WO1999025287A1 - Zoned disposable absorbent article for urine and low-viscosity fecal material - Google Patents
Zoned disposable absorbent article for urine and low-viscosity fecal material Download PDFInfo
- Publication number
- WO1999025287A1 WO1999025287A1 PCT/US1997/020841 US9720841W WO9925287A1 WO 1999025287 A1 WO1999025287 A1 WO 1999025287A1 US 9720841 W US9720841 W US 9720841W WO 9925287 A1 WO9925287 A1 WO 9925287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- topsheet
- region
- absorbent article
- diaper
- composition
- Prior art date
Links
- 239000002250 absorbent Substances 0.000 title claims abstract description 123
- 230000002745 absorbent Effects 0.000 title claims abstract description 122
- 239000000463 material Substances 0.000 title claims abstract description 63
- 230000002550 fecal effect Effects 0.000 title claims abstract description 59
- 210000002700 urine Anatomy 0.000 title abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims description 150
- 239000003974 emollient agent Substances 0.000 claims description 51
- 239000003795 chemical substances by application Substances 0.000 claims description 48
- 230000003100 immobilizing effect Effects 0.000 claims description 39
- 239000000853 adhesive Substances 0.000 claims description 28
- 230000001070 adhesive effect Effects 0.000 claims description 28
- 235000019271 petrolatum Nutrition 0.000 claims description 20
- 239000002480 mineral oil Substances 0.000 claims description 15
- 235000010446 mineral oil Nutrition 0.000 claims description 15
- 239000004264 Petrolatum Substances 0.000 claims description 13
- 229940066842 petrolatum Drugs 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 239000003208 petroleum Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- -1 polyethylene Polymers 0.000 description 79
- 239000000523 sample Substances 0.000 description 42
- 239000000835 fiber Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 30
- 238000012360 testing method Methods 0.000 description 29
- 238000007726 management method Methods 0.000 description 28
- 239000004094 surface-active agent Substances 0.000 description 24
- 239000000194 fatty acid Substances 0.000 description 22
- 125000000217 alkyl group Chemical group 0.000 description 21
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 20
- 235000014113 dietary fatty acids Nutrition 0.000 description 20
- 229930195729 fatty acid Natural products 0.000 description 20
- 239000012530 fluid Substances 0.000 description 20
- 229920001296 polysiloxane Polymers 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 230000008901 benefit Effects 0.000 description 16
- 150000002191 fatty alcohols Chemical class 0.000 description 15
- 150000001298 alcohols Chemical class 0.000 description 13
- 238000007046 ethoxylation reaction Methods 0.000 description 12
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 150000004665 fatty acids Chemical class 0.000 description 11
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 10
- 210000002414 leg Anatomy 0.000 description 10
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000007859 condensation product Substances 0.000 description 9
- 210000000416 exudates and transudate Anatomy 0.000 description 9
- 102000008186 Collagen Human genes 0.000 description 8
- 108010035532 Collagen Proteins 0.000 description 8
- 125000003342 alkenyl group Chemical group 0.000 description 8
- 229920001436 collagen Polymers 0.000 description 8
- 150000005690 diesters Chemical class 0.000 description 8
- 239000006210 lotion Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000002674 ointment Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 239000005720 sucrose Substances 0.000 description 7
- 206010021639 Incontinence Diseases 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 6
- 239000012188 paraffin wax Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 150000005691 triesters Chemical class 0.000 description 6
- 239000001993 wax Substances 0.000 description 6
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 235000021355 Stearic acid Nutrition 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 229960000541 cetyl alcohol Drugs 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 5
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000008117 stearic acid Substances 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229920005439 Perspex® Polymers 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000004166 Lanolin Substances 0.000 description 3
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- 229940126534 drug product Drugs 0.000 description 3
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 235000019388 lanolin Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 231100000344 non-irritating Toxicity 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 235000003441 saturated fatty acids Nutrition 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ILCOCZBHMDEIAI-UHFFFAOYSA-N 2-(2-octadecoxyethoxy)ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCO ILCOCZBHMDEIAI-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- FLIACVVOZYBSBS-UHFFFAOYSA-N Methyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC FLIACVVOZYBSBS-UHFFFAOYSA-N 0.000 description 2
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 229920002257 Plurafac® Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000013023 gasketing Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 229940075507 glyceryl monostearate Drugs 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229940039717 lanolin Drugs 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 239000012184 mineral wax Substances 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- 229940099259 vaseline Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- QHZLMUACJMDIAE-SFHVURJKSA-N 1-hexadecanoyl-sn-glycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)CO QHZLMUACJMDIAE-SFHVURJKSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 1
- XFOQWQKDSMIPHT-UHFFFAOYSA-N 2,3-dichloro-6-(trifluoromethyl)pyridine Chemical compound FC(F)(F)C1=CC=C(Cl)C(Cl)=N1 XFOQWQKDSMIPHT-UHFFFAOYSA-N 0.000 description 1
- FKMHSNTVILORFA-UHFFFAOYSA-N 2-[2-(2-dodecoxyethoxy)ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCO FKMHSNTVILORFA-UHFFFAOYSA-N 0.000 description 1
- HNUQMTZUNUBOLQ-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-(2-octadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO HNUQMTZUNUBOLQ-UHFFFAOYSA-N 0.000 description 1
- JVTIXNMXDLQEJE-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate 2-octanoyloxypropyl octanoate Chemical compound C(CCCCCCC)(=O)OCC(C)OC(CCCCCCC)=O.C(=O)(CCCCCCCCC)OCC(C)OC(=O)CCCCCCCCC JVTIXNMXDLQEJE-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- AMEMLELAMQEAIA-UHFFFAOYSA-N 6-(tert-butyl)thieno[3,2-d]pyrimidin-4(3H)-one Chemical compound N1C=NC(=O)C2=C1C=C(C(C)(C)C)S2 AMEMLELAMQEAIA-UHFFFAOYSA-N 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004857 Balsam Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 244000062730 Melissa officinalis Species 0.000 description 1
- 235000010654 Melissa officinalis Nutrition 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- QHZLMUACJMDIAE-UHFFFAOYSA-N Palmitic acid monoglyceride Natural products CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 1
- OQILCOQZDHPEAZ-UHFFFAOYSA-N Palmitinsaeure-octylester Natural products CCCCCCCCCCCCCCCC(=O)OCCCCCCCC OQILCOQZDHPEAZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 1
- CEZONBVMFRWNCJ-CYGHRXIMSA-N [(3r,3ar,6s,6ar)-3-hydroxy-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-6-yl] dodecanoate Chemical compound O[C@@H]1CO[C@@H]2[C@@H](OC(=O)CCCCCCCCCCC)CO[C@@H]21 CEZONBVMFRWNCJ-CYGHRXIMSA-N 0.000 description 1
- QVXFGVVYTKZLJN-KHPPLWFESA-N [(z)-hexadec-7-enyl] acetate Chemical compound CCCCCCCC\C=C/CCCCCCOC(C)=O QVXFGVVYTKZLJN-KHPPLWFESA-N 0.000 description 1
- AMZWNNKNOQSBOP-UHFFFAOYSA-M [n'-(2,5-dioxoimidazolidin-4-yl)carbamimidoyl]oxyaluminum;dihydrate Chemical compound O.O.NC(=O)NC1N=C(O[Al])NC1=O AMZWNNKNOQSBOP-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229940015825 aldioxa Drugs 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940003587 aquaphor Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- 229940116224 behenate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000005998 bromoethyl group Chemical group 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940105847 calamine Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 229940096386 coconut alcohol Drugs 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 229940052366 colloidal oatmeal Drugs 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 229940086555 cyclomethicone Drugs 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- TUTWLYPCGCUWQI-UHFFFAOYSA-N decanamide Chemical class CCCCCCCCCC(N)=O TUTWLYPCGCUWQI-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 229940075960 desitin Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229940008099 dimethicone Drugs 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical class CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- QQQMUBLXDAFBRH-UHFFFAOYSA-N dodecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)O QQQMUBLXDAFBRH-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- GJQLBGWSDGMZKM-UHFFFAOYSA-N ethylhexyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(CC)CCCCC GJQLBGWSDGMZKM-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 229940081618 glyceryl monobehenate Drugs 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229910052864 hemimorphite Inorganic materials 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940033357 isopropyl laurate Drugs 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229960000829 kaolin Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 229940100556 laureth-23 Drugs 0.000 description 1
- 229940057905 laureth-3 Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N methionine Chemical compound CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical class CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical class C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229940080308 racemethionine Drugs 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010686 shark liver oil Substances 0.000 description 1
- 229940069764 shark liver oil Drugs 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- FVEFRICMTUKAML-UHFFFAOYSA-M sodium tetradecyl sulfate Chemical compound [Na+].CCCCC(CC)CCC(CC(C)C)OS([O-])(=O)=O FVEFRICMTUKAML-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 229960004129 sorbitan tristearate Drugs 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229940098760 steareth-2 Drugs 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229940057400 trihydroxystearin Drugs 0.000 description 1
- LINXHFKHZLOLEI-UHFFFAOYSA-N trimethyl-[phenyl-bis(trimethylsilyloxy)silyl]oxysilane Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)C1=CC=CC=C1 LINXHFKHZLOLEI-UHFFFAOYSA-N 0.000 description 1
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- MTZBBNMLMNBNJL-UHFFFAOYSA-N xipamide Chemical compound CC1=CC=CC(C)=C1NC(=O)C1=CC(S(N)(=O)=O)=C(Cl)C=C1O MTZBBNMLMNBNJL-UHFFFAOYSA-N 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 235000013904 zinc acetate Nutrition 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- CPYIZQLXMGRKSW-UHFFFAOYSA-N zinc;iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Zn+2] CPYIZQLXMGRKSW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/45—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
- A61F13/49—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape specially adapted to be worn around the waist, e.g. diapers, nappies
- A61F13/495—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape specially adapted to be worn around the waist, e.g. diapers, nappies with faecal cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15203—Properties of the article, e.g. stiffness or absorbency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers of the pads
- A61F13/511—Topsheet, i.e. the permeable cover or layer facing the skin
- A61F13/513—Topsheet, i.e. the permeable cover or layer facing the skin characterised by its function or properties, e.g. stretchability, breathability, rewet, visual effect; having areas of different permeability
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/84—Accessories, not otherwise provided for, for absorbent pads
- A61F13/8405—Additives, e.g. for odour, disinfectant or pH control
Definitions
- This invention relates to disposable absorbent articles, such as diapers and adult incontinence products, and more particularly to disposable absorbent articles which have the ability to effectively handle both urine and low- viscosity fecal material.
- Disposable products of this type generally comprise some sort of fluid-permeable topsheet material, an absorbent core, and a fluid- impermeable backsheet material.
- BM fluid-permeable topsheet material
- absorbent core an absorbent core
- fluid- impermeable backsheet material a fluid- impermeable backsheet material.
- these types of absorbent structures may be highly efficient for the absorption of fluids, they cannot absorb bowel movements (i.e., hereinafter referred to as "BM").
- BM bowel movements
- the BM is trapped between the outer surface of the fluid-permeable topsheet and the skin of the wearer, much of it adhering to the wearer's skin.
- the caregiver often applies protective or "repellent" products such as vaseline or mineral oil to the buttocks .and .anal region before placing the absorbent article on the wearer.
- This procedure usually involves the caregiver's pouring of the oil or lotion, for example, in one of their hands, rubbing both hands together to distribute the substance thereon and then wiping the same on the skin of the infant.
- absorbent articles which contain a protective or therapeutic skin care substance on the topsheet.
- Mineral oil also known as liquid petrolatum
- Mineral oil is a mixture of various liquid hydrocarbons obtained by distilling the high-boiling (i.e., 300°-390°C) fractions in petroleum.
- Mineral oil is liquid at ambient temperatures, e.g. 20 °-25°C. As a result, mineral oil is relatively fluid and mobile, even when applied to .article topsheets.
- mineral oil is fluid and mobile at ambient temperatures, it tends not to remain localized on the surface of the topsheet, but instead migrates through the topsheet into the interior of the diaper. Accordingly, relatively high levels of mineral oil need to be applied to the topsheet to provide the desired therapeutic or protective coating lotion benefits. This leads not only to increased costs for these lotioned products, but other detrimental effects as well.
- the invention is a disposable absorbent article, such as a diaper.
- the disposable absorbent article has a first region juxtaposed with the front of the wearer and a second region juxtaposed with the back of the wearer.
- the disposable absorbent article comprises a liquid pervious topsheet, a liquid impervious backsheet joined to the topsheet, and an absorbent core positioned between the topsheet and the backsheet. Since the first region is juxtaposed with the front of the wearer it should be superior in the handling of urine while the second region which is juxtaposed with the back of the wearer should be superior in the handling of low-viscosity fecal material.
- the first region has a PACORM value of less than 120 mg and the second region has a trans-topsheet capacity of at least 0.2 grams per square inch.
- Figure 1 is a top plan view, shown partially in cutaway, of a disposable absorbent article according to the present invention.
- Figure 2 is a schematic side elevational view of an apparatus which may be used to measure the trans-topsheet penetration.
- Figure 3 is a perspective view of a fecal management member.
- Figure 4 is an illustration of the test set up for the Acquisition Test.
- Figure 5 is an illustration of the test set up for the Post Acquisition Callagen Rewet
- absorbent article refers to devices which absorb and contain body exudates, and, more specifically, refers to devices which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body.
- dispenser is used herein to describe absorbent articles which are not intended to be laundered or otherwise restored or reused as an absorbent article (i.e., they are intended to be discarded after a single use and, preferably, to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
- a "unitary” absorbent article refers to absorbent articles which are formed of separate parts united together to form a coordinated entity so that they do not require separate manipulative parts like a separate holder and liner.
- a preferred embodiment of an absorbent article of the present invention is the unitary disposable absorbent article, diaper 20, shown in Figure 1.
- the term "diaper” refers to an absorbent article generally worn by infants and adult incontinent persons and is worn about the lower torso of the wearer.
- the present invention is also applicable to other absorbent articles such as incontinence briefs, incontinence undergarments, absorbent inserts, diapers holders and liners, feminine hygiene garments, and the like.
- FIG. 1 is a plan view of the diaper 20 of the present invention in its flat-out, uncontracted state (i.e., with elastic induced contraction pulled out) with portions of the structure being cut-away to more clearly show the construction of the diaper 20 and with the portion of the diaper 20 which faces or contacts the wearer, the inner surface, oriented towards the viewer.
- the diaper 20 preferably comprises a liquid pervious topsheet 24; a liquid impervious backsheet 26 joined with the topsheet 24; an absorbent core 28 intermediate the topsheet 24 and the backsheet 26; and a fecal management member 30 positioned between the topsheet 24 and the absorbent core 28.
- the diaper 20 may further comprise elasticized side panels (not shown); elasticized leg cuffs (not shown); an elastic waist feature (not shown); and a fastening system with tape tabs generally multiply designated as 36.
- the diaper 20 is shown in Figure 1 to have a first region 31 juxtaposed with the front of the wearer while the diaper 20 is being worn and a second region 32 opposed to the first region 31 and juxtaposed with the back of the wearer while the diaper 20 is being worn, and a periphery which is defined by the outer edges of the diaper 20 in which the longitudinal edges are designated 33 and the end edges are designated 35.
- the first region 31 is shown as extending from one end edge 35 to the lateral centerline 21 and the second region 32 is shown as extending from the opposing end edge 35 to the lateral centerline 21.
- the lateral centerline 21 is shown as the boundary between the first region 31 and the second region 32 in Figure 1.
- first region 31 and the second region 32 may be positioned at other locations, for example closer to one of the respective end edges 35.
- the first region 31 being juxtaposed with the front of the wearer should be superior in the handling of urine.
- the second region being juxtaposed with the back of the wearer should be superior in the handling of fecal material, in particular low-viscosity fecal material.
- the inner surface of the diaper 20 comprises that portion of the diaper 20 which is adjacent to the wearer's body during use (i.e., the inner surface generally is formed by at least a portion of the topsheet 24 and other components joined to the topsheet 24).
- the outer surface comprises that portion of the diaper 20 which is positioned away from the wearer's body (i.e., the outer surface generally is formed by at least a portion of the backsheet 26 and other components joined to the backsheet 26) during use.
- FIG. 1 shows an embodiment of the diaper 20 in which the topsheet 24 and the backsheet 26 have length and width dimensions generally larger than those of the absorbent core 28.
- the topsheet 24 and the backsheet 26 extend beyond the edges of the absorbent core 28 to thereby form the periphery of the diaper 20.
- the topsheet 24, the backsheet 26, and the core 28 may be assembled in a variety of well known configurations, preferred diaper configurations are described generally in U.S. Patent 3,860,003 entitled “Contractable Side Portions for Disposable Diaper” which issued to Kenneth B. Buell on January 14, 1975; and U.S. Patent 5,151,092, "Absorbent Article With Dynamic Elastic Waist Feature Having A Predisposed Resilient Flexural Hinge", issued to Kenneth B. Buell et al. September 29, 1992; each of which is incorporated herein by reference.
- the absorbent core 28 may be any absorbent means which is generally compressible, conformable, non-irritating to the wearer's skin, .and capable of absorbing and retaining liquids such as urine and other certain body exudates. As shown in Figure 1, the absorbent core 28 has a garment surface, a body surface, side edges, and waist edges.
- the absorbent core 28 may be manufactured in a wide variety of sizes .and shapes (e.g., rectangular, hourglass, "T"-shaped, asymmetric, etc.) and from a wide variety of liquid-absorbent materials commonly used in disposable diapers and other absorbent articles such as comminuted wood pulp which is generally referred to as airfelt.
- absorbent materials examples include creped cellulose wadding; meltblown polymers including coform; chemically stiffened, modified or cross-linked cellulosic fibers; tissue including tissue wraps and tissue laminates; absorbent foams; absorbent sponges; superabsorbent polymers; absorbent gelling materials; or any equivalent material or combinations of materials.
- the configuration and construction of the absorbent core 28 may also be varied (e.g., the absorbent core 28 may have varying caliper zones, a hydrophilic gradient, a superabsorbent gradient, or lower average density and lower average basis weight acquisition zones; or may comprise one or more layers or structures).
- the total absorbent capacity of the absorbent core 28 should, however, be compatible with the design loading and the intended use of the diaper 20. Further, the size and absorbent capacity of the absorbent core 28 may be varied to accommodate wearers ranging from infants through adults.
- Exemplary absorbent structures for use as the absorbent core 28 are described in U.S. Patent 4,610,678 entitled “High-Density Absorbent Structures” issued to Weisman et al. on September 9, 1986; U.S. Patent 4,673,402 entitled “Absorbent Articles With Dual-Layered Cores” issued to Weisman et al. on June 16, 1987; U.S. Patent 4,888,231 entitled “Absorbent Core Having A Dusting Layer” issued to Angstadt on December 19, 1989; and U.S. Patent 4,834,735, entitled “High Density Absorbent Members Having Lower Density .and Lower Basis Weight Acquisition Zones", issued to Alemany et al. on May 30, 1989. Each of these patents is incorporated herein by reference.
- the backsheet 26 is positioned adjacent the garment surface of the absorbent core 28 and is preferably joined thereto by attachment means (not shown) such as those well known in the art.
- attachment means such as those well known in the art.
- the term "joined” encompasses configurations whereby an element is directly secured to the other element by affixing the element directly to the other element, .and configurations whereby the element is indirectly secured to the other element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
- the backsheet 26 may be secured to the absorbent core 28 by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive.
- Adhesives which have been found to be satisfactory are manufactured by H. B. Fuller Company of St. Paul, Minnesota and marketed as HL-1258.
- the attachment means will preferably comprise an open pattern network of filaments of adhesive as is disclosed in U.S. Patent 4,573,986 entitled "Disposable Waste-Containment Garment", which issued to Minetola et al. on March 4, 1986, more preferably several lines of adhesive filaments swirled into a spiral pattern such as is illustrated by the apparatus and methods shown in U.S.
- the attachment means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment means or combinations of these attachment means as are known in the art.
- the backsheet 26 is impervious to liquids (e.g., urine) and is preferably manufactured from a thin plastic film, although other flexible liquid impervious materials may also be used.
- liquids e.g., urine
- flexible refers to materials which are compliant and will readily conform to the general shape and contours of the human body.
- the backsheet 26 prevents the exudates absorbed and contained in the absorbent core 28 from wetting .articles which contact the diaper 20 such as bedsheets and undergarments.
- the backsheet 26 may thus comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, or composite materials such as a film-coated nonwoven material.
- the backsheet 26 is a thermoplastic film having a thickness of about 0.012 mm (0.5 mil) to about 0.051 mm (2.0 mils).
- Particularly preferred materials for the backsheet 26 include RR8220 blown films and RR5475 cast films as manufactured by Tredegar Industries, Inc. of Terre Haute, Indiana.
- the backsheet 26 is preferably embossed and/or matte finished to provide a more clothlike appearance. Further, the backsheet 26 may permit vapors to escape from the absorbent core 28 (i.e., be breathable) while still preventing exudates from passing through the backsheet 26.
- the topsheet 24 has a first or inner surface oriented toward the interior of the disposable diaper and an opposed second or outer surface oriented toward the skin of the wearer when the diaper is worn.
- the topsheet 24 is preferably joined to the backsheet 26 by means such as those well known in the .art. Suitable attachment means are described above with respect to joining the backsheet 26 to the absorbent core 28.
- the topsheet 24 and the backsheet 26 are joined directly to each other in the diaper periphery.
- the topsheet 24 may be a nonwoven web of fibers spunbonded, carded, wet-laid, meltblown, hydroentangled, combinations or composite laminates of the above, or the like.
- Preferred topsheets 24 include a carded/carded composite, hydroentangled over a wire forming screen and thermally air-through bonded by means well known to those skilled in the nonwovens art and hydroentanglement of fibrous webs.
- apertured formed films, woven netting, .and woven apertured netting may be suitable.
- the second region 32 of the diaper 20 should be designed to be superior in the handling of low-viscosity fecal material as compared to the first region 31 which should be superior in the handling of urine.
- the trans-topsheet capacity reflects the diapers ability to handle low-viscosity fecal material.
- the second region 32 of the diaper 20, the region designed to handle low viscosity fecal material should have a relatively high trans-topsheet capacity.
- the second region 32 of the diaper 20 should have a relatively higher trans-topsheet capacity than the first region 31.
- the second region 32 of the diaper 20 should have a trans-topsheet capacity of at least about 0.20 grams per square inch provided at least 30 square inches of the diaper 20 has such a trans-topsheet capacity and preferably at least 45 square inches of the diaper 20 has such a tr,ans-topsheet capacity. It is believed that a minimum of 4 square inches of the diaper 20, which are closely registered with the anal opening, are necessary to handle low- viscosity fecal material. If such a relatively small region of the diaper 20 is provided, this region of the diaper 20 should have a trans-topsheet capacity of at least about 0.50 and preferably at least about 0.60 grams per square inch.
- Trans-topsheet capacity is measured by the following test.
- the apparatus 39 used for this measurement is illustrated in Figure 2.
- a hollow stainless steel cylinder 40 mounted on a plate 42 is provided.
- the stainless steel cylinder 40 has a height of 7.5 centimeters (2.95 inches), an inside diameter of 5.08 centimeters (2.00 inches) and an outside diameter of 6.3 centimeters (2.48 inches).
- the bottom of the cylinder 40 extends below the plate a distance of 3.5 millimeters, and has a lip with an annular thickness of 3.5 millimeters.
- the lip 43 prevents the fecal material analog, discussed below, from leaking outside the designated test area of the sample.
- weight 44 100.6 grams.
- the weight 44 is also cylindrically shaped and has a diameter of 5.08 centimeters (2.0 inches), so that the weight 44 fits tightly within the cylinder 40 but can freely slide throughout the hole in the cylinder 40.
- This arrangement provides a pressure of 49.57 kilograms per square meter (0.071 pounds per squ ⁇ ire inch) and a test area of 3.142 square inches.
- the weight 44 may have a handle 45 to allow it to be easily inserted into and removed from the cylinder 40.
- a sample 46 to be tested is provided.
- the sample 46 is preferably cut from the second region 32 of an existing diaper 20, but prophetically may be supplied in raw material form as a laminate of the various components of the diaper 20.
- the sample 46 is cut to a 10.16 by 10.16 centimeters (4 by 4 inch) square size.
- the sample 46 is taken from any area of the diaper 20 having the absorbent core 28 inside the square which defines the sample 46.
- the sample 46 should include all layers and components of the diaper 20 from the topsheet 24 through and including the backsheet 26. Care must be taken when removing the sample 46 from the diaper 20 not to destroy the sample 46 or cause unintended gross deformation of the topsheet 24.
- the topsheet 24, or its equivalent in the diaper 20, is removed from the balance of the sample 46.
- the sample 46 (without the first topsheet 24) is weighed to the nearest 0.01 grams.
- the topsheet 24 is then carefully returned to its original position in the sample 46, without being joined thereto. If difficulty is encountered in removing the sample 46 from the diaper 20, or in removing the topsheet 24 from the sample 46, the sample 46 and the surrounding portion of the diaper 20 may be frozen prior to or after cutting. Freezing may be accomplished using PH100-15 circuit refrigerant made by Philips ECG, Inc. of Waltham, Massachusetts.
- the cylinder 40 is centered on the sample 46.
- a syringe having an opening of 5 to 6 millimeters dispenses 10 cubic centimeters of test fluid through the hole in the cylinder 40 onto the top of the sample 46.
- the test fluid is an analog formulated as described below.
- the 100.6 gram weight 44 is inserted through the hole in the cylinder 40 and gently placed on the test fluid for a period of 2 minutes.
- the weight 44 and cylinder 40 are removed from the sample 46.
- the topsheet 24 is removed from the sample 46 by dragging the topsheet 24 parallel to the sample 46 and discarded. The remainder of the sample 46 is then reweighed.
- the trans-topsheet capacity is the increase in weight of all layers of the sample 46 underlying the topsheet 24 divided by the sample 46 test area of 3.142 square inches.
- the test fluid is an analog made by mixing 3 percent by weight Carbopol 941 available from the B. F. Goodrich Corporation of Brecksville, Ohio, or an equivalent acrylic polymer, in distilled water for five minutes using a hand held electric mixer. The mixture is allowed to equilibrate for at least 12 hours and used for the trans-topsheet capacity test within 72 hours.
- the second region 32 diaper 20 preferably provides a trans-topsheet capacity, as measured by the foregoing test, of at least 0.20 grams per square inch, more preferably at least 0.30 grams per square inch, even more preferably at least 0.40 grams per square inch, still more preferably at least 0.50 grams per square inch, and most preferably at least 0.60 grams per square inch.
- the topsheet 24 may allow penetration of the fecal material to achieve the trans-topsheet capacities set forth in Table I, by having apertures with an effective aperture size of at least 0.2 square millimeters, and preferably at least 0.3 square millimeters. Effective apertures are those which have a gray level of 18 or less on a standard gray level scale of 0-255, under the image acquisition parameters described below.
- the topsheet 24 within the second region 32 preferably has an effective open area of at least 15 percent, more preferably the topsheet has an effective open area of at least 20 percent, even more preferably, the topsheet has an effective open area of at least 25 percent, and most preferably the topsheet has an effective open area of at least 30 percent.
- the effective aperture size and effective open area are determined by the following procedure using the image analysis described below.
- the procedure has three principal steps: image acquisition, i.e., obtaining representative images of areas on the surface of the topsheet 24; image measurement, i.e., measuring the percentage open area of an image and of individual apertures and their perimeters; and data analysis, i.e., exporting the percentage open area, individual aperture area, and perimeter measurements to a spreadsheet where frequency distributions, sum of area distributions, and hydraulic radius computations are made.
- An image analysis system having a frame grabber board, microscope, camera and image analysis software is utilized.
- a model DT2855 frame grabber board available from Data Translation of Marlboro, Mass. is provided.
- a VH5900 monitor microscope, a video camera, having aVH50 lens with a contact type illumination head available from the Keyence Company of Fair Lawn, N.J. are also provided and used to acquire an image to be saved to computer file.
- the Keyence microscope acquires the image and the frame grabber board converts the analog signal of this image into computer readable digital format.
- the image is saved to computer file and measured using suitable software such as the Optimas Image Analysis software, version 3.1, available from the BioScan Company of Edmaons, Wash.
- the computer In order to use the Optimas Image Analysis software, the computer should have Windows software, version 3.0 or later, available from the Microsoft Corporation of Redmond, Wash. And also have a CPU at least equivalent to the Intel 80386. Any suitable desk top PC may be used, with a 486 DX33 type PC having been found to be particularly suitable. Images being saved to and recalled from file were displayed on a Sony Trinitron monitor model PVM-1343MO with a final display magnification of about 50X.
- the image acquisition step requires 10 different regions from a representative topsheet 24 sample of a particular type of diaper 20 or from sample material to be tested. Each region is rectangular, measuring about 5.8 millimeters by 4.2 millimeters.
- the sample is placed on a black mat board to increase the contrast between the apertures and the portion of the sample which defines the apertures.
- the mean gray level and standard deviation of the black mat board were 16 and 4, respectively.
- Images are acquired with room lights off using the Keyence monitor microscope mounted on a copystand directly above the sample.
- the Keyence light source illuminating the sample is adjusted and monitored with the Optimas software to measure the mean gray level and standard deviation of a 0.3 density wedge on a Kodak Gray Scale available from Eastman Kodak Company of Rochester, New York.
- the control of Keyence light source is adjusted so that the mean gray level of the illuminated wedge is 111 + 1 and the standard deviation is 10 + 1. All images were acquired during a single time period, and the Keyence light source is monitored by measuring the mean gray level and standard deviation of the wedge throughout the image acquisition process.
- an effective aperture size In measuring an individual aperture, only the effective aperture size is of interest. Measuring the effective aperture size quantifies the aperture size intended to contribute to the porosity of the topsheet 24, and account for contributions of fibers and fiber bundles which traverse an area intended to be an aperture.
- An effective aperture is any hole through the topsheet 24 having a gray level less than or equal to 18 using image acquisition parameters as described herein. Thus, an intended aperture may be divided into plural effective apertures by traverse fibers.
- the image analysis software is calibrated in millimeters by a ruler image acquired from the sample images.
- a 3 by 3 pixel averaging filter found in the Optimas 3.1 Image menu is applied to each saved image to reduce noise.
- the apertures are detected in the gray level range of 0 through 18.
- An aperture which is not fully contained within the 5.8 by 4.2 viewing area is not considered in the individual area and perimeter measurements. Therefore, area and perimeter averages and distributions are not affected by apertures which are not wholly contained within the field of view.
- the percentage open area for the average of 10 images for each topsheet 24 is measured using the Optimas Image Analysis software.
- the percentage open area is defined as the ratio of the number of pixels having a gray level from 0 through 18 to the total number of pixels for the image.
- the percentage open area is measured for each image representing one particular region from a topsheet sample.
- the percentage open area from each of the 10 individual images is then averaged to yield a percentage open area for the entire sample.
- the data analysis is conducted by an Excel spreadsheet, also available from the Microsoft Corporation of Redmond, Washington.
- the Excel spreadsheet organized the percentage open area, aperture area, and aperture perimeter measurements obtained from the Optimas software. Sample averages and standard deviations, size and frequency distributions of individual aperture areas and hydraulic radius computations (area divided by perimeter) for individual apertures are obtained using the spreadsheet.
- Distributions of individual aperture area are also computed using the Excel spreadsheet.
- the apertures are sorted into bins of certain size ranges.
- the number of aperture areas falling into certain size ranges of interest is determined as well as the sum of the areas within each range.
- the ranges are set in increments of 0.05 square millimeters. These areas are expressed as a percentage of the total open area of the sample.
- the frequency and sum of the area distributions are obtained by combining individual aperture measurements from all 10 images for each sample.
- the fecal management member 30 may either be absorbent or nonabsorbent.
- a material suitable for an absorbent fecal management member 30 is a cellulosic fibrous structure, such as paper.
- the cellulosic fibrous structure may be made by having a continuous high basis weight network with discrete regions of low basis weight, or even discrete apertures having a zero basis weight.
- the low- viscosity fecal material passes through the topsheet 24 and resides on the fecal management member 30.
- the low basis weight discrete regions or apertures form cells which immobilize the low- viscosity fecal material.
- the low-viscosity fecal material is immobilized in this position, it does not return to soil or irritate the skin of the wearer. Furthermore, the low viscosity fecal material can be dewatered into separate components by the capillary action of the more fluid components of the low- viscosity fecal material into the cellulosic fibrous material of the fecal management member 30.
- a nonabsorbent fecal management member 30 may be provided. If a nonabsorbent fecal management member 30 is selected, it may be provided in the form of an apertured formed film meeting the caliper requirements described above. A suitable formed film is available from Tredegar Corporation of Terre Haute, Indiana under the designation X5790.
- the fecal management member 30 is nonabsorbent, it must be associated with a core 28 which has adequate capacity to absorb and retain the fluids deposited thereon.
- Figure 3 is another embodiment of a fecal management member 30.
- the fecal management member 30 is a sheet of loop material 118 having a backing 120 having front and rear major surfaces 123 and 124, and a multiplicity of longitudinally oriented fibers in a specially formed sheet of fibers 126 having anchor generally non- deformed anchor portions 127 bonded by being embedded in the backing layer 120 at spaced elongate generally parallel bonding locations 128 that are continuous in one direction along the front surface 123 with arcuate portions 130 of the sheet of fibers 126 projecting from the front surface 123 of the backing layer 120 between the bonding locations 128 in continuous rows also extending transversely across the sheet of loop material 118.
- the arcuate portions 130 of the sheet of fibers 126 have a generally uniform height from the backing layer 120 of greater than about 0.5 millimeters and preferably greater than about 1.0 millimeters, the height of the formed sheet of fibers 126 is at least one third, and preferably one half to one and one half times the distance between the bonding locations 128, the individual fibers in the sheet of fibers 126 are less than 25 denier (preferably in the range of 1 to 10 denier) in size, and the sheet of fibers 126 without the backing 120 has a basis weight in the range of 5 to 300 grams per square meter (and preferably in the range of 15 to 100 grams per square meter) measured along the first surface 123 to provide sufficient open area between the fibers in the sheet of fibers 126 along the arcuate portions 130 (i.e., between about 10 and 90 percent open area) to afford ready penetration of fecal material into the individual fibers along the arcuate portions 130.
- Suitable materials for use as the backing 120 include but are not limited to thermoplastic films, porous films, apertured films, apertured formed films, unapertured formed films, nonwoven webs, breathable materials, such as breathable films, including but not limited to microporous films, apertured nonwoven webs and the like.
- the backing 120 is preferably a relatively thin layer having a thickness in the range of about 0.00125 to 0.025 centimeters.
- the fibers in the sheet of fibers 126 can be disposed in various directions with respect to the parallel bonding locations 128 and may or may not be bonded together at crossover points in the arcuate portions 130; can be disposed in various directions with respect to the parallel bonding locations 128 with the majority of the fibers in the sheet of fibers 126 (i.e., over 80 or 90 percent) extending in directions at about a right angle to the bonding locations 128; or all of the individual fibers in the sheet of fibers 126 can extend in directions generally at right angles to the spaced generally parallel bonding locations 128.
- the fecal management member must have a lofted open structure.
- One key component of this equation is the height of the arcuate portions 130 of the sheet of fibers 126 from the backing 120.
- the arcuate portions 130 of the sheet of fibers 126 have a generally uniform height from the backing 120 of greater than about 0.5 millimeters and preferably greater than about 1.0 millimeters. While even greater heights would provide excellent handling of low-viscosity fecal material, e.g., heights of 5.0 centimeters, such heights would create unwanted bulk in the diaper which may cause discomfort for the wearer.
- the sheet of fibers 126 In order to remain open, the sheet of fibers 126 must have a sufficient resiliency to withstand the forces of packaging and those applied by the wearer.
- the sheet of fibers 126 has a resiliency of at least 50% after 30 seconds under an applied force of 100g/cm2, more preferably, the sheet of fibers 126 has a resiliency of at least 75% after 30 seconds under an applied force of 100g/cm2, most preferably, the sheet of fibers 126 has a resiliency of at least 85% after 30 seconds under an applied force of 100g/cm2.
- the trans-topsheet capacity reflects the diapers ability to handle low-viscosity fecal material.
- the Post acquisition collagen rewet method (PACORM) reflects the diapers ability to handle urine.
- the first region 31 of the diaper 20, the region designed to handle urine, should have a relatively low PACORM.
- the first region 31 of the diaper 20 should have a relatively lower PACORM than the second region 32.
- the first region 21 of the diaper 20 preferably has a PACORM value of less than 120 mg, more preferably, a PACORM value of less than 100 mg, and most preferably, a PACORM value of less than 80 mg.
- the synthetic urine used in these test methods is commonly known as Jayco SynUrine and is available from Jayco Pharmaceuticals Company of Camp Hill, Pennsylvania.
- the formula for the synthetic urine is: 2.0 g/1 of KC1; 2.0 g/1 of Na2S ⁇ 4; 0.85 g/1 of (NH4)H2P04; 0.15 g/1 (NH4)H2P ⁇ 4; 0.19 g/1 of CaCl2; ad 0.23 g/1 of MgCl2- All of the chemicals are of reagent grade.
- the pH of the synthetic Urine is in the range of 6.0 to 6.4.
- an absorbent structure (410) is loaded with a 75 ml gush of synthetic urine at a rate of 15 ml/s using a pump (Model 7520-00, supplied by Cole Parmer Instruments., Chicago, U.S.A.), from a height of 5 cm above the sample surface.
- the time to absorb the urine is recorded by a timer.
- the gush is repeated at precisely 5 minute gush intervals until the article is sufficiently loaded.
- Current test data are generated by loading four times.
- the test sample which can be a complete absorbent article or an absorbent structure comprising an absorbent core, a topsheet, and a backsheet, is arranged to lie flat on a foam platform 411 within a perspex box (only base 412 of which is shown).
- a perspex plate 413 having a 5 cm diameter opening in its middle is placed on top of the sample on the loading zone of the structure. Synthetic urine is introduced to the sample through a cylinder 414 fitted, and glued into the opening. Electrodes 415 are located on the lowest surface of the plate, in contact with the surface of the absorbent structure 410. The electrodes .are connected to the timer. Loads 416 are placed on top of the plate to simulate, for example a baby's weight. A pressure of about 50g cm-2 (OJpsi) is achieved by positioning weights 416, e.g. for the commonly available MAXI size 20 kg.
- test fluid As test fluid is introduced into the cylinder it typically builds up on top of the absorbent structure thereby completing an electrical circuit between the electrodes.
- the test fluid is transported from the pump to the test assembly by means of a tubing of about 8 mm diameter, which is kept filled with test fluid.
- the fluid starts to leave the tubing essenti ly at the same time the pump st.arts operating.
- the timer is started, and the timer is stopped when the absorbent structure has absorbed the gush of urine, and the electrical contact between the electrodes is broken.
- the acquisition rate is defined as the gush volume absorbed (ml) per unit time(s).
- the acquisition rate is calculated for each gush introduced into the s.ample.
- Of particular interest in view of the current invention are the first and the last of the four gushes.
- This test is primarily designed to evaluate products generally referred to as MAXI size products for a design capacity of about 300 ml, and having a respective Ultimate Storage Capacity of about 300 ml to 400 ml. If products with significantly different capacities should be evaluated (such as can be envisaged for adult incontinence products or for smaller babies), the settings in particular of the fluid volume per gush should be adjusted appropriately to about 20% of the total article design capacity, and the deviation from the standard test protocol should be recorded.
- the collagen film as purchased from NATURIN GmbH, Weinhein, Germany, under the designation of COFFI and at a basis weight of about 28g/m2 is prepared by being cut into sheets of 90 mm diameter e.g. by using a sample cutter device, and by equilibrating the film in the controlled environment of the test room (see above) for at least 12 hours (tweezers are to be used for all handling of the collagen film). At least 5 minutes, but not more than 6 minutes after the last gush of the above acquisition test is absorbed, the cover plate and weights are removed, .and the test sample (520) is carefully placed flat on a lab bench.
- the Post Acquisition Collagen Rewet Method result is the moisture pick up of the collagen film, expressed in mg.
- this testing protocol can be adjusted easily according to specific product types, such as different baby diaper sizes, or adult incontinence articles, or catamenial articles, or by the variation in the type and amount of loading fluid, the amount and size of the absorbent material, or by variations in the applicable pressure. Having once defined these relevant parameters, such modifications will be obvious to one skilled in the art. When considering the results from the adjusted test protocol the products can easily be optimising these identified relevant parameter such as in a designed experiment according to standard statistical methods with realistic in use boundary conditions.
- only the portion of the topsheet 24 within the second region 32 comprises a skin care composition. While the specific composition is not the critical factor in achieving improved skin condition, it is apparent that the composition must provide either a protective, nonocclusive function (e.g., a relatively liquid impervious but vapor pervious barrier) to avoid skin hyperhydration and skin exposure to materials contained in body exudates, or it must contain agents that deliver, either directly or indirectly, skin care benefits. For example, indirect benefits include improved removal of skin irritants such as feces or urine.
- the composition may be in a variety of forms, including, but not limited to, emulsions, lotions, creams, ointments, salves, powders, suspensions, encapsulations, gels, and the like.
- the term "effective .amount of a skin care composition” refers to an amount of a particular composition which, when applied or migrated to one or more of the wearer-contacting surface(s) of an absorbent article(s), will be effective in providing a protective barrier and/or delivering a skin care benefit when delivered via absorbent articles over time.
- the effective amount of composition applied to the article will depend, to a large extent, on the particular composition used.
- the quantity of the composition on at least a portion of the wearer-contacting surface of the absorbent article will preferably range from about 0.05 mg/in 2 (0.0078 mg/cm 2 ) to about 80 mg/in 2 (12.4 mg/cm 2 ), more preferably from about 1 mg/in 2 (0.16 mg/cm 2 ) to about 40 mg/in 2 (6.20 mg/cm 2 ), still more preferably from about 4 mg/in 2 (0.62 mg/cm 2 ) to about 26 mg/in 2 (4.03mg/cm 2 ).
- These ranges are by way of illustration only and the skilled artisan will recognize that the nature of the composition will dictate the level that must be applied to achieve the desired skin benefits, and that such levels are ascertainable by routine experimentation in light of the present disclosure.
- the level of skin care composition applied to the absorbent article is an important aspect of the present methods, more important is the amount of composition transferred to the wearer's skin during use of one or more treated articles.
- the requisite level delivered to the skin to provide the desired skin benefits will depend to some degree on the nature of the composition employed, Applicants have found that relatively low levels may be delivered while still providing the desired skin effects. This is particularly true for preferred compositions.
- Another benefit of the present method is the controlled application of the skin care composition to deliver the low but effective levels of composition required. This is in contrast to typically sporadic manual application of skin care agents, where the caregiver/user often applies significantly greater levels of material than are needed. Excessive materials added manually may adversely impact the fluid handling properties of the absorbent article, as a result of transfer from the skin to the article. Indeed, for certain materials, such as petrolatum, the levels applied manually may actually result in an occlusive effect, thereby compromising the skin.
- a benefit of the present methods is providing a barrier to surface moisture while avoiding occlusion of the skin (i.e., maintaining skin breathability). Thus, the present methods, which allow controlled composition delivery throughout the wear period, allow transfer of optimal levels of the composition to the skin to improve skin condition.
- the level of skin care composition that is transferred to the wearer during use of one treated absorbent article worn for a period of about 3 hours (a typical daytime wear time)
- preferred is where at least about 0.01 mg/in 2 (0.0016 mg/cm 2 ), more preferably at least about 0.05 mg/in 2 (0.0078 mg/cm 2 ), still more preferably at least about 0.1 mg/in 2 (0.016 mg/cm 2 ), of the composition is transferred to the skin over a three hour wear period.
- the amount of composition delivered by one treated article will be from about 0.01 mg/in 2 (0.0016 mg/cm 2 ) to about 5 mg/in 2 (0.78 mg/cm 2 ), more preferably from about 0.05 mg/in 2 (0.0078 mg/cm 2 ) to about 3 mg/in 2 (0.47 mg/cm 2 ), still more preferably from about 0.1 mg/in 2 (0.016 mg/cm 2 ) to about 2 mg/in 2 (0.31 mg/cm 2 ), over a three hour wear period.
- At least about 0.03 mg/in 2 (0.0047 mg/cm 2 ), more preferably at least about 0.1 mg/in 2 (0.016 mg/cm 2 ), still more preferably at least about 0.3 mg/in 2 (0.047 mg/cm 2 ), of the composition is transferred to the wearer's skin over the 24 hour period.
- the amount of composition delivered after a period of 24 hours where treated articles are applied at each change will be from about 0.03 mg/in 2 (0.0047 mg/cm 2 ) to about 18 mg/in 2 (2J9 mg/cm 2 ), more typically from about 0.1 mg/in 2 (0.016 mg/cm 2 ) to about 10 mg/in 2 (1.55 mg/cm 2 ), still more typically from about 0.3 mg/in 2 (0.047 mg/cm 2 ) to about 6 mg/in 2 (0.93 mg/cm 2 ).
- Such materials include Category I actives as defined by the U.S. Federal Food and Drug Administration's (FDA) Tentative Final Monograph on Skin Protectant Drug Products for Over-the-Counter Human Use, which presently include: alantoin, aluminum hydroxide gel, calamine, cocoa butter, dimethicone, cod liver oil (in combination), glycerine, kaolin, petrolatum, lanolin, mineral oil, shark liver oil, white petrolatum, talc, topical starch, zinc acetate, zinc carbonate, zinc oxide, and the like.
- FDA Federal Food and Drug Administration's
- Category III actives as defined by the U.S. Federal Food and Drug Administration's Tentative Final Monograph on Skin Protectant Drug Products for Over-the-Counter Human Use tentative final monograph on skin protectant drug products for over-the- counter human use, which presently include: live yeast cell derivatives, aldioxa, aluminum acetate, microporous cellulose, cholecalciferol, colloidal oatmeal, cysteine hydrochloride, dexpanthanol, Peruvian balsam oil, protein hydrolysates, racemethionine, sodium bicarbonate, Vitamin A, and the like.
- the skin care compositions useful in the methods of the present invention preferably, though not necessarily, have a melting profile such that they are relatively immobile and localized on the wearer-contacting surface of the article at room temperature, are readily transferable to the wearer at body temperature, and yet are not completely liquid under extreme storage conditions.
- the compositions are easily transferable to the skin by way of normal contact, wearer motion, and/or body heat. Because the composition preferably is substantially immobilized on the article's wearer-contacting surface, relatively low levels of composition are needed to impart the desired skin care benefits.
- special barrier or wrapping materials may be unnecessary in packaging the treated articles useful in the methods of the present invention.
- the skin care compositions useful herein are solid, or more often semi-solid, at 20°C, i.e. at ambient temperatures.
- semi-solid is meant that the composition has a rheology typical of pseudoplastic or plastic liquids.
- the compositions can have the appearance of a semi-solid but can be made to flow as the shear rate is increased. This is due to the fact that, while the composition contains primarily solid components, it also includes some minor liquid components.
- the compositions of the present invention have a zero shear viscosity between about 1.0 X l ⁇ 6 centipoise and about 1.0 X 10 *.
- the zero shear viscosity is between about 5.0 X 10 ⁇ centipoise and about 5.0 X 10 centipoise.
- zero shear viscosity refers to a viscosity measured at very low shear rates (e.g., 1.0 sec'l) using plate and cone viscometer (a suitable instrument is available from TA Instruments of New Castle, DE as model number CSL 100).
- plate and cone viscometer a suitable instrument is available from TA Instruments of New Castle, DE as model number CSL 100.
- One of skill in the art will recognize means other than high melting point components (as discussed below) can be used to provide comparable viscosities measured for such compositions comprising such means can be measured by extrapolating a plot of viscosity vs. shear rate for such compositions to a shear rate of zero at a temperature of about 20°C.
- compositions are at least semi-solid at room temperature to minimize composition migration.
- the compositions preferably have a final melting point (100% liquid) above potential "stressful" storage conditions that can be greater than 45°C (e.g., warehouse in Arizona, car trunk in Florida, etc.).
- Representative compositions having these melt characteristics are described in detail in U.S. Patent No. 5,643,588 (Roe et al.), U.S. Patent No. 5,607,760 (Roe et al.), U.S. Patent No. 5,609,587, and U.S. Patent No. 5,635,191, the disclosure of each of which is incorporated herein by reference.
- preferred compositions will have the following melt profile:
- compositions By being solid or semisolid at ambient temperatures, preferred compositions do not have a tendency to flow and migrate to a significant degree to undesired locations of the article to which they are applied. This means less skin care composition is required for imp.arting desirable therapeutic, protective or conditioning benefits.
- the viscosity of the formulated compositions should be as high as possible to prevent flow within the article to undesired location.
- higher viscosities may inhibit transfer of composition to the wearer's skin. Therefore, a balance should be achieved so the viscosities are high enough to keep the compositions localized on the surface of the article, but not so high as to impede transfer to the wearer's skin.
- Suitable viscosities for the compositions will typically range from about 5 to about 500 centipoise, preferably from about 5 to about 300 centipoise, more preferably from about 5 to about 100 centipoise, measured at 60_C using a rotational viscometer (a suitable viscometer is available from Lab Line Instruments, Inc. of Melrose Park, IL as Model 4537). The viscometer is operated at 60 rpm using a number 2 spindle.
- a useful active ingredient in these compositions is one or more skin protectants or emollients.
- emollient is a material that protects against wetness or irritation, softens, soothes, supples, coats, lubricates, moisturizes, protects and/or cleanses the skin.
- emollients' several of the monographed actives listed above are "emollients'", as that term is used herein.
- these emollients will have either a plastic or liquid consistency at ambient temperatures, i.e., 20°C. This particular emollient consistency allows the composition to impart a soft, lubricious, lotion-like feel.
- emollients useful in the present invention include, but are not limited to, emollients that are petroleum-based; polyol polyesters; sucrose ester fatty acids; polyethylene glycol and derivatives thereof; humectants; fatty acid ester type; alkyl ethoxylate type; fatty acid ester ethoxylates; fatty alcohol type; polysiloxane type; propylene glycol and derivatives thereof; glycerine and derivatives thereof, including glyceride, acetoglycerides, and ethoxylated glycerides of C12- 28 fatty acids; triethylene glycol and derivatives thereof; spermaceti or other waxes; fatty acids; fatty alcohol ethers, particularly those having from 12 to 28 carbon atoms in their fatty chain, such as stearic acid; propoxylated fatty alcohols; other fatty esters of polyhydroxy alcohols; lanolin and its derivatives; kaolin and its derivatives; any of
- Suitable petroleum-based emollients include those hydrocarbons, or mixtures of hydrocarbons, having chain lengths of from 16 to 32 carbon atoms.
- Petroleum based hydrocarbons having these chain lengths include mineral oil (also known as “liquid petrolatum”) and petrolatum (also known as “mineral wax,” “petroleum jelly” .and “mineral jelly”).
- Mineral oil usually refers to less viscous mixtures of hydrocarbons having from 16 to 20 carbon atoms.
- Petrolatum usually refers to more viscous mixtures of hydrocarbons having from 16 to 32 carbon atoms.
- Petrolatum and mineral oil are particularly preferred emollients for compositions of the present invention.
- Suitable fatty acid ester type emollients include those derived from C12-C28 f at ty acids, preferably C16-C22 saturated fatty acids, and short chain (Cj-Cg, preferably C ⁇ - C3) monohydric alcohols.
- Representative examples of such esters include methyl palmitate, methyl stearate, isopropyl laurate, isopropyl myristate, isopropyl palmitate, ethylhexyl palmitate and mixtures thereof.
- Suitable fatty acid ester emollients can also be derived from esters of longer chain fatty alcohols (Ci2 _ C28 > preferably C12-C16) and shorter chain fatty acids e.g., lactic acid, such as lauryl lactate .and cetyl lactate.
- Suitable alkyl ethoxylate type emollients include C12-C22 fatty alcohol ethoxylates having an average degree of ethoxylation of from about 2 to about 30.
- the fatty alcohol ethoxylate emollient is selected from the group consisting of lauryl, cetyl, .and stearyl ethoxylates, and mixtures thereof, having an average degree of ethoxylation ranging from about 2 to about 23.
- alkyl ethoxylates include laureth-3 (a lauryl ethoxylate having an average degree of ethoxylation of 3), laureth-23 (a lauryl ethoxylate having an average degree of ethoxylation of 23), ceteth-10 (a cetyl alcohol ethoxylate having an average degree of ethoxylation of 10) and steareth-10 (a stearyl alcohol ethoxylate having an average degree of ethoxylation of 10).
- laureth-3 a lauryl ethoxylate having an average degree of ethoxylation of 3
- laureth-23 a lauryl ethoxylate having an average degree of ethoxylation of 23
- ceteth-10 a cetyl alcohol ethoxylate having an average degree of ethoxylation of 10
- steareth-10 a stearyl alcohol ethoxylate having an average degree of ethoxylation of 10
- these alkyl ethoxylate emollients are typically used in combination with the petroleum-based emollients, such as petrolatum, at a weight ratio of alkyl ethoxylate emollient to petroleum-based emollient of from about 1 : 1 to about 1 :5, preferably from about 1 :2 to about 1 :4.
- Suitable fatty alcohol type emollients include C12-C22 atty alcohols, preferably Cjg-Cjg fatty alcohols. Representative examples include cetyl alcohol and stearyl alcohol, and mixtures thereof. When employed, these fatty alcohol emollients are typically used in combination with the petroleum-based emollients, such as petrolatum, at a weight ratio of fatty alcohol emollient to petroleum-based emollient of from about 1 : 1 to about 1:5, preferably from about 1 : 1 to about 1 :2.
- emollients for use herein include polysiloxane compounds.
- suitable polysiloxane materials for use in the present invention include those having monomeric siloxane units of the following structure:
- R ⁇ and R 2 for each independent siloxane monomeric unit can each independently be hydrogen or any alkyl, aryl, alkenyl, alkaryl, arakyl, cycloalkyl, halogenated hydrocarbon, or other radical. Any of such radicals can be substituted or unsubstituted. RI and R 2 radicals of any particular monomeric unit may differ from the corresponding functionalities of the next adjoining monomeric unit. Additionally, the polysiloxane can be either a straight chain, a branched chain or have a cyclic structure.
- the radicals R ⁇ and R 2 can additionally independently be other silaceous functionalities such as, but not limited to siloxanes, polysiloxanes, silanes, and polysilanes.
- the radicals RI and R 2 may contain any of a variety of organic functionalities including, for example, alcohol, carboxylic acid, phenyl, and amine functionalities.
- Exemplary alkyl radicals are methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, octadecyl, and the like.
- Exemplary alkenyl radicals are vinyl, allyl, and the like.
- Exemplary aryl radicals are phenyl, diphenyl, naphthyl, and the like.
- Exemplary alkaryl radicals are toyl, xylyl, ethylphenyl, and the like.
- Exemplary aralkyl radicals are benzyl, alpha-phenylethyl, beta-phenylethyl, alpha-phenylbutyl, .and the like.
- Exemplary cycloalkyl radicals are cyclobutyl, cyclopentyl, cyclohexyl, and the like.
- Exemplary halogenated hydrocarbon radicals are chloromethyl, bromoethyl, tetrafluorethyl, fluorethyl, trifluorethyl, trifluorotloyl, hexafluoroxylyl, and the like.
- Viscosity of polysiloxanes useful may vary as widely as the viscosity of polysiloxanes in general vary, so long as the polysiloxane is flowable or can be made to be flowable for application to the article. This includes, but is not limited to, viscosity as low as 5 centistokes (at 37_C as measured by a glass viscometer) to about 20,000,000 centistokes.
- the polysiloxanes have a viscosity at 37_C ranging from about 5 to about 5,000 centistokes, more preferably from about 5 to about 2,000 centistokes, most preferably from about 100 to about 1000 centistokes.
- High viscosity polysiloxanes which themselves are resistant to flowing can be effectively deposited upon the article by such methods as, for example, emulsifying the polysiloxane in surfactant or providing the polysiloxane in solution with the aid of a solvent, such as hexane, listed for exemplary purposes only.
- a solvent such as hexane
- polysiloxanes compounds for use in the present invention are disclosed in U.S. Patent 5,059,282 (Ampulski et al), issued October 22, 1991, which is incorporated herein by reference.
- Particularly prefe ⁇ ed polysiloxane compounds for use as emollients in the compositions of the present invention include phenyl-functional polymethylsiloxane compounds (e.g., Dow Corning 556 Cosmetic-Grade Fluid: polyphenylmethylsiloxane) and cetyl or stearyl functionalized dimethicones such as Dow 2502 and Dow 2503 polysiloxane liquids, respectively.
- substitution may be made with amino, carboxyl, hydroxyl, ether, polyether, aldehyde, ketone, amide, ester, and thiol groups.
- the family of groups comprising phenyl, amino, alkyl, carboxyl, and hydroxyl groups are more preferred than the others; and phenyl-functional groups are most preferred.
- Suitable humectants include glycerine, propylene glycol, sorbitol, trihydroxy stearin, and the like.
- the amount of emollient that can be included in the composition will depend on a variety of factors, including the particular emollient involved, the lotionlike benefits desired, the other components in the composition and like factors.
- the composition will comprise from 0 to about 100%, by total weight, of the emollient.
- the composition will comprise from about 10 to about 95%, more preferably from about 20 to about 80%, and most preferably from about 40 to about 75%, by weight, of the emollient.
- Another optional, preferred component of the therapeutic/skin protective/skin conditioning compositions useful in the methods of the present invention is an agent capable of immobilizing the composition (including the preferred emollient and/or other skin conditioning/therapeutic/protective agents) in the desired location in or on the treated article. Because certain of the preferred emollients in the composition have a plastic or liquid consistency at 20°C, they tend to flow or migrate, even when subjected to modest shear. When applied to a wearer-contacting surface or other location of an absorbent article, especially in a melted or molten state, the emollient will not remain primarily in or on the treated region. Instead, the emollient will tend to migrate and flow to undesired regions of the article.
- the emollient migrates into the interior of the article, it can cause undesired effects on the absorbency of the article core due to the hydrophobic characteristics of many of the emollients and other skin conditioning agents used in the compositions useful in the methods of the present invention. It also means that much more emollient has to be applied to the article to get the desired skin smoothness benefits. Increasing the level of emollient not only increases the cost, but also exacerbates the undesirable effect on the absorbency of the article's core and undesired transfer of composition during processing/converting of the treated articles.
- the immobilizing agent counteracts this tendency of the emollient to migrate or flow by keeping the emollient primarily localized on the surface or in the region of the article to which the composition is applied. This is believed to be due, in part, to the fact that the immobilizing agent raises the melting point and or viscosity of the composition above that of the emollient. Since the immobilizing agent is preferably miscible with the emollient (or solubilized in the emollient with the aid of an appropriate emulsifier or dispersed therein), it entraps the emollient on the surface of the article's wearer contacting surface or in the region to which it is applied.
- immobilizing agent on the wearer contacting surface or the region of the article to which it is applied. This can be accomplished by using immobilizing agents which quickly set up (i.e., solidify) upon application to the article. In addition, outside cooling of the treated article via blowers, fans, cold rolls, etc. can speed up crystallization of the immobilizing agent.
- the immobilizing agent will preferably have a melting profile that will provide a composition that is solid or semisolid at ambient temperature.
- preferred immobilizing agents will have a melting point of at least about 35°C. This is so the immobilizing agent itself will not have a tendency to migrate or flow.
- Preferred immobilizing agents will have melting points of at least about 40_C.
- the immobilizing agent will have a melting point in the range of from about 50_ to about 150 C.
- immobilizing agents useful herein can be selected from any of a number of agents, so long as the preferred properties of the skin care composition provide the skin benefits described herein.
- Preferred immobilizing agents will comprise a member selected from the group consisting of C14-C22 fatty alcohols, C12-C22 f at ty acids, and C12-C22 fatty alcohol ethoxylates having an average degree of ethoxylation ranging from 2 to about 30, and mixtures thereof.
- Preferred immobilizing agents include l6" l8 fatty alcohols, most preferably crystalline high melting materials selected from the group consisting of cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
- cetyl alcohol and stearyl alcohol are particularly preferred.
- Other preferred immobilizing agents include Ci ⁇ -Cig fatty acids, most preferably selected from the group consisting of palmitic acid, stearic acid, and mixtures thereof. Mixtures of palmitic acid and stearic acid are particularly preferred.
- Still other preferred immobilizing agents include Cjg-Cjg fatty alcohol ethoxylates having an average degree of ethoxylation ranging from about 5 to about 20.
- the fatty alcohols, fatty acids and fatty alcohols are linear.
- these preferred immobilizing agents such as the Cj6 - Cjg fatty alcohols increase the rate of crystallization of the composition causing the composition to crystallize rapidly onto the surface of the substrate.
- ingredients that can be used as immobilizing agents include waxes such as carnauba, ozokerite, beeswax, candelilla, paraffin, ceresin, esparto, ouricuri, rezowax, isoparaff ⁇ n, and other known mined .and mineral waxes.
- the high melt point of these materials can help immobilize the composition on the desired surface or location on the article.
- microcrystalline waxes are effective immobilizing agents. Microcrystalline waxes can aid in "locking" up low molecular weight hydrocarbons within the skin care composition.
- the wax is a paraffin wax.
- An example of a particularly preferred alternate immobilizing agent is a paraffin wax such as Parrafin S.P. 434 from Strahl and Pitsch Inc. P.O. Box 1098 Westzhou, NY 11704.
- Suitable polyhydroxy fatty acid esters for use in the present invention will have the formula:
- R is a C5-C31 hydrocarbyl group, preferably straight chain C7-C19 alkyl or alkenyl, more preferably straight chain C9-C17 .alkyl or alkenyl, most preferably straight chain C11-C17 alkyl or alkenyl, or mixture thereof;
- Y is a polyhydroxyhydrocarbyl moiety having a hydrocarbyl chain with at least 2 free hydroxyls directly connected to the chain; and n is at least 1.
- Suitable Y groups can be derived from polyols such as glycerol, pentaerythritol; sugars such as raffinose, maltodextrose, galactose, sucrose, glucose, xylose, fructose, maltose, lactose, mannose and erythrose; sugar alcohols such as erythritol, xylitol, malitol, mannitol and sorbitol; and anhydrides of sugar alcohols such as sorbitan.
- polyols such as glycerol, pentaerythritol
- sugars such as raffinose, maltodextrose, galactose, sucrose, glucose, xylose, fructose, maltose, lactose, mannose and erythrose
- sugar alcohols such as erythritol, xylitol, malitol, mannitol and
- One class of suitable polyhydroxy fatty acid esters for use in the present invention comprises certain sorbitan esters, preferably the sorbitan esters of C ⁇ g-C22 saturated fatty acids. Because of the manner in which they are typically manufactured, these sorbitan esters usually comprise mixtures of mono-, di-, tri-, etc. esters.
- sorbitan esters include sorbitan palmitates (e.g., SPAN 40), sorbitan stearates (e.g., SPAN 60), and sorbitan behenates, that comprise one or more of the mono-, di- and tri-ester versions of these sorbitan esters, e.g., sorbitan mono-, di- and tri-palmitate, sorbitan mono-, di- and tri-stearate, sorbitan mono-, di and tri-behenate, as well as mixed tallow fatty acid sorbitan mono-, di- and tri-esters.
- sorbitan palmitates e.g., SPAN 40
- sorbitan stearates e.g., SPAN 60
- sorbitan behenates that comprise one or more of the mono-, di- and tri-ester versions of these sorbitan esters, e.g., sorbitan mono-, di- and tri-palmitate,
- sorbitan esters can .also be used, such as sorbitan palmitates with sorbitan stearates.
- Particularly preferred sorbitan esters are the sorbitan stearates, typically as a mixture of mono-, di- and tri-esters (plus some tetraester) such as SPAN 60, and sorbitan stearates sold under the trade name GLYCOMUL-S by Lonza, Inc.
- these sorbitan esters typically contain mixtures of mono-, di- and tri-esters, plus some tetraester, the mono- and di-esters are usually the predominant species in these mixtures.
- glyceryl monoester mixtures will typically contain some di- and triester. However, such mixtures should contain predominantly the glyceryl monoester species to be useful in the present invention.
- Suitable polyhydroxy fatty acid esters for use in the present invention comprise certain sucrose fatty acid esters, preferably the C12-C22 saturated fatty acid esters of sucrose.
- Sucrose monoesters and diesters are particularly preferred and include sucrose mono- and di-stearate and sucrose mono- and di- laurate.
- Suitable polyhydroxy fatty acid amides for use in the present invention will have the formula:
- R 2 C II-N I -Z wherein R is H, C1 -C4 hydrocarbyl, 2-hydroxyethyl, 2-hydroxypropyl, methoxyethyl, methoxypropyl or a mixture thereof, preferably C1-C4 alkyl, methoxyethyl or methoxypropyl, more preferably C ⁇ or C2 alkyl or methoxypropyl , most preferably C ⁇ alkyl (i.e., methyl) or methoxypropyl; and R 2 is a C5-C31 hydrocarbyl group, preferably straight chain C7-C19 alkyl or alkenyl, more preferably straight chain C9-C17 alkyl or alkenyl, most preferably straight chain Cj 1 -C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain. See U.S. patent 5,
- the Z moiety preferably will be derived from a reducing sugar in a reductive amination reaction; most preferably glycityl.
- Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
- High dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized, as well as the individual sugars listed above. These corn syrups can yield mixtures of sugar components for the Z moiety.
- the Z moiety preferably will be selected from the group consisting of -CH2- (CHOH) n -CH 2 OH, -CH(CH 2 OH)-[(CHOH) n . ⁇ ]-CH 2 OH, -CH 2 OH-CH 2 -
- (CHOH)2(CHOR 3 )(CHOH)-CH2 ⁇ H where n is an integer from 3 to 5, and R 3 is H or a cyclic or aliphatic monosaccharide. Most preferred are the glycityls where n is 4, particularly -CH 2 -(CHOH) 4 -CH 2 OH.
- Rl can be, for example, N-methyl, N-ethyl, N-propyl, N- isopropyl, N-butyl, N-2-hydroxyethyl, N-methoxypropyl or N-2-hydroxypropyl.
- R 2 can be selected to provide, for example, cocamides, stearamides, oleamides, lauramides, myristamides, capricamides, palmitamides, tallowamides, etc.
- the Z moiety can be 1- deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1- deoxymannityl, 1-deoxymaltotriotityl, etc.
- polyhydroxy fatty acid amides have the general formula:
- Rl is methyl or methoxypropyl
- R 2 is a C ⁇ ⁇ -C ⁇ j straight-chain alkyl or alkenyl group.
- Rl is methyl or methoxypropyl
- R 2 is a C ⁇ ⁇ -C ⁇ j straight-chain alkyl or alkenyl group.
- These include N-lauryl-N-methyl glucamide, N-lauryl-N-methoxypropyl glucamide, N-cocoyl-N-methyl glucamide, N-cocoyl-N-methoxypropyl glucamide, N- palmityl-N-methoxypropyl glucamide, N-tallowyl-N-methyl glucamide, or N-tallowyl-N- methoxypropyl glucamide.
- the immobilizing agents may require an emulsifier for solubilization in the emollient.
- an emulsifier for solubilization in the emollient.
- certain of the glucamides such as the N-alkyl-N-methoxypropyl glucamides having HLB values of at least about 7.
- Suitable emulsifiers will typically include those having HLB values below about 7.
- the sorbitan esters previously described, such as the sorbitan stearates, having HLB values of about 4.9 or less have been found useful in solubilizing these glucamide immobilizing agents in petrolatum.
- Suitable emulsifiers include steareth-2 (polyethylene glycol ethers of stearyl alcohol that conform to the formula CH3(CH2)i7(OCH2CH2) n OH, where n has an average value of 2), sorbitan tristcarate, isosorbide laurate, and glyceryl monostearate.
- the emulsifier can be included in an amount sufficient to solubilize the immobilizing agent in the emollient such that a substantially homogeneous mixture is obtained.
- ingredients that can be used as immobilizing agents include waxes such as camauba, beeswax, candelilla, paraffin, ceresin, esparto, ouricuri, rezowax, and other known waxes.
- waxes such as camauba, beeswax, candelilla, paraffin, ceresin, esparto, ouricuri, rezowax, and other known waxes.
- the wax is a paraffin wax.
- An example of a particularly preferred paraffin wax is Parrafin S.P. 434 from Strahl .and Pitsch Inc. P.O. Box 1098 West Arabic, NY 11704.
- the amount of the optional immobilizing agent that can be included in the composition will depend on a variety of factors, including the actives (e.g., emollients) involved, the particular immobilizing agent involved, the other components in the composition, whether an emulsifier is required to solubilize the immobilizing agent in the other components, and like factors.
- the composition will typically comprise from about 5 to about 90% of the immobilizing agent.
- the composition will comprise from about 5 to about 50%, most preferably from about 10 to about 40%, of the immobilizing agent.
- the article's topsheet be made of a hydrophilic material to promote rapid transfer of liquids (e.g., urine) through the topsheet.
- the composition be sufficiently wettable to ensure that liquids will transfer through the topsheet rapidly.
- hydrophobic skin care composition may be utilized, so long as they are applied such that the fluid handling properties of the topsheet are adequately maintained. (For example, as discussed below, nonuniform application of the composition to the topsheet is one means to accomplish this goal.) This diminishes the likelihood that body exudates will flow off the composition-treated topsheet rather than being drawn through the topsheet and being absorbed by the absorbent core.
- hydrophilic surfactant may, or may not, be required to improve wettability.
- some immobilizing agents such as N-cocoyl-N-methoxypropyl glucamide have HLB values of at least about 7 and are sufficiently wettable without the addition of hydrophilic surfactant.
- Other immobilizing agents such as the C ⁇ - Cjg fatty alcohols having HLB values below about 7 may require addition of hydrophilic surfactant to improve wettability when the composition is applied to article topsheets.
- hydrophobic emollient such as petrolatum may require the addition of a hydrophilic surfactant if hydrophilic composition is desired.
- hydrophilic surfactant e.g., petrolatum
- the concern around wettability is not a factor when the wearer-contacting surface under consideration is other than the article's topsheet or when fluid handling properties of the topsheet are adequately maintained via other means (e.g., nonuniform application).
- Suitable hydrophilic surfactants will preferably be miscible with the other components of the skin care composition so as to form blended mixtures. Because of possible skin sensitivity of those using disposable absorbent products to which the composition is applied, these surfactants should also be relatively mild and non-irritating to the skin. Typically, these hydrophilic surfactants are nonionic to be not only non- irritating to the skin, but also to avoid other undesirable effects on any other structures within the treated article. For example, reductions in tissue laminate tensile strength, adhesive bond sufficiencies, and the like.
- Suitable nonionic surfactants may be substantially nonmigratory after the composition is applied to the article and will typically have HLB values in the range of from about 4 to about 20, preferably from about 7 to about 20. To be nonmigratory, these nonionic surfactants will typically have melt temperatures greater than the temperatures commonly encountered during storage, shipping, merchandising, and use of disposable absorbent products, e.g., at least about 30°C. In this regard, these nonionic surfactants will preferably have melting points similar to those of the immobilizing agents previously described.
- Suitable nonionic surfactants for use in compositions that will be applied to the articles, at least in the liquid discharge region of the diaper include alkylglycosides; alkylglycoside ethers as described in U.S. patent 4,011,389 (Langdon, et al), issued March 8, 1977, which is incorporated by reference; alkylpolyethoxylated esters such as Pegosperse 1000MS (available from Lonza, Inc., Fair Lawn, New Jersey), ethoxylated sorbitan mono-, di- and/or tri-esters of Cj2-C ⁇ g fatty acids having an average degree of ethoxylation of from about 2 to about 20, preferably from about 2 to about 10, such as TWEEN 60 (sorbitan esters of stearic acid having an average degree of ethoxylation of about 20) and TWEEN 61 (sorbitan esters of stearic acid having an average degree of ethoxylation of about 4), and the condensation products of aliphatic
- the alkyl chain of the aliphatic alcohol is typically in a straight chain (linear) configuration and contains from about 8 to about 22 carbon atoms.
- Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 11 to about 22 carbon atoms with from about 2 to about 30 moles of ethylene oxide per mole of alcohol.
- Examples of such ethoxylated alcohols include the condensation products of myristyl alcohol with 7 moles of ethylene oxide per mole of alcohol, the condensation products of coconut alcohol (a mixture of fatty alcohols having alkyl chains varying in length from 10 to 14 carbon atoms) with about 6 moles of ethylene oxide.
- ethoxylated alcohols are commercially available, including TERGITOL 15-S-9 (the condensation product of C ⁇ - Cj5 line.ar alcohols with 9 moles of ethylene oxide), m.arketed by Union Carbide Corporation; KYRO EOB (condensation product of C13-C15 linear alcohols with 9 moles of ethylene oxide), marketed by The Procter & Gamble Co., the NEODOL brand name surfactants marketed by Shell Chemical Co., in particular NEODOL 25-12 (condensation product of C12-C15 line.ar alcohols with 12 moles of ethylene oxide) and NEODOL 23-6.5T (condensation product of C12-C13 linear alcohols with 6.5 moles of ethylene oxide that has been distilled (topped) to remove certain impurities), and especially the PLURAFAC brand name surfactants marketed by BASF Corp., in particular PLURAFAC A-38 (a condensation product of a Cjg straight chain alcohol with 27 moles of ethylene oxide),
- ethoxylated alcohols in particular ethoxylated alcohols such as NEODOL 25-12, can also function as alkyl ethoxylate emollients.
- ethoxylated alcohol surfactants include ICI's class of Brij surfactants and mixtures thereof, with Brij 72 (i.e., Ste.areth-2) and Brij 76 (i.e., Steareth-10) being especially preferred.
- Brij 72 i.e., Ste.areth-2
- Brij 76 i.e., Steareth-10
- mixtures of cetyl alcohol and stearyl alcohol ethoxylated to an average degree of ethoxylation of from about 10 to about 20 may also be used as the hydrophilic surfactant.
- Aerosol OT a dioctyl ester of sodium sulfosuccinic acid marketed by American Cyanamid Company.
- Still another type of suitable surfactant for use in the composition includes silicone copolymers such as General Electric SF 1188 (a copolymer of a polydimethylsiloxane and a polyoxyalkylene ether) and General Electric SF 1228 (a silicone polyether copolymer).
- These silicone surfactants can be used in combination with the other types of hydrophilic surfactants discussed above, such as the ethoxylated alcohols.
- These silicone surfactants have been found to be effective at concentrations as low as 0.1%, more preferably from about 0.25 to about 1.0%, by weight of the composition.
- the .amount of hydrophilic surfactant required to increase the wettability of the composition to a desired level will depend in-part upon the HLB value and level of immobilizing agent, if any, used, the HLB value of the surfactant used and like factors.
- the composition can comprise from about 0.1 to about 50% of the hydrophilic surfactant when needed to increase the wettability properties of the composition.
- the composition comprises from about 1 to about 25%, most preferably from about 10 to about 20%, of the hydrophilic surfactant when needed to increase wettability.
- Compositions can comprise other components typically present in emulsions, creams, ointment, lotions, powders, suspensions, etc. of this type. These components include water, viscosity modifiers, perfumes, disinfectant antibacterial actives, antiviral agents, vitamins, pharmaceutical actives, film formers, deodorants, opacifiers, astringents, solvents, preservatives, and the like.
- stabilizers can be added to enhance the shelf life of the composition such as cellulose derivatives, proteins and lecithin. All of these materials are well known in the art as additives for such formulations and can be employed in appropriate amounts in the compositions for use herein.
- a preservative will be needed.
- Suitable preservatives include propyl paraben, methyl paraben, benzyl alcohol, benzylkonnium, tribasic calcium phosphate, BHT, or acids such as citric, tartaric, maleic, lactic, malic, benzoic, salicylic, and the like.
- Suitable viscosity increasing agents include some of the agents described as effective immobilizing agents.
- Suitable viscosity increasing agents include alkyl galactomannan, silica, talc, magnesium silicate, sorbitol, colloidal silicone dioxide, magnesium aluminum silicate, zinc stearate, wool wax alcohol, sorbiton, sesquioleate, cetyl hydroxy ethyl cellulose and other modified celluloses.
- Suitable solvents include propylene glycol, glycerine, cyclomethicone, polyethylene glycols, hexalene glycol, diol and multi-hydroxy based solvents.
- Suitable vitamins include A, D3, E, B5 and E acetate.
- the lotion composition is applied to the outer surface (i.e., body facing surface) of the topsheet 24 within the second region 32.
- Any of a variety of application methods that distribute lubricious materials having a molten or liquid consistency can be used. Suitable methods include spraying, printing (e.g., flexographic printing), coating (e.g., gravure coating), extrusion, or combinations of these application techniques, e.g. spraying the composition on a rotating surface, such as a calender roll, that then transfers the composition to the outer surface of the article topsheet.
- composition needs to be applied to the second region 32 of the topsheet 24 for reducing the adherence of BM to the skin and/or providing a skin benefit to the wearer.
- the composition is preferably applied to the second region 32 of the topsheet in an amount ranging from about 0.1 mg/in 2 to about 35 mg/in 2 - Such levels of composition are believed to be adequate to impart the desired therapeutic and/or protective benefits to the topsheet.
- the composition can be applied to the second region 32 of the topsheet 24 at any point during assembly.
- the composition can be applied to the topsheet of the finished disposable absorbent product before it has been packaged.
- the composition can also be applied to the topsheet before it is combined with the other raw materials to form a finished disposable absorbent product.
- the composition is typically applied from a melt thereof to the article topsheet. Since the composition melts at significantly above ambient temperatures, it is usually applied as a heated coating to the topsheet. Typically, the composition is heated to a temperature in the range from about 35_ to about 100°C, preferably from 40° to about 90°C, prior to being applied to the article topsheet. Once the melted composition has been applied to the article topsheet, it is allowed to cool and solidify to form solidified coating or film on the surface of the topsheet. Preferably, the application process is designed to aid in the cooling/set up of the composition.
- the fecal management member 30 is preferably secured to the topsheet 24 in a very minimal extent to preserve the openness of the fecal management member 30 to allow ready penetration of low-viscosity fecal material. More preferably, the fecal management member 30 is not secured to the topsheet 24 at all preserving the openness of the fecal management member 30 and also allowing the topsheet 24 to separate from the fecal management member 30 creating additional void space. However, it is recognized that the fecal management member 30 should be secured within the diaper 20 to prevent it from freely moving about. To this end, it is preferred that the fecal management member 30 be secured directly to the underlying absorbent core 28.
- a particularly preferred attachment means is an adhesive having a hydrophilicity which is greater than the hydrophilicity of the fecal management member 30. More preferably, the attachment means is an adhesive having a hydrophilicity which is greater than the sheet of fibers 126, and more preferably a hydrophilicity which is also greater than the hydrophilicity of the backing 120.
- the absorbent core 28 is preferably secured directly to the topsheet 24.
- a particularly preferred attachment means is an adhesive having a hydrophilicity which is greater than the hydrophilicity of the topsheet 24. More preferably, the attachment means is an adhesive having a hydrophilicity which is greater than the sheet of fibers 126, more preferably a hydrophilicity which is also greater than the hydrophilicity of the backing 120.
- the topsheet When constructing the diaper 20, the topsheet is preferably positioned on a conveyer or other suitable processing equipment such that its inner surface is facing upward.
- the fecal management member 30 is then positioned on the topsheet 24 in the region corresponding to the second region 32 such that the backing 120 of the fecal management member 30 is facing upward.
- An adhesive is then applied to the inner surface of the topsheet 24 .and the backing 120.
- the adhesive selected at least has a hydrophilicity greater th.an that of the topsheet 24, and preferably, the adhesive selected has a hydrophilicity greater than that of both the topsheet 24 and the fecal management member 30.
- the fecal management member 30 blocks the adhesive preventing it from contacting the portions of the topsheet lying underneath the fecal management member 30.
- Suitable means for applying the adhesive include a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive.
- One preferred attachment means comprises an open pattern network of filaments of adhesive as disclosed in U.S. Patent 4,573,986 entitled “Disposable Waste- Containment Garment", which issued to Minetola et al. on March 4, 1986.
- Other suitable attachment means include several lines of adhesive filaments which are swirled into a spiral pattern, as is illustrated by the apparatus and methods shown in U.S. Patent 3,911,173 issued to Sprague, Jr. on October 7, 1975; U.S. Patent 4,785,996 issued to Ziecker, et al. on November 22, 1978; and U.S.
- Patent 4,842,666 issued to Werenicz on June 27, 1989. Each of these patents are incorporated herein by reference.
- the amount of adhesive and application technique can be selected to control the degree of penetration of the adhesive into the topsheet 24 which is not blocked by the fecal management member 30. If the topsheet 24 is relatively hydrophobic, it may be desirable to have a greater degree of penetration of adhesive into the topsheet 24 within the first region 31. Alternatively, if the topsheet 24 is relatively hydrophillic less penetration of the adhesive may be needed to obtain the desired urine handling characteristics in the first region 31.
- the diaper 20 may further comprise elasticized leg cuffs (not shown) which provide improved containment of liquids and other body exudates.
- Each elasticized leg cuff may comprise several different embodiments for reducing the leakage of body exudates in the leg regions.
- the leg cuff can be and is sometimes also referred to as leg bands, side flaps, barrier cuffs, or elastic cuffs.
- U.S. Patent 3,860,003 describes a disposable diaper 20 which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (gasketing cuff).
- the diaper 20 preferably further comprises an elastic waist feature (not shown) that provides improved fit and containment.
- the elastic waist feature is that portion or zone of the diaper 20 which is intended to elastically expand and contract to dynamically fit the wearer's waist.
- the elastic waist feature at least extends longitudinally outwardly from at least one of the waist edges of the absorbent core 28 and generally forms at least a portion of the end edge of the diaper 20.
- Disposable diapers are generally constructed so as to have two elastic waist features, one positioned in the first region 31 and one positioned in the second region 32, although diapers can be constructed with a single elastic waist feature.
- the elastic waist feature or any of its constituent elements can comprise a separate element affixed to the diaper 20, the elastic waist feature is preferably constructed as an extension of other elements of the diaper 20 such as the backsheet 26 or the topsheet 24, preferably both the backsheet 26 and the topsheet 24.
- the elasticized waistband 34 may be constructed in a number of different configurations including those described in U.S. Patent 4,515,595 issued to Kievit et al. on May 7, 1985 and the above referenced U.S. Patent Application Serial No 07/715,152; each of these references being incorporated herein by reference.
- the diaper 20 also comprises a fastening system 36 which forms a side closure which maintains the first region 31 and the second region 32 in an overlapping configuration such that lateral tensions are maintained around the circumference of the diaper 20 to maintain the diaper 20 on the wearer.
- a fastening system 36 which forms a side closure which maintains the first region 31 and the second region 32 in an overlapping configuration such that lateral tensions are maintained around the circumference of the diaper 20 to maintain the diaper 20 on the wearer.
- Exemplary fastening systems are disclosed in U.S. Patent 4,846,815 entitled “Disposable Diaper Having An Improved Fastening Device” issued to Scripps on July 11, 1989; U.S. Patent 4,894,060 entitled “Disposable Diaper With Improved Hook Fastener Portion” issued to Nestegard on January 16, 1990; commonly assigned U.S.
- the diaper 20 is preferably applied to a wearer by positioning one of the regions, preferably the second region 32, under the wearer's back and drawing the remainder of the diaper 20 between the wearer's legs so that the other region, preferably the first region 31 , is positioned across the front of the wearer.
- the tape tabs 36 of the fastening system are then released from the release portion.
- the diaperer then wraps the elasticized side panel around the wearer, while still grasping the tab portion.
- the fastening system is secured to the outer surface of the diaper 20 to effect two side closure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2000/02332T TR200002332T2 (en) | 1997-11-14 | 1997-11-14 | Segregated absorbent article for urine and low viscous feces |
HU0301803A HU225508B1 (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
IL13613397A IL136133A0 (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
US09/554,545 US6676646B2 (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
CA002315425A CA2315425C (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
AU27044/99A AU2704499A (en) | 1997-11-14 | 1997-11-14 | Zone disposable absorbent article for urine and low-viscosity fecal material |
PCT/US1997/020841 WO1999025287A1 (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
CO98066936A CO5070638A1 (en) | 1997-11-14 | 1998-11-12 | ABSORBENT ARTICLE DIVIDED IN AREAS FOR URINE AND LOW VISCOSITY FECAL MATTERS |
ZA9810370A ZA9810370B (en) | 1997-11-14 | 1998-11-12 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
ARP980105760A AR017407A1 (en) | 1997-11-14 | 1998-11-13 | DISPOSABLE ABSORBENT ARTICLE DIVIDED IN AREAS FOR URINE AND LOW VISCOSITY FECAL MATTERS |
MYPI98005181A MY133066A (en) | 1997-11-14 | 1998-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
EG141298A EG21754A (en) | 1997-11-14 | 1998-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
PE1998001106A PE20000035A1 (en) | 1997-11-14 | 1998-11-16 | DISPOSABLE ABSORBENT ARTICLE DIVIDED INTO ZONES FOR URINE AND LOW VISCOSITY FECAL MATTER |
TW087119920A TW374719B (en) | 1997-11-14 | 1998-12-01 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
SA98190947A SA98190947B1 (en) | 1997-11-14 | 1998-12-28 | A single-use zonal pipette applicator for urine and an innocent, slightly viscous substance |
CZ20001792A CZ20001792A3 (en) | 1997-11-14 | 2000-05-15 | Disposable absorption article provided with zones and intended for retention of urine and faeces of low viscosity |
US10/692,385 US6908457B2 (en) | 1997-11-14 | 2003-10-23 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
ARP040100428A AR043156A2 (en) | 1997-11-14 | 2004-02-11 | DISPOSABLE ABSORBENT ARTICLE DIVIDED IN URINE AREAS AND LOW VISCOSITY FECAL MATTERS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1997/020841 WO1999025287A1 (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999025287A1 true WO1999025287A1 (en) | 1999-05-27 |
Family
ID=22262063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/020841 WO1999025287A1 (en) | 1997-11-14 | 1997-11-14 | Zoned disposable absorbent article for urine and low-viscosity fecal material |
Country Status (15)
Country | Link |
---|---|
AR (2) | AR017407A1 (en) |
AU (1) | AU2704499A (en) |
CA (1) | CA2315425C (en) |
CO (1) | CO5070638A1 (en) |
CZ (1) | CZ20001792A3 (en) |
EG (1) | EG21754A (en) |
HU (1) | HU225508B1 (en) |
IL (1) | IL136133A0 (en) |
MY (1) | MY133066A (en) |
PE (1) | PE20000035A1 (en) |
SA (1) | SA98190947B1 (en) |
TR (1) | TR200002332T2 (en) |
TW (1) | TW374719B (en) |
WO (1) | WO1999025287A1 (en) |
ZA (1) | ZA9810370B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1051960A1 (en) | 1999-05-14 | 2000-11-15 | The Procter & Gamble Company | Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling |
WO2000069483A1 (en) * | 1999-05-19 | 2000-11-23 | The Procter & Gamble Company | Absorbent article with skin care composition |
WO2001037772A1 (en) * | 1999-11-29 | 2001-05-31 | The Procter & Gamble Company | Absorbent article having liquid handling member which collapses under high pressures |
EP1120097A3 (en) * | 2000-01-25 | 2001-11-28 | Uni-Charm Corporation | Absorbent article containing skin-protective ingredient |
US6635801B1 (en) | 1999-05-14 | 2003-10-21 | The Procter & Gamble Company | Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling |
EP1048279A3 (en) * | 1999-04-30 | 2004-04-14 | First Quality Products, Inc. | Breathable disposable absorbent articles |
WO2015156953A1 (en) * | 2014-04-08 | 2015-10-15 | The Procter & Gamble Company | Absorbent articles having substrates having zonal treatments |
US10271997B2 (en) | 2014-04-08 | 2019-04-30 | The Procter & Gamble Company | Absorbent articles having substrates having zonal treatments |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US386003A (en) | 1888-07-10 | Window | ||
DE3309530C1 (en) * | 1983-03-17 | 1984-10-25 | Vereinigte Papierwerke Schickedanz & Co, 8500 Nürnberg | Hygienic absorption template |
US4610678A (en) | 1983-06-24 | 1986-09-09 | Weisman Paul T | High-density absorbent structures |
US4673402A (en) | 1985-05-15 | 1987-06-16 | The Procter & Gamble Company | Absorbent articles with dual-layered cores |
US4888231A (en) | 1986-05-28 | 1989-12-19 | The Procter & Gamble Company | Absorbent core having a dusting layer |
US5151092A (en) | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5342338A (en) * | 1993-06-11 | 1994-08-30 | The Procter & Gamble Company | Disposable absorbent article for low-viscosity fecal material |
WO1995005139A1 (en) * | 1993-08-17 | 1995-02-23 | The Procter & Gamble Company | Disposable absorbent article having capacity to store low-viscosity fecal material |
DE4437165A1 (en) * | 1994-10-18 | 1996-04-25 | Hpp & C Marketing Consultants | Material for unidirectional liq. transmission e.g. for nappies |
GB2294397A (en) * | 1994-10-27 | 1996-05-01 | Moelnlycke Ab | Hydrophilic Glue for Bonding Absorbent Article |
EP0710737A2 (en) * | 1994-10-27 | 1996-05-08 | National Starch and Chemical Investment Holding Corporation | Hot melt adhesive compositions |
US5643588A (en) * | 1994-11-28 | 1997-07-01 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
EP0797968A1 (en) * | 1996-03-29 | 1997-10-01 | The Procter & Gamble Company | Disposable absorbent articles with controlled skin hydration effect |
-
1997
- 1997-11-14 IL IL13613397A patent/IL136133A0/en unknown
- 1997-11-14 AU AU27044/99A patent/AU2704499A/en not_active Abandoned
- 1997-11-14 CA CA002315425A patent/CA2315425C/en not_active Expired - Fee Related
- 1997-11-14 HU HU0301803A patent/HU225508B1/en not_active IP Right Cessation
- 1997-11-14 WO PCT/US1997/020841 patent/WO1999025287A1/en not_active Application Discontinuation
- 1997-11-14 TR TR2000/02332T patent/TR200002332T2/en unknown
-
1998
- 1998-11-12 CO CO98066936A patent/CO5070638A1/en unknown
- 1998-11-12 ZA ZA9810370A patent/ZA9810370B/en unknown
- 1998-11-13 AR ARP980105760A patent/AR017407A1/en active IP Right Grant
- 1998-11-14 EG EG141298A patent/EG21754A/en active
- 1998-11-14 MY MYPI98005181A patent/MY133066A/en unknown
- 1998-11-16 PE PE1998001106A patent/PE20000035A1/en not_active Application Discontinuation
- 1998-12-01 TW TW087119920A patent/TW374719B/en not_active IP Right Cessation
- 1998-12-28 SA SA98190947A patent/SA98190947B1/en unknown
-
2000
- 2000-05-15 CZ CZ20001792A patent/CZ20001792A3/en unknown
-
2004
- 2004-02-11 AR ARP040100428A patent/AR043156A2/en active IP Right Grant
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US386003A (en) | 1888-07-10 | Window | ||
DE3309530C1 (en) * | 1983-03-17 | 1984-10-25 | Vereinigte Papierwerke Schickedanz & Co, 8500 Nürnberg | Hygienic absorption template |
US4610678A (en) | 1983-06-24 | 1986-09-09 | Weisman Paul T | High-density absorbent structures |
US4673402A (en) | 1985-05-15 | 1987-06-16 | The Procter & Gamble Company | Absorbent articles with dual-layered cores |
US4888231A (en) | 1986-05-28 | 1989-12-19 | The Procter & Gamble Company | Absorbent core having a dusting layer |
US5151092A (en) | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5342338A (en) * | 1993-06-11 | 1994-08-30 | The Procter & Gamble Company | Disposable absorbent article for low-viscosity fecal material |
WO1995005139A1 (en) * | 1993-08-17 | 1995-02-23 | The Procter & Gamble Company | Disposable absorbent article having capacity to store low-viscosity fecal material |
DE4437165A1 (en) * | 1994-10-18 | 1996-04-25 | Hpp & C Marketing Consultants | Material for unidirectional liq. transmission e.g. for nappies |
GB2294397A (en) * | 1994-10-27 | 1996-05-01 | Moelnlycke Ab | Hydrophilic Glue for Bonding Absorbent Article |
EP0710737A2 (en) * | 1994-10-27 | 1996-05-08 | National Starch and Chemical Investment Holding Corporation | Hot melt adhesive compositions |
US5643588A (en) * | 1994-11-28 | 1997-07-01 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
EP0797968A1 (en) * | 1996-03-29 | 1997-10-01 | The Procter & Gamble Company | Disposable absorbent articles with controlled skin hydration effect |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1048279A3 (en) * | 1999-04-30 | 2004-04-14 | First Quality Products, Inc. | Breathable disposable absorbent articles |
EP1051960A1 (en) | 1999-05-14 | 2000-11-15 | The Procter & Gamble Company | Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling |
US6635801B1 (en) | 1999-05-14 | 2003-10-21 | The Procter & Gamble Company | Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling |
WO2000069483A1 (en) * | 1999-05-19 | 2000-11-23 | The Procter & Gamble Company | Absorbent article with skin care composition |
WO2001037772A1 (en) * | 1999-11-29 | 2001-05-31 | The Procter & Gamble Company | Absorbent article having liquid handling member which collapses under high pressures |
EP1120097A3 (en) * | 2000-01-25 | 2001-11-28 | Uni-Charm Corporation | Absorbent article containing skin-protective ingredient |
US7858840B2 (en) | 2000-01-25 | 2010-12-28 | Uni-Charm Corporation | Absorbent article containing skin-protective ingredient |
WO2015156953A1 (en) * | 2014-04-08 | 2015-10-15 | The Procter & Gamble Company | Absorbent articles having substrates having zonal treatments |
WO2015156952A1 (en) * | 2014-04-08 | 2015-10-15 | The Procter & Gamble Company | Absorbent articles having substrates having zonal treatments |
CN106102679A (en) * | 2014-04-08 | 2016-11-09 | 宝洁公司 | There is the absorbent article of the substrate including multidomain treat-ment portion |
CN106163469A (en) * | 2014-04-08 | 2016-11-23 | 宝洁公司 | There is the absorbent article of the substrate including multidomain treat-ment portion |
US10271997B2 (en) | 2014-04-08 | 2019-04-30 | The Procter & Gamble Company | Absorbent articles having substrates having zonal treatments |
Also Published As
Publication number | Publication date |
---|---|
IL136133A0 (en) | 2001-05-20 |
CA2315425A1 (en) | 1999-05-27 |
CZ20001792A3 (en) | 2001-12-12 |
MY133066A (en) | 2007-10-31 |
CO5070638A1 (en) | 2001-08-28 |
HU225508B1 (en) | 2007-01-29 |
ZA9810370B (en) | 1999-05-14 |
AR043156A2 (en) | 2005-07-20 |
HUP0301803A2 (en) | 2003-08-28 |
AR017407A1 (en) | 2001-09-05 |
CA2315425C (en) | 2005-10-25 |
AU2704499A (en) | 1999-06-07 |
EG21754A (en) | 2002-02-27 |
TR200002332T2 (en) | 2007-01-22 |
SA98190947B1 (en) | 2006-08-14 |
HUP0301803A3 (en) | 2005-12-28 |
PE20000035A1 (en) | 2000-03-15 |
TW374719B (en) | 1999-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6676646B2 (en) | Zoned disposable absorbent article for urine and low-viscosity fecal material | |
US6498284B1 (en) | Disposable absorbent article with a skin care composition on an apertured top sheet | |
US6586652B1 (en) | Absorbent article having a lotioned topsheet | |
US6426444B2 (en) | Article having a lotioned topsheet | |
EP0794803B1 (en) | Diaper having a lotioned topsheet containing a polysiloxane emollient | |
EP1073483B1 (en) | Absorbent articles having a skin care composition disposed thereon | |
EP1032336B1 (en) | Disposable absorbent article with a skin care composition on an apertured topsheet | |
WO1998024390A2 (en) | Absorbent articles having cuffs with skin care composition disposed thereon | |
WO1998024390A9 (en) | Absorbent articles having cuffs with skin care composition disposed thereon | |
WO1999012530A1 (en) | A method for maintaining or improving skin health | |
WO2001068026A1 (en) | Absorbent articles having a lotion resistant adhesive | |
EP0967949A2 (en) | Absorbent articles having cuffs with skin care composition disposed thereon | |
WO1999025287A1 (en) | Zoned disposable absorbent article for urine and low-viscosity fecal material | |
CA2223361C (en) | Absorbent articles having cuffs with skin care composition disposed thereon | |
CA2205036C (en) | Diaper having a lotioned topsheet containing a polysiloxane emollient | |
MXPA00004724A (en) | Zoned disposable absorbent article for urine and low-viscosity fecal material | |
MXPA00004729A (en) | Disposable absorbent article with a skin care composition on an apertured top sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997949438 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020007005221 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09554545 Country of ref document: US Ref document number: PA/a/2000/004724 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1200000452 Country of ref document: VN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997949438 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2315425 Country of ref document: CA Ref document number: 2315425 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000/02332 Country of ref document: TR |
|
122 | Ep: pct application non-entry in european phase | ||
WWW | Wipo information: withdrawn in national office |
Ref document number: 1020007005221 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020007005221 Country of ref document: KR |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: PI9714983 Country of ref document: BR Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL, POR TER SIDO A FASE NACIONAL INTEMPESTIVA. |