WO1999023257A1 - Procede de detection d'adn mutant par mipc et pcr - Google Patents
Procede de detection d'adn mutant par mipc et pcr Download PDFInfo
- Publication number
- WO1999023257A1 WO1999023257A1 PCT/US1998/023265 US9823265W WO9923257A1 WO 1999023257 A1 WO1999023257 A1 WO 1999023257A1 US 9823265 W US9823265 W US 9823265W WO 9923257 A1 WO9923257 A1 WO 9923257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dna
- sample
- heteroduplex
- wild type
- mutant
- Prior art date
Links
- 108020004414 DNA Proteins 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 75
- 108091027305 Heteroduplex Proteins 0.000 claims abstract description 54
- 230000014759 maintenance of location Effects 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 238000004587 chromatography analysis Methods 0.000 claims abstract description 16
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 16
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 16
- 239000002157 polynucleotide Substances 0.000 claims abstract description 16
- 238000000926 separation method Methods 0.000 claims description 30
- 150000002500 ions Chemical class 0.000 claims description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims description 3
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 claims description 3
- 230000005526 G1 to G0 transition Effects 0.000 claims description 2
- 238000005191 phase separation Methods 0.000 claims description 2
- 230000035772 mutation Effects 0.000 description 36
- 239000012634 fragment Substances 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 19
- 239000000499 gel Substances 0.000 description 15
- 206010028980 Neoplasm Diseases 0.000 description 11
- 201000011510 cancer Diseases 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 5
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 208000007660 Residual Neoplasm Diseases 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- AVBGNFCMKJOFIN-UHFFFAOYSA-N triethylammonium acetate Chemical compound CC(O)=O.CCN(CC)CC AVBGNFCMKJOFIN-UHFFFAOYSA-N 0.000 description 2
- VKIGAWAEXPTIOL-UHFFFAOYSA-N 2-hydroxyhexanenitrile Chemical compound CCCCC(O)C#N VKIGAWAEXPTIOL-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001818 capillary gel electrophoresis Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000003936 denaturing gel electrophoresis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
- B01D15/366—Ion-pair, e.g. ion-pair reversed phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
Definitions
- the present invention concerns a chromatographic method for detection of mutations in nucleic acids.
- mutant and wild type DNA in the sample are very similar. In fact, their sequence may differ by only a single base pair. Therefore, the primers which would be used to amplify the mutant DNA would also amplify the wild type since both are present in the sample. As a result, the relative amounts of mutant and wild type DNA would not change.
- cancer patients are monitored for the presence of residual cancer cells to determine whether the patients are in remission.
- the effectiveness of these treatments can be monitored if small levels of residual cancer cells could be detected in a predominantly large wild type population.
- the remission status is assessed by a pathologist who conducts histological examination of tissues samples.
- these visual methods are largely qualitative, time-consuming, and costly. At best, the sensitivity of these methods permits detection of about 1 cancerous cell in 100
- Gel based analytical methods can detect mutations in heteroduplex DNA strands under "partially denaturing" conditions.
- the term “partially denaturing” means the separation of a mismatched base pair (caused by temperature, pH, solvent, or other known factors) in a DNA double strand while the remainder of the double strand remains intact.
- these gel based techniques are operationally difficult to implement and require highly skilled personnel.
- the analyses are lengthy and require a great deal of set-up time.
- a denaturing capillary gel electrophoresis analysis of a 90 base pair fragment takes more than 30 minutes and a denaturing gel electrophoresis analysis may take 5 hours or more.
- the long analysis time of the gel methodology is further exacerbated by the fact that the movement of DNA fragments in a gel is inversely proportional, in a geometric relationship, to their length. Therefore, the analysis time of longer DNA fragments can be often be untenable. Sample recovery of DNA fragments separated on a gel is difficult and time consuming, requiring specialized techniques.
- the present invention is a method for detecting a putative mutant DNA in a sample of DNA, the method including the steps of (a) amplifying the sample of DNA using PCR, (b) hybridizing the amplified sample to form a mixture of homoduplexes and heteroduplexes, (c) separating the product of step (b) into fractions by Denaturing Matched Ion Polynucleotide Chromatography, and (d) blind collecting the fractions from step (c) at a retention time corresponding to the retention time of the heteroduplex.
- the method preferably includes amplifying the fractions collected in step (d) using PCR to obtain an increased amount of heteroduplex relative to homoduplex.
- the method can also include repeating steps (a) through (d); in a preferred method these steps are repeated until the relative amount of mutant to wild type DNA is increased by an enhancement factor of at least 10 to 1000.
- the DNA sample can contain a large background of wild type.
- the putative mutant DNA can be below the limit of detection.
- the identity of the heteroduplex can be confirmed using standard methods.
- the DNA sequence of the wild type DNA and the mutant DNA are known.
- the mutant DNA differs from wild type DNA by at least one base pair.
- the same PCR primers are used to amplify both the mutant DNA and the wild type DNA in the sample.
- the retention time used in the blind collection of the heteroduplex in step (d) was previously determined from a reference standard.
- a preferred reference standard is obtained by separating a standard mixture of homoduplex and heteroduplx, having the same base pair sequence as the sample, by Matched Ion Polynucleotide Chromatography.
- the separation of the product by Denaturing Matched Ion Polynucleotide Chromatography is effected with an MIPC column containing a stationary phase separation media, and the column is treated before the separating step with a solution for removing any residual DNA from prior separations.
- the column can be treated before the
- the present invention is a method for screening a tissue sample for cancerous cells by detecting a putative mutant DNA in the DNA of the sample, the method including the steps of (a) amplifying the sample DNA using PCR, (b) hybridizing the amplified sample to form a mixture of homoduplexes and heteroduplexes, (c) separating the product of step (b) into fractions by Denaturing Matched Ion Polynucleotide Chromatography, and (d) blind collecting the fractions from step (c) at a retention time corresponding to the retention time of the heteroduplex.
- the method preferably includes amplifying the fractions collected in step (d) using PCR to obtain an increased amount of heteroduplex relative to homoduplex.
- the method can also include repeating steps (a) through (d); in a preferred method these steps are repeated until the relative amount of mutant to wild type DNA is increased by an enhancement factor of at least 10 to 1000.
- the DNA sample can contain a large background of wild type.
- the putative mutant DNA can be below the limit of detection.
- the identity of the heteroduplex can be confirmed using standard methods.
- the DNA sequence of the wild type DNA and the mutant DNA are known. In a typical analysis using the method of the invention, the mutant DNA differs from wild type DNA by at least one base pair.
- the same PCR primers are used to amplify both the mutant DNA and the wild type DNA in the sample.
- the retention time used in the blind collection of the heteroduplex in step (d) was previously determined from a reference standard.
- a preferred reference standard is obtained by separating a standard mixture of homoduplex and heteroduplx, having the same base pair sequence as the sample, by Matched ion Polynucleotide Chromatography.
- FIG. 1 is a schematic representation of hybridization of wild type DNA strand with homozygous mutant strand showing the production of two homoduplexes and two heteroduplexes.
- FIG. 2 is a DMIPC chromatogram showing the separation of a standard mixture of FIG. 1.
- FIG. 3 are DMIPC chromatograms demonstrating mutation detection using blind collection.
- the present invention relates, therefore, to the unambiguous detection and identification of very small amounts of heteroduplex fragments containing mutant DNA in the presence of a relatively very large amount of known wild type using a recently developed chromatographic method called Denaturing Matched Ion Polynucleotide Chromatography (DMIPC), a method analogous to Matched Ion Polynucleotide Chromatography (MIPC). MIPC separates DNA fragments based on their base pair length (U.S.
- Matched Ion Polynucleotide Chromatography is defined as a process for separating single and double stranded polynucleotides using non-polar separation media, wherein the process uses a counter-ion agent, and an organic solvent to release the polynucleotides from the separation media. MIPC separations are complete in less than 10 minutes, and frequently in less
- MIPC systems WAVETM DNA Fragment Analysis System
- MIPC uses unique non-polar separation media which comprises organic polymers, silica media having a non-polar surface comprising coated or covalently bound organic polymers or covalently bound alkyl and/or aryl groups, and continuous non-polar separation media, i.e., monolith or rod columns such as non-polar silica gel or organic polymer.
- the separation media used in MIPC can be porous or non-porous.
- MIPC systems and separation media are commercially available (Transgenomic, Inc. San Jose, CA).
- the entire MIPC analysis can be automated by means of a desk top computer and a sample auto-injector. Analytical data for each sample can be analyzed in real time, or collected and stored in a computer memory device for analysis at a later time.
- MIPC partially denaturing temperature
- An important requirement for effective blind collections according to this invention is the absence from the separation media of any DNA fragments or other contaminants from prior separations.
- One procedure for insuring this prerequisite is cleaning the column after each separation with a suitable cleaning
- the present invention provides a method for detecting mutations in a sample containing a relatively large amount of wild type, wherein the concentration of the mutation is below the limits of detection a detector.
- the invention provides a method for detecting mutations when the concentration of mutant DNA in a sample may be sufficient to detect, but the mutant DNA is not seen because it is obscured by the relatively large amount of wild type in the sample.
- the invention takes advantage of the unique and surprising attributes of MIPC and DMIPC to accomplish the objective of detecting mutations in such samples, wherein the wild type and mutant are known.
- the PCR primers are selected to yield fragments for which complete resolution of heteroduplexes from homoduplexes can be achieved by MIPC. Details for suitable primer selection are provided in copending U.S. Patent Application Serial No. 09/129,105 filed August 4, 1998, the entire contents of which are hereby incorporated by reference.
- MIPC separates DNA fragments on the basis of their base pair length.
- the method is highly reproducible. Therefore, columns do not have to be calibrated from sample to sample or from day to day. A DNA fragment of a particular base pair length will elute from an MIPC column at a specific retention time which is reliably reproducible. This characteristic, coupled with the automation, sample collection, and rapid sample analysis capabilities of MIPC make this method uniquely suited for detection of minute quantities of mutations in the presence of a large background of wild type.
- blind collection is defined herein to mean the collection of mobile phase flowing through an MIPC column over a specific time interval subsequent to application of a DNA sample to the column. More specifically, “blind collection” refers to collecting mobile phase during the retention time interval corresponding to a previously determined retention time interval of a DNA fragment standard. Since the relationship between MIPC retention time and base pair length is highly reproducible, it is not necessary to detect a desired fragment with a detector in order to know when to collect the fragment. Column mobile phase is simply collected at the predetermined and expected retention time of a desired fragment.
- the invention comprises a number of steps which eliminate any ambiguity regarding the presence or absence of a particular mutant fragment in a sample when the sample contains a large amount of wild type DNA relative to a putative mutation. These steps are described hereinbelow. Since the base sequence of the sample wild type DNA and the putative mutation are known, standards of these materials are combined and hybridized.
- Hybridization is effected by heating the combined standards to about 90°C, then
- the duplex strands in the sample denature, i.e., separate to form single strands. Upon cooling, the strands recombine. If a mutant strand was present in the sample having at least one base pair difference in sequence than wild type, the single strands will recombine to form a mixture of homoduplexes and heteroduplexes.
- a standard mixture of homoduplexes and heteroduplexes is formed as depicted schematically in FIG. 1.
- the standard mixture contains the same homoduplexes and heteroduplexes present in a sample which contains a putative mutation, albeit not in the same ratio.
- This standard mixture cannot be separated by MIPC under normal conditions, since the heteroduplex and homoduplex have the same base pair length.
- MIPC is performed at a temperature sufficiently elevated to selectively and partially denature a heteroduplex at the site of base pair mismatch (DMIPC)
- the partially denatured heteroduplex will separate from a homoduplex having the same base pair length. Therefore, the hybridized standard mixture is applied to a MIPC column and a separation is performed under DMIPC conditions.
- the chromatogram so produced shows a separation of the homoduplexes and heteroduplexes as shown in FIG. 2.
- the retention times of the separated homoduplex and heteroduplex standards can then be used to predict the retention times of putative mutations having a concentration too low to be detected by a detector.
- the retention times of the separated homoduplex and heteroduplex standards can then be used to predict the retention times of putative mutations in samples wherein the mutation signal is obscured by the wild type signal.
- a sample containing a putative mutation is amplified using PCR to increase the total quantity of sample. Since the sequence is known, primers can be designed to maximize the fidelity of replication and minimize the formation of reaction artifacts and by-products. Approaches to primer design and PCR optimization for mutation detection by DMIPC are discussed in co-pending U.S. Patent Application 09/129,105 filed August 4, 1998.
- wild type and mutant DNA strands in a sample have a nearly identical base sequence. A mutation may contain only one base pair difference compared to wild type. Therefore, primers cannot be designed to selectively anneal to, and preferentially amplify the mutant strand in the presence of wild type. Therefore, when such a sample is amplified using PCR, the ratio of mutant to wild type in the amplified product will be the same as in the original sample.
- the amplified sample When the amplified sample is analyzed using MIPC a single major peak will be seen in the resulting chromatogram. This peak represents the combined wild type and mutant DNA, if the latter is present. No separation is achieved because the mutant and wild type DNA have the same base pair length. Therefore, the amplified sample is hybridized and analyzed under partially denaturing conditions by DMIPC. However, the heteroduplex corresponding to the putative mutation, if present, will not be seen by the detector either because its concentration is below the detection limits of the detector or because the ratio of wild type to putative mutation is very large so that the wild type homoduplex peak obscures the heteroduplex peak. In either case, the hetroduplex corresponding to the mutant DNA in the original sample need not be seen as a chromatographic peak to be determined.
- the mobile phase is "blind collected” from the column at the expected retention time.
- a tissue sample of at least about 100,000 cells is obtained for analysis. It is possible that, despite the initial DNA amplification, there will still be too little heteroduplex to detect. It is also possible that despite the separation of the homoduplex and heteroduplex, some homoduplex may have been collected along with the heteroduplex at the expected heteroduplex retention time, contaminating the heteroduplex and making it difficult to determine without ambiguity whether or not a mutation was present in the original sample. However, the ratio of homoduplex to heteroduplex will now be increased in favor of the heteroduplex compared to the ratio in the original sample.
- the "blind collected" mobile phase described hereinabove preferably is concentrated, e.g., by evaporation of the mobile phase. If a mutation was present in the original sample, the residue will now be enriched in the heteroduplex. This heteroduplex enriched residue is amplified again by PCR and the products are hybridized. The hybridized products of the second PCR amplification will now contain an increased amount of heteroduplex relative to homoduplex. This process is described in Example 1 and depicted in FIG. 3.
- the evaporation can be effected with standard and conventional DNA solution evaporation equipment, for example, the SPEEDVAC evaporator (Model UCS 100 Universal Speed Vac system, Savant Instruments, Inc, Hayward, CA)
- the steps comprising the method of the invention were designed to enrich the sample in heteroduplex in order to enable the detection of mutations which would normally go undetected.
- the steps of the method of the invention can be reiterated a plurality of times to increase the purity and quantity of heteroduplex to any desired level.
- the increased amount of heteroduplex compared to homoduplex obtained in this manner can be described by an "enhancement factor".
- the “enhancement factor” is defined herein as the increase in the ratio of heteroduplex to homoduplex compared to the ratio of heteroduplex to homoduplex in the original hybridized sample, wherein the increase results from the implementation of the method of the invention.
- the “enhancement factor” depends on the number of iterations performed and can range from 10 to more than 1 ,000.
- the PCR product is hybridized and analyzed by DMIPC. If the original sample contained a mutation, the concentration of heteroduplex or its concentration relative to wild type, will now be sufficient to detect. The DMIPC chromatogram will, therefore, show a peak having the retention time of the standard heteroduplex. In this event it can be concluded unambiguously that a mutation was present in the original sample.
- an aliquot of standard heteroduplex can be mixed with an aliquot of the heteroduplex enriched sample.
- a DMIPC chromatogram of this mixture will show an increase in the area of the heteroduplex peak, compared to the area of the heteroduplex enriched sample peak alone.
- the purification and enrichment method described above will provide sufficient heteroduplex for determination of its base pair sequence.
- Denaturing gradient gel electrophoresis techniques which can separate homoduplexes from heteroduplexes cannot be used as an alternative to DMIPC. Although samples can be recovered form gels with difficulty, blind collection is not possible because the mobility of a DNA fragment in a gel is not constant.
- the detection of cancer cells in early diagnosis screens or in evaluations of a cancer treatment regimen is usually about 1 cancer cell in 100 total cells, or
- the present invention increases the sensitivity of cancer cell detection to about 1 cancer cell in 100,000 total cells.
- the presence of cancer cells can be detected down to a level of about 0.001%. The tremendous extension of the lower limits for cancer cell detection made possible by this invention can save countless lives.
- homoduplex peaks at a retention time of about 6.5 minutes. No heteroduplex can be seen.
- Another aliquot of the same sample was chromatographed on the same column and mobile phase was collected between 4.5 and 6.3 minutes. The mobile phase was evaporated to dryness, and the residue was amplified using standard PCR techniques.
- the lower trace of the DMIPC chromatogram shown in FIG. 3 now shows a previously undetected heteroduplex peak at a retention time of about 6.2 minutes.
- Solvent A 0.1 M triethylammonium acetate (TEAA)
- Solvent B 25% acetonitrile in 0.1 M TEAA
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98956451A EP1042503A4 (fr) | 1997-10-31 | 1998-10-30 | Procede de detection d'adn mutant par mipc et pcr |
AU12975/99A AU1297599A (en) | 1997-10-31 | 1998-10-30 | Method of detecting mutant dna by mipc and pcr |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6443797P | 1997-10-31 | 1997-10-31 | |
US60/064,437 | 1997-10-31 | ||
US09/039,061 | 1998-03-13 | ||
US09/039,061 US6355417B2 (en) | 1997-03-14 | 1998-03-13 | Band array display of polynucleotide separations |
US5858098A | 1998-04-10 | 1998-04-10 | |
US5833798A | 1998-04-10 | 1998-04-10 | |
US09/129,105 US6287822B1 (en) | 1997-08-05 | 1998-08-04 | Mutation detection method |
US10331398P | 1998-10-06 | 1998-10-06 | |
US09/129,105 | 1998-10-06 | ||
US09/058,337 | 1998-10-06 | ||
US09/058,580 | 1998-10-06 | ||
US60/103,313 | 1998-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999023257A1 true WO1999023257A1 (fr) | 1999-05-14 |
Family
ID=27556354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/023265 WO1999023257A1 (fr) | 1997-10-31 | 1998-10-30 | Procede de detection d'adn mutant par mipc et pcr |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1042503A4 (fr) |
AU (1) | AU1297599A (fr) |
WO (1) | WO1999023257A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001094366A1 (fr) * | 2000-06-02 | 2001-12-13 | Blue Heron Biotechnology, Inc. | Methode visant a ameliorer la fidelite sequentielle des oligonucleotides synthetiques bicatenaires |
GB2371048A (en) * | 2001-01-10 | 2002-07-17 | Univ York | Assay for determining allelic variations in prion protein genes |
WO2001095233A3 (fr) * | 2000-06-02 | 2003-03-20 | Transgenomic Inc | Analyse de donnees issues de la separation chromatographique en phase liquide d'adn |
EP1278584B1 (fr) * | 2000-04-21 | 2006-11-15 | TRANSGENOMIC, Inc. | Procede de lavage de colonne par chromatographie de polynucleotides a ions apparies |
EP1798291A1 (fr) * | 2005-12-13 | 2007-06-20 | Institut Curie | Méthode pour la détection de mutations dans les acides nucléiques, et leurs utilisation dans la diagnose des maladies genétiques et des cancers |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US5585236A (en) * | 1992-11-18 | 1996-12-17 | Sarasep, Inc. | Nucleic acid separation on alkylated nonporous polymer beads |
US5795976A (en) * | 1995-08-08 | 1998-08-18 | The Board Of Trustees Of The Leland Stanford Junior University | Detection of nucleic acid heteroduplex molecules by denaturing high-performance liquid chromatography and methods for comparative sequencing |
-
1998
- 1998-10-30 EP EP98956451A patent/EP1042503A4/fr not_active Withdrawn
- 1998-10-30 AU AU12975/99A patent/AU1297599A/en not_active Abandoned
- 1998-10-30 WO PCT/US1998/023265 patent/WO1999023257A1/fr not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683202B1 (fr) * | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US5585236A (en) * | 1992-11-18 | 1996-12-17 | Sarasep, Inc. | Nucleic acid separation on alkylated nonporous polymer beads |
US5795976A (en) * | 1995-08-08 | 1998-08-18 | The Board Of Trustees Of The Leland Stanford Junior University | Detection of nucleic acid heteroduplex molecules by denaturing high-performance liquid chromatography and methods for comparative sequencing |
Non-Patent Citations (2)
Title |
---|
HUBER C. G., ET AL.: "HIGH-RESOLUTION LIQUID CHROMATOGRAPHY OF OLIGONUCLEOTIDES ON NONPOROUS ALKYLATED STYRENE-DIVINYLBENZENE COPOLYMERS.", ANALYTICAL BIOCHEMISTRY., ACADEMIC PRESS INC., NEW YORK., vol. 212., 1 January 1993 (1993-01-01), NEW YORK., pages 351 - 358., XP002916339, ISSN: 0003-2697, DOI: 10.1006/abio.1993.1340 * |
See also references of EP1042503A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1278584B1 (fr) * | 2000-04-21 | 2006-11-15 | TRANSGENOMIC, Inc. | Procede de lavage de colonne par chromatographie de polynucleotides a ions apparies |
WO2001094366A1 (fr) * | 2000-06-02 | 2001-12-13 | Blue Heron Biotechnology, Inc. | Methode visant a ameliorer la fidelite sequentielle des oligonucleotides synthetiques bicatenaires |
WO2001095233A3 (fr) * | 2000-06-02 | 2003-03-20 | Transgenomic Inc | Analyse de donnees issues de la separation chromatographique en phase liquide d'adn |
US6664112B2 (en) | 2000-06-02 | 2003-12-16 | Blue Heron Biotechnology, Inc. | Methods for improving the sequence fidelity of synthetic double-stranded oligonucleotides |
GB2371048A (en) * | 2001-01-10 | 2002-07-17 | Univ York | Assay for determining allelic variations in prion protein genes |
EP1798291A1 (fr) * | 2005-12-13 | 2007-06-20 | Institut Curie | Méthode pour la détection de mutations dans les acides nucléiques, et leurs utilisation dans la diagnose des maladies genétiques et des cancers |
Also Published As
Publication number | Publication date |
---|---|
AU1297599A (en) | 1999-05-24 |
EP1042503A1 (fr) | 2000-10-11 |
EP1042503A4 (fr) | 2002-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6265168B1 (en) | Apparatus and method for separating and purifying polynucleotides | |
EP0691148B1 (fr) | Procédé de séparation de l'ADN double brin de l'ADN simple brin ou RNA | |
US5866429A (en) | Precision and accuracy of anion-exchange separation of nucleic acids | |
US6218153B1 (en) | Target DNA amplification by MIPC and PCR | |
EP1042503A1 (fr) | Procede de detection d'adn mutant par mipc et pcr | |
AU750394B2 (en) | Denaturing multi ion polynucleotide chromatography for detecting mutations | |
US6287822B1 (en) | Mutation detection method | |
US6187539B1 (en) | Analysis of nicked DNA by matched ion polynucleotide chromatography | |
EP1226275B1 (fr) | Detection de molecules heteroduplexes d'acide nucleique par chromatographie d'echange anionique | |
EP1316049A2 (fr) | Analyse de donnees issues de la separation chromatographique en phase liquide d'adn | |
US6455692B1 (en) | Method of concentrating polynucleotides using MIPC | |
DE60031891T2 (de) | Reinigungsverfahren für säulen zur passenden ionischen polynukleotidchromatographie | |
Marino et al. | Molecular size determinations of DNA restriction fragments and polymerase chain reaction products using capillary gel electrophoresis | |
US6485648B1 (en) | MIPC column cleaning system and process | |
Keinänen et al. | Use of polymerase chain reaction to detect heterozygous familial hypercholesterolemia | |
EP0970249B1 (fr) | Methode pour detecter des alleles mutes | |
CA2298630A1 (fr) | Procede chromatographique de detection de mutation par utilisation d'enzymes agissant specifiquement sur le site de mutation | |
AU5451700A (en) | Apparatus and method for separating and purifying polynucleotides | |
Köhler et al. | HPLC—Analysis of Nucleic Acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998956451 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998956451 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998956451 Country of ref document: EP |