited to, the coding sequence for the mature polypeptide, by itself; the coding sequence for the mature polypeptide and additional coding sequences, such as those encoding a leader or secretory sequence, such as a pre-, or pro- or prepro- protein sequence; and the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences, together with additional, non-coding sequences, including, but not limited to, introns and non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences that play a role in transcription, and mRNA processing, including splicing and polyadenylation signals, for example, for ribosome binding and stability of mRNA.
- additional coding sequences such as those encoding a leader or secretory sequence, such as a pre-, or pro- or prepro- protein sequence
- additional, non-coding sequences including, but not limited to, introns and non-coding 5' and 3
- Coding sequences which provide additional functionalities may also be incorporated into the polypeptide.
- the polypeptide may be fused to a marker sequence, such as a peptide, which facilitates purification of the fused polypeptide.
- the marker sequence is a hexa-histidine peptide, such as the tag provided in the pQE vector (Qiagen, Inc.). As described in Gentz, et al , Proc. Natl. Acad. Sci. , USA, 1989, 86: 821-824, for instance, hexa-histidine provides for convenient purification of the fusion protein.
- the marker sequence is a HA tag. Many other such tags are commercially abatable.
- polynucleotide encoding a polypeptide also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by introns) together with additional regions, that also may contain coding and/or non-coding sequences.
- the present invention further relates to variants of the polynucleotides which encode for variants of the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO: 2).
- polypeptides having the amino acid sequence of the 1 lcb splice variant set out in Figure 1 SEQ ID NO: 2
- variants thereof are polynucleotides encoding polypeptides having the amino acid sequence of the 1 lcb splice variant set out in Figure 1 (SEQ ID NO: 2) and variants thereof.
- polynucleotides encoding variants of the 1 lcb splice variant that have the amino acid sequence of the 1 lcb splice variant polypeptide of Figure 1 (SEQ ID NO: 1) in which several, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination
- polynucleotides that are at least 91 % identical over their entire length to a polynucleotide encoding the l lcb splice variant polypeptide having the amino acid sequence set out in Figure 1 (SEQ ID NO: 2), and polynucleotides which are complementary to such polynucleotides.
- polynucleotides at least 95% identical over their entire length to the same are particularly preferred, with those at least 97-99 % being the most preferred.
- Particularly preferred embodiments are polynucleotides which encode polypeptides, which retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure 1 (SEQ ID NO: 1).
- the present invention further relates to polynucleotides that hybridize to the herein above- described sequences.
- the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides.
- stringent conditions means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.
- Polynucleotides of the invention as discussed above, may be used as hybridization probes for cDNA and genomic DNA, to isolate full-length cDNAs and genomic clones encoding the 1 lcb splice variant and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to the 1 lcb splice variant gene.
- hybridization techniques are known to those of skill in the art.
- the probes generally will comprise at least 15 nucleotides. Preferably, such probes will have at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will range between 30 and 50 nucleotides.
- polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to human disease, as further discussed herein relating to polynucleotide assays.
- a polynucleotide of the present invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences which are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
- a leader sequence which may be referred to as a preprotein
- a precursor of a mature protein having one or more prosequences which are not the leader sequences of a preprotein or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
- the present invention further relates to a human llcb splice variant polypeptide which has the deduced amino acid sequence of Figure 1 (SEQ ID NO: 2).
- the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide. In certain preferred embodiments, it is a recombinant polypeptide.
- polypeptides having the amino acid sequence of llcb splice variant set out in Figure 1 (SEQ ID NO: 2), and variants thereof.
- Other preferred embodiments of the invention are polypeptides having the amino acid sequence of 1 lcb splice variant, and variants thereof
- substitutions are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and He; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gin, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe and Tyr.
- variants of the fragments having the amino acid sequence of the llcb splice variant polypeptide of Figure 1 (SEQ ID NO: 2), in which several, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination.
- polypeptides having the amino acid sequence of Figure 1 (SEQ ID NO: 2) without substitutions.
- polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
- polypeptides of the present invention include the polypeptide of SEQ ID NO: 2 (in particular the mature polypeptide) as well as polypeptides which have at least 91 % identity to the polypeptide of SEQ ID NO: 2 Fragments
- polypeptides comprising variants that are fragments of the l lcb splice variant, most particularly fragments of the llcb splice variant having the amino acid set out in Figure 1 (SEQ ID NO: 2), and variants of the 1 lcb splice variant of Figure 1 (SEQ ID NO: 2).
- a fragment is a polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned llcb splice variant polypeptides and variants thereof.
- fragments may be "free-standing,” i.e., not part of or fused to other amino acids or polypeptides, or they may be comprised within a larger polj ⁇ eptide of which they form a part or region.
- the presently discussed fragments most preferably form a single continuous region. However, several fragments may be comprised within a single larger polypeptide.
- fragments in one aspect of the meaning intended herein refers to the portion or portions of a fusion polypeptide or fusion protein derived from the 1 lcb splice variant.
- "about” herein includes the particularly recited ranges larger or smaller by several, 5, 4, 3, 2 or 1 amino acid at either extreme or at both extremes.
- Truncation polypeptides include llcb splice variant polypeptides having the amino acid sequence of Figure 1 (SEQ ID NO: 2), or of variants thereof, except for deletion of a continuous series of residues (that is, a continuous region, part or portion) that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus or, as in double truncation mutants, deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus. Fragments having the size ranges set out about also are preferred embodiments of truncation fragments, which are especially preferred among fragments generally
- fragments characterized by structural or functional attributes of the 1 lcb splice variant are also preferred.
- Preferred embodiments of the invention in this regard include fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions of the 1 lcb splice variant, and combinations of such fragments.
- Preferred regions are those that mediate activities of the 1 lcb splice variant. Most highly preferred in this regard are fragments that have a chemical, biological or other activity of the llcb splice variant, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Further preferred polypeptide fragments are those that are antigenic or immunogenic in an animal, especially in a human.
- the invention also relates to, among others, polynucleotides encoding the aforementioned fragments, polynucleotides that hybridize to polynucleotides encoding the fragments, particularly those that hybridize under stringent conditions, and polynucleotides, such as PCR primers, for amplifying polynucleotides that encode the fragments.
- preferred polynucleotides are those that correspond to the preferred fragments, as discussed above.
- the present invention also relates to vectors which comprise a polynucleotide or polynucleotides of the present invention, and host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
- Host cells can be genetically engineered to incorporate polynucleotides and express polypeptides of the present invention.
- Introduction of a polynucleotides into the host cell can be affected by calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction, infection or other methods.
- Such methods are described in many standard laboratory manuals, such as Davis, et al, BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook, et al, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Representative examples of appropriate hosts include bacterial cells, such as streptococci, stapkylococci, E. coli, streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.
- bacterial cells such as streptococci, stapkylococci, E. coli, streptomyces and Bacillus subtilis cells
- fungal cells such as yeast cells and Aspergillus cells
- insect cells such as Drosophila S2 and Spodoptera Sf9 cells
- animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells
- plant cells include CHO, COS, HeLa, C127, 3T3, BHK, 2
- Polynucelotide constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.
- the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
- Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al. , MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
- the vector may be, for example, a plasmid vector, a single or double-stranded phage vector, a single or double-stranded RNA or DNA viral vector.
- Plasmids generally are designated herein by a lower case p preceded and/or followed by capital letters and/or numbers, in accordance with standard naming conventions that are familiar to those of skill in the art.
- Starting plasmids disclosed herein are either commercially available, publicly available, or can be constructed from available plasmids by routine application of well known, published procedures. Many plasmids and other cloning and expression vectors that can be used in accordance with the present invention are well known and readily available to those of skill in the art.
- vectors are those for expression of polynucleotides and polypeptides of the present invention.
- such vectors comprise cis-acting control regions effective for expression in a host operatively linked to the polynucleotide to be expressed.
- Appropriate trans-acting factors either are supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.
- the vectors provide for specific expression.
- Such specific expression may be inducible expression or expression only in certain types of cells or both inducible and cell-specific.
- Particularly preferred among inducible vectors are vectors that can be induced for expression by environmental factors that are easy to manipulate, such as temperature and nutrient additives.
- a variety of vectors suitable to this aspect of the invention, including constitutive and inducible expression vectors for use in prokaryotic and eukaryotic hosts, are well known and employed routinely by those of skill in the art.
- vectors can be used to express a polypeptide of the invention.
- Such vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids, all may be used for expression in accordance with this aspect of the present invention.
- any vector suitable to maintain, propagate or express polynucleotides to express a polypeptide in a host may be used for expression in this regard.
- DNA sequence may be inserted into the vector by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook, et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
- the DNA sequence in the expression vector is operatively linked to appropriate expression control sequence(s), including, for instance, a promoter to direct mRNA transcription.
- appropriate expression control sequence(s) including, for instance, a promoter to direct mRNA transcription.
- promoters include, but are not limited to, the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs.
- expression constructs will contain sites for transcription initiation and termination, and, in the transcribed region, a ribosome binding site for translation.
- the coding portion of the mature transcripts expressed by the constructs will include a translation initiating codon, for example, AUG or GUG, at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.
- constructs may contain control regions that regulate as well as engender expression.
- control regions that regulate as well as engender expression.
- such regions will operate by controlling transcription, such as transcription factors, repressor binding sites and termination, among others.
- Vectors for propagation and expression generally will include selectable markers and amplification regions, such as, for example, those set forth in Sambrook et al.
- the following vectors, which are commercially available, are provided by way of example.
- vectors preferred for use in bacteria are pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia, and pBR322 (ATCC 37017).
- eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. These vectors are listed solely by way of illustration of the many commercially available and well known vectors that are available to those of skill in the art for use in accordance with this aspect of the present invention. It will be appreciated that any other plasmid or vector suitable for, for example, introduction, maintenance, propagation or expression of a polynucleotide or polypeptide of the invention in a host may be used in this aspect of the invention.
- Promoter regions can be selected from any desired gene using vectors that contain a reporter transcription unit lacking a promoter region, such as a chloramphenicol acetyl transferase ("CAT") transcription unit, downstream of restriction site or sites for introducing a candidate promoter fragment; i.e., a fragment that may contain a promoter.
- CAT chloramphenicol acetyl transferase
- introduction into the vector of a promoter-containing fragment at the restriction site upstream of the cat gene engenders production of CAT activity, which can be detected by standard CAT assays.
- Vectors suitable to this end are well known and readily available, such as pKK232-8 and pCM7.
- Promoters for expression of polynucleotides of the present invention include not only well known and readily available promoters, but also promoters that readily may be obtained by the foregoing technique, using a reporter gene.
- prokaryotic promoters suitable for expression of polynucleotides and polypeptides in accordance with the present invention are the E. coli lad and lacZ and promoters, the T3 and T7 promoters, the gpt promoter, the lambda PR, PL promoters and the trp promoter.
- eukaryotic promoters suitable in this regard are the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus ("RSV”), and metallothionein promoters, such as the mouse metallothionein-I promoter.
- CMV immediate early promoter the HSV thymidine kinase promoter
- the early and late SV40 promoters the promoters of retroviral LTRs, such as those of the Rous sarcoma virus ("RSV”)
- metallothionein promoters such as the mouse metallothionein-I promoter.
- Recombinant expression vectors will include, for example, origins of replication, a promoter preferably derived from a highly-expressed gene to direct transcription of a downstream structural sequence, and a selectable marker to permit isolation of vector containing cells after exposure to the vector.
- Polynucleotides of the invention encoding the heterologous structural sequence of a polypeptide of the invention generally will be inserted into the vector using standard techniques so that it is operably linked to the promoter for expression.
- the polynucleotide will be positioned so that the transcription start site is located appropriately 5' to a ribosome binding site.
- the ribosome binding site will be 5' to the codon that initiates translation of the polypeptide to be expressed, for example AUG or GUG.
- a translation stop codon at the end of the polypeptide and there will be a polyadenylation signal in constructs for use in eukaryotic hosts.
- Transcription termination signal appropriately disposed at the 3' end of the transcribed region may also be included in the polynucleotide construct.
- secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
- the polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals but also additional heterologous functional regions.
- a region of additional amino acids, particularly charged amino acids may be added to the N- or C-terminus of the polypeptide to improve stability and persistence in the host cell, during purification or during subsequent handling and storage.
- region also may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide.
- the addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability or to facilitate purification, among others, are familiar and routine techniques in the art.
- a preferred fusion protein comprises a heterologous region from immunolglobulin that is useful to solubilize or purify polypeptides.
- EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another protein or part thereof.
- proteins have been fused with antibody Fc portions for the purpose of high-throughput screening assays to identify antagonists. See, D. Bennett, et al, Journal of Molecular Recognition, 8: 52-58 (1995) and K. Johanson, et al, The Journal of Biological Chemistry, T70 (16): 9459-9471 (1995).
- Mammalian expression vectors may comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation regions, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences that are necessary for expression. Cells typically then are harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
- the 1 lcb splice variant polypeptide can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification.
- Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
- This invention also relates to the use of 1 lcb splice variant polynucleotides to detect complementary polynucleotides for use, for example, as a diagnostic reagent. Detection of a mutated form of the llcb splice variant associated with a dysfunction will provide a diagnostic tool that can add to or define diagnosis of a disease or susceptibility to a disease which results from under-expression, over-expression or altered expression of the 1 lcb splice variant. Individuals carrying mutations in the human llcb splice variant gene may be detected at the DNA level by a variety of techniques.
- Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material.
- the genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR prior to analysis.
- PCR Saiki, et al, Nature, 1986, 324:163-166.
- RNA or cDNA may also be used in similar fashion.
- PCR primers complementary to the nucleic acid encoding the 1 lcb splice variant can be used to identify and analyze 1 lcb splice variant expression and mutations. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
- Point mutations can be identified by hybridizing amplified DNA to radiolabeled llcb splice variant RNA or, radiolabeled l lcb splice variant antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.
- Sequence differences between a reference gene and genes having mutations may also be revealed by direct DNA sequencing.
- cloned DNA segments may be employed as probes to detect specific DNA segments.
- the sensitivity of such methods can be greatly enhanced by appropriate use of PCR or other amplification methods.
- a sequencing primer is used with double-stranded PCR product or a single-stranded template molecule generated by a modified PCR.
- the sequence determination is performed by conventional procedures with radiolabeled nucleotide or by automatic sequencing procedures with fluorescent- tags.
- DNA sequence differences may be achieved by detection of alterations in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures. See, e.g., Myers, et al, Science, 1985, 230: 1242).
- Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and SI protection or the chemical cleavage method (e.g., Cotton, et al, Proc. Natl Acad. Scl, USA, 1985, 85: 4397-4401).
- the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes, (e.g., restriction fragment length polymorphisms ("RFLP") and Southern blotting of genomic DNA.
- restriction enzymes e.g., restriction fragment length polymorphisms ("RFLP")
- RFLP restriction fragment length polymorphisms
- Southern blotting of genomic DNA In addition to more conventional gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.
- a process for diagnosing or determining a susceptibility to infections such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; feeding and drinking abnormalities, such as anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation, and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others, through detection of mutation in the 1 lcb splice variant gene by the methods described; and the nucleic acid sequences described above may be employed for such methods.
- the invention provides a process for diagnosing diseases, infections such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; feeding and drinking abnormalities such as, anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation, and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others; comprising determining from a sample derived from a patient an abnormally decreased or increased level of expression of polynucleotide having the sequence of Figure 1 (SEQ ID NO: 1).
- Decreased or increased expression of polynucleotide can be measured using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.
- Chromosome assays The sequences of the present invention are also valuable for chromosome identification.
- the sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
- the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease.Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V.
- the present invention also relates to a diagnostic assays such as quantitative and diagnostic assays for detecting levels of the llcb splice variant protein in cells and tissues, including determination of normal and abnormal levels.
- a diagnostic assay in accordance with the invention for detecting over-expression of the llcb splice variant protein compared to normal control tissue samples may be used to detect the presence of a disease/disorder such as infections, including bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; ; feeding and drinking abnormalities, such as anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation; and dyskinesias, such
- An ELISA assay initially comprises preparing an antibody specific to the llcb splice variant, preferably a monoclonal antibody.
- a reporter antibody generally is prepared which binds to the monoclonal antibody.
- the reporter antibody is attached a detectable reagent such as a radioactive, fluorescent or enzymatic reagent, in this example horseradish peroxidase enzyme.
- a sample is removed from a host and incubated on a solid support, e.g., a polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin.
- a non-specific protein such as bovine serum albumin.
- the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to any llcb splice variant proteins attached to the polystyrene dish. Unbound monoclonal antibody is washed out with buffer.
- the reporter antibody linked to horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to the llcb splice variant.
- Unattached reporter antibody is then washed out.
- Reagents for peroxidase activity including a colorimetric substrate, are then added to the dish.
- the amount of color developed in a given time period indicates the amount of the llcb splice variant protein present in the sample.
- Quantitative results typically are obtained by reference to a standard curve.
- a competition assay may be employed wherein antibodies specific to the llcb splice variant attached to a solid support and labeled llcb splice variant and a sample derived from the host are passed over the solid support.
- the amount of detected label attached to the solid support can be correlated to a quantity of 1 lcb splice variant in the sample.
- polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can also be used as immunogens to produce antibodies thereto.
- These antibodies can be, for example, polyclonal or monoclonal antibodies.
- the present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.
- Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies binding the whole native polypeptide. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.
- any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, et al, Nature, (1975), 256: 495-497, the trioma technique, the human B-cell hybridoma technique (Kozbor, et al, Immunology Today, (1983), 4: 72 and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al, pg. 77-96 in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985). Techniques described for the production of single chain antibodies (U.S. Patent No.
- 4,946,778 can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention.
- transgenic mice, or other organisms including other mammals may be used to express humanized antibodies to immunogenic polypeptide products of this invention.
- the above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or purify the polypeptide of the present invention by attachment of the antibody to a solid support for isolation and/or purification by affinity chromatography.
- Antibodies against the llcb splice variant may also be employed to inhibit infections, such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; feeding and drinking abnormalities, such as anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation, and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others.
- infections such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2
- pain such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2
- pain such as bacterial,
- the 1 lcb splice variant can be used to isolate proteins which interact with it; this interaction can be a target for interference. Inhibitors of protein-protein interactions between the 1 lcb splice variant and other factors could lead to the development of pharmaceutical agents for the modulation of llcb splice variant activity.
- this invention also provides a method for identification of binding molecules to the llcb splice variant.
- Genes encoding proteins for binding molecules to the llcb splice variant can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Such methods are described in many laboratory manuals such as, for instance, Coligan, et al, Current Protocols in Immunology 1: Chapter 5 (1991) and Rivett, A. J., Biochem. (1993), 291: 1-10.
- the yeast two-hybrid system provides methods for detecting the interaction between a first test protein and a second test protein, in vivo, using reconstitution of the activity of a transcriptional activator.
- llcb splice variant cDNA is fused to a Gal4 transcription factor DNA binding domain and expressed in yeast cells.
- cDNA library members obtained from cells of interest are fused to a transactivation domain of Gal4.
- cDNA clones which express proteins which can interact with the llcb splice variant will lead to reconstitution of Gal4 activity and transactivation of expression of a reporter gene such as Gall-lacZ.
- An alternative method is screening of ⁇ gtll, ⁇ ZAP (Stratagene) or equivalent cDNA expression libraries with recombinant llcb splice variant.
- Recombinant llcb splice variant protein or fragments thereof are fused to small peptide tags such as FLAG, HSV or GST.
- the peptide tags can possess convenient phosphorylation sites for a kinase such as heart muscle creatine kinase or they can be biotinylated.
- Recombinant 1 lcb splice variant can be phosphorylated with 32[P] or used unlabeled and detected with streptavidin or antibodies against the tags.
- ⁇ gtllcDNA expression libraries are made from cells of interest and are incubated with the recombinant llcb splice variant, washed and cDNA clones which interact with llcb splice variant isolated. Such methods are routinely used by skilled artisans. See, e.g., Sambrook (supra).
- Another method is the screening of a mammalian expression library in which the cDNAs are cloned into a vector between a mammalian promoter and polyadenylation site and transiently transfected in COS or 293 cells. Forty-eight hours later the binding protein is detected by incubation of fixed and washed cells with a labelled 1 lcb splice variant.
- the 1 lcb splice variant is iodinated, and detection of any bound 1 lcb splice variant is viaautoradiography. See Sims, et al.,.
- pools of cDNAs containing the cDNA encoding the binding protein of interest can be selected and the cDNA of interest can be isolated by further subdivision of each pool followed by cycles of transient transfection, binding and autoradiography.
- the cDNA of interest can be isolated by transfecting the entire cDNA library into mammalian cells and panning the cells on a dish containing the llcb splice variant bound to the plate.
- Another alternative method is isolation of proteins interacting with the llcb splice variant directly from cells. Fusion proteins of 1 lcb splice variant with GST or small peptide tags are made and immobilized on beads. Biosynthetically labeled or unlabeled protein extracts from the cells of interest are prepared, incubated with the beads and washed with buffer. Proteins interacting with the llcb splice variant are eluted specifically from the beads and analyzed by SDS-PAGE. Binding partner primary amino acid sequence data are obtained by microsequencing.
- the cells can be treated with agents that induce a functional response such as tyrosine phosphorylation of cellular proteins.
- an agent such as a growth factor or cytokine such as interleukin-2.
- Another alternative method is immunoaffinity purification. Recombinant l lcb splice variant is incubated with labeled or unlabeled cell extracts and immunoprecipitated with anti-l lcb splice variant antibodies. The immunoprecipitate is recovered with protein A-Sepharose and analyzed by SDS-PAGE. Unlabelled proteins are labeled by biotinylation and detected on SDS gels with streptavidin. Binding partner proteins are analyzed by microsequencing. Further, standard biochemical purification steps known to those skilled in the art may be used prior to microsequencing.
- Yet another alternative method is screening of peptide libraries for binding partners.
- Recombinant tagged or labeled llcb splice variant is used to select peptides from a peptide or phosphopeptide library which interact with the 1 lcb splice variant. Sequencing of the peptides leads to identification of consensus peptide sequences which might be found in interacting proteins.
- the llcb splice variant binding partners identified by any of these methods or other methods which would be known to those of ordinary skill in the art, as well as those putative binding partners discussed above, can be used in the assay method of the invention.
- Assaying for the presence of the llcb splice variant/binding partner complex are accomplished by, for example, the yeast two-hybrid system, ELISA or immunoassays using antibodies specific for the complex. In the presence of test substances which interrupt or inhibit formation of the 1 lcb splice variant/binding partner interaction, a decreased amount of complex will be determined relative to a control lacking the test substance.
- Assays for free llcb splice variant or binding partner are accomplished by, for example,
- Polypeptides of the invention also can be used to assess llcb splice variant binding capacity of l lcb splice variant binding molecules in cells or in cell-free preparations. Agonists and antagonists - Assays and Molecules
- the llcb splice variant of the present invention may be employed in a process for screening for compounds which activate (agonists) or inhibit activation (antagonists) of the receptor polypeptide of die present invention.
- screening procedures involve providing appropriate cells which express the receptor polypeptide of the present invention on the surface thereof.
- Such cells include cells from mammals, yeast, Drosophila or E. coli.
- a polynucleotide encoding the receptor of the present invention is employed to transfect cells to thereby express the l lcb splice variant.
- the expressed receptor is then contacted with a test compound to observe binding, stimulation or inhibition of a functional response.
- One such screening procedure involves the use of melanophores which are transfected to express the 1 lcb splice variant of the present invention.
- a screening technique is described in PCT WO 92/01810, published February 6, 1992.
- Such an assay may be employed to screen for a compound which inhibits activation of the receptor polypeptide of the present invention by contacting the melanophore cells which encode the receptor with both the receptor ligand, such as MCH, and a compound to be screened. Inhibition of the signal generated by the ligand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.
- the technique may also be employed for screening of compounds which activate the receptor by contacting such cells with compounds to be screened and determining whether such compound generates a signal, i.e. , activates the receptor.
- Other screening techniques include the use of cells which express the llcb splice variant (for example, transfected CHO cells) in a system which measures extracellular pH changes caused by receptor activation.
- compounds may be contacted with cells expressing the receptor polypeptide of die present invention.
- a second messenger response e.g. , signal transduction or pH changes, is then measured to determine whether the potential compound activates or inhibits the receptor.
- Another screening technique involves expressing the l lcb splice variant in which the receptor is linked to phospholipase C or D.
- Representative examples of such cells include, but are not limited to, endothelial cells, smooth muscle cells, and embryonic kidney cells.
- the screening may be accomplished as hereinabove described by detecting activation of the receptor or inhibition of activation of the receptor from the phospholipase second signal.
- Another method involves screening for compounds which are antagonists, and thus inhibit activation of the receptor polypeptide of the present invention by determining inhibition of binding of labeled ligand, such as MCH, to cells which have the receptor on the surface thereof, or cell membranes containing the receptor.
- Such a method involves transfecting a eukaryotic cell with DNA encoding the llcb splice variant such that the cell expresses the receptor on its surface.
- the cell is then contacted with a potential antagonistin the presence of a labeled form of a ligand, such as MCH.
- the ligand can be labeled, e.g., by radioactivity.
- the amount of labeled ligand bound to the receptors is measured, e.g., by measuring radioactivity associated with transfected cells or membrane from these cells. If the compound binds to the receptor, the binding of labeled ligand to the receptor is inhibited as determined by a reduction of labeled ligand which binds to the receptors. This method is called binding assay.
- Another such screening procedure involves the use of mammalian cells which are transfected to express the receptor of interest.
- the cells are loaded with an indicatator dye that produces a fluorescent signal when bound to calcium, and the cells are contacted with a test substance and a receptor agonist, such as MCH.
- a test substance and a receptor agonist such as MCH.
- Any change in fluorescent signal is measured over a defined period of time using, for example, a fluorescence spectrophotometer or a fluorescence imaging plate reader.
- a change in the fluorescence signal pattern generated by the ligand indicates that a compound is a potential antagonist (or agonist) for the receptor.
- Another such screening procedure involves use of mammalian cells which are transfected to express the receptor of interest, and which are also transfected with a reporter gene construct that is coupled to activation of the receptor (for example, luciferase or beta-galactosidase behind an appropriate promoter).
- the cells are contacted with a test substance and die receptor agonist, such as MCH, and die signal produced by the reporter gene is measured after a defined period of time.
- the signal can be measured using a luminometer, spectrophotometer, fluorimeter, or other such instrument appropriate for the specific reporter construct used. Inhibition of the signal generated by the ligand indicates mat a compound is a potential antagonist for the receptor.
- Another such screening technique for antagonists or agonits involves introducing RNA encoding d e 1 lcb splice variant into Xenopus oocytes to transiently or stably express the receptor.
- the receptor oocytes are then contacted wifli the receptor ligand, such as MCH, and a compound to be screened. Inhibition or activation of the receptor is then determined by detection of a signal, such as, cAMP, calcium, proton, or other ions.
- Another method involves screening for 1 lcb splice variant inhibitors by determining inhibition or stimulation of 1 lcb splice variant-mediated cAMP and/or adenylate cyclase accumulation or dimunition.
- Such a method involves transiently or stably transfecting a eukaryotic cell with 1 lcb splice variant receptor to express the receptor on the cell surface.
- the cell is then exposed to potential antagonists in the presence of llcb splice variant ligand, such as MCH.
- llcb splice variant ligand such as MCH.
- the changes in levels of cAMP is then measured over a defined period of time, for example, by radio-immuno or protein binding assays (for example using Flashplates or a scintillation proximity assay). Changes in cAMP levels can also be determined by directly measuring the activity of the enzyme, adenylyl cyclase, in broken cell preparations.
- the potential antagonist binds die receptor, and thus inhibits 1 lcb splice variant binding, the levels of 1 lcb splice variant-mediated cAMP, or adenylate cyclase activity, will be reduced or increased.
- yeast Saccharomyces cerevisiae
- Heterothallic strains of yeast can exist in two mitotically stable haploid mating types, MATa and MAT ⁇ . Each cell type secretes a small peptide hormone that binds to a G-protein coupled receptor on opposite mating- type cells which triggers a MAP kinase cascade leading to Gl arrest as a prelude to cell fusion.
- Genetic alteration of certain genes in the pheromone response pathway can alter the normal response to pheromone, and heterologous expression and coupling of human G-protein coupled receptors and humanized G-protein subunits in yeast cells devoid of endogenous pheromone receptors can be linked to downstream signaling pathways and reporter genes (e.g., U.S. Patents 5,063,154; 5,482,835; 5,691,188).
- Such genetic alterations include, but are not limited to, (i) deletion of the STE2 or STE3 gene encoding die endogenous G-protein coupled pheromone receptors; (ii) deletion of the FAR1 gene encoding a protein that normally associates with cyclin- dependent kinases leading to cell cycle arrest; and (iii) construction of reporter genes fused to the FUSl gene promoter (where FUSl encodes a membrane-anchored glycoprotein required for cell fusion).
- Downstream reporter genes can permit either a positive growth selection (e.g., histidine prototrophy using the FUS1-HIS3 reporter), or a colorimetric, fluorimetric or spectrophotometric readout, depending on the specific reporter construct used (e.g., ?-galactosidase induction using a FUSl -LacZ reporter).
- the yeast cells can be further engineered to express and secrete small peptides from random peptide libraries, some of which can permit autocrine activation of heterologously expressed human (or mammalian) G-protein coupled receptors (Broach, J.R. and Thorner, J. Nature 384: 14-16, 1996; Manfredi et al., Mol. Cell. Biol.
- yeast cells that functionally express human (or mammalian) G- protein coupled receptors linked to a reporter gene readout (e.g., FUSl-LacZ) can be used as a platform for high-throughput screening of known ligands, fractions of biological extracts and libraries of chemical compounds for either natural or surrogate ligands.
- Functional agonists of sufficient potency can be used as screening tools in yeast cell-based assays for identifying G-protein coupled receptor antagonists.
- the yeast system offers advantages over mammalian expression systems due to its ease of utility and null receptor background (lack of endogenous G-protein coupled receptors) which often interferes with the ability to identify agonists or antagonists.
- the present invention also provides a method for determining whether a ligand not known to be capable of binding to an 1 lcb splice variant receptor can bind to such receptor which comprises contacting a mammalian cell which expresses an llcb splice variant receptor with the ligand such as MCH under conditions permitting binding of candidate ligands to the 1 lcb splice variant receptor, and detecting the presence of a candidate ligand which binds to the receptor thereby determining whether the ligand binds to die llcb splice variant receptor.
- the systems hereinabove described for determining agonists and/or antagonists may also be employed for determining ligands which bind to the receptor.
- Examples of potential 1 lcb splice variant receptor antagonists include antibodies or, in some cases, oligonucleotides, which bind to die receptor but do not elicit a second messenger response such that die activity of the receptor is prevented.
- Potential antagonists also include proteins which are closely related to the ligand of the 1 lcb splice variant receptor, i.e. a fragment of the ligand, which have lost biological function and when binding to the 1 lcb splice variant receptor, elicit no response.
- the present invention relates to a screening kit for identifying agonists, antagonists, and ligands for llcb splice variant polypeptides, which comprises:
- a llcb splice variant polypeptide preferably that of SEQ ID NO:2; and further preferably comprises labeled or unlabeled MCH;
- a recombinant cell expressing a l lcb splice variant polypeptide, preferably that of SEQ ID NO:2; and further preferably comprises labeled or unlabeled MCH; or
- a potential antagonist also includes an antisense construct prepared tiirough the use of antisense technology.
- Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both methods of which are based on binding of a polynucleotide to DNA or RNA.
- the 5' coding portion of the polynucleotide sequence, which encodes for the mature polypeptides of die present invention is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
- a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix -see Lee, et al. Nucl Acids Res., 6: 3073 (1979); Cooney, et al, Science, 24k 456 (1988); and Dervan, et al., Science, 251: 1360 (1991)), thereby preventing transcription and production of the 1 lcb splice variant receptor.
- the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule to the 1 lcb splice variant receptor (antisense - Okano, J., Neurochem., 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)).
- the oligonucleotides described above can also be delivered to cells such ti at the antisense RNA or DNA may be expressed in vivo to inhibit production of die llcb splice variant receptor.
- Another potential antagonist is a small molecule which binds to the 1 lcb splice variant receptor, making it inaccessible to ligands such mat normal biological activity is prevented.
- small molecules include, but are not limited to, small peptides or peptide-like molecules.
- Potential antagonists also include soluble forms of l lcb splice variant receptor, e.g. , fragments of the receptor, which bind to the ligand and prevent the ligand from interacting with membrane bound llcb splice variant receptors.
- the 1 lcb splice variant proteins are ubiquitous in the mammalian host and are responsible for many biological functions, including many pathologies. Accordingly, it is desirous to find compounds and drugs which stimulate the llcb splice variant on the one hand and which inhibit die function of an 1 lcb splice variant on the other hand.
- agonists for an llcb splice variant receptor are employed for therapeutic and prophylactic purposes for such diseases or disorders as infections, such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; feeding and drinking abnormalities, such as anorexia and bulimia; asthma; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation; or dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others.
- infections such as bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2
- pain cancers
- diabetes obesity
- feeding and drinking abnormalities such as anorexia and bulimi
- Antagonists for the 1 lcb splice variant may be employed for a variety of therapeutic and prophylactic purposes for such diseases or disorders as infections, including bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; feeding and drinking abnormalities, such as anorexia and bulimia; asdima; Parkinson's disease; both acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; allergies; benign prostatic hypertrophy and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia or severe mental retardation; or dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others.
- infections including bacterial, fungal, protozoan and viral infections, particularly infection caused by HIV-1 or HIV-2; pain; cancers; diabetes; obesity; feeding and drinking abnormalities, such as anor
- This invention additionally provides a method of treating an abnormal condition related to an excess of 1 lcb splice variant activity which comprises administering to a subject the inhibitor compounds (antagonists) as hereinabove described along with a pharmaceutically acceptable carrier in an amount effective to inhibit activation by blocking binding of ligands to the llcb splice variant, or by inhibiting a second signal, and thereby alleviating the abnormal conditions.
- the invention also provides a method of treating abnormal conditions related to an under- expression of 1 lcb splice variant activity which comprises administering to a subject a tiierapeutically effective amount of a compound which activates the receptor polypeptide of die present invention (agonists) as described above in combination with a pharmaceutically acceptable carrier, to thereby alleviate the abnormal conditions.
- compositions comprise a therapeutically effective amount of the polypeptide or compound, and a pharmaceutically acceptable carrier or excipient.
- a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.
- the invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
- Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.
- systemic administration of the pharmaceutical compositions include injection, typically by intravenous injection.
- Other injection routes such as subcutaneous, intramuscular, or intraperitoneal, can be used.
- alternative means for systemic administration of the compositions have been devised, which include transmucosal and transdermal administration using penetrants such as bile salts or fusidic acids or odier detergents.
- penetrants such as bile salts or fusidic acids or odier detergents.
- oral administration may also be possible.
- Administration of tiiese compounds may also be topical and/or localized, in the form of salves, pastes, gels and die like.
- the dosage range required depends on the choice of peptide, the route of administration, the nature of the formulation, the nature of the patient's condition, and d e judgment of die attending physician. Suitable dose ranges, however, are in the range of 0.1-100 ⁇ g/kg of subject. Wide variations in the needed dosage, however, are to be expected in view of the variety of peptides available and die differing efficiencies of various routes of administration. For example, oral administration would be expected to require higher dosages than administration by intravenous injection. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, as is well understood in the art. Gene therapy
- polypeptides may be employed in accordance with the present invention by expression of such polypeptides in vivo, in treatment modalities often referred to as "gene dierapy.”
- cells from a patient may be engineered witii a polynucleotide, such as a DNA or RNA, to encode a polypeptide ex vivo.
- the engineered cells can tiien be provided to a patient to be treated widi the polypeptide.
- cells may be engineered ex vivo by the use of a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention.
- retroviral plasmid vector containing RNA encoding a polypeptide of the present invention Such methods are well-known in die art and their use in the present invention will be apparent from the teachings herein.
- cells may be engineered in vivo for expression of a polypeptide in vivo by procedures known in the art.
- a polynucleotide of die invention may be engineered for expression in a replication defective retroviral vector, as discussed above.
- the retroviral expression construct may then be isolated and introduced into a packaging cell is transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that die packaging cell now produces infectious viral particles containing the gene of interest.
- These producer cells may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo.
- Retroviruses from which the retroviral plasmid vectors herein above mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, Spleen Necrosis Virus, Rous Sarcoma Virus, Harvey Sarcoma Virus, Avian Leukosis Virus, Gibbon Ape Leukemia Virus, Human Immunodeficiency Virus, Adenovirus, Myeloproliferative Sarcoma Virus, and Mammary Tumor Virus.
- the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.
- Such vectors well include one or more promoters for expressing the polypeptide.
- Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and die human cytomegalovirus (CMV) promoter described in Miller, et al. , Biotechniques 7: 980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, die histone, RNA polymerase III, and ⁇ -actin promoters).
- Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in die art from the teachings contained herein.
- Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral diymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs (including die modified retroviral LTRs herein above described); the ⁇ -actin promoter; and human growth hormone promoters.
- the promoter may also be the native promoter which controls the gene encoding the polypeptide.
- the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
- packaging cells which may be transfected include, but are not limited to, the PE501, PA317, Y-2, Y-AM, PA12, T19-14X, VT-19-17-H2, YCRE, YCRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, A., HUMAN GENE
- the vector may be transduced into the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP04 precipitation.
- the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
- the producer cell line will generate infectious retroviral vector particles, which include the nucleic acid sequence(s) encoding d e polypeptides. Such retroviral vector particles may then be employed to transduce eukaryotic cells, either in vitro or in vivo.
- the transduced eukaryotic cells will express the nucleic acid sequence(s) encoding die polypeptide.
- Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endodielial cells, and bronchial epithelial cells.
- ligations are accomplished using standard buffers, incubation temperatures and times, approximately equimolar amounts of die DNA fragments to be ligated and approximately 10 units of T4 DNA ligase ("ligase”) per 0.5 ⁇ g of DNA.
- ligase T4 DNA ligase
- the 5' end of die human llcb splice variant was amplified by using die following primers and conditions on DNA from Human Whole Brain, purified from Life Technology's plasmid libraries.
- the outside primers used were:
- 5' Vector-specific primer 5' GCT ATT TAG GTG ACA CTA TAG AAG GTA CG 3'
- 5' Vector-specific primer 5' GGT GAC ACT ATA GAA GGT ACG 3'
- the nested or inside reaction used the same procedure as the outside reaction, except l ⁇ L of plasmid DNA was substituted with l ⁇ L of die outside reaction.
- the DNA was then size- fractionated on a 1.2% agarose gel.
- the 2 major bands were subcloned, and the subcloned fragments were sequenced.
- One of die major bands was die 5' end of die original human llcb clone, disclosed in WO 96/18651, published June 20, 1996, and the other band resulted in die cloning of die novel splice variant form of the human llcb clone.
- the expressed receptor described above in Example 1 is men screened for ligands or antagonists as follows.
- the expressed receptor is utilized to screen compound banks, complex biological fluids, combinatorial organic and peptide libraries, etc. to identify activating ligands or antagonists.
- the receptors is screened against tissue extracts of human, and other mammalian, species, such as porcine tissue.
- tissue extracts include lung, liver, gut, heart, kidney, adrenals, ischemic brain, plasma, urine and placenta. Extraction techniques employed in the formation of these tissue banks are known in the art.
- Xenopus oocyte assay A Xenopus oocyte system is used in me characterization of cell surface receptors because these cells accurately translate mRNA and are capable of carrying out a large number of posttranslational modifications, including signal peptide cleavage, glycosylation, phosphorylation and subunit assembly.
- a functional assay is performed as follows:
- RNA transcripts are prepared from linearized plasmid templates encoding die llcb splice variant receptor cDNA with RNA polymerases using standard protocols. In vitro transcripts are suspended in water at a final concentration of 0.2 mg/ml. Ovarian lobes are removed from adult female toad; stage V defolliculated oocytes are obtained and RNA transcripts (10 ng/oocyte) are injected in a 50 nl bolus using a Drummond microinjection apparatus. Two electrode voltage clamp (Warner Instruments) are used to measure the currents from individual Xenopus oocytes. Recordings are made in Ca2+ free Barth's medium at room temperature. 2. Microphysiometer assay
- Calcium Assay Receptors stably expressed in HEK 293 cells can demonstrate a robust calcium response to agonists with die appropriate rank order and potency.
- Basal calcium levels in the HEK 293 cells in receptor-transfected or vector control cells is in the normal 100 nM to 200 nM range.
- HEK 293 cells expressing recombinant receptors are loaded widi fura 2 and in a single day > 150 selected ligands are evaluated for agonist-induced calcium mobilization.
- Agonists presenting a transient calcium mobilization are tested in vector control cells to determine if the calcium response was unique to the transfected receptor cells.
- die response is reproduced in a separate group of cells and tiien pharmacologically characterized widi concentration response curves for the effective and related ligands.
- Example 2 Northern Blot Analysis
- the northern blots used were purchased from Clontech. The transcript size was approximately 2.4kb, and a transcript band was observed in whole brain, amygdala, caudate nucleus, corpus callosum, hippocampus, substantia nigra, subthalamic nucleus, thalamus, heart, and liver. Conversely, no transcript bands were detected by northern blot analysis in the following tissues: placenta, lung, skeletal muscle, kidney, or pancreas.
- Example 3
- MCH melanin-concentrating hormone
- MCH is over expressed in ob/ob mice and fasting further increased expression of MCH mRNA in bom normal and obese mice. Injection of MCH into lateral ventricles of rats results in increased food consumption. In oflier studies, intracerebroventricular injection of MCH has been shown to inhibit feeding (Presse, F et al Neuroscience 1996 71:735-45).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- Cardiology (AREA)
- Endocrinology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000523368A JP2001525178A (en) | 1997-12-03 | 1998-12-02 | Method for searching for agonist and antagonist for human 11cb splice variant |
EP98962869A EP1042498A4 (en) | 1997-12-03 | 1998-12-02 | A method of finding agonist and antagonist to human 11cb splice variant |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/984,288 US6033872A (en) | 1996-12-11 | 1997-12-03 | Polynucleotides encoding a novel human 11cb splice variant |
US7374798P | 1998-02-05 | 1998-02-05 | |
US6050498A | 1998-04-15 | 1998-04-15 | |
US60/073,747 | 1998-04-15 | ||
US90/060,504 | 1998-04-15 | ||
US08/984,288 | 1998-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999028492A1 true WO1999028492A1 (en) | 1999-06-10 |
Family
ID=27369862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/025497 WO1999028492A1 (en) | 1997-12-03 | 1998-12-02 | A method of finding agonist and antagonist to human 11cb splice variant |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1042498A4 (en) |
JP (1) | JP2001525178A (en) |
WO (1) | WO1999028492A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000040725A1 (en) * | 1998-12-28 | 2000-07-13 | Takeda Chemical Industries, Ltd. | Screening method |
US6221616B1 (en) | 1998-12-31 | 2001-04-24 | Synaptic Pharmaceutical Corporation | DNA encoding a human melanin concentrating hormone receptor (MCH1) and uses thereof |
WO2001043759A2 (en) * | 1999-12-16 | 2001-06-21 | Smithkline Beecham P.L.C. | Use of 11cby popypeptides and polynuceotides |
WO2002003070A1 (en) | 2000-07-05 | 2002-01-10 | Takeda Chemical Industries, Ltd. | Method for screening mch receptor antagonist/agonist |
EP1200560A1 (en) * | 1999-07-14 | 2002-05-02 | Merck & Co., Inc. | Melanin-concentrating hormone receptor |
JP2002296277A (en) * | 2000-07-05 | 2002-10-09 | Takeda Chem Ind Ltd | Method of screening mch receptor antagonist.agonist |
WO2003027240A2 (en) * | 2001-09-24 | 2003-04-03 | Merck & Co., Inc. | Rhesus monkey, dog and ferret melanin-concentrating hormone type 1 receptor |
US7078187B2 (en) | 2001-04-19 | 2006-07-18 | Neurogen Corporation | Melanin concentrating hormone receptors |
US7078484B2 (en) | 2001-04-19 | 2006-07-18 | Neurogen Corporation | Melanin concentrating hormone receptors |
US7125885B2 (en) | 2001-05-04 | 2006-10-24 | Amgen Inc. | Fused heterocyclic compounds |
US7148026B2 (en) | 2000-07-21 | 2006-12-12 | Merck & Co., Inc. | Dog melanin-concentrating hormone receptor |
US7208282B2 (en) | 2001-05-31 | 2007-04-24 | Merck & Co., Inc. | Rhesus monkey, dog and ferret melanin-concentrating hormone type 2 receptor |
US7253179B2 (en) | 2002-11-06 | 2007-08-07 | Amgen Inc. | Fused heterocyclic compounds |
US9199963B2 (en) | 2013-07-09 | 2015-12-01 | Takeda Pharmaceutical Company Limited | Heterocyclic compound |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996018651A1 (en) * | 1994-12-16 | 1996-06-20 | Smithkline Beecham Corporation | Human somatostatin-like receptor |
-
1998
- 1998-12-02 WO PCT/US1998/025497 patent/WO1999028492A1/en not_active Application Discontinuation
- 1998-12-02 JP JP2000523368A patent/JP2001525178A/en active Pending
- 1998-12-02 EP EP98962869A patent/EP1042498A4/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996018651A1 (en) * | 1994-12-16 | 1996-06-20 | Smithkline Beecham Corporation | Human somatostatin-like receptor |
Non-Patent Citations (3)
Title |
---|
GRESS TM., ET AL.: "A PANCREATIC CANCER-SPECIFIC EXPRESSION PROFILE.", ONCOGENE, NATURE PUBLISHING GROUP, GB, vol. 13., 1 January 1996 (1996-01-01), GB, pages 1819 - 1830., XP002916550, ISSN: 0950-9232 * |
KOLAKOWSKI L F, ET AL.: "CHARACTERIZATION OF A HUMAN GENE RELATED TO GENES ENCODING SOMATOSTATIN RECEPTORS", FEBS LETTERS., ELSEVIER, AMSTERDAM., NL, vol. 398, no. 2/3, 2 December 1996 (1996-12-02), NL, pages 253 - 258, XP002916551, ISSN: 0014-5793, DOI: 10.1016/S0014-5793(96)01160-X * |
See also references of EP1042498A4 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6991908B1 (en) | 1998-12-28 | 2006-01-31 | Takeda Chemical Industries, Ltd. | Antiobestic agents methods for screening antiobestic agents and kits comprising same |
WO2000040725A1 (en) * | 1998-12-28 | 2000-07-13 | Takeda Chemical Industries, Ltd. | Screening method |
US6723552B2 (en) | 1998-12-31 | 2004-04-20 | Synaptic Pharmaceutical Corporation | DNA encoding a human melanin concentrating hormone receptor (MCH1) and uses thereof |
US6221616B1 (en) | 1998-12-31 | 2001-04-24 | Synaptic Pharmaceutical Corporation | DNA encoding a human melanin concentrating hormone receptor (MCH1) and uses thereof |
US6221613B1 (en) | 1998-12-31 | 2001-04-24 | Synaptic Pharmaceutical Corporation | DNA encoding a human melanin concentrating hormone receptor (MCH1) and uses thereof |
US7393655B2 (en) | 1998-12-31 | 2008-07-01 | H. Lundbeck A/S | Methods of identifying melanin concentrating hormone receptor antagonists |
US6291195B1 (en) | 1998-12-31 | 2001-09-18 | Synaptic Pharmaceutical Corporation | DNA encoding a human melanin concentrating hormone receptor (MCH1) and uses thereof |
EP1200560A1 (en) * | 1999-07-14 | 2002-05-02 | Merck & Co., Inc. | Melanin-concentrating hormone receptor |
EP1200560A4 (en) * | 1999-07-14 | 2003-06-11 | Merck & Co Inc | Melanin-concentrating hormone receptor |
US7198910B1 (en) | 1999-07-14 | 2007-04-03 | Merck & Co., Inc. | Nucleic acid encoding melanin-concentrating hormone receptor |
WO2001043759A3 (en) * | 1999-12-16 | 2002-05-30 | Smithkline Beecham Plc | Use of 11cby popypeptides and polynuceotides |
WO2001043759A2 (en) * | 1999-12-16 | 2001-06-21 | Smithkline Beecham P.L.C. | Use of 11cby popypeptides and polynuceotides |
EP1298439A1 (en) * | 2000-07-05 | 2003-04-02 | Takeda Chemical Industries, Ltd. | Method for screening mch receptor antagonist/agonist |
EP1298439A4 (en) * | 2000-07-05 | 2005-11-23 | Takeda Pharmaceutical | METHOD FOR SCREENING MELANIN CONCENTRATION HORMONE RECEPTOR (MCH) RECEPTOR ANTAGONIST / AGONIST |
WO2002003070A1 (en) | 2000-07-05 | 2002-01-10 | Takeda Chemical Industries, Ltd. | Method for screening mch receptor antagonist/agonist |
JP2002296277A (en) * | 2000-07-05 | 2002-10-09 | Takeda Chem Ind Ltd | Method of screening mch receptor antagonist.agonist |
US7273710B2 (en) | 2000-07-05 | 2007-09-25 | Takeda Pharmaceutical Company Limited | Method for screening MCH receptor antagonist/agonist |
US7148026B2 (en) | 2000-07-21 | 2006-12-12 | Merck & Co., Inc. | Dog melanin-concentrating hormone receptor |
US7078187B2 (en) | 2001-04-19 | 2006-07-18 | Neurogen Corporation | Melanin concentrating hormone receptors |
US7078484B2 (en) | 2001-04-19 | 2006-07-18 | Neurogen Corporation | Melanin concentrating hormone receptors |
US7125885B2 (en) | 2001-05-04 | 2006-10-24 | Amgen Inc. | Fused heterocyclic compounds |
US7208282B2 (en) | 2001-05-31 | 2007-04-24 | Merck & Co., Inc. | Rhesus monkey, dog and ferret melanin-concentrating hormone type 2 receptor |
WO2003027240A2 (en) * | 2001-09-24 | 2003-04-03 | Merck & Co., Inc. | Rhesus monkey, dog and ferret melanin-concentrating hormone type 1 receptor |
WO2003027240A3 (en) * | 2001-09-24 | 2004-12-02 | Merck & Co Inc | Rhesus monkey, dog and ferret melanin-concentrating hormone type 1 receptor |
US7253179B2 (en) | 2002-11-06 | 2007-08-07 | Amgen Inc. | Fused heterocyclic compounds |
US9199963B2 (en) | 2013-07-09 | 2015-12-01 | Takeda Pharmaceutical Company Limited | Heterocyclic compound |
Also Published As
Publication number | Publication date |
---|---|
EP1042498A1 (en) | 2000-10-11 |
JP2001525178A (en) | 2001-12-11 |
EP1042498A4 (en) | 2003-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6033872A (en) | Polynucleotides encoding a novel human 11cb splice variant | |
US6166193A (en) | Polynucleotides encoding MY1 receptor | |
US6020157A (en) | Polynucleotides encoding HFGAN72X receptor | |
US5935814A (en) | Polynucleotides encoding HFGAN72Y receptor | |
US5851798A (en) | Nucleic acid encoding human GPR14 receptor | |
EP0899332A2 (en) | The G-protein coupled receptor HFIAO41 | |
US6159700A (en) | Method of finding agonist and antagonist to human and rat GPR14 | |
US6197069B1 (en) | Adrenomedullin receptor polynucleotides | |
EP1042498A1 (en) | A method of finding agonist and antagonist to human 11cb splice variant | |
US5955309A (en) | Polynucleotide encoding G-protein coupled receptor (H7TBA62) | |
US5871967A (en) | Cloning of a novel G-Protein coupled 7TM receptor | |
US6344342B1 (en) | Human G protein coupled lysophosphatidic acid receptor | |
EP0881289A2 (en) | Novel 7TM receptor (H2CAA71) | |
EP1054903A1 (en) | Fishboy, a g-protein coupled receptor | |
US20020042385A1 (en) | Cloning of a novel 7TM receptor AXOR-2 | |
US5912335A (en) | G-protein coupled receptor HUVCT36 | |
US5874252A (en) | Splicing variant of the Epstein-Barr virus-induced G-protein coupled receptor | |
US6200775B1 (en) | cDNA clone HMTMF81 that encodes a novel human 7-transmembrane receptor | |
EP0878479A2 (en) | G-protein coupled receptor (HOFNH30) | |
US6166182A (en) | Human neurotensin receptor type 2 and splice variants thereof | |
US6162899A (en) | Human HNEAA81 receptor | |
US20020038007A1 (en) | Method of finding agonist and antagonist to human 11cb splice variant | |
US6277977B1 (en) | cDNA clone HAPOI67 that encodes a human 7-transmembrane receptor | |
US6143521A (en) | Human bombesin receptor subtype-3sb | |
EP0884387A2 (en) | Human 7-transmembrane receptor HLWAR77 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998962869 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 523368 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1998962869 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998962869 Country of ref document: EP |