WO1999027360A1 - Method and device for diagnosing deterioration of an article having at least a covering layer of organic polymer material - Google Patents
Method and device for diagnosing deterioration of an article having at least a covering layer of organic polymer material Download PDFInfo
- Publication number
- WO1999027360A1 WO1999027360A1 PCT/JP1998/005194 JP9805194W WO9927360A1 WO 1999027360 A1 WO1999027360 A1 WO 1999027360A1 JP 9805194 W JP9805194 W JP 9805194W WO 9927360 A1 WO9927360 A1 WO 9927360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deterioration
- coating layer
- propagation
- ultrasonic
- diagnosis
- Prior art date
Links
- 230000006866 deterioration Effects 0.000 title claims abstract description 162
- 238000000034 method Methods 0.000 title claims abstract description 81
- 239000002861 polymer material Substances 0.000 title claims abstract description 34
- 229920000620 organic polymer Polymers 0.000 title claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims abstract description 14
- 230000001902 propagating effect Effects 0.000 claims abstract description 6
- 239000011247 coating layer Substances 0.000 claims description 132
- 238000003745 diagnosis Methods 0.000 claims description 123
- 239000000463 material Substances 0.000 claims description 92
- 238000010438 heat treatment Methods 0.000 claims description 58
- 239000004014 plasticizer Substances 0.000 claims description 35
- 239000000945 filler Substances 0.000 claims description 26
- 238000009434 installation Methods 0.000 claims description 26
- 230000015556 catabolic process Effects 0.000 claims description 22
- 238000006731 degradation reaction Methods 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 230000000644 propagated effect Effects 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 238000013329 compounding Methods 0.000 claims description 5
- 238000007689 inspection Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 2
- 238000002405 diagnostic procedure Methods 0.000 claims 2
- 244000144992 flock Species 0.000 claims 1
- 230000000875 corresponding effect Effects 0.000 abstract 2
- 230000002596 correlated effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 29
- 239000000523 sample Substances 0.000 description 23
- 229920001971 elastomer Polymers 0.000 description 20
- -1 polyethylene Polymers 0.000 description 19
- 239000005060 rubber Substances 0.000 description 19
- 239000004800 polyvinyl chloride Substances 0.000 description 17
- 229920000915 polyvinyl chloride Polymers 0.000 description 16
- 239000010410 layer Substances 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229920002725 thermoplastic elastomer Polymers 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical class N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001641 gel filtration chromatography Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000008029 phthalate plasticizer Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 125000005591 trimellitate group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 125000005590 trimellitic acid group Chemical group 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/011—Velocity or travel time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/015—Attenuation, scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0231—Composite or layered materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0235—Plastics; polymers; soft materials, e.g. rubber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0425—Parallel to the surface, e.g. creep waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/102—Number of transducers one emitter, one receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/262—Linear objects
- G01N2291/2626—Wires, bars, rods
Definitions
- the present invention relates to a method for diagnosing deterioration of an article (typically, a cable) having at least a coating layer made of an organic polymer material and an apparatus therefor.
- the method of measuring the propagation velocity using ultrasonic waves in the above-mentioned publication is schematically described.
- Ultrasonic waves are incident from the surface of the cable coating layer toward the center of the cable, and the ultrasonic waves are applied to the coating layer and the layer below it.
- the value of V is defined as the propagation speed of the ultrasonic wave in the coating layer.
- the measurement method in the above publication has a problem in that the thickness a of the coating layer is used for calculating the propagation velocity V of the ultrasonic wave.
- the above measurement method is useful when the value of the thickness a of the coating layer can be known with high precision, but the value of a can be accurately determined for indestructible objects such as laid cables. It is difficult to get. For example, by referring to a design specification or the like, a design reference dimension of the value of a can be obtained.
- manufacturing tolerances of ⁇ 15% with respect to the design reference dimensions are allowed, so the difference from the actual value of a may be large. Therefore, the propagation velocity calculated using a obtained nondestructively and the deterioration diagnosis based on it were of low accuracy.
- An object of the present invention is to provide a more preferable deterioration diagnosis method for diagnosing the degree of deterioration of an article (for example, a cable) having at least a coating layer made of an organic polymer material by using ultrasonic waves.
- An object of the present invention is to provide a preferable deterioration diagnosis apparatus for performing the method. Disclosure of the invention
- the deterioration diagnosis method of the present invention is a method for diagnosing deterioration of an article having at least a coating layer made of an organic polymer material, and includes a method of diagnosing deterioration of a coating layer sample and corresponding ultrasonic propagation characteristics.
- a data group for deterioration diagnosis is created, and ultrasonic waves are propagated to the surface of the coating layer of the article and the vicinity of the surface, whereby the coating is formed.
- the deterioration diagnosis method comprises the steps of: A material consisting of one or more elements selected from the type of molecular material, the type of plasticizer mixed in the organic polymer material, the amount of plasticizer, the amount of filler, and the amount of carbon Finish
- a material consisting of one or more elements selected from the type of molecular material, the type of plasticizer mixed in the organic polymer material, the amount of plasticizer, the amount of filler, and the amount of carbon Finish
- the deterioration diagnosis characteristics and the corresponding ultrasonic propagation characteristics are measured for each sample having a different material specification, and a data group for deterioration diagnosis is created, and the ultrasonic propagation characteristics of the coating layer of the article are measured.
- the measurement is performed to determine the deterioration diagnostic characteristics corresponding to the ultrasonic wave propagation characteristics from the data group of the material specification, which is equal to the coating layer.
- the ultrasonic wave propagation characteristic is an ultrasonic wave propagation velocity
- the method of measuring the propagation velocity comprises: an ultrasonic transmission unit and an ultrasonic reception unit;
- the ultrasonic wave transmitted from the transmitting means is installed on the surface of the measuring object via a laser chip, and the ultrasonic wave is linearly propagated in the measuring object to the installation position of the receiving means and can be received by the receiving means.
- the propagation times t 1 and t 2 of the respective ultrasonic waves are measured when the installation interval between the transmitting means and the receiving means is L 1 and L 2, and (L 2 — L l) Z (t 2 — t 1 ) Is a method of measuring the propagation velocity of the ultrasonic wave.
- the ultrasonic wave propagation characteristic is a propagation time of the ultrasonic wave when the ultrasonic wave propagates over a specific distance, the ultrasonic wave transmitting means and the ultrasonic wave
- the receiving means is installed at the specified distance on the surface of the inspection object via the delay chip, and the ultrasonic wave transmitted from the transmission means linearly moves through the inspection object to the installation position of the reception means.
- the propagation time is measured by measuring the time from propagation to reception by the receiving means via the delay chip.
- the deterioration diagnosis method according to the present invention is directed to a cable in which the article is laid, and how the deterioration factors that deteriorate the coating layer of the cable are distributed along the longitudinal direction of the cable. This is to determine whether the deterioration factor is high and to perform a deterioration diagnosis on the parts where the degree of deterioration is large.
- the value of the above-mentioned deterioration diagnosis characteristic obtained for the coating layer of the article is defined as E 1, and the value of the deterioration diagnosis characteristic is used for a sample of the same material as the coating layer.
- the heating temperature t and the corresponding heating time h corresponding to each value of the deterioration diagnosis characteristics when the values are changed including the above are measured to obtain a data group for remaining life estimation, and this data group for remaining life estimation is obtained.
- the heating period t1 corresponding to the heating time h1 at the value E1 of the deterioration diagnosis characteristic is obtained by regarding the use period of the article as the heating time h1 using the above, and the use limit value E of the deterioration diagnosis characteristic is obtained.
- the heating time hz corresponding to the heating temperature t1 at z is determined, and the value of hz-h1 is used as the remaining life.
- the deterioration diagnosis device of the present invention is a device for diagnosing deterioration of an article having at least a coating layer made of an organic polymer material, and has at least the following measurement device (A).
- a measuring device comprising: an ultrasonic transmitting means, an ultrasonic receiving means, a delay chip (A 1) interposed between the ultrasonic wave transmitting means, the ultrasonic receiving means, and the ultrasonic wave when the ultrasonic wave transmitting means
- a propagation time measuring means for measuring a time from transmission from the means to reception by the receiving means.
- FIG. 1 is an example of a deterioration diagnosis device of the present invention, and is a diagram showing a state used for deterioration diagnosis of a cable. The illustration of the driving device and the like is omitted.
- FIG. 2 is a diagram for explaining the configuration of the delay chip.
- FIG. 3 is a diagram showing a configuration example of the entire deterioration diagnosis device of the present invention. An example of a drive system, a control system, and an arithmetic system is shown in a block diagram.
- FIG. 4 is a group of graphs showing the relationship between the heating time h (horizontal axis) and the elongation at break E (vertical axis) at each heating temperature w.
- FIG. 5 is a group of graphs showing the relationship between the heating temperature (horizontal axis) and the heating time (vertical axis) for each value of the elongation at break.
- the horizontal axis shows the reciprocal of the absolute temperature T as the heating temperature, and the vertical axis shows the logarithm of the heating time h.
- FIG. 6 is a flowchart showing the operation of the deterioration diagnosis program executed in the deterioration diagnosis device of the present invention.
- FIG. 7 is a group of graphs showing the relationship between the heating time and the elongation at break for each heating temperature w obtained for the sample in the example of the present invention.
- FIG. 8 is a group of graphs showing the relationship between the heating temperature and the heating time for each value of the elongation at break obtained for the sample in the example of the present invention.
- the deterioration diagnosis method of the present invention has at least the following steps.
- diagnosis characteristics for example, a cable in a laid state
- propagation characteristics The characteristics (hereinafter referred to as “propagation characteristics”) are measured, and a data group for deterioration diagnosis is created in which the values of the diagnosis characteristics correspond to the values of the propagation characteristics.
- the articles subject to deterioration diagnosis need only have at least a coating layer made of an organic polymer material, and include not only cables but also pipes, hoses, sheet materials, wall materials, and surface materials such as floor materials.
- Can be The cable includes all electric wires having a coating layer made of an organic polymer material, and includes, for example, an insulated electric wire and a power cable, and may be used for any purpose such as communication, power, and equipment.
- the deterioration of the coating layer is a serious problem, and the cables in the laid state cannot be subjected to destructive inspection. Will be noticeable.
- the diagnostic characteristic may be a characteristic that can indicate the degree of deterioration of the organic polymer material used for the coating layer (hereinafter, also referred to as “the material of the coating layer”) and has a correlation with the propagation characteristic.
- the material of the coating layer For example, surface rebound hardness, surface penetration hardness, tensile strength, elongation at break, elastic modulus, Young's modulus, modulus, dielectric constant, dielectric loss tangent, volume resistivity, AC breakdown voltage strength, impulse breakdown voltage strength, articles
- the mechanical characteristics and electrical characteristics such as torsional torque and bending stiffness of a long object such as a cable.
- the elongation at break shows the degree of deterioration of the coating layer of the cable remarkably, and has a strong correlation with the propagation characteristics, so that it is preferably used as a diagnostic characteristic.
- the propagation characteristic may be an amount that indicates a propagation state when an ultrasonic wave is propagated in the material of the coating layer and has a correlation with the deterioration of the material.
- the propagation time when the propagation distance is constant the propagation speed calculated from the propagation distance and the propagation time, the ultrasonic reception sensitivity, the change in the ultrasonic waveform frequency, the change in the ultrasonic waveform shape, the attenuation of the ultrasonic wave Characteristics and the like.
- propagation time and propagation speed are useful. The method of measuring the propagation characteristics will be described later together with the description of the device.
- the thermoplastic resins include polyolefins such as polyethylene, polypropylene, polybutene, poly (4-methylpentene-1), ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyamides such as nylon, and others.
- Examples of rubber include vinyl chloride, polyvinylidene chloride, and thermoplastic polyester.
- Examples of rubber include natural rubber, isoprene rubber, butyl rubber, ethylene-propylene copolymer rubber, ethylene-propylene-gen terpolymer rubber, and styrene-butadiene copolymer.
- Rubber acrylonitrile-butadiene copolymer rubber, ethylene-vinyl acetate copolymer rubber, ethylene-ethyl acrylate copolymer rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, silicone rubber, fluorine rubber, etc. No.
- Thermoplastic elastomers include styrene-based thermoplastic elastomers such as ABA-type triblocks and (AB) prominentX-type radial blocks, and polyolefin-based thermoplastics such as blend-type TP0, partially cross-linked blended TPO, and fully-crosslinked blended TPO.
- Elastomer, nitrile rubber blend ⁇ Polyvinyl chloride thermoplastic elastomer such as partially cross-linked nitrile rubber blend, polyurethane thermoplastic elastomer such as polyester type or polyether type, polyester ⁇ ⁇ polyether type ⁇ Examples include polyester-based thermoplastic elastomers such as polyester and polyester.
- the data group may be continuous or discrete. That is, even in a data group in which a continuously changing diagnostic characteristic and a correspondingly continuously changing propagation characteristic are recorded, the value of the changing diagnostic characteristic at each specific interval and each value are It may be a data group in which the values of the corresponding propagation characteristics are recorded. It is preferable that the data group be prepared in advance for various materials prior to the diagnosis of the article, and if it is held so that it can always be referred to, the diagnosis results can be quickly obtained from the measurement of the actual product using ultrasonic waves. can get.
- the data group may be a three-way correspondence of the “diagnosis characteristic” and the “propagation characteristic”. Further, other elements may be added to form a group that can handle multiple factors. In addition, as described later, a special data group corresponding to “specific deterioration factor value”, “elapsed time”, and “diagnosis characteristic” may be formed in order to estimate the remaining life.
- the estimation of the remaining life is not for deterioration until the measurement point, but for the diagnosis of the progress of deterioration after the measurement point, and is a useful deterioration diagnosis for equipment such as cables.
- the sample is deteriorated by changing the conditions such as irradiation and heating, and the diagnostic characteristics are changed while the propagation characteristics are measured at the same time. What is necessary is just to record in the state corresponding to 1.
- the sample is deteriorated, if the article is a cable, it should be deteriorated according to the environment in which it is laid. For example, in the case of cables laid at facilities related to nuclear power plants, radiation dose 10 The degradation may be performed at k G y / h or less and at a temperature of 250 ° C. or less. In order to deteriorate the sample, the rate of progress of deterioration may be accelerated under more severe conditions as in the accelerated test. However, when an accelerated test is performed by adding an element of “time lapse” to the data group It is preferable that the accelerated elapsed time and the elapsed time under the actual use environment be corresponded so as to be able to be converted.
- the coating layer is made of polyvinyl chloride, a phthalic acid-based trimellitate-based plasticizer and a filler are usually blended.
- the material is a rubber-based material or a polyethylene-based material, a filler and carbon are usually blended.
- the correlation between the propagation characteristics and the diagnostic characteristics is different if the types and amounts of the plasticizers and fillers added to the material of the coating layer are different. Therefore, for each type of coating layer material, one or more types of plasticizers, plasticizers, fillers, and carbons are selected and changed to obtain material specifications. It is preferable to create a data group by measuring the diagnostic characteristics and the corresponding propagation characteristics for each sample having different specifications.
- diagnosis is performed in the following steps (1) to (3).
- the type of plasticizer, the amount of plasticizer, the amount of filler, and the amount of carbon compounded according to each organic polymer material used for the material of the cable coating layer are changed as a whole.
- a data group is created by obtaining the relationship between the propagation characteristics and the diagnostic characteristics (physical characteristics and / or electrical characteristics) of each organic polymer material at the time.
- the amount of the phthalate-based plasticizer does not affect the correlation between the propagation characteristics and the diagnostic characteristics.
- the amount of the acid ester-based plasticizer has an effect.
- the amount of filler affects the amount of the mixture, and the type does not. If the material is chloroprene rubber (without filler), the carbon loading will affect the correlation. Also, when the material is polyethylene, the amount of the filler affects the correlation.
- Information on the cable covering material to be diagnosed such as the type of polymer material, the type of plasticizer compounded in the polymer material, the amount of plasticizer, the amount of filler, and the amount of carbon, It can be obtained as follows.
- the type of polymer material can be determined non-destructively from the hardness of the cable covering material, installation records and manufacturing records. Usually, it is sufficient to determine whether the material is polyvinyl chloride, rubber material, or polyethylene material. If printed on the cable, you can still find it. For example, if “IV” is printed on the surface of the cable, it is a vinyl insulated cable, and if “cV” is printed, it is a polyethylene insulated vinyl sheath. If it cannot be obtained by the above, it can be obtained by taking a small amount of cable coating material and performing thermogravimetric analysis or measurement of infrared absorption spectrum.
- the type and blending amount of the plasticizer can also be determined from the installation record and the production record. However, if these are not required from the above, for example, solvents (acetone, methanol,
- a plasticizer is collected by rubbing the surface of the cable covering material in the laid state, and the components in the cotton wool are analyzed by infrared absorption spectrum, GPC (gel filtration chromatography), HPLC ( It can be determined nondestructively by analyzing with high performance liquid chromatography).
- the blending amount of the filler can also be determined from the installation record and the production record. However, if these cannot be determined, a small sample (a few mg) can be collected from the laid cable and analyzed by TGA (thermogravimetric analysis). You can ask. The amount of carbon can be determined in the same manner.
- the type of the plasticizer may be determined as needed when the polymer material is polyvinyl chloride.
- a phthalate plasticizer is often used as a plasticizer, and a trimellitate plasticizer is used when heat resistance is required.
- the amount of the plasticizer may be determined as needed when the plasticizer is trimellitic acid.
- the compounding amount of carbon may be determined as needed when the polymer material is a rubber material / polyethylene material.
- the propagation characteristics are measured by propagating ultrasonic waves to and near the surface of the coating layer of the article.
- a method for measuring the propagation characteristics will be described below while explaining a part of the deterioration diagnosis device of the present invention.
- the deterioration diagnosis device of the present invention has at least the measuring device (A) shown in FIG.
- the measuring device (A) includes an ultrasonic transmitting means (hereinafter referred to as “transmitting means”) 1, an ultrasonic receiving means (hereinafter referred to as “receiving means”) 2, and delay chips 11, 21 provided for each of them. And a propagation time measuring means 3.
- the propagation time measuring means 3 is a device for measuring a time (propagation time) from when the ultrasonic wave is transmitted from the transmitting means to when it is received by the receiving means.
- the delay chips 11 and 21 intervene when the transmitting means 1 and the receiving means 2 are installed on the surface of the object to be measured, and refract the propagation direction of the ultrasonic wave. It is configured so that it can be sent along the surface of the object to be measured, and that it can receive ultrasonic waves that have propagated along the surface.
- the transmission means 1 includes at least an ultrasonic vibrator (not shown). Ultrasonic transducers are conversion elements that convert electrical signals into ultrasonic waves.
- the transmitting means 1 is capable of transmitting the ultrasonic waves emitted by the vibrator into the coating layer of the object to be measured.
- the transmitting means 1 is provided via a delay chip 11 on a surface of a coating layer C1 of a cable C which is an example of an object to be measured.
- the receiving means 2 includes at least an ultrasonic detecting element (not shown).
- An ultrasonic detection element is a conversion element that converts an ultrasonic wave into an electric signal.
- the receiving means 2 is capable of converting the ultrasonic wave emitted from the transmitting means and propagating through the coating layer into an electric signal by the detection element and receiving the electric signal.
- the receiving means 2 is provided on the surface of the coating layer C1 of the cable C via the delay chip 21 at a position away from the transmitting means 1 by a distance L1.
- the ultrasonic waves transmitted from the transmitting means 1 enter the coating layer of the object to be measured via the delay chip 11. Since the delay chip 11 is made of a material selected in terms of the ultrasonic wave propagation velocity with respect to the material of the coating layer and the inclination angle is selected, as described by Snell's law, the ultrasonic wave is The propagation direction is changed at the interface with the layer, the light propagates linearly on the surface of the coating layer and near the surface to the position of the receiving means, and is received by the receiving means 2 via the delay chip 21. The propagation time t at that time is measured by the propagation time measuring means 3.
- the deterioration diagnosis method of the present invention can be preferably performed by the deterioration diagnosis device of the present invention having the above-mentioned measuring device (A).
- the delay chip will be described with the transmission side as a representative.
- the delay chip has a wedge-shaped inclined part to which an ultrasonic transducer (detection element in the receiving means) is attached, so that the vibration surface of the ultrasonic transducer and the surface of the measurement object are separated. Intervening between them so as to form an angle 0.
- This angle 0 is the incident angle 0 (the angle formed by the surface normal X).
- the basic structure of the delay chip may refer to the prior art.
- the transmitting means 1 is arranged on the surface of the coating layer C1 of the measuring object C via the delay chip 11.
- Figure 2 shows that the propagation speed of the ultrasonic wave in the delay chip VI is less than the propagation speed of the ultrasonic wave in the material of the coating layer.
- FIG. 4 is a diagram in which the material of the delay chip is selected.
- the ultrasonic wave enters the coating layer C1 at an incident angle, is refracted at the interface so as to have a refraction angle of ⁇ , and propagates in the coating layer C1. This is as explained by Snell's law (the law of refraction).
- the value of VI with respect to V 2 and V i are selected so that the ultrasonic wave propagates along the surface of the coating layer after refraction.
- ultrasonic waves are propagated on and near the surface of the coating layer.
- the surface of the coating layer where the ultrasonic wave propagates and the vicinity of the surface are mainly the area at a depth of about 3 mm from the surface of the coating layer. Therefore, there is no problem if the coating layer is sufficiently thick.
- a part of the ultrasonic wave may be below the coating layer (in a cable, for example, adjacent to the conductor layer or the like).
- the light is reflected at the interface with the next layer, or is repeatedly reflected between the interface and the surface of the covering layer, and propagates, so that accurate propagation characteristics may not be measured in some cases.
- the ultrasonic wave is propagated at the surface of the coating layer and at a depth of about 1 mm from the surface. It is preferred that the light be propagated in a localized manner.
- the material of the delay chip is selected with respect to the material of the coating layer such that VI is not more than 1 time, more preferably VI is not more than V2, particularly preferably VI is not more than 0.97 times V2. I do. It is more efficient to select such that V 1 ⁇ V 2 because the angle of incidence and the angle of refraction are ⁇ and Snell's law is well followed. 0 at that time is preferably about 20 ° to 85 °.
- Propagation velocity V1 in an undegraded organic polymer material is about 180 m / s for polyethylene, about 180 OmZs for polyvinyl chloride, and ethylene-propylene copolymer rubber (EPM).
- EPM ethylene-propylene copolymer rubber
- the measurement target was polyethylene, polyvinyl chloride, ethylene-propylene copolymer rubber (E When PM is used, polytetrafluoroethylene or silicone rubber is preferable as the material of the die chip, since V 1 ⁇ V 2.
- the frequency of the ultrasonic wave used in the present invention is not limited.
- organic polymer materials such as polyethylene, polyvinyl chloride, and ethylene-propylene copolymer rubber (EPM), which are frequently used for the coating layer of cables, generally have a relatively low attenuation because ultrasonic waves have a large attenuation.
- the overall configuration of the deterioration diagnosis device of the present invention including other elements will be described after the description of the deterioration diagnosis method.
- the present invention provides two preferable methods (I) and (II) for measuring propagation characteristics. Any of these methods can be preferably implemented by using the deterioration diagnosis apparatus of the present invention. These methods will now be described.
- the method (I) employs the propagation speed as the propagation characteristic, and measures the propagation speed.
- a transmitting means 1 and a receiving means 2 are placed on the surface of a measurement object via delay chips 11 and 21, respectively.
- the ultrasonic wave transmitted from the transmitting means 1 propagates linearly to the installation position of the receiving means 2 along the surface of the object to be measured.
- the installation interval between the transmitting means 1 and the receiving means 2 is changed to L1 and L2, and the total propagation times t1 and t2 at each time are measured.
- the deterioration diagnosis apparatus be provided with an installation interval measuring means for measuring an interval between the transmitting means 1 and the receiving means 2.
- the measuring means may be provided not only with a simple measuring function but also with a mechanism capable of setting an installation interval between the transmitting means and the receiving means to a desired value.
- it has a structure in which the distance between the transmitting means and the receiving means can be directly read and finely adjusted using a micro head or the like.
- Ultrasonic waves propagating in a solid, particularly in an organic polymer material, are extremely easily attenuated, so that the value of L1 or L2 is preferably several hundred im to several tens mm.
- the method (II) employs the total propagation time from oscillation to detection when the propagation distance is constant as the propagation characteristic.
- the method of measuring the propagation time itself is the same as the measurement of the total propagation time t1 or t2 in the above method (I), and is preferably performed using the deterioration diagnosis apparatus of the present invention.
- the propagation time is always measured at the same propagation distance in both the measurement of the data group and the measurement of the article.
- measurement devices having the same specifications are used. If the delay chips always have the same specifications and the installation intervals are always constant, the amount of change is substantially only the propagation speed due to the deterioration of the coating layer, and the propagation time can directly correspond to the diagnostic characteristics.
- the propagation time for the evaluation it is not necessary to perform calculations for eliminating the time related to the two delay chips shown in the method (I) above.
- the measured value correspond to the diagnostic characteristics in the data group as it is, by performing only one measurement of the propagation time for the cable covering layer of the laid cable, making degradation diagnosis easier and more accurate.
- elapsed time a simple measurement of the propagation time for an article enables easy and accurate comprehensive diagnosis including time-dependent changes. Will be able to
- the present invention focuses on the fact that when the article is a long object, the degree of deterioration differs along the longitudinal direction. This will be described for the cable.
- the environment greatly differs in the longitudinal direction of the cable, and the degree of deterioration of the coating layer also varies greatly in the longitudinal direction.
- the conventional deterioration diagnosis method since the selected site is diagnosed without considering this point, there may be a large difference between the diagnosis result and the actual degree of deterioration.
- the method for measuring how the deterioration factors are distributed in the longitudinal direction of the laid cable is not limited.
- the measurement may be performed sequentially along the longitudinal direction of the laid cable, and the measuring means may be provided at least in one section of the laid cable. (Equipment) may be installed along the longitudinal direction of the cable, and multiple points may be measured simultaneously.
- Deterioration factors include temperature, humidity, water, PH of substances surrounding the coating layer, oil, hydrogen sulfide, oxygen, ozone, other reactive gases, sunlight, radiation
- Examples of the material that mechanically degrades the material of the coating layer include various forces acting on the cable from inside and outside, and vibrations and distortions generated at various portions of the cable. An important degradation factor is selected from these factors, and the distribution of the factor is measured by a measuring device capable of detecting the factor.
- the measurement interval along the cable or the installation interval of the measurement device may be determined according to the cable installation situation and environment. For example, outdoor radiation doses, concentrations of reactive gases such as hydrogen sulfide, oxygen, and ozone in the atmosphere, humidity, and solar radiation are relatively wide ranges. Since it is substantially constant over the circumference, an interval of about 5 to 5 Om is sufficient. On the other hand, the radiation dose received by the coated cable laid in the nuclear power plant, the immersion of the coated cable laid on the road in the production plant in water, and the adhesion of oil occur in a relatively narrow range. An interval of about 1 Om, and in some cases, about 0.5 to 2 m is preferable. A case where an apparatus for measuring a deterioration factor is installed along a cable will be described.
- the sensing part of the measuring device when measuring temperature, it is preferable to use an adhesive tape, for example, so that the temperature-sensitive part of the measuring device contacts the surface of the coated cable.
- the sensing part of the measuring device when measuring the humidity in the atmosphere, the substances around the cable, the concentration of hydrogen sulfide, the concentration of oxygen, the amount of solar radiation, or the amount of radiation, the sensing part of the measuring device must be in contact with or near the insulated cable, For example, it may be installed at a position about 1 to 50 cm away from the surface of the coated cable.
- a sensor having a rubber in the sensing unit that swells with oil and changes the electric resistance value is exemplified.
- a strain gauge may be installed on the surface of the coating layer.
- Deterioration factors may be measured continuously or at regular time intervals.
- the time interval depends on the deterioration factors and the goods (especially cables), and for example, once an hour, once a day, or even once a year may be sufficient.
- one of the degradation diagnoses of the present invention is estimation of the remaining life. That is, it is a diagnosis that indicates the degree of deterioration as the remaining time until the use limit.
- the present invention provides a preferred method of estimating the remaining life by adding "time lapse" to the data group as an element of the data. This will be described below using a cable as an example of an article.
- the remaining life is estimated according to the following steps.
- the ultrasonic propagation characteristics of the coating layer of the cable laid are measured, and a diagnostic characteristic value E1 corresponding thereto is obtained from the deterioration diagnosis data group.
- a diagnostic characteristic value E1 corresponding thereto is obtained from the deterioration diagnosis data group.
- the data group for remaining life estimation is assumed to correspond to the diagnostic characteristic value E, the heating temperature, and the heating time h.
- the correspondence of this (diagnosis characteristic value E, heating temperature w, heating time h) will be described later in detail.
- the value E of the diagnostic characteristic includes the value Ez determined as the limit of use.
- the use period of the laid cable is regarded as the heating time h1.
- Step (1) may be performed by using the deterioration diagnosis method according to the present invention, and is as described above.
- the shape of the data group for remaining life estimation obtained in this step is such that the value E of the diagnostic characteristic, the heating temperature w, and the heating time h correspond to each other. That is, the correlation between w and h at each value of E when E is varied as a parameter (hereinafter referred to as wh correlation).
- the material of the sample used to experimentally establish the w-h correlation may be a material having the same composition as the material of the coating layer of the cable whose remaining life is to be estimated, or a similar material. Similar materials can be used if they are based on the original organic polymer materials and their degradation diagnostic characteristics E match within 20% of soil. Is available.
- a sample in the form of a sheet (for example, about 1 to 5 mm thick) is processed by pressing. The sample may be an undegraded remaining life estimation object itself in place of the sheet.
- the sample was heated at various heating temperatures w, and for each heating temperature w, the change in the elongation at break E with respect to the heating time h was measured, and shown in FIG.
- the relationship curve between h and E for each value of w is obtained, and based on this, the relationship curve between h and w for each value of E is converted as shown in FIG.
- the value of E includes the value E z determined as the service limit. E z may be set taking into account the type of material, management criteria for user use, and other circumstances.
- the heating temperature w is preferably in a wide temperature range and in small increments, but in general, heating at a low temperature of 90 ° C or less slows the progress of deterioration. It is preferable to set the interval at least at 50 ° C, particularly at 20 ° C within the range.
- the heating time h is preferably at least one month, especially at least three months.
- Fig. 4 is a model graph of the results, which shows the relationship between the heating time h (horizontal axis) and the elongation at break E (vertical axis) at different heating temperatures w (wl to w4). Data group).
- Fig. 5 shows an example of this.
- the heating temperature (horizontal axis) and the elongation at break E (100%, 150%, 200%, 250%, 300%) are shown for each different elongation at break. It is a graph group (data group) showing a relationship with the heating time (vertical axis), and shows a so-called Arrhenius curve.
- the use limit E z of the elongation at break E is set to 100%, and the graph is shown by a thick line.
- FIG. 3 shows an example of this, and in addition to the configuration shown in FIG. 1, transmission control means 12, reception control means 22, propagation time measurement means 3, calculation means 4, distance input means 5, determination means 6
- transmission control means 12 reception control means 12, propagation time measurement means 3, calculation means 4, distance input means 5, determination means 6
- the arrangement of the display means 7 is clearly shown.
- the transmission control means 12 has a function of inputting the transmission time of the ultrasonic wave from the transmission means 1 and the like to the propagation time measurement means 3 described later as an electric signal.
- the reception control means 22 has a function of inputting the reception time of the ultrasonic wave from the reception means 2 to the propagation time measurement means 3 as an electric signal.
- the propagation time measuring means 3 calculates the time required from transmission to reception based on the signal.
- the method of measuring the propagation time is not limited to the above.
- a counter or a clock is arranged inside the propagation time measuring means 3, and a signal notifying the start of transmission from the transmission control means 12 and a signal notifying that the signal has been received from the reception control means 22 are used as described above. Start and stop clocks, etc., and measure the propagation time.
- the installation intervals L 1 and L 2 between the transmitting means 1 and the receiving means 2 are stored in the distance input means 5. Further, the propagation times t 1 and t 2 are measured by the propagation time measuring means 3.
- the calculating means 4 calculates the above-described propagation velocity V from the data L1, L2, t1 and t2.
- the judging means 6 holds various data for diagnosis of deterioration of the material of the coating layer, and converts the value of the propagation characteristic inputted from the arithmetic means 4 into the value of the diagnosis characteristic, The degree is determined, and the result is sent to the display means 7 to be displayed in various display methods, for example, a graph showing the relationship between the number of operating days and the degree of deterioration of the insulated wire.
- the deterioration diagnosis device of the present invention may be configured by connecting individual independent devices.
- the measurement device of (A) including a driving system such as an ultrasonic transducer, a detection element, and a driver thereof
- the propagation time measuring means 3 may be externally provided as an independent measuring device to exchange data with a computer.
- the data group described above is stored in the storage device of the computer.
- the propagation characteristic may be calculated at the stage of the measurement device (A) or may be calculated by a central processing unit.
- the central processing unit performs a process of extracting the value of the diagnostic characteristic corresponding to the obtained propagation characteristic from the data group for deterioration diagnosis stored in the storage device.
- the main body of the central processing unit of the deterioration diagnosis device of the present invention is a computer
- the diagnostic program to be executed include the above (B).
- the following is a specific example of the deterioration diagnosis program.
- the propagation speed is used as the propagation characteristic
- the elongation at break is used as the diagnostic characteristic.
- the deterioration diagnosis is performed in consideration of the type and the amount of the plasticizer and filler added to the material of the coating layer described above.
- step S1 the program requests input of the type of the organic polymer material that is the material of the coating layer.
- the process proceeds to step S2, where it is determined whether the material type is polyvinyl chloride (PVC), a rubber-based material, or a polyethylene-based material.
- PVC polyvinyl chloride
- step S2 If the material is PVC in step S2, the program moves to step S3 and requests input of the type of plasticizer. When this is input, the process moves to step S4, where it is determined whether the plasticizer is a phthalate ester or a trimellitate ester.
- step S4 the program Proceed to step S5 to request input of the blending amount of the filler. When it is input, the process moves to step S9.
- step S6 the program moves to step S6 and requests the input of the blending amount and the blending amount of the filler. When it is input, the process moves to step S9.
- step S5 and S6 if there is no compounding, for example, the operator inputs “zero”, “0”, and the like.
- step S2 If the material is a rubber-based material in step S2, the program proceeds to step S7, where the amounts of the filler and the carbon are obtained, and then the program proceeds to step S9. For those that are not blended, the operator inputs "zero" as above.
- step S2 If the material is a polyethylene-based material in step S2, the program proceeds to step S8, and after obtaining the input of the amount of the filler and the amount of the solvent, the program proceeds to step S9. For those that are not blended, the operator inputs “zero” as above.
- the program selects data having the same conditions as the information input from the data group in step S9 as data D.
- the data group may be created by the above-described procedure and stored in various internal and external storage devices and recording media.
- step S10 the measured propagation velocity V of the material of the covering layer is calculated from the numerical value input from the external measuring device. Subsequently, in step S11, the elongation at break H corresponding to the propagation velocity V is selected from the data D. In step S12, the deterioration state of the cable coating material is diagnosed using the elongation at break H as a deterioration index.
- the type of material, the type and blending amount of plasticizer, the blending amount of filler, and the blending amount of carbon are input.
- the present invention is not limited to this example. It may be at least one ⁇ ⁇ .
- only the type of material may be used.
- the estimation may be performed by a program.
- the propagation characteristics of the cable coating layer were measured by the method (I) using the deterioration diagnosis apparatus shown in FIG.
- the object to be measured is a power cable immediately after manufacture, which has a sheath (coating layer) made of soft polyvinyl chloride with an outer diameter of 21 mm and a nominal thickness of 2.5 mm. Both the transmitting means 1 and the receiving means 2 were installed on the surface of the cable coating layer via an oblique angle derailleur (inclined angle: 40 °) made of polytetrafluoroethylene.
- a data group in which the propagation characteristics correspond to the diagnostic characteristics was created, the propagation characteristics were measured for the actual product, and the diagnostic characteristics corresponding to the measured values were obtained from the data group.
- the object to be measured is a power cable laid for 10 years and has a coating layer made of soft polyvinyl chloride with an outer diameter of 2 lmm and an actual thickness of 2.5 mm.
- the propagation time of the ultrasonic wave was measured in the same manner as in Example 1 except that the installation interval (the distance between the tip ends of both delay chips) was set to 2 mm using the deterioration diagnosis apparatus shown in Fig. 1.
- a sheet (thickness 3 mm ⁇ ⁇ ) made of the same material as the coating layer was used as a sample, and the sample was heated and acceleratedly degraded to form various samples with different degrees of degradation.
- the correlation between the elongation rate and the propagation time was established separately, and the data was collected.
- the method of measuring the propagation time for the sample is the same as the measurement for the power cable described above. From this data group, a breaking elongation of about 220% corresponding to the propagation time measured with the above-described power cable was obtained.
- Example 3 A portion of the covering layer of the power cable was taken out, a dumbbell specimen was punched out, and the elongation at break was measured and found to be 228% on average. From this, it was found that the deterioration diagnosis method of the present invention agreed well with the results of the soil fracture test.
- Example 3 A portion of the covering layer of the power cable was taken out, a dumbbell specimen was punched out, and the elongation at break was measured and found to be 228% on average. From this, it was found that the deterioration diagnosis method of the present invention agreed well with the results of the soil fracture test.
- the remaining life is estimated as one of the deterioration diagnosis methods according to the present invention.
- the object is a signal cable that has been laid outdoors for 5 years, and has a 1.0 mm thick polyvinyl chloride insulation layer on a 1.0 mm diameter stranded copper conductor. This is a 600 V power cable with a 1.5-mm-thick polyvinyl chloride coating layer (sheath).
- the coating layer made of polyvinyl chloride is 100 parts by weight of polyvinyl chloride, 50 parts by weight of diisononyl phthalate as a plasticizer, and trisalt as a stabilizer.
- the average sheath temperature during the five-year installation was about 40 ° C.
- Arrhenius plot was performed based on the data obtained from Fig. 7, and a w-h correlation using the elongation at break shown in Fig. 8 as a parameter was obtained as a data group.
- Fig. 8 shows only the low temperature range necessary for estimating the remaining life, and the vertical axis corresponds to the heating time in Fig. 7, but "years" was used to estimate the remaining life.
- Curve E1 is an Arrhenius curve with an elongation at break of 272%
- curve E2 is an Arrhenius curve with an elongation at break of 230%. From the curve E1 in FIG. 8, it can be seen that the temperature for the installation period of 5 years and the elongation at break of 272% is about 50 ° C.
- Example 4 Assuming that the cable of Example 3 is continuously operated under the condition that the average sheath temperature is 40 ° C, the remaining life is estimated at 40 ° C as in the conventional method. It turned out that it was one year, and it was far from the above confirmation result.
- Example 4
- the material of the coating layer (sheath) is flame-retardant black-mouthed plain.
- the cable has a 2.5 mm thick natural rubber insulating layer on a 2.Omm diameter stranded copper conductor, and a 3300 V thick 8 mm thick coating layer on top of it.
- the coating layer is made of black mouth prene, and per 100 weight parts of black mouth prene. It contains 20 parts by weight of olefin oil, 60 parts by weight of aluminum silicate as a filler, and 25 parts by weight of carbon black, and is formed by heat crosslinking.
- the average sheath temperature during the nine-year installation was about 45 ° C.
- a sheet having a thickness of 2 mm was prepared by press molding and crosslinking at 150 ° C. for 30 minutes, and the sheet was subjected to 120 to 100 ° C. in an oven in which air circulated.
- Heat at a temperature of 150 ° C measure the change in elongation at break with respect to heating time at each heating temperature w, perform Arrhenius plotting as in Example 3, and use the elongation at break as a parameter
- a linear w-h correlation was obtained as a data group. From the data group thus obtained (wh correlation), a temperature of about 58 ° C was obtained corresponding to a laying period of 9 years and a breaking elongation of 378%.
- the elongation at break was determined as the service limit of 300%, and the period until the service limit was reached from the w-h correlation at the elongation at break of 300% was estimated to be about 7.5 years.
- the deterioration diagnosis was performed in consideration of the type and the amount of the plasticizer and the filler added to the material of the coating layer.
- Information on the material of the coating layer of the cable in the laid state was obtained from the record as described above, and the type of the polymer material was polyvinyl chloride, the plasticizer was a phthalate plasticizer, and the filler was filled. Information that the blending amount of the agent was 60 parts by weight was obtained. Based on this information, data D was selected from a data group created in advance.
- the elongation at break of the coating layer of the cable subject to the above diagnosis was determined by the conventional method without considering the type and blending amount of the plasticizer, filler, etc., and the elongation at break was 140%. Met.
- the coating layer of the cable to be diagnosed was broken, the test piece was taken out, and the elongation at break was measured by a tensile test to find that it was 190%.
- the degradation diagnosis method of the present invention which considers the types and amounts of plasticizers and fillers, etc., is a useful method that is closer to the results of destructive inspection. Also, when the deterioration diagnosis method of this embodiment is created as a computer overnight program as shown in the flowchart of FIG. The diagnosis could be made more quickly.
- the present invention is suitable for a diagnosis of the degree of deterioration of a coating layer of an article for which nondestructive diagnosis is required, for example, a power cable in operation.
- ADVANTAGE OF THE INVENTION According to the deterioration diagnosis method of this invention, the propagation characteristic of this coating layer can be measured nondestructively and more accurately, without necessity of data, such as the thickness of a coating layer. Therefore, the diagnostic characteristics obtained from the data group also become more accurate.
- the introduction of “elapsed time” into the data group makes it possible to perform comprehensive deterioration diagnosis including changes over time, and to estimate the remaining life more accurately than before.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
A method of diagnosing the deterioration of a covering layer of organic polymer material, comprising first measuring the deterioration diagnostic characteristic and the corresponding ultrasonic wave propagation characteristic of a sample of the covering layer, these measured values preparing a set of data including the correlated measured values. The ultrasonic wave propagation characteristic of an actual covering layer is measured by propagating ultrasonic waves along or near the surface of the actual covering layer by means of ultrasonic wave transmission and reception means through a delay chip. The deterioration diagnostic characteristic corresponding to the measured propagation characteristic is determined from the data set. By adding elements of time elapse to the data set, it is also possible to predict the remaining longevity of the covering layer.
Description
明 細 書 有機高分子材料からなる被覆層を少なくとも有する物品の 劣化を診断する方法およびそのための装置 技術分野 TECHNICAL FIELD A method for diagnosing deterioration of an article having at least a coating layer made of an organic polymer material and an apparatus therefor
本発明は、 有機高分子材料からなる被覆層を少なくとも有する物品 (代表的に はケーブル) の劣化を診断する方法とそのための装置に関するものである。 The present invention relates to a method for diagnosing deterioration of an article (typically, a cable) having at least a coating layer made of an organic polymer material and an apparatus therefor.
背景技術 Background art
布設されたケーブルの被覆層 (有機高分子材料からなる絶縁体層) は、 様々な 要因によって経年変化して電気絶縁性が低下するため、 定期的に点検して劣化伏 態を診断する必要がある。 そのため、 種々の劣化診断方法が提案されている。 そのなかでも、 超音波を伝搬させて劣化状態を診断する方法 (特開平 7— 3 5 7 3 2号公報、 特開平 7— 3 5 7 3 3号公報) は、 ケーブルを破壊する必要がな い点で優れている。 この公報に記載の方法では、 布設されたケーブルの被覆層に 超音波を伝搬させて超音波伝搬速度を算出し、 これを被覆層の破断伸び率や硬さ 等といった物理的特性に換算しその特性で劣化状態の診断を行っている。 Since the insulation layer of the laid cable (insulator layer made of organic polymer material) changes over time due to various factors and the electrical insulation deteriorates, it is necessary to periodically inspect and diagnose the deterioration state. is there. Therefore, various degradation diagnosis methods have been proposed. Among them, the method of diagnosing the deterioration state by propagating ultrasonic waves (JP-A-7-35732, JP-A-7-35733) does not require breaking the cable. It is excellent in a point. According to the method described in this publication, an ultrasonic wave is propagated through a coating layer of a laid cable to calculate an ultrasonic wave propagation velocity, which is converted into physical properties such as elongation at break and hardness of the coating layer. Diagnosis of deterioration state is performed by characteristics.
上記公報における超音波を用いた伝搬速度の測定方法を概略的に説明すると、 ケーブルの被覆層の表面からケーブルの中心方向に超音波を入射して、 超音波が 被覆層とその下の層 (例えば、 導体) との界面で反射して再び入射位置まで帰つ て来るまでに要する時間 tを測定し、 この tと、 被覆層の厚み aとから、 V = 2 a Z tを計算し、 この Vの値を被覆層中における超音波の伝搬速度とする、 とい うものである。 The method of measuring the propagation velocity using ultrasonic waves in the above-mentioned publication is schematically described. Ultrasonic waves are incident from the surface of the cable coating layer toward the center of the cable, and the ultrasonic waves are applied to the coating layer and the layer below it. For example, the time t required to reflect at the interface with the conductor) and return to the incident position again is measured, and from this t and the thickness a of the coating layer, V = 2 a Z t is calculated, The value of V is defined as the propagation speed of the ultrasonic wave in the coating layer.
ところが、 上記公報における測定方法は、 超音波の伝搬速度 Vの計算に、 被覆 層の厚み aを用いている点に問題がある。 即ち、 被覆層の厚み aの値を高い精度 で知ることができる場合には上記測定方法は有用であるが、 布設されているケー ブルなど破壊できない現物に対しては、 aの値を正確に得ることは困難である。
例えば、 設計仕様書などを参照すれば、 aの値の設計上の基準寸法は得ることが できる。 しかし、 絶縁電線の製造の際には設計上の基準寸法に対して ± 1 5 %も の製造公差が許容されているために、 現物の aの値との差が大きい場合がある。 従って、 非破壊的に得た aを用いて算出された伝搬速度、 およびそれに基づく劣 化診断は精度の低いものであつた。 However, the measurement method in the above publication has a problem in that the thickness a of the coating layer is used for calculating the propagation velocity V of the ultrasonic wave. In other words, the above measurement method is useful when the value of the thickness a of the coating layer can be known with high precision, but the value of a can be accurately determined for indestructible objects such as laid cables. It is difficult to get. For example, by referring to a design specification or the like, a design reference dimension of the value of a can be obtained. However, when manufacturing insulated wires, manufacturing tolerances of ± 15% with respect to the design reference dimensions are allowed, so the difference from the actual value of a may be large. Therefore, the propagation velocity calculated using a obtained nondestructively and the deterioration diagnosis based on it were of low accuracy.
本発明の目的は、 有機高分子材料からなる被覆層を少なくとも有する物品 (例 えば、 ケーブル) の劣化度を、 超音波を用いて診断するためのより好ましい劣化 診断方法を提供し、 また、 その方法を実施するために好ましい劣化診断装置を提 供することにある。 発明の開示 An object of the present invention is to provide a more preferable deterioration diagnosis method for diagnosing the degree of deterioration of an article (for example, a cable) having at least a coating layer made of an organic polymer material by using ultrasonic waves. An object of the present invention is to provide a preferable deterioration diagnosis apparatus for performing the method. Disclosure of the invention
本発明の劣化診断方法は、 有機高分子材料からなる被覆層を少なくとも有する 物品の劣化を診断する方法であって、 被覆層の試料について、 劣化診断特性とそ れに対応する超音波伝搬特性とを測定し、 劣化診断特性の値と超音波伝搬特性の 値とが対応した劣化診断用のデータ群を作成し、 物品の被覆層の表面および表面 付近に超音波を伝搬させることによって、 該被覆層の超音波伝搬特性を測定し、 それに対応する劣化診断特性を前記データ群から求めることを特徴とするもので 本発明の劣化診断方法は、 劣化診断用のデータ群を作成するに際し、 有機高分 子材料の種類、 該有機高分子材料に配合されている可塑剤の種類、 可塑剤の配合 量、 充塡剤の配合量、 およびカーボンの配合量から選ばれる 1以上の要素からな る材料仕様を変化させ、 該材料仕様が異なる試料ごとに、 劣化診断特性とそれに 対応する超音波伝搬特性とを測定して、 劣化診断用のデータ群を作成し、 物品の 被覆層について超音波伝搬特性を測定し、 該被覆層と等しレ、材料仕様のデー夕群 から、 前記超音波伝搬特性に対応する劣化診断特性を求めるものである。 The deterioration diagnosis method of the present invention is a method for diagnosing deterioration of an article having at least a coating layer made of an organic polymer material, and includes a method of diagnosing deterioration of a coating layer sample and corresponding ultrasonic propagation characteristics. By measuring the values of the deterioration diagnosis characteristics and the ultrasonic propagation characteristics, a data group for deterioration diagnosis is created, and ultrasonic waves are propagated to the surface of the coating layer of the article and the vicinity of the surface, whereby the coating is formed. Measuring the ultrasonic wave propagation characteristics of the layer and obtaining a corresponding deterioration diagnosis characteristic from the data group. The deterioration diagnosis method according to the present invention comprises the steps of: A material consisting of one or more elements selected from the type of molecular material, the type of plasticizer mixed in the organic polymer material, the amount of plasticizer, the amount of filler, and the amount of carbon Finish The deterioration diagnosis characteristics and the corresponding ultrasonic propagation characteristics are measured for each sample having a different material specification, and a data group for deterioration diagnosis is created, and the ultrasonic propagation characteristics of the coating layer of the article are measured. The measurement is performed to determine the deterioration diagnostic characteristics corresponding to the ultrasonic wave propagation characteristics from the data group of the material specification, which is equal to the coating layer.
本発明の劣化診断方法は、 上記超音波伝搬特性が超音波の伝搬速度であって、 該伝搬速度を測定する方法が、 超音波送信手段および超音波受信手段を各々ディ
レーチップを介して測定対象の表面に設置し、 前記送信手段から送信された超音 波が測定対象中を前記受信手段の設置位置まで直線的に伝搬し受信手段にて受信 し得る構成とし、 前記送信手段と前記受信手段との設置間隔を L 1、 L 2とした ときの各々の超音波の伝搬時間 t 1、 t 2を測定し、 (L 2— L l ) Z ( t 2— t 1 ) の値を超音波の伝搬速度とする測定方法である。 In the deterioration diagnosis method according to the present invention, the ultrasonic wave propagation characteristic is an ultrasonic wave propagation velocity, and the method of measuring the propagation velocity comprises: an ultrasonic transmission unit and an ultrasonic reception unit; The ultrasonic wave transmitted from the transmitting means is installed on the surface of the measuring object via a laser chip, and the ultrasonic wave is linearly propagated in the measuring object to the installation position of the receiving means and can be received by the receiving means. The propagation times t 1 and t 2 of the respective ultrasonic waves are measured when the installation interval between the transmitting means and the receiving means is L 1 and L 2, and (L 2 — L l) Z (t 2 — t 1 ) Is a method of measuring the propagation velocity of the ultrasonic wave.
本発明の劣化診断方法は、 上記超音波伝搬特性が、 特定距離を伝搬するときの 超音波の伝搬時間であって、 試料,物品の被覆層を被検査物として、 超音波送信 手段および超音波受信手段を各々ディレーチップを介して被検査物の表面に前記 特定距離をおいて設置し、 前記送信手段から送信された超音波が、 被検査物中を 前記受信手段の設置位置まで直線的に伝搬し受信手段にてディレーチップを介し て受信されるまでの時間を測定し、 伝搬時間とするものである。 In the deterioration diagnosis method of the present invention, the ultrasonic wave propagation characteristic is a propagation time of the ultrasonic wave when the ultrasonic wave propagates over a specific distance, the ultrasonic wave transmitting means and the ultrasonic wave The receiving means is installed at the specified distance on the surface of the inspection object via the delay chip, and the ultrasonic wave transmitted from the transmission means linearly moves through the inspection object to the installation position of the reception means. The propagation time is measured by measuring the time from propagation to reception by the receiving means via the delay chip.
本発明の劣化診断方法は、 上記物品が、 布設された状態のケーブルであって、 該ケ一ブルの被覆層を劣化させる劣化要因がケ一ブルの長手方向に沿ってどのよ うに分布しているかを測定し、 劣化要因の程度の大きい部位について劣化診断を 行うものである。 The deterioration diagnosis method according to the present invention is directed to a cable in which the article is laid, and how the deterioration factors that deteriorate the coating layer of the cable are distributed along the longitudinal direction of the cable. This is to determine whether the deterioration factor is high and to perform a deterioration diagnosis on the parts where the degree of deterioration is large.
本発明の劣化診断方法は、 物品の被覆層について求めた上記劣化診断特性の値 を E 1 とし、 さらに、 被覆層と同じ材料の試料について、 劣化診断特性の値を使 用限界の値 E zを含めて変化させたときの、 各劣化診断特性の値ごとにおける加 熱温度 tとそれに対応する加熱時間 hとを測定して余寿命推定用のデータ群とし 、 この余寿命推定用のデータ群を用い、 前記物品の使用期間を加熱時間 h 1 と見 なして、 劣化診断特性の値 E 1での加熱時間 h 1に対応する加熱温度 t 1を求め 、 劣化診断特性の使用限界の値 E zでの加熱温度 t 1に対応する加熱時間 h zを 求め、 h z— h 1の値を余寿命とするものである。 In the deterioration diagnosis method of the present invention, the value of the above-mentioned deterioration diagnosis characteristic obtained for the coating layer of the article is defined as E 1, and the value of the deterioration diagnosis characteristic is used for a sample of the same material as the coating layer. The heating temperature t and the corresponding heating time h corresponding to each value of the deterioration diagnosis characteristics when the values are changed including the above are measured to obtain a data group for remaining life estimation, and this data group for remaining life estimation is obtained. The heating period t1 corresponding to the heating time h1 at the value E1 of the deterioration diagnosis characteristic is obtained by regarding the use period of the article as the heating time h1 using the above, and the use limit value E of the deterioration diagnosis characteristic is obtained. The heating time hz corresponding to the heating temperature t1 at z is determined, and the value of hz-h1 is used as the remaining life.
本発明の劣化診断装置は、 有機高分子材料からなる被覆層を少なくとも有する 物品の劣化を診断するための装置であって、 下記 (A) の測定装置を少なくとも 有する。 The deterioration diagnosis device of the present invention is a device for diagnosing deterioration of an article having at least a coating layer made of an organic polymer material, and has at least the following measurement device (A).
( A) 物品の被覆層または被覆層の試料を測定対象物とする超音波伝搬特性の
測定装置であって、 超音波送信手段と、 超音波受信手段と、 これらを測定対象物 の表面に設置する際に各々に介在させる下記 (A 1 ) のディレーチップと、 超音 波が前記送信手段から送信されてから受信手段にて受信されるまでの時間を測定 する伝搬時間測定手段と、 を有する測定装置。 (A) Ultrasonic propagation characteristics of the coating layer of the article or the sample of the coating layer as the measurement object A measuring device, comprising: an ultrasonic transmitting means, an ultrasonic receiving means, a delay chip (A 1) interposed between the ultrasonic wave transmitting means, the ultrasonic receiving means, and the ultrasonic wave when the ultrasonic wave transmitting means A propagation time measuring means for measuring a time from transmission from the means to reception by the receiving means.
( A 1 ) 当該ディレーチップから測定対象物に超音波が入るとき、 超音波の伝 搬方向が変化し測定対象物の表面および表面付近を超音波が伝搬するように、 傾 斜角度と、 材料とが選択されてなるディレーチップ。 図面の簡単な説明 (A1) When the ultrasonic wave enters the measuring object from the delay chip, the tilt angle and the material are set so that the propagation direction of the ultrasonic wave changes and the ultrasonic wave propagates on and near the surface of the measuring object. The delay chip that is selected. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の劣化診断装置の一例であって、 ケーブルの劣化診断に用いて いる状態を示す図である。 駆動装置などの図示は省略している。 FIG. 1 is an example of a deterioration diagnosis device of the present invention, and is a diagram showing a state used for deterioration diagnosis of a cable. The illustration of the driving device and the like is omitted.
図 2は、 ディレーチップの構成を説明するための図である。 FIG. 2 is a diagram for explaining the configuration of the delay chip.
図 3は、 本発明の劣化診断装置全体の構成例を示す図である。 駆動系、 制御系 、 演算系の一例をブロック線図で示している。 FIG. 3 is a diagram showing a configuration example of the entire deterioration diagnosis device of the present invention. An example of a drive system, a control system, and an arithmetic system is shown in a block diagram.
図 4は、 加熱温度 w毎における、 加熱時間 h (横軸) と破断伸び率 E (縦軸) との関係を示すグラフ群である。 FIG. 4 is a group of graphs showing the relationship between the heating time h (horizontal axis) and the elongation at break E (vertical axis) at each heating temperature w.
図 5は、 破断伸び率の値毎における、 加熱温度 (横軸) と加熱時間 (縦軸) と の関係を示すグラフ群である。 横軸には加熱温度として絶対温度 Tの逆数を取り 、 縦軸には加熱時間 hの対数を取っている。 FIG. 5 is a group of graphs showing the relationship between the heating temperature (horizontal axis) and the heating time (vertical axis) for each value of the elongation at break. The horizontal axis shows the reciprocal of the absolute temperature T as the heating temperature, and the vertical axis shows the logarithm of the heating time h.
図 6は、 本発明の劣化診断装置において実行される劣化診断プログラムの動作 を示すフローチヤ一トである。 FIG. 6 is a flowchart showing the operation of the deterioration diagnosis program executed in the deterioration diagnosis device of the present invention.
図 7は、 本発明の実施例において試料について求めた、 加熱温度 w毎における 、 加熱時間と破断伸び率との関係を示すグラフ群である。 FIG. 7 is a group of graphs showing the relationship between the heating time and the elongation at break for each heating temperature w obtained for the sample in the example of the present invention.
図 8は、 本発明の実施例において試料について求めた、 破断伸び率の値毎にお ける、 加熱温度と加熱時間との関係を示すグラフ群である。 発明の詳細な説明
本発明の劣化診断方法は、 次のステップを少なくとも有するものである。 FIG. 8 is a group of graphs showing the relationship between the heating temperature and the heating time for each value of the elongation at break obtained for the sample in the example of the present invention. Detailed description of the invention The deterioration diagnosis method of the present invention has at least the following steps.
①診断対象とする物品 (例えば、 布設された状態のケーブル) の被覆層と同じ材 料の試料を用意し、 該試料の劣化診断特性 (以下 「診断特性」 ) とそれに対応す る超音波伝搬特性 (以下 「伝搬特性」 ) とを測定し、 診断特性の値と伝搬特性の 値とが対応した劣化診断用のデータ群を作成する。 (1) Prepare a sample of the same material as the coating layer of the article to be diagnosed (for example, a cable in a laid state), and evaluate the deterioration diagnosis characteristics (hereinafter “diagnosis characteristics”) of the sample and the corresponding ultrasonic wave propagation. The characteristics (hereinafter referred to as “propagation characteristics”) are measured, and a data group for deterioration diagnosis is created in which the values of the diagnosis characteristics correspond to the values of the propagation characteristics.
②診断対象とする物品に対して、 その被覆層の表面および表面付近に超音波を伝 搬させて、 該被覆層の伝搬特性を測定する。 (2) The ultrasonic wave is transmitted to the surface of the coating layer and near the surface of the article to be diagnosed, and the propagation characteristics of the coating layer are measured.
③上記②のデータ群を用いて、 上記①の測定で得られた物品の伝搬特性に対応す る診断特性を求め、 これを物品の診断特性として物品の劣化診断を行なう。 (3) Using the data group (2) above, determine the diagnostic characteristics corresponding to the propagation characteristics of the article obtained in the measurement (2) above, and use this as the diagnostic characteristic of the article to perform the deterioration diagnosis of the article.
劣化診断の対象とする物品は、 有機高分子材料からなる被覆層を少なくとも有 するものであればよく、 ケーブルの他、 パイプ、 ホース、 シート材、 壁材 .床材 などの表面材などが挙げられる。 ケーブルは、 有機高分子材料からなる被覆層を 有する電線の全てを包含するものであり、 例えば、 絶縁電線、 電力ケーブルなど が挙げられ、 通信用、 電力用、 機器用などの用途は問わない。 これらのケーブル は、 被覆層の劣化が重大な問題であり、 かつ布設された状態のものは破壊検査が できないものであるから、 これを劣化診断の対象とするとき、 本発明の有用性は 最も顕著となる。 The articles subject to deterioration diagnosis need only have at least a coating layer made of an organic polymer material, and include not only cables but also pipes, hoses, sheet materials, wall materials, and surface materials such as floor materials. Can be The cable includes all electric wires having a coating layer made of an organic polymer material, and includes, for example, an insulated electric wire and a power cable, and may be used for any purpose such as communication, power, and equipment. For these cables, the deterioration of the coating layer is a serious problem, and the cables in the laid state cannot be subjected to destructive inspection. Will be noticeable.
診断特性は、 被覆層に用いられる有機高分子材料 (以下 「被覆層の材料」 とも いう) の劣化度を示し得る特性であって伝搬特性と相関関係を有するものであれ ばよい。 例えば、 材料の表面反発硬度、 表面針入硬度、 引張強さ、 破断伸び率、 弾性率、 ヤング率、 モジュラス、 誘電率、 誘電正接、 体積抵抗率、 交流破壊電圧 強度、 インパルス破壊電圧強度、 物品がケーブルのような長尺物である場合の捩 じりトルクや曲げ剛性など、 機械的特性や電気的特性が挙げられる。 特に、 破断 伸び率は、 ケーブルの被覆層の劣化度を顕著に表し、 伝搬特性とも強い相関関係 を有するので、 診断特性として好ましく用いられる。 The diagnostic characteristic may be a characteristic that can indicate the degree of deterioration of the organic polymer material used for the coating layer (hereinafter, also referred to as “the material of the coating layer”) and has a correlation with the propagation characteristic. For example, surface rebound hardness, surface penetration hardness, tensile strength, elongation at break, elastic modulus, Young's modulus, modulus, dielectric constant, dielectric loss tangent, volume resistivity, AC breakdown voltage strength, impulse breakdown voltage strength, articles The mechanical characteristics and electrical characteristics such as torsional torque and bending stiffness of a long object such as a cable. In particular, the elongation at break shows the degree of deterioration of the coating layer of the cable remarkably, and has a strong correlation with the propagation characteristics, so that it is preferably used as a diagnostic characteristic.
ケーブルの場合、 一般に、 ケーブルの被覆層の破断伸び率が 5 0 %に近づくと 、 振動や衝撃によりクラックが発生する傾向にあり、 その結果外部からの水の侵
入などにより絶縁破壊を起こす可能性がある。 従って、 ケーブルの取替は破断伸 び率が 5 0 %程度となるのを目安にして行えば良いと考えられる。 但し、 劣化の 指標の基準は適宜使用者で決定しても良い。 In the case of cables, in general, when the elongation at break of the cable coating layer approaches 50%, cracks tend to occur due to vibration or impact, and as a result, water intrusion from the outside may occur. May cause dielectric breakdown. Therefore, it is considered that the replacement of the cable should be performed with the elongation at break of about 50% as a guide. However, the criteria for the deterioration index may be determined by the user as appropriate.
伝搬特性は、 被覆層の材料中に超音波を伝搬させたときの伝搬状態を示す量で あってかつ材料の劣化と相関関係を有するものであればよい。 例えば、 伝搬距離 を一定としたときの伝搬時間や、 伝搬距離と伝搬時間から算出される伝搬速度、 超音波の受信感度、 超音波波形の周波数変化、 超音波波形の形状変化、 超音波の 減衰特性などが挙げられる。 特に、 伝搬時間、 伝搬速度が有用である。 伝搬特性 の測定方法については、 装置の説明と共に後述する。 The propagation characteristic may be an amount that indicates a propagation state when an ultrasonic wave is propagated in the material of the coating layer and has a correlation with the deterioration of the material. For example, the propagation time when the propagation distance is constant, the propagation speed calculated from the propagation distance and the propagation time, the ultrasonic reception sensitivity, the change in the ultrasonic waveform frequency, the change in the ultrasonic waveform shape, the attenuation of the ultrasonic wave Characteristics and the like. In particular, propagation time and propagation speed are useful. The method of measuring the propagation characteristics will be described later together with the description of the device.
被覆層に用いられる有機高分子材料としては次のものが挙げられる。 The following are examples of the organic polymer material used for the coating layer.
熱可塑性樹脂では、 ボリエチレン、 ポリプロピレン、 ポリブテン、 ポリー 4 一 メチルペンテン— 1、 エチレン一酢酸ビニル共重合体、 エチレン一ェチルァクリ レート共重合体などのポリオレフイ ン系、 ナイロンなどのポリアミ ドゃ、 その他 、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 熱可塑性ポリエステルなどが挙げられ ゴムでは、 天然ゴム、 イソプレンゴム、 ブチルゴ厶、 エチレン—プロピレン共 重合ゴム、 エチレン—プロピレン—ジェン三元共重合ゴム、 スチレン一ブタジェ ン共重合ゴム、 アクリロニトリル—ブタジエン共重合ゴム、 エチレン—酢酸ビニ ル共重合ゴム、 エチレン一ェチルァクリレート共重合ゴム、 クロロスルホン化ポ リエチレンゴム、 ェピクロロヒドリンゴム、 シリコーンゴム、 フッ素ゴムなどが 挙げられる。 The thermoplastic resins include polyolefins such as polyethylene, polypropylene, polybutene, poly (4-methylpentene-1), ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyamides such as nylon, and others. Examples of rubber include vinyl chloride, polyvinylidene chloride, and thermoplastic polyester. Examples of rubber include natural rubber, isoprene rubber, butyl rubber, ethylene-propylene copolymer rubber, ethylene-propylene-gen terpolymer rubber, and styrene-butadiene copolymer. Rubber, acrylonitrile-butadiene copolymer rubber, ethylene-vinyl acetate copolymer rubber, ethylene-ethyl acrylate copolymer rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, silicone rubber, fluorine rubber, etc. No.
熱可塑性エラストマ一では、 A B A型トリブロックや (A B ) „ X型ラジアル ブロックなどのスチレン系熱可塑性ェラストマー、 ブレンド型 T P 0や部分架橋 プレンド型 T P Oや完全架橋プレンド型 T P Oなどのポリオレフィ ン系熱可塑性 エラストマ一、 二トリルゴムブレンド体ゃ部分架橋二トリルゴ厶ブレンド体など のポリ塩化ビニル系熱可塑性ェラストマー、 ポリエステル型やポリエーテル型な どのポリウレタン系熱可塑性エラストマ一、 ポリエステル■ ポリエーテル型ゃポ
リエステル ·ポリエステル型などのポリエステル系熱可塑性エラストマ一などが 挙げられる。 Thermoplastic elastomers include styrene-based thermoplastic elastomers such as ABA-type triblocks and (AB) „X-type radial blocks, and polyolefin-based thermoplastics such as blend-type TP0, partially cross-linked blended TPO, and fully-crosslinked blended TPO. Elastomer, nitrile rubber blend ゃ Polyvinyl chloride thermoplastic elastomer such as partially cross-linked nitrile rubber blend, polyurethane thermoplastic elastomer such as polyester type or polyether type, polyester ポ リ polyether type ゃ Examples include polyester-based thermoplastic elastomers such as polyester and polyester.
データ群は、 連続的なものでも離散的なものでもよい。 即ち、 連続的に変化す る診断特性と、 それに対応して連続的に変化する伝搬特性とを記録したデータ群 であっても、 変化する診断特性の特定間隔毎の値と、 各々の値に対応した伝搬特 性の値とを記録したデータ群であってもよい。 デ一夕群は、 物品の診断に先立つ て、 種々の材料について予め作成しておくのが好ましく、 常に参照可能に保有し ておけば、 現物に対する超音波を用いた測定から迅速に診断結果を得られる。 デ一夕群を作成するに際しては、 「診断特性」 と 「伝搬特性」 とが 2元で対応 したものとするだけではなく、 これらに 「時間の経過」 の要素を加え、 「時間の 経過」 と 「診断特性」 と 「伝搬特性」 とが 3元で対応したデータ群としてもよい 。 またさらに他の要素を加えて多元で対応したデ一夕群としてもよい。 また、 後 述のように余寿命を推定するために 「特定の劣化要因の値」 と 「時間の経過」 と 「診断特性」 とが対応した、 特別なデータ群を形成してもよい。 The data group may be continuous or discrete. That is, even in a data group in which a continuously changing diagnostic characteristic and a correspondingly continuously changing propagation characteristic are recorded, the value of the changing diagnostic characteristic at each specific interval and each value are It may be a data group in which the values of the corresponding propagation characteristics are recorded. It is preferable that the data group be prepared in advance for various materials prior to the diagnosis of the article, and if it is held so that it can always be referred to, the diagnosis results can be quickly obtained from the measurement of the actual product using ultrasonic waves. can get. When creating a data group, it is necessary not only to make the “diagnosis characteristics” and “propagation characteristics” correspond in a two-way fashion, but also to add the “elapsed time” element to these, The data group may be a three-way correspondence of the “diagnosis characteristic” and the “propagation characteristic”. Further, other elements may be added to form a group that can handle multiple factors. In addition, as described later, a special data group corresponding to “specific deterioration factor value”, “elapsed time”, and “diagnosis characteristic” may be formed in order to estimate the remaining life.
データ群に 「時間の経過」 を要素として加えることによって、 単に材料の機械 的特性 ·電気的特性の値の大小の判定をすることだけでなく、 伝搬特性の経時的 変化から診断特性の経時的変化を知ることができ、 その経時的変化から物品の劣 化度を診断することができる。 また、 物品の使用時間に対する劣化度に関する評 価や、 余寿命 (残存寿命) の推定など、 時間の経過に関係する評価を含めた総合 的な診断が可能となる。 特に、 余寿命の推定は、 測定時点までの劣化ではなく、 測定時点から後の劣化の進行を診断するものであり、 ケーブルなどの設備には有 用な劣化診断である。 By adding “elapsed time” as an element to the data group, it is not only possible to judge the magnitude of the mechanical and electrical characteristics of the material, but also to determine the diagnostic characteristics based on the temporal changes in the propagation characteristics. The change can be known, and the degree of deterioration of the article can be diagnosed from the change over time. In addition, comprehensive diagnosis including evaluations related to the passage of time, such as an evaluation of the degree of deterioration of the article over use time and an estimation of the remaining life (remaining life) can be performed. In particular, the estimation of the remaining life is not for deterioration until the measurement point, but for the diagnosis of the progress of deterioration after the measurement point, and is a useful deterioration diagnosis for equipment such as cables.
データ群を作成するには、 試料に対して放射線照射や加熱などの条件を変えて 劣化させ、 診断特性を変化させて測定しながら、 そのときの伝搬特性を同時に測 定し、 両者が 1対 1で対応した状態で記録すればよい。 試料を劣化させる場合、 物品がケーブルならば、 布設されている環境に合わせて劣化させれば良い。 例え ば、 原子力発電所関連設備に布設されるケーブルの場合であれば、 放射線量 1 0
k G y / h以下、 温度 2 5 0 °C以下で劣化させれば良い。 試料を劣化させるには 、 加速試験のように、 より厳しい条件の下で劣化の進行速度を加速させてもよい が、 データ群に 「時間の経過」 の要素を加えて加速試験を行なう場合には、 加速 された経過時間と、 現実の使用環境下での経過時間とを換算可能なように対応さ せるのが好ましい。 To create a data group, the sample is deteriorated by changing the conditions such as irradiation and heating, and the diagnostic characteristics are changed while the propagation characteristics are measured at the same time. What is necessary is just to record in the state corresponding to 1. When the sample is deteriorated, if the article is a cable, it should be deteriorated according to the environment in which it is laid. For example, in the case of cables laid at facilities related to nuclear power plants, radiation dose 10 The degradation may be performed at k G y / h or less and at a temperature of 250 ° C. or less. In order to deteriorate the sample, the rate of progress of deterioration may be accelerated under more severe conditions as in the accelerated test. However, when an accelerated test is performed by adding an element of “time lapse” to the data group It is preferable that the accelerated elapsed time and the elapsed time under the actual use environment be corresponded so as to be able to be converted.
劣化診断の対象をケーブルとする場合、 被覆層の材料がポリ塩化ビニルの場合 には、 通常、 フタル酸エステル系ゃトリメリッ ト酸エステル系の可塑剤、 および 充塡剤が配合される。 また、 材料がゴム系材料やポリエチレン系材料の場合には 、 通常、 充塡剤およびカーボンが配合される。 When the degradation diagnosis is performed on a cable, if the coating layer is made of polyvinyl chloride, a phthalic acid-based trimellitate-based plasticizer and a filler are usually blended. When the material is a rubber-based material or a polyethylene-based material, a filler and carbon are usually blended.
本発明では、 被覆層の材料に加えられる可塑剤や充塡剤等の種類や配合量が異 なれば、 伝搬特性と診断特性との相関関係も異なるということを考慮する。 従つ て、 被覆層の材料の種類毎に、 可塑剤の種類、 可塑剤の配合量、 充塡剤の配合量 、 カーボンの配合量を、 1以上選んで変化させて材料仕様とし、 該材料仕様が異 なる試料ごとに、 診断特性とそれに対応する伝搬特性を測定して、 データ群を作 成するのが好ましい。 In the present invention, it is taken into consideration that the correlation between the propagation characteristics and the diagnostic characteristics is different if the types and amounts of the plasticizers and fillers added to the material of the coating layer are different. Therefore, for each type of coating layer material, one or more types of plasticizers, plasticizers, fillers, and carbons are selected and changed to obtain material specifications. It is preferable to create a data group by measuring the diagnostic characteristics and the corresponding propagation characteristics for each sample having different specifications.
診断対象の物品については、 伝搬特性を測定すると共に、 上記材料仕様を求め る。 これら伝搬特性と材料仕様との組み合わせを、 上記データ群で診断特性に変 換し、 材料仕様に応じた劣化診断を行なう。 For the articles to be diagnosed, measure the propagation characteristics and determine the above material specifications. The combination of these propagation characteristics and material specifications is converted into diagnostic characteristics using the above data group, and deterioration diagnosis is performed according to the material specifications.
例えば、 ケーブルでは、 次のような①〜③のステップにて診断を行なう。 For example, for cables, diagnosis is performed in the following steps (1) to (3).
①ケーブルの被覆層の材料に用いられる各有機高分子材料に応じて配合される可 塑剤の種類、 可塑剤の配合量、 充塡剤の配合量及びカーボンの配合量をパラメ一 夕として変化させたときの、 各有機高分子材料毎の伝搬特性と診断特性 (物理的 特性および または電気的特性) との関係を求めてデータ群を作成する。 (1) The type of plasticizer, the amount of plasticizer, the amount of filler, and the amount of carbon compounded according to each organic polymer material used for the material of the cable coating layer are changed as a whole. A data group is created by obtaining the relationship between the propagation characteristics and the diagnostic characteristics (physical characteristics and / or electrical characteristics) of each organic polymer material at the time.
②診断対象とするケーブルの被覆層から得られる情報より、 上記①のデ一夕群の 中から少なくとも一つの伝搬特性と診断特性との関係を選択する。 (2) Based on the information obtained from the coating layer of the cable to be diagnosed, select the relationship between at least one of the propagation characteristics and the diagnostic characteristics from the data group of (1) above.
③診断対象とするケ一ブルの被覆層の伝搬特性を求め、 これと②で選択された関 係とから、 該ケーブル被覆材の診断特性を求め、 該ケーブルの被覆層の劣化状態
を診断する。 (3) The propagation characteristics of the coating layer of the cable to be diagnosed are obtained, and the diagnostic characteristics of the cable coating material are obtained from this and the relationship selected in (2), and the deterioration state of the coating layer of the cable is obtained. Diagnose.
本発明者等の実験によれば、 被覆層の材料がポリ塩化ビニルである場合には、 フタル酸エステル系可塑剤の配合量は伝搬特性と診断特性との相関関係に影響せ ず、 トリメリット酸エステル系可塑剤の配合量は影響する。 また、 充塡剤は、 配 合量が影響し、 種類は影響しない。 また、 材料がクロロプレンゴム (充塡剤の配 合なし) の場合には、 カーボンの配合量は相関関係に影響する。 また、 材料がポ リェチレンの場合、 充塡剤の配合量は相関関係に影響する。 According to experiments performed by the present inventors, when the material of the coating layer is polyvinyl chloride, the amount of the phthalate-based plasticizer does not affect the correlation between the propagation characteristics and the diagnostic characteristics. The amount of the acid ester-based plasticizer has an effect. In addition, the amount of filler affects the amount of the mixture, and the type does not. If the material is chloroprene rubber (without filler), the carbon loading will affect the correlation. Also, when the material is polyethylene, the amount of the filler affects the correlation.
高分子材料の種類、 高分子材料に配合されている可塑剤の種類、 可塑剤の配合 量、 充塡剤の配合量、 カーボンの配合量といった、 診断対象とするケーブル被覆 材についての情報は、 以下のようにして求めることができる。 Information on the cable covering material to be diagnosed, such as the type of polymer material, the type of plasticizer compounded in the polymer material, the amount of plasticizer, the amount of filler, and the amount of carbon, It can be obtained as follows.
高分子材料の種類については、 ケーブル被覆材の硬さ、 布設記録や製造記録か ら非破壊的に求めることができる。 通常は、 ポリ塩化ビニルなのか、 ゴム系材料 なのか、 またはポリエチレン系材料なのかを判断すれば良い。 ケーブルに印字が されているのであれば、 これからも求めることができる。 例えば 「 I V」 とケー ブルの表面に印字されている場合はビニル絶縁ケ一ブルであり、 「c V」 と印字 されている場合は架撟ポリエチレン絶縁ビニルシースである。 上記によって求め られないときは、 少量のケーブル被覆材を採取し、 これに熱重量分析や赤外線吸 収スぺクトルの測定を行うことで求めることができる。 The type of polymer material can be determined non-destructively from the hardness of the cable covering material, installation records and manufacturing records. Usually, it is sufficient to determine whether the material is polyvinyl chloride, rubber material, or polyethylene material. If printed on the cable, you can still find it. For example, if “IV” is printed on the surface of the cable, it is a vinyl insulated cable, and if “cV” is printed, it is a polyethylene insulated vinyl sheath. If it cannot be obtained by the above, it can be obtained by taking a small amount of cable coating material and performing thermogravimetric analysis or measurement of infrared absorption spectrum.
可塑剤の種類や配合量についても布設記録や製造記録から求めることができる 。 但し、 これらから求められないときは、 例えば溶剤 (アセトン、 メタノール、 The type and blending amount of the plasticizer can also be determined from the installation record and the production record. However, if these are not required from the above, for example, solvents (acetone, methanol,
T H F等) を含ませた脱脂綿で、 布設状態にあるケーブルの被覆材表面を擦って 可塑剤を採取し、 その脱脂綿中の成分を赤外線吸収スペク トル、 G P C (ゲル濾 過クロマトグラフィー) 、 H P L C (高速液体クロマトグラフィー) で分析する ことによって、 非破壊的に求めることができる。 Using a cotton wool containing THF, etc., a plasticizer is collected by rubbing the surface of the cable covering material in the laid state, and the components in the cotton wool are analyzed by infrared absorption spectrum, GPC (gel filtration chromatography), HPLC ( It can be determined nondestructively by analyzing with high performance liquid chromatography).
充塡剤の配合量についても布設記録や製造記録から求めることができる。 但し 、 これらから求められないときは、 布設された状態にあるケーブルから少量のサ ンプル (数 m g ) を採取し、 これを T G A (熱重量分析) により分析することで
求めることができる。 また、 カーボンの配合量も同様にして求めることができる o The blending amount of the filler can also be determined from the installation record and the production record. However, if these cannot be determined, a small sample (a few mg) can be collected from the laid cable and analyzed by TGA (thermogravimetric analysis). You can ask. The amount of carbon can be determined in the same manner.
なお、 上記で説明したように、 可塑剤の種類については、 高分子材料がポリ塩 化ビニルの場合に必要に応じて求めれば良い。 一般に、 可塑剤としてはフタル酸 エステル系可塑剤が使用される場合が多く、 耐熱性の要求される場合にはトリメ リッ ト酸エステル系可塑剤が使用される。 可塑剤の配合量については、 可塑剤が トリメリット酸系の場合において必要に応じて求めれば良い。 カーボンの配合量 については、 高分子材料がゴム系材料ゃポリェチレン系材料の場合に必要に応じ て求めれば良い。 As described above, the type of the plasticizer may be determined as needed when the polymer material is polyvinyl chloride. Generally, a phthalate plasticizer is often used as a plasticizer, and a trimellitate plasticizer is used when heat resistance is required. The amount of the plasticizer may be determined as needed when the plasticizer is trimellitic acid. The compounding amount of carbon may be determined as needed when the polymer material is a rubber material / polyethylene material.
本発明では、 物品の被覆層の表面および表面付近に超音波を伝搬させることに よって、 伝搬特性を測定する。 この伝搬特性を測定する方法を、 本発明の劣化診 断装置の一部を説明しながら以下に説明する。 In the present invention, the propagation characteristics are measured by propagating ultrasonic waves to and near the surface of the coating layer of the article. A method for measuring the propagation characteristics will be described below while explaining a part of the deterioration diagnosis device of the present invention.
本発明の劣化診断装置は、 図 1に示す測定装置 (A) を少なくとも有する。 該 測定装置 (A ) は、 超音波送信手段 (以下 「送信手段」 ) 1 と、 超音波受信手段 (以下 「受信手段」 ) 2と、 これら各々に設けられるディレーチップ 1 1、 2 1 と、 伝搬時間測定手段 3とを有するものである。 The deterioration diagnosis device of the present invention has at least the measuring device (A) shown in FIG. The measuring device (A) includes an ultrasonic transmitting means (hereinafter referred to as “transmitting means”) 1, an ultrasonic receiving means (hereinafter referred to as “receiving means”) 2, and delay chips 11, 21 provided for each of them. And a propagation time measuring means 3.
伝搬時間測定手段 3は、 超音波が前記送信手段から送信されてから受信手段に て受信されるまでの時間 (伝搬時間) を測定する装置である。 The propagation time measuring means 3 is a device for measuring a time (propagation time) from when the ultrasonic wave is transmitted from the transmitting means to when it is received by the receiving means.
ディレーチップ 1 1、 2 1は、 詳しくは後述するが、 送信手段 1 と受信手段 2 を測定対象物の表面に設置する際に、 各々に介在させるものであって、 超音波の 伝搬方向を屈折させ、 測定対象物の表面に沿うように送り、 また、 表面に沿って 伝搬して来た超音波を受け入れることができるように構成されたものである。 送信手段 1は、 超音波振動子 (図示せず) を少なくとも内蔵する。 超音波振動 子は電気信号を超音波に変換する変換素子である。 送信手段 1は、 該振動子で発 せられた超音波を、 測定対象物の被覆層内に送信し得るものである。 送信手段 1 は、 ディレーチップ 1 1を介して、 測定対象物の一例であるケーブル Cの被覆層 C 1の表面上に設置されている。
受信手段 2は、 超音波検出素子 (図示せず) を少なくとも内蔵する。 超音波検 出素子は超音波を電気信号に変換する変換素子である。 受信手段 2は、 送信手段 から発せられ被覆層を伝搬してきた超音波を該検出素子によつて電気信号に変換 し受信し得るものである。 受信手段 2は、 ディレーチップ 2 1を介して、 ケ一ブ ル Cの被覆層 C 1の表面上に、 送信手段 1から距離 L 1だけ離れた位置に設置さ れている。 As will be described in detail later, the delay chips 11 and 21 intervene when the transmitting means 1 and the receiving means 2 are installed on the surface of the object to be measured, and refract the propagation direction of the ultrasonic wave. It is configured so that it can be sent along the surface of the object to be measured, and that it can receive ultrasonic waves that have propagated along the surface. The transmission means 1 includes at least an ultrasonic vibrator (not shown). Ultrasonic transducers are conversion elements that convert electrical signals into ultrasonic waves. The transmitting means 1 is capable of transmitting the ultrasonic waves emitted by the vibrator into the coating layer of the object to be measured. The transmitting means 1 is provided via a delay chip 11 on a surface of a coating layer C1 of a cable C which is an example of an object to be measured. The receiving means 2 includes at least an ultrasonic detecting element (not shown). An ultrasonic detection element is a conversion element that converts an ultrasonic wave into an electric signal. The receiving means 2 is capable of converting the ultrasonic wave emitted from the transmitting means and propagating through the coating layer into an electric signal by the detection element and receiving the electric signal. The receiving means 2 is provided on the surface of the coating layer C1 of the cable C via the delay chip 21 at a position away from the transmitting means 1 by a distance L1.
上記測定装置 (A) の構成によって、 送信手段 1から発信された超音波は、 デ ィレーチップ 1 1を介して測定対象物の被覆層内に入る。 ディレーチップ 1 1は 被覆層の材料に対して超音波伝搬速度の点で選択された材料からなり傾斜角度が 選択されているから、 スネルの法則で説明されるとおり、 超音波はディレーチッ プと被覆層との界面で伝搬方向を変え、 被覆層の表面および表面付近を受信手段 の位置まで直線的に伝搬し、 ディレーチップ 2 1を介して受信手段 2で受信され る。 そのときの伝搬時間 tは、 伝搬時間測定手段 3によって測定される。 With the configuration of the measuring device (A), the ultrasonic waves transmitted from the transmitting means 1 enter the coating layer of the object to be measured via the delay chip 11. Since the delay chip 11 is made of a material selected in terms of the ultrasonic wave propagation velocity with respect to the material of the coating layer and the inclination angle is selected, as described by Snell's law, the ultrasonic wave is The propagation direction is changed at the interface with the layer, the light propagates linearly on the surface of the coating layer and near the surface to the position of the receiving means, and is received by the receiving means 2 via the delay chip 21. The propagation time t at that time is measured by the propagation time measuring means 3.
被覆層の表面および表面付近にだけ (以下、 「被覆層の表面に沿って」 と表現 する) 超音波を伝搬させ、 伝搬送信手段と受信手段との間で直接的に通信を行な うことによって、 外部から明確に測定し得る量だけで伝搬特性が決定できるよう になり、 被覆層の厚みのような測定困難な量は必要なくなる。 上記測定装置 (A ) を有する本発明の劣化診断装置によって、 本発明の劣化診断方法を好ましく実 施することができる。 Propagation of ultrasonic waves only on and near the surface of the coating layer (hereinafter referred to as “along the surface of the coating layer”), and direct communication between the transmitting and receiving means As a result, the propagation characteristics can be determined only by the amount that can be clearly measured from the outside, and difficult-to-measure amounts such as the thickness of the coating layer are not required. The deterioration diagnosis method of the present invention can be preferably performed by the deterioration diagnosis device of the present invention having the above-mentioned measuring device (A).
ディレーチップを送信側を代表として説明する。 図 2に示すように、 ディレー チップは、 超音波振動子 (受信手段では検出素子) が装着されるクサビ状の傾斜 部分を有し、 超音波振動子の振動面と測定対象物の表面とが角度 0をなすように 、 これらの間に介在するものである。 この角度 0が入射角 0 (表面の法線 Xとな す角度) となる。 ディレーチップの基本的な構造は従来技術を参照してよい。 図 2では、 送信手段 1が、 測定対象物 Cの被覆層 C 1の表面にディレーチップ 1 1 を介して配置されている。 図 2は、 〔当該ディ レーチップ中における超音波の伝 搬速度 V I〕 く 〔被覆層の材料中における超音波の伝搬速度 V 2〕 となるように
、 ディ レ一チップの材料が選択されている図である。 The delay chip will be described with the transmission side as a representative. As shown in Fig. 2, the delay chip has a wedge-shaped inclined part to which an ultrasonic transducer (detection element in the receiving means) is attached, so that the vibration surface of the ultrasonic transducer and the surface of the measurement object are separated. Intervening between them so as to form an angle 0. This angle 0 is the incident angle 0 (the angle formed by the surface normal X). The basic structure of the delay chip may refer to the prior art. In FIG. 2, the transmitting means 1 is arranged on the surface of the coating layer C1 of the measuring object C via the delay chip 11. Figure 2 shows that the propagation speed of the ultrasonic wave in the delay chip VI is less than the propagation speed of the ultrasonic wave in the material of the coating layer. FIG. 4 is a diagram in which the material of the delay chip is selected.
ディ レーチップ 1 1によって、 超音波は、 被覆層 C 1内へ入射角 で入射し、 屈折角 øとなるように界面で屈折して被覆層 C 1内を伝搬する。 このことはスネ ルの法則 (屈折の法則) で説明されるとおりである。 By the delay chip 11, the ultrasonic wave enters the coating layer C1 at an incident angle, is refracted at the interface so as to have a refraction angle of ø, and propagates in the coating layer C1. This is as explained by Snell's law (the law of refraction).
本発明では、 超音波が、 屈折後に被覆層の表面に沿って伝搬するように、 V 2 に対する V Iの値と、 とを選択する。 実際には、 スネルの法則から多少はずれ ていても、 被覆層の表面に沿って伝搬する成分を得ることは可能であるが、 スネ ルの法則に従う方が効率が良い。 In the present invention, the value of VI with respect to V 2 and V i are selected so that the ultrasonic wave propagates along the surface of the coating layer after refraction. In practice, it is possible to obtain a component that propagates along the surface of the coating layer even if it deviates slightly from Snell's law, but it is more efficient to follow Snell's law.
本発明では、 超音波を、 被覆層の表面および表面付近を伝搬させる。 超音波が 伝搬する被覆層の表面および表面付近は、 被覆層の表面から 3 m m程度の深さま での領域が主となる。 従って、 被覆層が充分に厚い場合は問題ないが、 例えば厚 みが 1 . 5 mmしかない場合、 超音波の一部は、 被覆層の下層 (ケーブルでは導 体など、 被覆層下に隣接する次の層) との界面で反射して、 あるいは該界面と被 覆層表面との間で反射を繰り返して、 伝搬することになり、 正確な伝搬特性が測 定できない場合もある。 そこで、 より正確に測定するためには、 例えば、 被覆層 の表面および表面から 1 mm程度までの深さで超音波を伝搬させるなど、 下層に 達しない深さで、 送信手段から受信手段へ直線的に伝搬させるのが好ましい。 ディ レーチップの材料は、 \ Ί 2の 1倍以下、 より好ましくは V Iが V 2以下、 特に好ましくは V Iが V 2の 0 . 9 7倍以下となるように、 被覆層の 材料に対して選択する。 V 1 < V 2となるように選択する方が、 入射角 屈折 角 øとなって、 スネルの法則によく従い効率的である。 そのときの 0は 2 0 ° 〜 8 5 ° 程度が好ましい。 In the present invention, ultrasonic waves are propagated on and near the surface of the coating layer. The surface of the coating layer where the ultrasonic wave propagates and the vicinity of the surface are mainly the area at a depth of about 3 mm from the surface of the coating layer. Therefore, there is no problem if the coating layer is sufficiently thick. However, for example, when the thickness is only 1.5 mm, a part of the ultrasonic wave may be below the coating layer (in a cable, for example, adjacent to the conductor layer or the like). The light is reflected at the interface with the next layer, or is repeatedly reflected between the interface and the surface of the covering layer, and propagates, so that accurate propagation characteristics may not be measured in some cases. Therefore, in order to measure more accurately, for example, the ultrasonic wave is propagated at the surface of the coating layer and at a depth of about 1 mm from the surface. It is preferred that the light be propagated in a localized manner. The material of the delay chip is selected with respect to the material of the coating layer such that VI is not more than 1 time, more preferably VI is not more than V2, particularly preferably VI is not more than 0.97 times V2. I do. It is more efficient to select such that V 1 <V 2 because the angle of incidence and the angle of refraction are ø and Snell's law is well followed. 0 at that time is preferably about 20 ° to 85 °.
未劣化状態の有機高分子材料における伝搬速度 V 1の値は、 ポリエチレンでは 約 1 8 0 0 m/ s、 ポリ塩化ビニルでは約 1 8 0 O mZ s、 エチレン 'プロピレ ン共重合ゴム (E P M) では約 1 3 5 0 m/ s、 ポリ四フッ化工チレンでは約 1 3 0 0 m/ s、 シリコーンゴムでは約 1 0 0 O m/ sなどである。 従って、 測定 対象物がポリエチレン、 ポリ塩化ビニル、 エチレン 'プロピレン共重合ゴム (E
PM) からなる場合、 ディレ一チップの材料としては、 ポリ四フッ化工チレンや シリコーンゴムが、 V 1 <V 2となり、 好ましい。 Propagation velocity V1 in an undegraded organic polymer material is about 180 m / s for polyethylene, about 180 OmZs for polyvinyl chloride, and ethylene-propylene copolymer rubber (EPM). About 150 m / s for polytetrafluoroethylene, about 1300 m / s for silicone rubber and about 100 Om / s for silicone rubber. Therefore, the measurement target was polyethylene, polyvinyl chloride, ethylene-propylene copolymer rubber (E When PM is used, polytetrafluoroethylene or silicone rubber is preferable as the material of the die chip, since V 1 <V 2.
本発明で使用する超音波の周波数には制限はない。 なお、 ポリエチレン、 ポリ 塩化ビニル、 エチレン 'プロピレン共重合ゴム (EPM) など、 ケーブルの被覆 層に多用される有機高分子材料では、 概して超音波の減衰が大きいので、 減衰が 比較的少ない 0. l〜5MHz程度、 特に 0. 5〜2 MHz程度の周波数が好ま しい。 The frequency of the ultrasonic wave used in the present invention is not limited. Note that organic polymer materials, such as polyethylene, polyvinyl chloride, and ethylene-propylene copolymer rubber (EPM), which are frequently used for the coating layer of cables, generally have a relatively low attenuation because ultrasonic waves have a large attenuation. A frequency of about 5 to about 5 MHz, particularly about 0.5 to 2 MHz is preferable.
本発明の劣化診断装置における、 その他の要素を含めた装置全体の構成につい ては、 劣化診断方法の説明の後に説明する。 The overall configuration of the deterioration diagnosis device of the present invention including other elements will be described after the description of the deterioration diagnosis method.
本発明では、 伝搬特性の測定方法として好ましい 2つの方法 ( I)、 (Π) を 提供する。 いずれも、 本発明の劣化診断装置を用いることによって好ましく実施 し得る方法である。 これらの方法を次に説明する。 The present invention provides two preferable methods (I) and (II) for measuring propagation characteristics. Any of these methods can be preferably implemented by using the deterioration diagnosis apparatus of the present invention. These methods will now be described.
先ず、 (I) の方法は、 伝搬特性として伝搬速度を採用するものであり、 伝搬 速度を測定する方法である。 図 1に示すように、 送信手段 1、 受信手段 2を、 各 々ディレーチップ 1 1、 21を介して測定対象の表面に設置する。 装置の説明で 明らかなとおり、 送信手段 1から送信された超音波は、 測定対象物の表面に沿つ て受信手段 2の設置位置まで直線的に伝搬する。 この状態で、 送信手段 1と受信 手段 2との設置間隔を、 L l、 L 2と変えて、 それぞれのときのトータルの伝搬 時間 t 1、 t 2を測定する。 First, the method (I) employs the propagation speed as the propagation characteristic, and measures the propagation speed. As shown in FIG. 1, a transmitting means 1 and a receiving means 2 are placed on the surface of a measurement object via delay chips 11 and 21, respectively. As is clear from the description of the device, the ultrasonic wave transmitted from the transmitting means 1 propagates linearly to the installation position of the receiving means 2 along the surface of the object to be measured. In this state, the installation interval between the transmitting means 1 and the receiving means 2 is changed to L1 and L2, and the total propagation times t1 and t2 at each time are measured.
このとき、 ディレーチップ 1 1内においては (伝搬速度 V 1 1、 伝搬距離 L 1 1、 伝搬時間 t 1 1) とし、 ディレーチップ 21内においては (伝搬速度 V 21 、 伝搬距離 L 21、 伝搬時間 t 21 ) とし、 被覆層 C 1内においては (伝搬速度 V、 設置間隔 (=伝搬距離) L 1のときの伝搬時間 t x、 伝搬距離 L 2のときの 伝搬時間 t y) とすると、 下式 ( 1 )、 (2) が成立する。 At this time, in the delay chip 11 (propagation velocity V 11, propagation distance L 11, propagation time t 11), and in delay chip 21 (propagation velocity V 21, propagation distance L 21, propagation time t 21), and within the coating layer C 1 (propagation speed V, installation interval (= propagation distance) Lx 1, propagation time tx, and propagation distance L 2, propagation time ty), the following equation ( 1) and (2) hold.
t l =t l l +t x+t 21 t l = t l l + t x + t 21
= (L 1 1/V1 1) + (L 1 /V) + (L 21 /V 21) ···· (1) t 2=t l l +t y+t 21
= ( L 1 1 /V 1 1 ) + ( L 2 /V) + ( L 2 1 /V 2 1 ) · · · · ( 2 ) 上式 ( 1 ) - ( 2 ) から、 伝搬速度 V = ( L 2— L 1 ) ノ ( t 2 - t 1 ) が導 かれる。 この式から明らかなとおり、 被覆層 C 1における伝搬速度 Vが、 ディレ 一チップで要した伝搬時間や被覆層の厚みなどに左右されず、 設置間隔と総伝搬 時間だけで求められる。 = (L 1 1 / V1 1) + (L 1 / V) + (L 21 / V 21) (1) t 2 = tll + t y + t 21 = (L 1 1 / V 1 1) + (L 2 / V) + (L 2 1 / V 2 1) · (2) From the above equation (1)-(2), the propagation velocity V = ( L 2 — L 1) no (t 2-t 1) is derived. As is clear from this equation, the propagation velocity V in the coating layer C1 is determined only by the installation interval and the total propagation time without being influenced by the propagation time required for the delay chip or the thickness of the coating layer.
本発明による劣化診断装置には、 送信手段 1 と受信手段 2との間隔を計測する 設置間隔計測手段を設けるのが好ましい。 また、 この計測手段には、 単なる計測 機能だけでなく、 送信手段と受信手段との設置間隔を所望の値にセッ トし得る機 構を付帯させておいてもよい。 例えば、 マイクロメ一夕ヘッ ドなどによって、 送 信手段と受信手段の間隔を直読しかつ微調整し得る構造などである。 It is preferable that the deterioration diagnosis apparatus according to the present invention be provided with an installation interval measuring means for measuring an interval between the transmitting means 1 and the receiving means 2. Further, the measuring means may be provided not only with a simple measuring function but also with a mechanism capable of setting an installation interval between the transmitting means and the receiving means to a desired value. For example, it has a structure in which the distance between the transmitting means and the receiving means can be directly read and finely adjusted using a micro head or the like.
固体中、 特に有機高分子材料中を伝搬する超音波は、 極めて減衰し易いので、 L 1や L 2の値は数百 i m〜数十 mm程度とすることが好ましい。 Ultrasonic waves propagating in a solid, particularly in an organic polymer material, are extremely easily attenuated, so that the value of L1 or L2 is preferably several hundred im to several tens mm.
次に、 (I I) の方法は、 伝搬特性として伝搬距離を一定としたときの、 発振か ら検出までのトータルの伝搬時間を採用するものである。 伝搬時間を測定する方 法自体は、 上記 ( I ) の方法におけるトータルの伝搬時間 t 1や t 2の測定と同 じであり、 本発明の劣化診断装置を用いて行なうのが好ましい。 Next, the method (II) employs the total propagation time from oscillation to detection when the propagation distance is constant as the propagation characteristic. The method of measuring the propagation time itself is the same as the measurement of the total propagation time t1 or t2 in the above method (I), and is preferably performed using the deterioration diagnosis apparatus of the present invention.
この (I I) の方法では、 データ群の作成、 物品の測定のいずれの測定において も、 常に同じ伝搬距離のもとで伝搬時間を測定する。 好ましくは同じ仕様の測定 装置を用いる。 ディレーチップを常に同一仕様とし、 設置間隔を常に一定とすれ ば、 変化する量は、 実質的に被覆層の劣化による伝搬速度だけとなり、 伝搬時間 と診断特性とを直接対応させることができる。 伝搬時間を常に用いて評価するこ とで、 上記 ( I ) の方法で示した 2つのディ レーチップに関する時間を消去する 計算などが不要となる。 即ち、 布設されたケーブルの被覆層に対して、 ただ一度 の伝搬時間の測定を行なうだけで、 その測定値をそのままデータ群において診断 特性に対応させることが可能となり、 劣化診断がより簡便で正確となる。 さらに これに、 上記 「時間の経過」 の要素を組み合わせることによって、 物品に対する 伝搬時間の簡単な測定で、 経時変化などを含めた総合的な診断が容易にかつ正確
にできるようになる。 In the method (II), the propagation time is always measured at the same propagation distance in both the measurement of the data group and the measurement of the article. Preferably, measurement devices having the same specifications are used. If the delay chips always have the same specifications and the installation intervals are always constant, the amount of change is substantially only the propagation speed due to the deterioration of the coating layer, and the propagation time can directly correspond to the diagnostic characteristics. By always using the propagation time for the evaluation, it is not necessary to perform calculations for eliminating the time related to the two delay chips shown in the method (I) above. In other words, it is possible to make the measured value correspond to the diagnostic characteristics in the data group as it is, by performing only one measurement of the propagation time for the cable covering layer of the laid cable, making degradation diagnosis easier and more accurate. Becomes Furthermore, by combining the above-mentioned “elapsed time” elements, a simple measurement of the propagation time for an article enables easy and accurate comprehensive diagnosis including time-dependent changes. Will be able to
本発明では、 物品が長尺物の場合、 劣化の度合いが長手方向に沿って異なるこ とに着目している。 これをケーブルについて説明する。 布設された状態のケープ ルでは、 環境がケーブルの長手方向において大きく異なるために、 被覆層の劣化 の程度も長手方向で大きく異なり、 これに着目する意義は大きい。 従来の劣化診 断方法では、 この点を考慮することなしに選んだ部位を診断しているので、 診断 結果と実際の劣化度との間には大きな差がある場合があった。 The present invention focuses on the fact that when the article is a long object, the degree of deterioration differs along the longitudinal direction. This will be described for the cable. In the laid cable, the environment greatly differs in the longitudinal direction of the cable, and the degree of deterioration of the coating layer also varies greatly in the longitudinal direction. In the conventional deterioration diagnosis method, since the selected site is diagnosed without considering this point, there may be a large difference between the diagnosis result and the actual degree of deterioration.
本発明では、 ケーブルの被覆層を劣化させる劣化要因がその長手方向に沿って どのように分布しているかを測定し、 その結果から、 劣化要因が大きく影響する 部位について劣化診断を行う。 これによつて、 実際の劣化状態によく沿った診断 ができるようになる。 また、 劣化要因の影響が大きい部位を知り、 その部位の環 境を改善することにより、 ケーブルの劣化の進行を遅延せしめて長寿命化を図る ことができる。 In the present invention, how the deterioration factors that deteriorate the coating layer of the cable are distributed along the longitudinal direction is measured, and based on the result, deterioration diagnosis is performed for a portion where the deterioration factors greatly affect. This makes it possible to make a diagnosis that is in line with the actual state of deterioration. In addition, knowing the parts that are greatly affected by the deterioration factors and improving the environment of those parts can delay the progress of cable deterioration and extend the service life.
布設されたケーブルの長手方向に劣化要因がどのように分布しているかを測定 する方法は限定されない。 例えば、 劣化要因の程度を測定し得る測定手段を 1つ 用いて、 布設されたケーブルの長手方向に沿って順番に測定してもよく、 また、 布設されたケーブルの少なくとも一区間に、 測定手段 (装置) をケーブルの長手 方向に沿って設置しておき、 多点同時に測定してもよい。 The method for measuring how the deterioration factors are distributed in the longitudinal direction of the laid cable is not limited. For example, using one measuring means capable of measuring the degree of the deterioration factor, the measurement may be performed sequentially along the longitudinal direction of the laid cable, and the measuring means may be provided at least in one section of the laid cable. (Equipment) may be installed along the longitudinal direction of the cable, and multiple points may be measured simultaneously.
劣化要因には、 被覆層の材料を化学的に劣化させるものとして、 温度、 湿気や 水、 被覆層を取り巻く物質の P H、 油、 硫化水素、 酸素、 オゾン、 その他の反応 性ガス、 日光、 放射線などが挙げられ、 被覆層の材料を機械的に劣化させるもの として、 ケーブルに内外から作用する種々の力、 ケーブルの各部位に生じる振動 や歪みなどが挙げられる。 これらの中から重要な劣化要因を選択し、 該要因を検 出可能な測定装置にて該要因の分布を測定する。 Deterioration factors include temperature, humidity, water, PH of substances surrounding the coating layer, oil, hydrogen sulfide, oxygen, ozone, other reactive gases, sunlight, radiation Examples of the material that mechanically degrades the material of the coating layer include various forces acting on the cable from inside and outside, and vibrations and distortions generated at various portions of the cable. An important degradation factor is selected from these factors, and the distribution of the factor is measured by a measuring device capable of detecting the factor.
ケーブルに沿った測定間隔または測定装置の設置間隔は、 ケーブルの布設状況 や環境に応じて決定すればよい。 例えば、 屋外における放射線量、 大気中の硫化 水素、 酸素、 オゾンなどの反応性ガス濃度、 湿度、 日射量などは、 比較的広い範
囲にわたって略一定であるので、 5〜5 O m程度の間隔で十分である。 一方、 原 子力発電所内に配線された被覆ケーブルが受ける放射線量、 生産工場内に路上布 設された被覆ケーブルの水中への浸漬ゃ油付着などは比較的狭い範囲で生じるの で、 1〜1 O m程度、 場合によっては 0 . 5〜2 m程度の間隔が好ましい。 劣化要因を測定する装置をケーブルに沿って設置する場合について説明する。 例えば、 温度を測定する場合、 測定装置の感温部が被覆ケーブルの表面に接触す るよう、 例えば、 粘着テープなどを用いて設置するとよい。 また、 大気中の湿度 、 ケーブル周囲の物質、 硫化水素濃度、 酸素濃度、 日射量、 あるいは放射線量を 測定する場合、 いずれも測定装置のセンシング部分を被覆ケーブルに接して、 あ るいはその近傍、 例えば被覆ケーブルの表面から 1〜5 0 c m程度離れた位置に 設置すればよい。 ケーブルの被覆層表面に油が付着しているかどうかを検出する には、 例えば油で膨潤して電気抵抗値が変化するようなゴムをセンシング部に有 するようなセンサーが例示される。 ケーブルに作用する力やケーブルに発生する 歪みを検出するには、 歪みゲージを被覆層表面に設置すればよい。 The measurement interval along the cable or the installation interval of the measurement device may be determined according to the cable installation situation and environment. For example, outdoor radiation doses, concentrations of reactive gases such as hydrogen sulfide, oxygen, and ozone in the atmosphere, humidity, and solar radiation are relatively wide ranges. Since it is substantially constant over the circumference, an interval of about 5 to 5 Om is sufficient. On the other hand, the radiation dose received by the coated cable laid in the nuclear power plant, the immersion of the coated cable laid on the road in the production plant in water, and the adhesion of oil occur in a relatively narrow range. An interval of about 1 Om, and in some cases, about 0.5 to 2 m is preferable. A case where an apparatus for measuring a deterioration factor is installed along a cable will be described. For example, when measuring temperature, it is preferable to use an adhesive tape, for example, so that the temperature-sensitive part of the measuring device contacts the surface of the coated cable. Also, when measuring the humidity in the atmosphere, the substances around the cable, the concentration of hydrogen sulfide, the concentration of oxygen, the amount of solar radiation, or the amount of radiation, the sensing part of the measuring device must be in contact with or near the insulated cable, For example, it may be installed at a position about 1 to 50 cm away from the surface of the coated cable. In order to detect whether or not oil has adhered to the surface of the coating layer of the cable, for example, a sensor having a rubber in the sensing unit that swells with oil and changes the electric resistance value is exemplified. To detect the force acting on the cable and the strain generated in the cable, a strain gauge may be installed on the surface of the coating layer.
劣化要因の測定は、 連続的にあるいは一定の時間間隔で行えばよい。 時間間隔 は、 劣化要因や物品 (特にケーブル) によって異なり、 例えば、 1時間に 1回程 度から、 1 日に 1回程度、 さらには 1年に 1回程度で十分な場合もある。 既に述べたように、 本発明の劣化診断の 1つとして余寿命の推定がある。 即ち 、 劣化の程度を、 使用限界までの残り時間として示す診断である。 本発明は、 デ —夕群に 「時間の経過」 をデータの要素として加えることによって、 好ましい余 寿命の推定方法を提供する。 これを、 物品の例としてケーブルを挙げて次に説明 する。 Deterioration factors may be measured continuously or at regular time intervals. The time interval depends on the deterioration factors and the goods (especially cables), and for example, once an hour, once a day, or even once a year may be sufficient. As described above, one of the degradation diagnoses of the present invention is estimation of the remaining life. That is, it is a diagnosis that indicates the degree of deterioration as the remaining time until the use limit. The present invention provides a preferred method of estimating the remaining life by adding "time lapse" to the data group as an element of the data. This will be described below using a cable as an example of an article.
本発明では次のステップに従って余寿命を推定する。 In the present invention, the remaining life is estimated according to the following steps.
( 1 ) 本発明による劣化診断方法によって、 布設されているケーブルの被覆層の 超音波伝搬特性を測定し、 劣化診断用のデータ群からこれに対応する診断特性の 値 E 1を得る。
( 2 ) 被覆層と同じ材料の試料について、 余寿命推定用のデータ群を作成する。 余寿命推定用のデータ群は、 診断特性の値 Eと、 加熱温度 と、 加熱時間 hとが 対応したものとする。 この (診断特性の値 E、 加熱温度 w、 加熱時間 h ) の対応 については詳細に後述する。 診断特性の値 Eには、 使用限界として決めた値 E z を含める。 (1) By the deterioration diagnosis method according to the present invention, the ultrasonic propagation characteristics of the coating layer of the cable laid are measured, and a diagnostic characteristic value E1 corresponding thereto is obtained from the deterioration diagnosis data group. (2) Create a data group for remaining life estimation for samples of the same material as the coating layer. The data group for remaining life estimation is assumed to correspond to the diagnostic characteristic value E, the heating temperature, and the heating time h. The correspondence of this (diagnosis characteristic value E, heating temperature w, heating time h) will be described later in detail. The value E of the diagnostic characteristic includes the value Ez determined as the limit of use.
( 3 ) 上記実測結果の E 1 と、 余寿命推定用のデータ群とから、 次のように余寿 命を推定する。 (3) Estimate the remaining life as follows from E1 of the actual measurement results and the data group for remaining life estimation.
①布設されているケーブルの使用期間を加熱時間 h 1 と見なす。 ① The use period of the laid cable is regarded as the heating time h1.
②余寿命推定用のデータ群から、 診断特性の値が E 1であるときの加熱時間 h 1に対応する加熱温度 w 1を求める。 (2) From the data group for remaining life estimation, obtain the heating temperature w1 corresponding to the heating time h1 when the value of the diagnostic characteristic is E1.
③余寿命推定用のデータ群から、 診断特性の値が E zであるときの加熱温度 w 1に対応する加熱時間 h zを求める。 (3) From the data group for remaining life estimation, obtain the heating time hz corresponding to the heating temperature w1 when the value of the diagnostic characteristic is Ez.
④ h zと h 1 との差 (h z— h 1 ) を余寿命とする。 上記のステップ ( 1 ) 〜 (3 ) を実際のデ一夕を用いてさらに詳しく説明する 。 物品をケーブルとし、 診断特性を破断伸び率とする。 差 Let the difference between h z and h 1 (h z — h 1) be the remaining life. The above steps (1) to (3) will be described in more detail using actual data. The article is a cable and the diagnostic properties are the elongation at break.
ステップ ( 1 ) は、 本発明による劣化診断方法を用いればよく、 上記説明のと おりである。 Step (1) may be performed by using the deterioration diagnosis method according to the present invention, and is as described above.
ステップ (2 ) における、 余寿命推定用のデータ群の具体的な作成手順を例示 する。 このステップにおいて求める余寿命推定用のデータ群の形は、 図 5に示す ように、 診断特性の値 Eと、 加熱温度 wと、 加熱時間 hとが対応したものである 。 即ち、 Eをパラメ一夕として変化させたときの、 Eの各値における wと hとの 相関関係 (以下、 w— h相関関係) である。 An example of a specific procedure for creating a data group for remaining life estimation in step (2) will be described. As shown in FIG. 5, the shape of the data group for remaining life estimation obtained in this step is such that the value E of the diagnostic characteristic, the heating temperature w, and the heating time h correspond to each other. That is, the correlation between w and h at each value of E when E is varied as a parameter (hereinafter referred to as wh correlation).
w— h相関関係を実験的に確立するために用いる試料の材料としては、 余寿命 推定の対象とするケーブルの被覆層の材料と同じ組成を有する材料、 または類似 の材料であってもよい。 類似の材料については、 本来の有機高分子材料をベース とし、 且つその劣化診断特性 Eが土 2 0 %以内のズレで一致するものであれば利
用可能である。 プレス加工にてシート (例えば厚さ 1〜5 mm程度) 状の試料を 加工する。 試料は、 前記シートに代えて未劣化の余寿命推定対象物自体であって もよい。 The material of the sample used to experimentally establish the w-h correlation may be a material having the same composition as the material of the coating layer of the cable whose remaining life is to be estimated, or a similar material. Similar materials can be used if they are based on the original organic polymer materials and their degradation diagnostic characteristics E match within 20% of soil. Is available. A sample in the form of a sheet (for example, about 1 to 5 mm thick) is processed by pressing. The sample may be an undegraded remaining life estimation object itself in place of the sheet.
好ましいデータ作成手順としては、 次に示すように、 試料を、 種々の加熱温度 wで加熱し、 各加熱温度 w毎に、 加熱時間 hに対する破断伸び率 Eの変化を測定 し、 図 4に示すように、 wの値毎での hと Eとの関係曲線を求め、 これをもとに 、 図 5に示すように、 Eの値毎における hと wとの関係曲線に変換し、 余寿命推 定用のデータ群とするのが好ましい。 Eの値には、 使用限界として決めた値 E z を含ませる。 E zは、 材料の種類、 ユーザーの使用上での管理基準、 その他の事 情を考慮して設定してよい。 As a preferable data preparation procedure, as shown below, the sample was heated at various heating temperatures w, and for each heating temperature w, the change in the elongation at break E with respect to the heating time h was measured, and shown in FIG. Thus, the relationship curve between h and E for each value of w is obtained, and based on this, the relationship curve between h and w for each value of E is converted as shown in FIG. It is preferable to use a data group for estimation. The value of E includes the value E z determined as the service limit. E z may be set taking into account the type of material, management criteria for user use, and other circumstances.
加熱温度 wは、 広い温度範囲で且つ小刻みとすることが好ましいが、 一般的に 9 0 °C以下の低温度での加熱では劣化の進行が遅いので、 1 0 0〜2 0 0 °Cの範 囲で少なくとも 5 0 °C刻み、 特に 2 0 °C刻みとすることが好ましい。 The heating temperature w is preferably in a wide temperature range and in small increments, but in general, heating at a low temperature of 90 ° C or less slows the progress of deterioration. It is preferable to set the interval at least at 50 ° C, particularly at 20 ° C within the range.
加熱時間 hは、 少なくとも 1ヶ月間、 特に少なくとも 3ヶ月間とすることが好 ましい。 図 4はその結果のモデルグラフであって、 異なる加熱温度 w (wl 〜w 4 ) 毎における、 加熱時間 h (横軸) と破断伸び率 E (縦軸) との関係を示すグ ラフ群 (データ群) である。 The heating time h is preferably at least one month, especially at least three months. Fig. 4 is a model graph of the results, which shows the relationship between the heating time h (horizontal axis) and the elongation at break E (vertical axis) at different heating temperatures w (wl to w4). Data group).
次に、 wの値毎での hと Eとの関係を、 Eの値毎における hと wとの関係に変 換する。 図 5はその一例であって、 異なる破断伸び率 E ( 1 0 0 %、 1 5 0 %、 2 0 0 %、 2 5 0 %、 3 0 0 %) 毎における、 加熱温度 (横軸) と加熱時間 (縦 軸) との関係を示すグラフ群 (データ群) であって、 所謂、 ァレニウス曲線を示 している。 説明のために、 破断伸び率 Eの使用限界 E zを 1 0 0 %とし、 グラフ を太線で示す。 Next, the relationship between h and E for each value of w is converted to the relationship between h and w for each value of E. Fig. 5 shows an example of this. The heating temperature (horizontal axis) and the elongation at break E (100%, 150%, 200%, 250%, 300%) are shown for each different elongation at break. It is a graph group (data group) showing a relationship with the heating time (vertical axis), and shows a so-called Arrhenius curve. For the purpose of explanation, the use limit E z of the elongation at break E is set to 100%, and the graph is shown by a thick line.
図 4から読み取ったデータから図 5のァレニウス曲線を求める際には、 最小二 乗法にて相関係数が最小となる一次式 (直線) 、 あるいは二次以上の多次式を求 めるとよいが、 多くの場合、 実際的には一次式 (直線) で近似することができる
ステップ (3 ) においては、 布設されたケーブルの使用期間 (布設期間) を、 ケーブルの加熱時間 h 1 と見なす。 そして、 ステップ ( 1 ) で求められた現物の ケーブルの被覆層の破断伸び率の値が 2 5 0 %であったとして、 図 5の E = 2 5 0 %のグラフ上で、 a点で加熱時間 h 1に対応する加熱温度 w 1を求める。 そし て、 図 5の使用限界 E = 1 0 0 % ( = E z ) のグラフ上で、 加熱温度 w lに点 b で対応する限界の加熱時間 h zを求める。 最後に、 限界の加熱時間 h zと、 加熱 時間 (=布設期間) h 1 との差 (h z— h 1 ) を求め、 これを余寿命とする。 次に本発明による劣化診断装置の全体の構成を説明する。 When obtaining the Arrhenius curve shown in Fig. 5 from the data read from Fig. 4, it is recommended that the least square method be used to find a linear equation (straight line) that minimizes the correlation coefficient, or a quadratic or higher polynomial However, in many cases, it can actually be approximated by a linear equation (straight line) In step (3), the use period (laying period) of the laid cable is regarded as the cable heating time h1. Then, assuming that the value of the elongation at break of the coating layer of the actual cable obtained in step (1) was 250%, heating was performed at point a on the graph of E = 250% in FIG. The heating temperature w1 corresponding to the time h1 is obtained. Then, the heating time hz of the limit corresponding to the heating temperature wl at the point b is obtained on the graph of the usage limit E = 1100% (= Ez) in FIG. Finally, the difference (hz-h1) between the limit heating time hz and the heating time (= laying period) h1 is determined, and this is taken as the remaining life. Next, the overall configuration of the deterioration diagnosis apparatus according to the present invention will be described.
図 3はその一例であって、 図 1に示した構成に加えて、 送信制御手段 1 2、 受 信制御手段 2 2、 伝搬時間測定手段 3、 演算手段 4、 距離入力手段 5、 判定手段 6、 表示手段 7の配置が明らかに示されている。 FIG. 3 shows an example of this, and in addition to the configuration shown in FIG. 1, transmission control means 12, reception control means 22, propagation time measurement means 3, calculation means 4, distance input means 5, determination means 6 The arrangement of the display means 7 is clearly shown.
送信制御手段 1 2は、 送信手段 1からの超音波の送信時刻などを電気信号にて 後記の伝搬時間測定手段 3に入力する機能をなす。 受信制御手段 2 2は、 受信手 段 2からの超音波の受信時刻などを電気信号にて伝搬時間測定手段 3に入力する 機能をなす。 伝搬時間測定手段 3は、 前記信号を基に、 送信から受信までに要し た時間を演算する。 伝搬時間の測定方法は上記に限定されない。 例えば、 伝搬時 間測定手段 3の内部にカウンターやクロックを配置し、 送信制御手段 1 2からの 送信開始を知らせる信号と、 受信制御手段 2 2からの受信したことを知らせる信 号とによって、 前記クロックなどを始動、 停止させ、 伝搬時間を測定する構成と してもょレ、。 The transmission control means 12 has a function of inputting the transmission time of the ultrasonic wave from the transmission means 1 and the like to the propagation time measurement means 3 described later as an electric signal. The reception control means 22 has a function of inputting the reception time of the ultrasonic wave from the reception means 2 to the propagation time measurement means 3 as an electric signal. The propagation time measuring means 3 calculates the time required from transmission to reception based on the signal. The method of measuring the propagation time is not limited to the above. For example, a counter or a clock is arranged inside the propagation time measuring means 3, and a signal notifying the start of transmission from the transmission control means 12 and a signal notifying that the signal has been received from the reception control means 22 are used as described above. Start and stop clocks, etc., and measure the propagation time.
上記 ( I ) の方法では、 送信手段 1 と受信手段 2との設置間隔 L 1、 L 2は、 距離入力手段 5にて記憶される。 また、 伝搬時間測定手段 3にて伝搬時間 t 1 と t 2とが測定される。 演算手段 4は、 これらデータ L 1、 L 2、 t l、 t 2から 上記説明した伝搬速度 Vを算出する。 In the method (I), the installation intervals L 1 and L 2 between the transmitting means 1 and the receiving means 2 are stored in the distance input means 5. Further, the propagation times t 1 and t 2 are measured by the propagation time measuring means 3. The calculating means 4 calculates the above-described propagation velocity V from the data L1, L2, t1 and t2.
判定手段 6は、 被覆層の材料についての種々の劣化診断用のデータ群を保持し ており、 演算手段 4から入力される伝搬特性の値を診断特性の値に変換し、 劣化
度を判定し、 その結果を表示手段 7に送り、 種々の表示方法、 例えば絶縁電線の 稼働日数一劣化度の関係グラフなどにて表示させる。 The judging means 6 holds various data for diagnosis of deterioration of the material of the coating layer, and converts the value of the propagation characteristic inputted from the arithmetic means 4 into the value of the diagnosis characteristic, The degree is determined, and the result is sent to the display means 7 to be displayed in various display methods, for example, a graph showing the relationship between the number of operating days and the degree of deterioration of the insulated wire.
本発明の劣化診断装置は、 個々の独立した装置を接続して構成してもよいが、 上記 (A) の測定装置 (超音波振動子、 検出素子、 これらのドライバーなどの駆 動系を含む) を除いて、 全てコンピュータで集中的に制御してもよい。 装置の構 成によっては、 伝搬時間測定手段 3を独立した計測装置として外付けにして、 コ ンピュー夕とデータのやりとりをする構成としてもよい。 The deterioration diagnosis device of the present invention may be configured by connecting individual independent devices. However, the measurement device of (A) (including a driving system such as an ultrasonic transducer, a detection element, and a driver thereof) may be used. Except for), all may be controlled centrally by computer. Depending on the configuration of the device, the propagation time measuring means 3 may be externally provided as an independent measuring device to exchange data with a computer.
コンピュータの記憶装置には、 上記説明によるデータ群を格納しておく。 伝搬 特性は、 上記 (A ) の測定装置の段階で演算してもよいし、 中央処理装置で演算 する構成としてもよい。 いずれであっても、 中央処理装置は、 得られた伝搬特性 に対応する診断特性の値を、 記憶装置に格納された劣化診断用のデータ群から取 り出す処理を行なう。 The data group described above is stored in the storage device of the computer. The propagation characteristic may be calculated at the stage of the measurement device (A) or may be calculated by a central processing unit. In any case, the central processing unit performs a process of extracting the value of the diagnostic characteristic corresponding to the obtained propagation characteristic from the data group for deterioration diagnosis stored in the storage device.
本発明の劣化診断装置の中央処理装置の本体をコンピュータとする場合、 該コ ンピュータを用いて劣化診断を行なうことが好ましい。 実行される診断用プログ ラムでとしては、 上記 (B ) のものが挙げられる。 劣化診断用プログラムの具体 的な例を次に示す。 伝搬特性として伝搬速度を用い、 診断特性として破断伸び率 を用いている。 このプログラムの例では、 先に説明した被覆層の材料に加えられ る可塑剤や充塡剤等の種類や配合量を考慮した劣化診断を行なう。 When the main body of the central processing unit of the deterioration diagnosis device of the present invention is a computer, it is preferable to perform the deterioration diagnosis using the computer. Examples of the diagnostic program to be executed include the above (B). The following is a specific example of the deterioration diagnosis program. The propagation speed is used as the propagation characteristic, and the elongation at break is used as the diagnostic characteristic. In the example of this program, the deterioration diagnosis is performed in consideration of the type and the amount of the plasticizer and filler added to the material of the coating layer described above.
図 6のフローチヤ一卜に示すように、 先ず、 ステップ S 1において、 被覆層の 材料である有機高分子材料の種類の入力をプログラムは要求する。 それが入力さ れるとステップ S 2に移り、 材料の種類が、 ポリ塩化ビニル (P V C ) か、 ゴム 系材料か、 ポリエチレン系材料かを判断する。 As shown in the flowchart of FIG. 6, first, in step S1, the program requests input of the type of the organic polymer material that is the material of the coating layer. When the information is input, the process proceeds to step S2, where it is determined whether the material type is polyvinyl chloride (PVC), a rubber-based material, or a polyethylene-based material.
ステップ S 2において材料が P V Cの場合、 プログラムはステップ S 3に移り 、 可塑剤の種類の入力を要求する。 それが入力されると、 ステップ S 4に移り、 該可塑剤がフタル酸エステル系なのか、 トリメリッ ト酸エステル系なのかを判断 する。 If the material is PVC in step S2, the program moves to step S3 and requests input of the type of plasticizer. When this is input, the process moves to step S4, where it is determined whether the plasticizer is a phthalate ester or a trimellitate ester.
ステップ S 4において可塑剤がフタル酸エステル系の場合には、 プログラムは
ステップ S 5に移り、 充塡剤の配合量の入力を要求する。 それが入力されるとス テツプ S 9に移る。 一方、 ステップ S において可塑剤がトリメリ ッ ト酸エステ ル系の場合では、 プログラムはステップ S 6に移り、 その配合量および充塡剤の 配合量の入力を要求する。 それが入力されるとステップ S 9に移行する。 なお、 可塑剤が配合されていない場合は、 プログラムはステップ S 5に移行して充塡剤 の配合量の入力を要求する。 ステップ S 5および S 6において、 配合がない場合 は、 例えば、 作業者は 「ゼロ」 、 「0」 などを入力する。 If the plasticizer is a phthalate ester in step S4, the program Proceed to step S5 to request input of the blending amount of the filler. When it is input, the process moves to step S9. On the other hand, if the plasticizer is trimellitic acid ester in step S, the program moves to step S6 and requests the input of the blending amount and the blending amount of the filler. When it is input, the process moves to step S9. If the plasticizer has not been blended, the program proceeds to step S5 and requests the input of the blending amount of the filler. In Steps S5 and S6, if there is no compounding, for example, the operator inputs “zero”, “0”, and the like.
ステップ S 2において材料がゴム系材料の場合、 プログラムはステップ S 7に 移り、 そこで充塡剤の配合量およびカーボンの配合量の入力を得た後、 ステップ S 9に移行する。 なお、 配合されていないものについては上記と同様に作業者は 「ゼロ」 を入力する。 If the material is a rubber-based material in step S2, the program proceeds to step S7, where the amounts of the filler and the carbon are obtained, and then the program proceeds to step S9. For those that are not blended, the operator inputs "zero" as above.
ステツプ S 2において材料がポリェチレン系材料の場合、 プログラムはステツ プ S 8に移り、 充塡剤の配合量および力一ボンの配合量の入力を得た後、 ステツ プ S 9に移行する。 なお、 配合されていないものについては上記と同様に作業者 は 「ゼロ」 を入力する。 If the material is a polyethylene-based material in step S2, the program proceeds to step S8, and after obtaining the input of the amount of the filler and the amount of the solvent, the program proceeds to step S9. For those that are not blended, the operator inputs “zero” as above.
このようにして被覆層の材料に関する情報が入力されると、 プログラムは、 ス テツプ S 9においてデータ群の中から入力された情報と同じ条件を持つデータを データ Dとして選択する。 データ群は前述した手順で作成し、 内外の各種記憶装 置、 記録媒体などに格納しておけば良い。 When information on the material of the coating layer is input in this way, the program selects data having the same conditions as the information input from the data group in step S9 as data D. The data group may be created by the above-described procedure and stored in various internal and external storage devices and recording media.
ステップ S 1 0では、 外部の計測装置から入力された数値から、 測定された被 覆層の材料についての伝搬速度 Vを算出する。 続いてステップ S 1 1では、 デー タ Dの中から、 前記伝搬速度 Vに対応する破断伸び率 Hを選びだす。 ステップ S 1 2では、 この破断伸び率 Hを劣化指標として、 ケーブル被覆材の劣化状態が診 断される。 In step S10, the measured propagation velocity V of the material of the covering layer is calculated from the numerical value input from the external measuring device. Subsequently, in step S11, the elongation at break H corresponding to the propagation velocity V is selected from the data D. In step S12, the deterioration state of the cable coating material is diagnosed using the elongation at break H as a deterioration index.
図 6では、 材料の種類、 可塑剤の撢類 ·配合量、 充塡材の配合量、 力一ボンの 配合量が入力されているが、 この例に限定されるものではなく、 このうちの少な く とも一^ ^であっても良い。 例えば、 材料の種類のみでも良い。 また、 余寿命の
推定を、 プログラムによって実行させてもよい。 実施例 In FIG. 6, the type of material, the type and blending amount of plasticizer, the blending amount of filler, and the blending amount of carbon are input. However, the present invention is not limited to this example. It may be at least one ^ ^. For example, only the type of material may be used. In addition, The estimation may be performed by a program. Example
実施例 1 Example 1
本実施例では、 図 1に示す劣化診断装置を用い、 上記 ( I) の方法によって、 ケーブルの被覆層の伝搬特性を測定した。 In this example, the propagation characteristics of the cable coating layer were measured by the method (I) using the deterioration diagnosis apparatus shown in FIG.
測定対象物は、 製造直後の電力ケーブルであって、 外径 2 1 mm, 公称厚さ 2 . 5mmの軟質ポリ塩化ビニル製のシース (被覆層) を有するものである。 送信 手段 1と受信手段 2とを、 いずれもポリ四フッ化工チレン製斜角型ディレーチッ プ (傾斜角度: 40° ) を介して、 ケーブルの被覆層の表面に設置した。 The object to be measured is a power cable immediately after manufacture, which has a sheath (coating layer) made of soft polyvinyl chloride with an outer diameter of 21 mm and a nominal thickness of 2.5 mm. Both the transmitting means 1 and the receiving means 2 were installed on the surface of the cable coating layer via an oblique angle derailleur (inclined angle: 40 °) made of polytetrafluoroethylene.
2種類の設置間隔 L 1、 L 2を、 それぞれ 1 mmと 1 0 mmとし、 周波数 1. 0 MHzの超音波を使用して、 L l、 L 2におけるそれぞれの伝搬時間 t 1、 t 2を測定し、 伝搬時間差 ( t 2— t 1 ) を求めた。 t l、 t 2の各々のデータ数 は n = 1 0である。 その結果、 ( t 2— t 1 ) の平均値は、 4. 86〃秒であり . V= (L 2 -L 1 ) / ( t 2 - t 1 ) から、 被覆層中における伝搬速度 1 85 0 m/秒を得た。 The two types of installation intervals L 1 and L 2 are 1 mm and 10 mm, respectively, and the propagation times t 1 and t 2 at L l and L 2 are respectively determined using ultrasonic waves with a frequency of 1.0 MHz. Measurements were made to determine the transit time difference (t 2-t 1). The number of data in each of t l and t 2 is n = 10. As a result, the average value of (t 2-t 1) is 4.86〃s. From V = (L 2 -L 1) / (t 2 -t 1), the propagation velocity in the coating layer is 1 85 0 m / s was obtained.
上記ケーブルから被覆層の一部を取り出してその伝搬速度を正確に測定したと ころ、 1 852 m//秒であった。 このことから、 本発明による劣化診断装置を用 いた上記 ( I) の方法が、 伝搬特性を良好に測定でき、 有用であることが確認さ れた。 When a portion of the coating layer was taken out of the cable and its propagation velocity was accurately measured, it was 1852 m // sec. From this, it was confirmed that the method (I) using the deterioration diagnosis device according to the present invention can measure propagation characteristics well and is useful.
また、 上記のケーブルを、 空気が循環するオーブン中で 1 30°Cで 1 0日間に わたり加熱し劣化させた後、 上記と同じ方法にて、 t 1、 t 2を測定し、 被覆層 中における伝搬速度を求めた。 その結果、 (t 2— t 1 ) の平均値は、 3. 95 〃秒であり、 被覆層中における伝搬速度 228 OmZ秒を得た。 このことから、 被覆層の材料が劣化するのに対応して、 伝搬速度が変化していくことが確認され た。
実施例 2 After heating the above cable in an oven with air circulation at 130 ° C for 10 days to deteriorate it, measure t 1 and t 2 by the same method as above, The propagation velocity at was obtained. As a result, the average value of (t 2-t 1) was 3.95 μs, and the propagation velocity in the coating layer was 228 OmZ seconds. From this, it was confirmed that the propagation speed changes as the material of the coating layer deteriorates. Example 2
本実施例では、 伝搬特性と診断特性とを対応させたデータ群を作成し、 現物に ついて伝搬特性を測定し、 データ群から測定値に対応する診断特性を求めた。 また、 伝搬距離を常に一定として、 実施例 1のように伝搬距離を変える測定で はなく、 1回だけの伝搬時間の測定でデータ群から診断特性を得る方法を実施し た。 In the present embodiment, a data group in which the propagation characteristics correspond to the diagnostic characteristics was created, the propagation characteristics were measured for the actual product, and the diagnostic characteristics corresponding to the measured values were obtained from the data group. In addition, a method of obtaining a diagnostic characteristic from a data group by performing only one measurement of the propagation time, instead of measuring the propagation distance as in Example 1, while keeping the propagation distance constant, was performed.
測定対象物は、 1 0年間布設された電力ケーブルであって、 外径 2 l mm、 実 測厚さ 2 . 5 mmの軟質ポリ塩化ビニル製の被覆層を有するものである。 図 1に 示す劣化診断装置を用い、 設置間隔 (両ディ レーチップの各先端間距離) を 2 m mとしたこと以外は、 実施例 1 と同様にして、 超音波の伝搬時間を測定した。 一方、 被覆層と同じ材料からなるシート (厚さ 3 ΙΏ ΙΏ ) を試料とし、 該試料に ついてこれを加熱し促進的に劣化させ、 劣化度の異なる種々の試料を形成して、 それらについて破断伸び率と伝搬時間との相関関係を別途確立し、 データ群とし た。 試料に関する伝搬時間の測定方法は、 上記電力ケーブルに対する測定と同様 である。 このデータ群から、 上記の電力ケーブルで測定された伝搬時間に対応す る破断伸び率約 2 2 0 %が得られた。 The object to be measured is a power cable laid for 10 years and has a coating layer made of soft polyvinyl chloride with an outer diameter of 2 lmm and an actual thickness of 2.5 mm. The propagation time of the ultrasonic wave was measured in the same manner as in Example 1 except that the installation interval (the distance between the tip ends of both delay chips) was set to 2 mm using the deterioration diagnosis apparatus shown in Fig. 1. On the other hand, a sheet (thickness 3 mm な る) made of the same material as the coating layer was used as a sample, and the sample was heated and acceleratedly degraded to form various samples with different degrees of degradation. The correlation between the elongation rate and the propagation time was established separately, and the data was collected. The method of measuring the propagation time for the sample is the same as the measurement for the power cable described above. From this data group, a breaking elongation of about 220% corresponding to the propagation time measured with the above-described power cable was obtained.
上記電力ケーブルの被覆層の一部を取出し、 ダンベル試料片を打ち抜いて破断 伸び率を実測したところ、 平均 2 2 8 %であった。 このことから、 本発明の劣化 診断方法が、 破壤検査の結果とよく一致することがわかった。 実施例 3 A portion of the covering layer of the power cable was taken out, a dumbbell specimen was punched out, and the elongation at break was measured and found to be 228% on average. From this, it was found that the deterioration diagnosis method of the present invention agreed well with the results of the soil fracture test. Example 3
本実施例では、 本発明による劣化診断方法の 1つとして、 余寿命の推定を行つ た。 対象物は、 5年間屋外に布設されている信号用ケーブルであって、 径 1 . 0 mmの撚線銅導体の上に厚さ 1 . O mmのポリ塩化ビニル絶縁層を有し、 その上 に厚さ 1 , 5 mmのポリ塩化ビニル製の被覆層 (シース) を有する 6 0 0 V用電 力ケーブルである。 該ポリ塩化ビニル製の被覆層は、 ポリ塩化ビニル 1 0 0重量 部あたり、 可塑剤としてジイソノニルフタレート 5 0重量部、 安定剤として三塩
基性硫酸鉛 6重量部、 および充塡剤として臭素系難燃剤 6 0重量部を含有する。 本発明による劣化診断方法によって、 上記ケーブルの被覆層の破断伸び率は、 平均 2 7 2 % ( n = 2 0 ) であることを得た。 また、 5年布設の間の平均シース 温度は約 4 0 °Cであった。 In the present embodiment, the remaining life is estimated as one of the deterioration diagnosis methods according to the present invention. The object is a signal cable that has been laid outdoors for 5 years, and has a 1.0 mm thick polyvinyl chloride insulation layer on a 1.0 mm diameter stranded copper conductor. This is a 600 V power cable with a 1.5-mm-thick polyvinyl chloride coating layer (sheath). The coating layer made of polyvinyl chloride is 100 parts by weight of polyvinyl chloride, 50 parts by weight of diisononyl phthalate as a plasticizer, and trisalt as a stabilizer. It contains 6 parts by weight of basic lead sulfate and 60 parts by weight of a brominated flame retardant as a filler. By the deterioration diagnosis method according to the present invention, the elongation at break of the coating layer of the cable was found to be an average of 272% (n = 20). The average sheath temperature during the five-year installation was about 40 ° C.
一方、 上記被覆層と同じ材料からなる試料として、 厚さ 5 m mのシートを 作成し、 該シートを空気が循環するオーブン中で 1 0 0〜 1 2 0 °Cの温度で加熱 し、 各加熱温度 w毎に、 加熱時間に対する破断伸び率の変化を測定し、 図 7に示 す結果を得た。 On the other hand, as a sample made of the same material as the above-mentioned coating layer, a sheet having a thickness of 5 mm was prepared, and the sheet was heated at a temperature of 100 to 120 ° C. in an oven in which air was circulated. At each temperature w, the change in elongation at break with respect to the heating time was measured, and the results shown in FIG. 7 were obtained.
図 7から得たデータを基にァレニウスプロッ トを行い、 図 8に示す破断伸び率 をパラメータとする w— h相関関係をデータ群として得た。 なお図 8では余寿命 の推定に必要な低温度域のみを示し、 その縦軸は図 7の加熱時間に相当するが、 余寿命推定のために 「年数」 とした。 また曲線 E 1は破断伸び率 2 7 2 %のァレ 二ウス曲線であり、 曲線 E 2は破断伸び率 2 3 0 %のァレニウス曲線である。 図 8の曲線 E 1より、 布設期間 5年と破断伸び率 2 7 2 %とに対する温度は約 5 0 °Cであることが判る。 一方、 破断伸び率 2 3 0 % (曲線 E 2 ) を使用限界と 決めると、 図 8より、 破断伸び率が 2 3 0 %にまで低下するに要する期間、 即ち 余寿命は、 約 1 3年と推定される。 An Arrhenius plot was performed based on the data obtained from Fig. 7, and a w-h correlation using the elongation at break shown in Fig. 8 as a parameter was obtained as a data group. Note that Fig. 8 shows only the low temperature range necessary for estimating the remaining life, and the vertical axis corresponds to the heating time in Fig. 7, but "years" was used to estimate the remaining life. Curve E1 is an Arrhenius curve with an elongation at break of 272%, and curve E2 is an Arrhenius curve with an elongation at break of 230%. From the curve E1 in FIG. 8, it can be seen that the temperature for the installation period of 5 years and the elongation at break of 272% is about 50 ° C. On the other hand, if the breaking elongation rate of 230% (curve E 2) is determined as the service limit, the period required for the breaking elongation rate to drop to 230%, that is, the remaining life, is about 13 years from Fig. 8. It is estimated to be.
同様の環境下 (平均シース温度は約 4 0 °C) で 2 0年間布設された他のケープ ルについて、 破断伸び率を調べたところ、 平均 2 2 8 % ( n = 2 0 ) に劣化して いた。 これより、 上記余寿命の推定結果は、 工業的には十分有用な値であること が判った。 比較例 3 - 1 When the elongation at break of another cable laid in the same environment (average sheath temperature is about 40 ° C) for 20 years was examined, the average elongation was reduced to 228% (n = 20). I was. From this, it was found that the above estimation result of the remaining life is a value that is sufficiently useful industrially. Comparative Example 3-1
上記実施例 3のケーブルを、 その平均シース温度が 4 0 °Cの条件で運転を続け るとして、 従来方法のように 4 0 °Cで余寿命を推定すると、 図 8から推定余寿命 は 7 1年となって、 上記確認結果から大きく外れることが判った。
実施例 4 Assuming that the cable of Example 3 is continuously operated under the condition that the average sheath temperature is 40 ° C, the remaining life is estimated at 40 ° C as in the conventional method. It turned out that it was one year, and it was far from the above confirmation result. Example 4
本実施例では、 屋外に 9年間布設されている電力ケーブルを対象として余寿命 の推定を行った。 被覆層 (シース) の材料は難燃性クロ口プレンである。 該ケー ブルは、 径 2. Ommの撚線銅導体の上に厚さ 2. 5 mmの天然ゴム絶縁層を有 し、 その上に厚さし 8 mmの被覆層を有する 3 3 0 0 V用電力ケーブルである 。 被覆層はクロ口プレン製であって、 クロ口プレン 1 0 0重量部あたり、 ノ、。ラフ ィン系オイル 2 0重量部、 充填剤としての珪酸アルミニウム 6 0重量部、 および カーボンブラック 2 5重量部を含有し、 加熱架橋して形成されている。 In this example, the remaining life was estimated for power cables laid outdoors for 9 years. The material of the coating layer (sheath) is flame-retardant black-mouthed plain. The cable has a 2.5 mm thick natural rubber insulating layer on a 2.Omm diameter stranded copper conductor, and a 3300 V thick 8 mm thick coating layer on top of it. Power cable. The coating layer is made of black mouth prene, and per 100 weight parts of black mouth prene. It contains 20 parts by weight of olefin oil, 60 parts by weight of aluminum silicate as a filler, and 25 parts by weight of carbon black, and is formed by heat crosslinking.
本発明による劣化診断方法によって、 上記電力ケ一ブルの被覆層の破断伸び率 は、 平均 3 7 8 % (n = 2 0 ) であることを得た。 また、 9年布設の間の平均シ ース温度は約 4 5°Cであった。 According to the deterioration diagnosis method of the present invention, the average elongation at break of the coating layer of the power cable was 3788% (n = 20). The average sheath temperature during the nine-year installation was about 45 ° C.
一方、 上記被覆層と同じ材料からなる試料として、 1 5 0°C、 3 0分のプレス 成形架橋にて 2mm厚のシートを作成し、 該シートを空気が循環するオーブン中 で 1 2 0〜 1 5 0°Cの温度で加熱し、 各加熱温度 w毎に加熱時間に対する破断伸 び率の変化を測定し、 実施例 3の場合と同様にしてァレニウスプロッ トし、 破断 伸び率をパラメータとする直線的な w—h相関関係をデータ群として得た。 かく して得たデータ群 (w— h相関関係) より、 布設期間 9年と破断伸び率 3 7 8 % とに対応する温度として約 5 8°Cを得た。 On the other hand, as a sample made of the same material as the above-mentioned coating layer, a sheet having a thickness of 2 mm was prepared by press molding and crosslinking at 150 ° C. for 30 minutes, and the sheet was subjected to 120 to 100 ° C. in an oven in which air circulated. Heat at a temperature of 150 ° C, measure the change in elongation at break with respect to heating time at each heating temperature w, perform Arrhenius plotting as in Example 3, and use the elongation at break as a parameter A linear w-h correlation was obtained as a data group. From the data group thus obtained (wh correlation), a temperature of about 58 ° C was obtained corresponding to a laying period of 9 years and a breaking elongation of 378%.
破断伸び率 3 0 0 %を使用限界として決め、 破断伸び率 3 0 0 %のときの w— h相関関係から使用限界に達するまでの期間は、 約 7. 5年と推定された。 同様の環境下 (平均シース温度は約 4 5°C) で 1 9年間布設された他のケープ ルについて、 破断伸び率を調べたところ、 平均 2 9 8 % (n= 2 0) に劣化して いた。 これより、 上記余寿命の推定結果は、 工業的には十分有用な値であること が判った。 比較例 4一 1
上記実施例 4のケーブルを、 平均シース温度が 4 5 °Cの条件で運転を続けると して、 従来方法のように 4 5 °Cで余寿命を推定すると、 推定余寿命は 3 9年とな つて、 上記確認結果から大きく外れることが判った。 実施例 5 The elongation at break was determined as the service limit of 300%, and the period until the service limit was reached from the w-h correlation at the elongation at break of 300% was estimated to be about 7.5 years. When the elongation at break of another cable laid in the same environment (average sheath temperature is about 45 ° C) for 19 years was examined, the average elongation was 298% (n = 20). I was. From this, it was found that the above estimation result of the remaining life is a value that is sufficiently useful industrially. Comparative Example 41 Assuming that the cable of Example 4 is continuously operated at an average sheath temperature of 45 ° C and the remaining life is estimated at 45 ° C as in the conventional method, the estimated remaining life is 39 years. This proved to be significantly different from the above confirmation results. Example 5
本実施例では、 ケーブルの被覆層の劣化診断を行なうに際し、 被覆層の材料に 加えられる可塑剤や充墳剤等の種類や配合量を考慮して劣化診断を行った。 In the present example, when performing the deterioration diagnosis of the coating layer of the cable, the deterioration diagnosis was performed in consideration of the type and the amount of the plasticizer and the filler added to the material of the coating layer.
〔被覆層の材料の情報およびデータ Dの選択〕 [Selection of coating layer material information and data D]
布設状態にあるケーブルについて、 その被覆層の材料に関する情報を、 前述し た様に記録から求めたところ、 高分子材料の種類がポリ塩化ビニル、 可塑剤がフ タル酸エステル系可塑剤、 充塡剤の配合量が 6 0重量部という情報が得られた。 この情報に基づき、 予め作成されたデータ群からデータ Dを選択した。 Information on the material of the coating layer of the cable in the laid state was obtained from the record as described above, and the type of the polymer material was polyvinyl chloride, the plasticizer was a phthalate plasticizer, and the filler was filled. Information that the blending amount of the agent was 60 parts by weight was obtained. Based on this information, data D was selected from a data group created in advance.
〔ケーブルの被覆層の劣化診断〕 [Determination of deterioration of cable coating layer]
上記の診断対象となったケ一ブルの被覆層の材料について、 市販の超音波探触 子を用いて超音波が発信されてから受信されるまでの時間を計測し、 被覆材中の 超音波伝搬速度を算出したところ 2 1 5 O m Z sであった。 この実測値に対応す る破断伸び率を、 選択されたデータ Dから求めたところ 1 9 0 %を得た。 For the material of the coating layer of the cable that was diagnosed above, measure the time from when the ultrasonic wave was transmitted to when it was received using a commercially available ultrasonic probe, and measured the ultrasonic wave in the coating material. When the propagation velocity was calculated, it was 2 15 O m Z s. The elongation at break corresponding to this actually measured value was determined from the selected data D, and obtained 190%.
〔評価〕 [Evaluation]
上記の診断対象となったケーブルの被覆層について、 可塑剤、 充塡剤等の種類 や配合量を考慮しない従来の方法によつて破断伸び率を求めたところ、 破断伸び 率は 1 4 0 %であった。 The elongation at break of the coating layer of the cable subject to the above diagnosis was determined by the conventional method without considering the type and blending amount of the plasticizer, filler, etc., and the elongation at break was 140%. Met.
一方、 上記の診断対象となったケーブルの被覆層を破壤し、 試験片を取り出し て引張試験によりその破断伸び率を実測したところ、 1 9 0 %であった。 On the other hand, the coating layer of the cable to be diagnosed was broken, the test piece was taken out, and the elongation at break was measured by a tensile test to find that it was 190%.
以上のことから、 可塑剤、 充塡剤等の種類や配合量を考慮する本発明の劣化診 断方法は、 破壊検査の結果により近く、 有用な方法であることがわかった。 また、 本実施例の劣化診断方法を、 図 6に示すフローチャートのように、 コン ピュア一夕プログラムとして作成し、 コンピュータで実行した場合においては、
より迅速に診断を行うことができた。 産業上の利用可能性 From the above, it was found that the degradation diagnosis method of the present invention, which considers the types and amounts of plasticizers and fillers, etc., is a useful method that is closer to the results of destructive inspection. Also, when the deterioration diagnosis method of this embodiment is created as a computer overnight program as shown in the flowchart of FIG. The diagnosis could be made more quickly. Industrial applicability
本発明は、 非破壊診断が要求される物品、 例えば、 稼働中にある電力ケーブル について、 その被覆層の劣化度診断に好適である。 本発明の劣化診断方法によれ ば、 被覆層の厚みなどのデ一夕を不要としながら、 非破壊的に、 より正確に、 該 被覆層の伝搬特性を測定し得る。 従って、 データ群から求められた診断特性も、 より正確なものとなる。 また、 「時間の経過」 をデータ群に導入したことによつ て、 経時変化を含めた総合的な劣化診断が可能になり、 従来よりも正確な余寿命 の推定が可能になる。 INDUSTRIAL APPLICABILITY The present invention is suitable for a diagnosis of the degree of deterioration of a coating layer of an article for which nondestructive diagnosis is required, for example, a power cable in operation. ADVANTAGE OF THE INVENTION According to the deterioration diagnosis method of this invention, the propagation characteristic of this coating layer can be measured nondestructively and more accurately, without necessity of data, such as the thickness of a coating layer. Therefore, the diagnostic characteristics obtained from the data group also become more accurate. In addition, the introduction of “elapsed time” into the data group makes it possible to perform comprehensive deterioration diagnosis including changes over time, and to estimate the remaining life more accurately than before.
本出願は、 日本で出願された平成 9年特許願第 3 2 0 8 6 3号、 平成 1 0年特 許願第 1 4 3 8 5 2号、 平成 1 0年特許願第 1 5 4 9 1 5号、 平成 1 0年特許願 第 1 5 4 9 2 9号、 平成 1 0年特許願第 1 6 0 3 4 4号を基礎としており、 それ らの内容は本明紬書に全て包含される。
The present application was filed in Japan, filed in Japan, filed in Japanese Patent Application No. 320863, 1997, Patent Application No. 144,852, and Japanese Patent Application No. 150491, 1998. No. 5, Patent Application No. 1 549, 1989, and Patent Application No. 1, 634, 1984, which are all based on the contents of this book. You.
Claims
1 . 有機高分子材料からなる被覆層を少なくとも有する物品の劣化を診断する 方法であって、 1. A method for diagnosing deterioration of an article having at least a coating layer made of an organic polymer material,
被覆層の試料について、 劣化診断特性とそれに対応する超音波伝搬特性とを測 定し、 劣化診断特性の値と超音波伝搬特性の値とが対応した劣化診断用のデータ 群を作成し、 For the coating layer sample, the deterioration diagnostic characteristics and the corresponding ultrasonic propagation characteristics were measured, and a data group for deterioration diagnosis was created in which the values of the deterioration diagnostic characteristics corresponded to the values of the ultrasonic propagation characteristics.
物品の被覆層の表面および表面付近に超音波を伝搬させることによって、 該被 覆層の超音波伝搬特性を測定し、 それに対応する劣化診断特性を前記データ群か ら求めることを特徴とする劣化診断方法。 By transmitting ultrasonic waves to and near the surface of the coating layer of the article, the ultrasonic propagation characteristics of the coating layer are measured, and the corresponding deterioration diagnostic characteristics are obtained from the data group. Diagnostic method.
2 . 上記物品がケーブルである請求の範囲第 1項記載の劣化診断方法。 2. The deterioration diagnosis method according to claim 1, wherein the article is a cable.
3 . 劣化診断特性が破断伸び率である請求の範囲第 1項記載の劣化診断方法。 3. The deterioration diagnosis method according to claim 1, wherein the deterioration diagnosis characteristic is an elongation at break.
4 . 上記劣化診断用のデータ群が、 時間の経過と共に変化する劣化診断特性の 値と、 その値の各々に対応して変化する超音波伝搬特性の値とを含むデータ群で ある請求の範囲第 1項記載の劣化診断方法。 4. The data group for deterioration diagnosis is a data group including values of deterioration diagnosis characteristics that change over time, and values of ultrasonic propagation characteristics that change corresponding to each of the values. The degradation diagnosis method described in paragraph 1.
5 . 劣化診断用のデータ群を作成するに際し、 有機高分子材料の種類、 該有機 高分子材料に配合されている可塑剤の種類、 可塑剤の配合量、 充塡剤の配合量、 およびカーボンの配合量から選ばれる 1以上の要素からなる材料仕様を変化させ 、 該材料仕様が異なる試料ごとに、 劣化診断特性とそれに対応する超音波伝搬特 性とを測定して、 劣化診断用のデータ群を作成し、 5. When preparing a data group for deterioration diagnosis, the type of organic polymer material, the type of plasticizer compounded in the organic polymer material, the amount of plasticizer, the amount of filler, and the amount of carbon By changing the material specifications consisting of one or more elements selected from the compounding amount of the sample, the deterioration diagnosis characteristics and the corresponding ultrasonic wave propagation characteristics are measured for each sample having different material specifications, and the data for deterioration diagnosis is measured. Create a flock,
物品の被覆層について超音波伝搬特性を測定し、 該被覆層と等しい材料仕様の データ群から、 前記超音波伝搬特性に対応する劣化診断特性を求めるものである 請求の範囲第 1項記載の劣化診断方法。 2. The method according to claim 1, wherein the ultrasonic wave propagation characteristics of the coating layer of the article are measured, and a deterioration diagnostic characteristic corresponding to the ultrasonic wave propagation characteristics is obtained from a data group having the same material specifications as the coating layer. Diagnostic method.
6 . 上記超音波伝搬特性が超音波の伝搬速度であって、 該伝搬速度を測定する 方法が、 6. The ultrasonic wave propagation characteristic is an ultrasonic wave propagation velocity, and the method of measuring the propagation velocity is as follows:
超音波送信手段および超音波受信手段を各々ディレーチップを介して測定対象 の表面に設置し、 前記送信手段から送信された超音波が測定対象中を前記受信手
段の設置位置まで直線的に伝搬し受信手段にて受信し得る構成とし、 Ultrasonic transmitting means and ultrasonic receiving means are respectively installed on the surface of the object to be measured via delay chips, and the ultrasonic wave transmitted from the transmitting means passes through the measuring object while receiving the ultrasonic waves. With a configuration in which the light can propagate linearly to the installation position of the step and be received by the receiving means,
前記送信手段と前記受信手段との設置間隔を L 1、 L 2としたときの各々の超 音波の伝搬時間 t l、 t 2を測定し、 (L 2 - L 1 ) ( t 2 - t 1 ) の値を超 音波の伝搬速度とする測定方法である請求の範囲第 1項記載の劣化診断方法。 The propagation time tl, t2 of each ultrasonic wave is measured when the installation interval between the transmitting means and the receiving means is L1, L2, and (L2-L1) (t2-t1) 2. The method for diagnosing deterioration according to claim 1, wherein the method is a measuring method in which the value of is a propagation speed of ultrasonic waves.
7 . 上記超音波伝搬特性が、 特定距離を伝搬するときの超音波の伝搬時間であ つて、 試料 ·物品の被覆層を被検査物として、 超音波送信手段および超音波受信 手段を各々ディレーチップを介して被検査物の表面に前記特定距離をおいて設置 し、 前記送信手段から送信された超音波が、 被検査物中を前記受信手段の設置位 置まで直線的に伝搬し受信手段にてディレーチップを介して受信されるまでの時 間を測定し、 伝搬時間とするものである請求の範囲第 1項記載の劣化診断方法。 7. The above-mentioned ultrasonic propagation characteristic is the propagation time of the ultrasonic wave when propagating over a specific distance, and the ultrasonic transmitting means and the ultrasonic receiving means are each a delay chip with the coating layer of the sample / article as the inspection object. The ultrasonic wave transmitted from the transmitting means is linearly propagated in the inspected object to the installation position of the receiving means, and the ultrasonic wave transmitted from the transmitting means is transmitted to the receiving means via the 2. The deterioration diagnosis method according to claim 1, wherein a time until reception through a delay chip is measured to obtain a propagation time.
8 . 上記物品が、 布設された状態のケーブルであって、 該ケーブルの被覆層を 劣化させる劣化要因がケーブルの長手方向に沿ってどのように分布しているかを 測定し、 劣化要因の程度の大きい部位について劣化診断を行うものである請求の 範囲第 1項記載の劣化診断方法。 8. The above article is a cable in a laid state, and it is measured how the deterioration factors which deteriorate the coating layer of the cable are distributed along the longitudinal direction of the cable, and the degree of the deterioration factors is measured. The deterioration diagnosis method according to claim 1, wherein the deterioration diagnosis is performed for a large portion.
9 . 布設されたケーブルの少なくとも一区間に、 劣化要因の程度を測定し得る 測定手段をケーブルの長手方向に沿って設置し、 劣化要因の程度の分布を測定す るものである請求の範囲第 8項記載の劣化診断方法。 9. In at least one section of the laid cable, measuring means capable of measuring the degree of the deterioration factor is installed along the longitudinal direction of the cable, and the distribution of the degree of the deterioration factor is measured. The deterioration diagnosis method described in paragraph 8.
1 0 . 物品の被覆層について求めた上記劣化診断特性の値を E 1 とし、 さらに、 被覆層と同じ材料の試料について、 劣化診断特性の値を使用限界の値 10. The value of the above-mentioned deterioration diagnostic characteristic obtained for the coating layer of the article is E 1, and the value of the deterioration diagnostic characteristic is used for the sample of the same material as the coating layer.
E zを含めて変化させたときの、 各劣化診断特性の値ごとにおける加熱温度 tと それに対応する加熱時間 hとを測定して余寿命推定用のデータ群とし、 The heating temperature t and the corresponding heating time h for each value of the deterioration diagnostic characteristics when Ez is changed are measured and used as a data group for remaining life estimation,
この余寿命推定用のデータ群を用い、 前記物品の使用期間を加熱時間 h 1 と見 なして、 劣化診断特性の値 E 1での加熱時間 h 1に対応する加熱温度 t 1を求め 、 劣化診断特性の使用限界の値 E zでの加熱温度 t 1に対応する加熱時間 h zを 求め、 h z— h 1の値を余寿命とするものである、 請求の範囲第 1項記載の劣化 診断方法。 Using the data group for estimating the remaining life, the service period of the article is regarded as the heating time h1, and the heating temperature t1 corresponding to the heating time h1 at the value E1 of the deterioration diagnosis characteristic is obtained, and the deterioration is determined. The deterioration diagnosis method according to claim 1, wherein a heating time hz corresponding to the heating temperature t1 at the use limit value Ez of the diagnostic characteristic is obtained, and a value of hz-h1 is set as a remaining life. .
1 1 . 有機高分子材料からなる被覆層を少なくとも有する物品の劣化を診断す
るための装置であって、 下記 (A ) の測定装置を少なくとも有することを特徴と する劣化診断装置。 1 1. Diagnose deterioration of an article having at least a coating layer made of an organic polymer material. A degradation diagnostic device comprising at least the following measuring device (A).
( A ) 物品の被覆層または被覆層の試料を測定対象物とする超音波伝搬特性の測 定装置であって、 超音波送信手段と、 超音波受信手段と、 これらを測定対象物の 表面に設置する際に各々に介在させる下記 (A 1 ) のディレーチップと、 超音波 が前記送信手段から送信されてから受信手段にて受信されるまでの時間を測定す る伝搬時間測定手段と、 を有する測定装置。 (A) An apparatus for measuring ultrasonic propagation characteristics using a coating layer of an article or a sample of a coating layer as an object to be measured, the ultrasonic transmitting means, the ultrasonic receiving means, and these being disposed on the surface of the object to be measured. A delay chip of the following (A 1) to be interposed at each time of installation and a propagation time measuring means for measuring a time from when the ultrasonic wave is transmitted from the transmitting means to when the ultrasonic wave is received by the receiving means. Measuring device to have.
( A 1 ) 当該ディレーチップから測定対象物に超音波が入るとき、 超音波の伝搬 方向が変化し測定対象物の表面および表面付近を超音波が伝搬するように、 傾斜 角度と、 材料とが選択されてなるディレーチップ。 (A1) When the ultrasonic wave enters the measuring object from the delay chip, the inclination angle and the material are adjusted so that the propagation direction of the ultrasonic wave changes and the ultrasonic wave propagates on and near the surface of the measuring object. Delay chip that is selected.
1 2 . 上記 (A 1 ) のディレ一チップが、 上記有機高分子材料に対して 〔当該 ディレーチップ中における超音波の伝搬速度〕 < 〔該有機高分子材料中における 超音波の伝搬速度〕 となるように選択された材料からなるものである請求の範囲 第 1 1項記載の劣化診断装置。 12 2. The delay chip of (A 1) above has the following relationship with the organic polymer material: [propagation speed of ultrasonic wave in the delay chip] <[propagation speed of ultrasonic wave in the organic polymer material] 12. The degradation diagnosis device according to claim 11, wherein the degradation diagnosis device is made of a material selected to be the following.
1 3 . 上記物品がケーブルである請求の範囲第 1 1項記載の劣化診断装置。 13. The deterioration diagnostic device according to claim 11, wherein the article is a cable.
1 4 . 劣化診断特性が、 破断伸び率である請求の範囲第 1 1項記載の劣化診断 14. The deterioration diagnosis according to claim 11, wherein the deterioration diagnosis characteristic is an elongation at break.
1 5 . さらに、 上記被覆層上における超音波送信手段と超音波受信手段との設 置間隔を計測する計測手段を有するものである請求の範囲第 1 1項記載の劣化診 断装置。 15. The deterioration diagnostic apparatus according to claim 11, further comprising a measuring means for measuring an installation interval between the ultrasonic transmitting means and the ultrasonic receiving means on the coating layer.
1 6 . さらに中央処理装置および記憶装置とを有し、 1 6. It further has a central processing unit and a storage device,
記憶装置には、 物品の被覆層の材料についての劣化診断特性の値とそれに対応 する超音波伝搬特性の値とからなる劣化診断用のデータ群が格納され、 The storage device stores a deterioration diagnosis data group including the deterioration diagnosis characteristic value of the material of the article coating layer and the corresponding ultrasonic propagation characteristic value,
中央処理装置は、 上記 (A ) の測定装置によって得られた物品の被覆層に関す る超音波伝搬特性の値を用いて、 この値に対応する劣化診断特性の値を、 記憶装 置に格納された劣化診断用のデータ群から取り出す処理を行なうものである請求 の範囲第 1 1項記載の劣化診断装置。
The central processing unit uses the value of the ultrasonic propagation characteristic of the coating layer of the article obtained by the measuring device of (A) above and stores the value of the deterioration diagnosis characteristic corresponding to this value in the storage device. The degradation diagnosis device according to claim 11, wherein the degradation diagnosis device performs a process of extracting the data from the data group for degradation diagnosis.
1 7 . 上記中央処理装置と記憶装置がコンピュータの中央処理装置と記憶装置 であり、 上記データ群が、 時間の経過と共に変化する劣化診断特性の値と、 その 値に対応して変化する超音波伝搬特性の値とを含むものであり、 該中央処理装置 において下記 (B ) の劣化診断プログラムが実行されるものである請求の範囲第 1 6項記載の劣化診断装置。 17. The central processing unit and the storage device are a central processing unit and a storage device of a computer, and the data group includes values of deterioration diagnostic characteristics that change over time, and ultrasonic waves that change in accordance with the values. 17. The degradation diagnosis device according to claim 16, wherein the degradation diagnosis device includes a value of a propagation characteristic and the central processing unit executes a degradation diagnosis program of the following (B).
( B ) ①診断対象とする物品の被覆層の材料の仕様に関する情報を入力させる手 順と、 (B) (1) A procedure for inputting information on the material specifications of the coating layer of the article to be diagnosed,
②記憶装置に格納された劣化診断用のデータ群の中から、 前記入力された仕様 の材料に関するデータ群を選択する手順と、 (2) a procedure for selecting a data group relating to the material of the input specifications from the data group for deterioration diagnosis stored in the storage device;
③物品の被覆層を測定して得られる超音波伝搬特性の値を入力させ、 その値に 対応する劣化診断特性の値を、 ②で選択されたデータ群から求める手順と、 を少なくとも有する劣化診断プログラム。 (3) A procedure for inputting the value of the ultrasonic propagation characteristic obtained by measuring the coating layer of the article, and obtaining the value of the deterioration diagnostic characteristic corresponding to the value from the data group selected in (2), program.
1 8 . 上記劣化診断用のデータ群が、 有機高分子材料の種類、 該有機高分子材 料に配合されている可塑剤の種類、 可塑剤の配合量、 充塡剤の配合量、 および力 一ボンの配合量から選ばれる 1以上の要素からなる材料仕様を変化させたときの 、 該材料仕様が異なる試料ごとの劣化診断特性の値と、 それに対応する超音波伝 搬特性の値とを含むデータ群である請求の範囲第 1 6項記載の劣化診断装置。
18. The data group for deterioration diagnosis described above includes the type of organic polymer material, the type of plasticizer compounded in the organic polymer material, the compounding amount of plasticizer, the compounding amount of filler, and the force. When the material specification comprising one or more elements selected from the blending amount of one bond is changed, the value of the deterioration diagnosis characteristic for each sample having the different material specification and the value of the ultrasonic transmission characteristic corresponding thereto are changed. 17. The deterioration diagnosis device according to claim 16, which is a data group including the deterioration diagnosis device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/554,787 US6450036B1 (en) | 1997-11-21 | 1998-11-18 | Method and device for diagnosing deterioration of an article having at least a covering layer organic polymer material |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9/320863 | 1997-11-21 | ||
JP32086397A JP3678564B2 (en) | 1997-11-21 | 1997-11-21 | Method and apparatus for measuring ultrasonic propagation characteristics |
JP14385298A JP3349090B2 (en) | 1998-05-26 | 1998-05-26 | Method for diagnosing deterioration of organic polymer article and ultrasonic propagation time measuring device used therefor |
JP10/143852 | 1998-05-26 | ||
JP10/154915 | 1998-06-03 | ||
JP15492998A JP3316182B2 (en) | 1998-06-03 | 1998-06-03 | Method for estimating remaining life of coated cable |
JP10/154929 | 1998-06-03 | ||
JP15491598A JP3286597B2 (en) | 1998-06-03 | 1998-06-03 | Method for estimating remaining life of organic polymer material articles |
JP16034498A JP3251548B2 (en) | 1997-06-09 | 1998-06-09 | Method for diagnosing deterioration of cable coating material and recording medium storing deterioration diagnosis program for cable coating material |
JP10/160344 | 1998-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999027360A1 true WO1999027360A1 (en) | 1999-06-03 |
Family
ID=27527687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/005194 WO1999027360A1 (en) | 1997-11-21 | 1998-11-18 | Method and device for diagnosing deterioration of an article having at least a covering layer of organic polymer material |
Country Status (2)
Country | Link |
---|---|
US (1) | US6450036B1 (en) |
WO (1) | WO1999027360A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2235317C2 (en) * | 2001-01-09 | 2004-08-27 | Открытое акционерное общество "Предприятие по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "УралОРГРЭС" | Method and device for determining condition of high-temperature pipelines bends |
US6810743B2 (en) * | 2001-08-01 | 2004-11-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Non-destructive evaluation of wire insulation and coatings |
JP2014227674A (en) * | 2013-05-20 | 2014-12-08 | トヨタホーム株式会社 | Durability prediction device of roof component |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8065155B1 (en) * | 1999-06-10 | 2011-11-22 | Gazdzinski Robert F | Adaptive advertising apparatus and methods |
US6672164B1 (en) * | 1999-06-16 | 2004-01-06 | Teijin Twaron B.V. | Process for determining the polymer concentration in a spinning dope solution |
JP2003057027A (en) * | 2001-08-10 | 2003-02-26 | Ebara Corp | Measuring instrument |
US6923065B2 (en) * | 2001-09-17 | 2005-08-02 | Thyssen Elevator Capital Corp. | Apparatus for testing aramid fiber elevator cables |
US6662660B2 (en) * | 2001-09-17 | 2003-12-16 | Thyssen Elevator Capital Corp. | Apparatus for testing aramid fiber elevator cables |
JP2005142495A (en) * | 2003-11-10 | 2005-06-02 | Sharp Corp | Crack-detecting method for substrate, crack detecting apparatus therefor, and solar cell module manufacturing method |
US7237438B1 (en) * | 2005-03-16 | 2007-07-03 | United Technologies Corporation | Systems and methods for determining the velocity of ultrasonic surface skimming longitudinal waves on various materials |
US7783433B2 (en) * | 2007-05-22 | 2010-08-24 | Honeywell International Inc. | Automated defect detection of corrosion or cracks using SAFT processed Lamb wave images |
EP2185455A1 (en) * | 2007-08-17 | 2010-05-19 | Inventio AG | Elevator system having a load carrier condition detector device, and method for detecting a condition of a load carrier |
US7992449B1 (en) | 2008-02-15 | 2011-08-09 | Mahmoud Khaled M | Method for assessment of cable strength and residual life |
US9129187B2 (en) * | 2010-08-31 | 2015-09-08 | Hitachi Medical Corporation | Image reconstruction method and device |
JP6163882B2 (en) * | 2013-05-30 | 2017-07-19 | 株式会社安川電機 | Prediction system |
US20140373619A1 (en) * | 2013-06-19 | 2014-12-25 | Weatherford/Lamb, Inc. | Method and apparatus for measuring deformation of elastomeric materials |
JP6630044B2 (en) * | 2014-07-29 | 2020-01-15 | 積水化学工業株式会社 | Degradation diagnosis method for resin piping system |
KR102488932B1 (en) * | 2014-09-11 | 2023-01-16 | 오티스 엘리베이터 컴파니 | Vibration-based elevator tension member wear and life monitoring system |
DE102017103586B4 (en) | 2017-02-22 | 2022-02-24 | CURO GmbH | Device and method for determining wear of an electrically conductive cable |
CN115128166B (en) * | 2022-06-17 | 2024-07-12 | 广东电网有限责任公司广州供电局 | Cable aluminum sheath corrosion damage imaging method and device based on twin network and ultrasonic guided wave |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6318920Y2 (en) * | 1980-06-12 | 1988-05-27 | ||
JPH0627089A (en) * | 1992-07-07 | 1994-02-04 | Hitachi Constr Mach Co Ltd | Velocity measuring apparatus for surface acoustic wave |
JPH0735732A (en) * | 1993-07-23 | 1995-02-07 | Mitsubishi Cable Ind Ltd | Deterioration diagnostic apparatus for cable coating material |
JPH0735733A (en) * | 1993-07-23 | 1995-02-07 | Mitsubishi Cable Ind Ltd | Deterioration diagnostic method for cable coating material |
JPH095309A (en) * | 1995-06-22 | 1997-01-10 | Toshiba Tungaloy Co Ltd | Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4619143A (en) * | 1984-08-24 | 1986-10-28 | Dow Chemical (Nederl) B.V. | Apparatus and method for the non-destructive inspection of solid bodies |
WO1986006486A1 (en) * | 1985-04-22 | 1986-11-06 | Hitachi Construction Machinery Co., Ltd. | Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave |
JPS6318920A (en) | 1986-07-08 | 1988-01-26 | 三菱電機株式会社 | Operation controller of induction machine |
US5456113A (en) * | 1992-11-06 | 1995-10-10 | Southwest Research Institute | Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions |
US5457994A (en) * | 1992-11-06 | 1995-10-17 | Southwest Research Institute | Nondestructive evaluation of non-ferromagnetic materials using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions |
US6076411A (en) * | 1996-12-09 | 2000-06-20 | Advent Engineering Services, Inc. | Method and apparatus for determining remaining life of conductor insulation systems through void size and density correlation |
US6373245B1 (en) * | 1999-03-17 | 2002-04-16 | Southwest Research Institute | Method for inspecting electric resistance welds using magnetostrictive sensors |
-
1998
- 1998-11-18 WO PCT/JP1998/005194 patent/WO1999027360A1/en active Application Filing
- 1998-11-18 US US09/554,787 patent/US6450036B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6318920Y2 (en) * | 1980-06-12 | 1988-05-27 | ||
JPH0627089A (en) * | 1992-07-07 | 1994-02-04 | Hitachi Constr Mach Co Ltd | Velocity measuring apparatus for surface acoustic wave |
JPH0735732A (en) * | 1993-07-23 | 1995-02-07 | Mitsubishi Cable Ind Ltd | Deterioration diagnostic apparatus for cable coating material |
JPH0735733A (en) * | 1993-07-23 | 1995-02-07 | Mitsubishi Cable Ind Ltd | Deterioration diagnostic method for cable coating material |
JPH095309A (en) * | 1995-06-22 | 1997-01-10 | Toshiba Tungaloy Co Ltd | Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2235317C2 (en) * | 2001-01-09 | 2004-08-27 | Открытое акционерное общество "Предприятие по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "УралОРГРЭС" | Method and device for determining condition of high-temperature pipelines bends |
US6810743B2 (en) * | 2001-08-01 | 2004-11-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Non-destructive evaluation of wire insulation and coatings |
JP2014227674A (en) * | 2013-05-20 | 2014-12-08 | トヨタホーム株式会社 | Durability prediction device of roof component |
Also Published As
Publication number | Publication date |
---|---|
US6450036B1 (en) | 2002-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999027360A1 (en) | Method and device for diagnosing deterioration of an article having at least a covering layer of organic polymer material | |
JP5502096B2 (en) | Portable polymer testing equipment | |
US5174160A (en) | Method of diagnosing electric wires and cables for deterioration of their polymer-insulation and a measuring apparatus used therefor | |
JP3316182B2 (en) | Method for estimating remaining life of coated cable | |
JP3286596B2 (en) | Degradation diagnosis method and remaining life estimation method of coated cable | |
JP3691477B2 (en) | Soundness diagnosis method for concrete structures | |
JP2004236465A (en) | Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment | |
JP3081734B2 (en) | Degradation diagnosis device for cable coating material | |
JP3341986B2 (en) | Method for estimating remaining life of coated cable | |
JP3387825B2 (en) | Method for estimating remaining life of coated cable | |
JP3349090B2 (en) | Method for diagnosing deterioration of organic polymer article and ultrasonic propagation time measuring device used therefor | |
JP3081735B2 (en) | Diagnosis method for deterioration of cable coating material | |
JPH095309A (en) | Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method | |
JP3251548B2 (en) | Method for diagnosing deterioration of cable coating material and recording medium storing deterioration diagnosis program for cable coating material | |
JP3725747B2 (en) | Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment | |
JP4779574B2 (en) | Polymer material degradation diagnosis method | |
JP3678564B2 (en) | Method and apparatus for measuring ultrasonic propagation characteristics | |
JP2004354375A (en) | Deterioration diagnostic method and system for electric wire | |
JP2002131292A (en) | Cable deterioration diagnosis method, deterioration diagnosis device, and fixing jig thereof | |
JP3246859B2 (en) | Method and apparatus for evaluating material deterioration | |
JP3014947B2 (en) | Electric wire / cable deterioration diagnosis method and jig used for the method | |
JP2936231B2 (en) | Internal defect detection device for rubber and plastic materials | |
JPH08219966A (en) | Electric wire / cable deterioration diagnosis method | |
JPH08240572A (en) | Device for measuring degree of deterioration and lifetime of polymer material | |
JPH1137980A (en) | Method for deciding deterioration of high polymer sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09554787 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |