+

WO1999019361A1 - Bindemoleküle gegen rezeptor-ligand-komplexe - Google Patents

Bindemoleküle gegen rezeptor-ligand-komplexe Download PDF

Info

Publication number
WO1999019361A1
WO1999019361A1 PCT/EP1998/006386 EP9806386W WO9919361A1 WO 1999019361 A1 WO1999019361 A1 WO 1999019361A1 EP 9806386 W EP9806386 W EP 9806386W WO 9919361 A1 WO9919361 A1 WO 9919361A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
ligand
binding molecules
molecules according
binding
Prior art date
Application number
PCT/EP1998/006386
Other languages
English (en)
French (fr)
Inventor
Klaus Bosslet
Heike Petrul
Original Assignee
Klaus Bosslet
Heike Petrul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klaus Bosslet, Heike Petrul filed Critical Klaus Bosslet
Priority to AU11518/99A priority Critical patent/AU1151899A/en
Publication of WO1999019361A1 publication Critical patent/WO1999019361A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • B i ndemo I eku Ien against receptor-ligand complexes makes it possible to use structures that are selectively associated with a disease as a target for therapeutic agents.
  • enzymes are neither selective for the disease nor overexpressed in the disease to be treated. This lack of selectivity often causes undesirable effects on normal tissues, which adversely affect the tolerance of the pharmaceutical (enzyme inhibitor).
  • receptor antagonists Other drugs interact, for example, with receptor structures on the cell surface and inhibit the interaction of the receptor with its natural ligand (receptor antagonists). This prevents the transmission of a signal through the ligand via the receptor into the cell (blockage of the signal 11 transduction). Since the receptor / ligand interactions produced by the receptor antagonists in 11 and 11 just like the above-mentioned enzymes occur not only in diseased but also in healthy tissues, the use of receptor antagonists is also important mostly associated with adverse side effects.
  • Antibodies known to date are specifically directed against a receptor on the cell surface or a ligand (for example EP 0 696 456; Mi llauer et al. (1993), Cell 72, 835-846) and thus influence a receptor or its ligands even when at rest (kovent i one II e receptor antagonists).
  • binding molecules described in the present invention react with epitopes which are neither present on the receptor nor on the ligand aI I e i ne, but instead arise at the points at which a receptor interacts with its ligand.
  • Binding molecules that are specifically directed against the receptor (s) ligand (s) complex I ex are selective for the receptor in the activated state and are therefore selective for the region of the tissue that migrates.
  • Suitable binding molecules include antibodies, antibody fragments (scFV, DABs, CRABs, diabodies, M inif I exant i bo-dies, M ini ant i od i es, tetravalent mono- or polyspecific antibodies), peptides, cyclic peptides, peptides i - metica and derived low-molecular ulare synthetics.
  • the described (receptor (s) -L i gand (s) -comp I exe are target structures particularly suitable for therapeutic use for the reasons mentioned above.
  • the invention thus relates to binding demonstrations which are obtained by immunization or immunoselection with a receptor ligand copex, the receptor and ligand being linked to one another by at least one covalent bond, process for their manufacture as well as their use as pharmaceuticals or d i agnost iku.
  • the invention further relates to nucleic acid chemistry which codes for the antibodies, vectors or expression vectors which contain these nucleic acids, and to animals, cells or cell lines by means of which the antibodies mentioned can be produced .
  • the invention relates to B i ndemo I ek ü I e such as Antibodies or antibody fragments which are characterized in that they bind specifically to the receptor ligand component I ex.
  • a covalent bond between the receptor and ligand must be established for the production or immunization and immunization of the antibodies, whereas this is not necessary for the binding of the produced antibody to its epitope.
  • B i ndemo I ek ⁇ I e with specificity for a receptor complex can e.g. B. can also be obtained via the SELEX process (NeXstar Pharmaceuti ca I s Inc.). These B i ndemo I ek u I e are synthetic 0 I i gonuk I eot i de, so-called aptamers. A modification of these amptamers are the Spiegelmers (Nolte et al. (1996), Nature Biotechnology Igy 14, 1116-1119), which consist of nucleotides that do not occur naturally and therefore have a higher stability.
  • the term receptor means the following structures:
  • Molecules on cell surfaces that can bind a ligand, or parts thereof that can bind a ligand. These are, for example, proteins, glycol ipide or proteins modified by lipids, sugars, ribonucleic acid, phosphates, protoporphyrins, F a i nnuk I eot i de or metals.
  • Receptors are e.g. B. Tyros i nphosphok i nasen such as Fit 1, KDR, Tie, Tek. A summary of other suitable receptors is given in Table 1 and Appendix 1.
  • ligand means the following structures:
  • Solve molecules that bind to a receptor are, for example, proteins, glycol ipides, peptides, glycopeptides, 0 I i gosacchar i de, ni edermo I ek u I are synthetics, glycosides or by lipids, sugars, ribonucleic acids, phosphates, protoporphyrins, FI av i naden i nnuk I eot i de or Metal l modified proteins.
  • Ligands are e.g. B. VEGF, VEGF-B, VEGF-C, Interleukin 12, PIGF, TEKL-1, TEKL-2.
  • the covalent bond between receptor and ligand is preferably formed by a peptide or a bi-functional crosslinker.
  • a peptide or a bi-functional crosslinker In the case of protein receptors and carbohydrate II proteins, other covalent bonds can also be used.
  • Amino acid sequences can be used as peptide from 1 to 30 amino acids are used, e.g. B. the sequence (GI y * Ser) 3.
  • the covalent bond between receptor and ligand is produced, for example, in such a way that purified and / or unpurified receptor and ligand moecules with a bifunctional crosslinking agent such as Bis-Su I f osucc inii dy I suberate, N-5-azido-2-nitrobenzoyloxysuccinimide, N-hydroxysuccini idyl-4-azidobenzoate, p-nitrophenyl-2-diazo-3,3,3-trifluoro-propionate (Pierce, Rockford, I ll inois , USA) and then the covalently linked receptor-ligand complex is separated from the individual components.
  • a bifunctional crosslinking agent such as Bis-Su I f osucc inii dy I suberate, N-5-azido-2-nitrobenzoyloxysuccinimide, N-hydroxysuccini idyl-4-azidobenzo
  • Suitable immunogens or antigens are also recombinant fusion proteins, containing the sequences of a protein receptor, peptide - as a compound (linker) of receptor and ligand - and a protein or peptide.
  • Suitable antigens for the production of the antibodies according to the invention are also one, two or three identical or different receptors which can be covalently linked to one, two or three identical or different ligands.
  • the following receptor ligand compexes can result:
  • R1 and R? stand for two different receptors and L1 and Lz stand for two different ligands; "-" stands for a covalent bond between receptor and ligand.
  • the ligand can also be a homodimer or heterodimer.
  • Two identical receptors are preferably coupled with one ligand.
  • Example swe ise binds a vascular endothelial growth factor (VEGF) -L i gand to two kinase do ain insert re ceptor (KDR) receptors.
  • VEGF-binding domains are preferably bound to a VEGF ligand by a KDR receptor or an fms-like tyrosine kinase receptor (FI t receptor) as a soluble component.
  • Further possible and preferred receptor ligand compexes include those described in Shawver et al, Drug Discovery Today, Vo I 2; 50-63, 1993 receptors and ligands described in Figures 4 and 5.
  • the invention further relates to the following DNA sequences of a single-chain antibody fragment (scFv), which represents the variable domains of a light (Vi) and heavy (V H ) antibody chain connected via a linker (VH-Linker-V ⁇ ).
  • the linker has the sequence:
  • the DNA sequences 1-10 according to the invention code for scFV fragments which are directed against the sFLT / VEGF- Komp I ex (see example 1).
  • G ⁇ T GCC AAC GGA CC ⁇ CGG TTA CCG TTT TCT T ⁇ TCT GG ⁇ GCG GTT
  • the invention also relates to functionally equivalent variants of SEQ ID NO. 1 -10.
  • the term "functionally equivalent variants” stands for modifications of the DNA sequences and their corresponding amino acid sequences, which stand for the light and / or heavy antibody chain and which bind to the receptor ligand component, but essentially not to the receptor or ligand alone, and their correspondingly formed antibodies, in comparison with the antibodies coded by SEQ ID NO.1-10, has a similar affinity for the receptor ligand component I ex.
  • the affinity for sFLT-VEGF receptor-L-i gand Comp ex I (see. Example 1 p 18) determined by Scatchard Ana I ysis is from 10 3 I / mol to 10- 15 / mol, preferably from 10 - 7 I / mol to 10- Z I / mol.
  • Another object of the invention is a molecular construct consisting of the amino acid chain which is encoded by SEQ ID NO.1-10 or its analogs and further amino acid chains linked to the sequence mentioned, these amino acid chains being different from the inventions Sequences and preferably parts of a human
  • Antibodies are, for example, parts of the constant areas of the heavy and light chains.
  • Other molecular constructs are, for example, "single domain” fragments or “single chain” fragments.
  • the present invention also includes humanized monoclonal antibodies (humMAK) or functionally active parts thereof which contain the light antibody chains and heavy antibody chains according to the invention.
  • Functionally active parts thereof are, for example, F (ab) or F (ab ') 2 fragments with one or more hanging regions.
  • Functionally equivalent variants are also the complementary determination regions (CDRs) of the antibody sequences, and peptides or mimetics derived from the CDRs.
  • the molecular constructs according to the invention or the humMAK effector or reporter contain molecules, for example a chelate for complexation with metal ions (eg EDTA, DTPA), heterologous toxic enzymes (eg ricin), a second binding region of other specificity or with kata I yt i see properties and / or common or toxic or non-toxic enzyme derived from non-human primates.
  • the constructs according to the invention or the humMAK according to the invention can also be used, for example, according to the method of Schwarz (Schwarz, A. & Steinstasse, A. (1987), A novel approach to Tc-99 labeled monoclonal antibodies. J. Nuc I. Med., 28, 721) with Tc-99m or according to generally known methods with Re or Y. The marking with Tc-99m is preferred for the diagnostic area.
  • the invention generally also includes any other marking with alpha, beta or gamma rays.
  • the sequences according to the invention can be linked with any amino acid residues, depending on the use, either chemically or with the help of genetic engineering methods by chemically combining the sequence according to the invention or the heavy or light chains with the molecule to be linked according to generally known methods or be linked by genetic engineering.
  • the sequences according to the invention themselves can also be produced chemically or by genetic engineering.
  • the genes for the heavy chains are lost when the Fc part of the antibody is removed -
  • the passed 3 'regulation sequences stop codon, 3' not to the area and Po I yA Add 11 i onss i gna I) by the C3 exon.
  • the 3 'non-translucent region and the poly-A additio n s i gna I of a human MHC class I gene, preferably an HLA B27 gene, are replaced.
  • the sequence according to the invention can in turn be produced either chemically or by genetic engineering using methods known to those skilled in the art.
  • the DNA sequences which code for the light and heavy chains consist either of genomic sequences or of cDNA sequences or of a mixture of both.
  • the DNA sequences mentioned preferably consist at least partially of genomic DNA.
  • the host cell which is used for the expression of the humMAK described in this invention is a prokaryotic or a eukaryotic cell, in particular Escherichia coli, a yeast such as Saccharomyces or CHO-ZeI - I en.
  • the invention encompasses therapeutic and diagnostic formulations which contain the antibody sequences or sequences or mimetics derived therefrom and their production and the use of such compostments in the therapy and diagnosis of preferably inflammation, solid tumors, in particular breast cancer, gastric cancer, prostate cancer , Lung carcinoma, colon carcinoma, pancreatic carcinoma, Kapos isarcoma etc., as well as non-solid tumors such as leukemia etc.
  • the procedure is, for example, that the covalently bound receptor ligand component I ex as such or in conjunction with an adjuvant for immunization or the complex for immune Selection of V regions of the naive or otherwise generated antibody gene banks.
  • a vertebrate is immunized with the receptor-ligand complex I ex or with the carier-bound receptor-ligand complex in a manner known from later literature, for example by subcutaneous or intaperial injection of the immunogen, if necessary with an adjuvant such as KFA (complete Freund's adjuvant) or IFA (incomplete Freund's adjuvant) or Qu i I A. If necessary, to increase the immune response one or more times " be boosted ".
  • the selection of the species is not critical, for example mice, rats, rabbits, monkeys (Macaca f asc i cu I ar i s), sheep, goats or camels I e are suitable.
  • monoclonal antibodies can of course also be produced. This is done, for example, by immunizing mice, as described above, and then fusion of the mice, for example with NS 1 myeloma cells and cloning of suitable cells. If necessary, the monoclonal antibodies obtained in this way can be multiplied, for example, by injecting the antibody-producing cells into nude mice. In principle, the production of such monoclonal antibodies is known to the person skilled in the art and is described in the literature.
  • mRNA can also be isolated from the malt cells in the unified animal, then produced using reverse transcriptase cDNA and, after amplification if by means of PCR (polymerase chain reaction), cloning takes place of antibody genes in a suitable host.
  • PCR polymerase chain reaction
  • a naive human, murine or primate V library can be prepared from mRNA from peripheral B cells in the phage library system and suitable antibodies can be isolated from it by immunoselection.
  • amp cli cation is preferably cloned into a phage library using PCR.
  • the antibody fragments expressed on the phage surface are selected with the immobilized receptor ligand component I ex. Screening identifies phage clones that recognize the complex immobilized on a solid phase (positive clones). These positive clones are tested in a second screening for binding to the individual components of the complex. Clones that are positive in the 1st screening and negative in the 2nd screening are processed further. Genes of the clones selected in this way are subcloned into suitable vectors and expressed in a suitable host.
  • the invention further relates to antibody (Ak) enzyme fusion proteins, for example Ak-RNase (Saxena, SK et al., J Biol. Chem. 267: 21982-6, 1992), Ak-DNase I (Kreuder V et al. (1984), Eur. J. Biochem. 139, 389-400), Ak-Onconase
  • Activator molecule of coagulation e.g. B. tPA (tissue plas inogen activator) or from Ak and a molecule of the coagulation cascade, for. B. tissue factor (TF) or truncated tissue factor (WO 96/016533, 1994).
  • Another enzyme with a cytotoxic function is recombinant mistletoe lectin (M. Langer et al., 1997. EJC Vol. 33, Suppl. 5, 49).
  • Cell lysis can be achieved by coupling antibodies to e.g. B. Lymphot ⁇ x in (Aggarval et al. (1984) J. Biol. Chem. 259, 686-691) or to a leukalexin (e.g.
  • the antibodies can also be coupled to toxins, e.g. B. the recombinant Pseudomonas exotoxin A (ETA '; Barth et al. 1997. EJC Vol.33. Supp I.5, S22, 39).
  • toxins e.g. B. the recombinant Pseudomonas exotoxin A (ETA '; Barth et al. 1997. EJC Vol.33. Supp I.5, S22, 39).
  • fusion proteins can also be produced by subcloning the scFv in pDN22 (pUC119-Der i vat) via Sf i I and Not l -Rest r i t i onsitte ntte I I en (D. Neri, personal communication).
  • This vector allows the expression of scFv with C-termina-
  • cysteine can be used for chemical
  • the antibodies can be subcloned on the antibody gene in pDN 268 (Neri et al. (1996), Nature Biotechno-
  • the vector pDN268 contains the recognition sequence for the human casein kinase II at the C-terminal as a phosphorization sequence.
  • a variant is the production of scFv with a radioactively markable peptide id. 32 P is used for diagnosis and therapy.
  • linker sequence is the hinge region from the mouse I gG 1 molecule, or homologous human Ig hinge regions, which can be engineered as ant i para II e I peptide sequences.
  • Antibodies can also be produced, for example in single chain diabody format.
  • an antibody fragment with the specificity described above hereinafter referred to as fragment A
  • fragment B an antibody fragment linked to a second antibody fragment (fragment B).
  • the second fragment is specifically directed against a factor from the coagulation cascade (e.g. C1q) or a surface molecule of T cells (CD8, CD24) or TF or TPA or TNF or another effector molecule.
  • the first and second fragments are consecutively called scFv fragments (VH domain with the VL domain of the other fragment, e.g. V H B with V L A and V H A with VB, with a 5 AS long left) a chain is cloned and connected via a 15 AS long left. Expression as a chain results in higher stability and higher yields.
  • VEGF vascular endothelial growth factor
  • VEGF receptor vascular endothelial growth factor
  • mRNA is isolated from the cells of the immunized animals (E. Hornes S. L. Korsnes, 1990, Genet. Anan. Tech. App I.7: 145-150). Subsequently, cDNA is synthesized with the reverse transcriptase (Sambrook, Fritsch, Maniatis 1990; Molecular Cloning, A Laboratory Manual, Second Edition; Cold Spring Harbor Press).
  • Phage that only react with the sFLT-VEGF-Komp I ex is selected by means of immune effect using sFLT-VEGF-Komp I ex immobilized on the solid phase.
  • the phages and / or soluble antibody fragments are tested in an ELISA assay for binding to the immobilized VEGF-sFLT-Komp I ex. Binding antibodies are tested for binding against the receptor (sFLT) or ligand (VEGF) alone. (Phage) antibodies that are negative in the second test are processed further. In the Western blot, these antibodies show no binding to VEGF.sFLT or sKDR alone. The so i mmunse I ect i erten specific
  • Phages are propagated in E.col i by co-infection with the helper phage.
  • the one on the surface of the phage clones expressed scFv are produced by infection of E.col i HB2151 as soluble antibodies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Bindemoleküle gegen Rezeptor-Ligand-Komplexe, welche durch Immunisierung bzw. Immunselektion mit einem Rezeptor-Ligand-Komplex, wobei Rezeptor und Ligand durch mindestens eine kovalente Bindung miteinander verbunden sind, erhalten werden, oder wobei ein, zwei oder drei gleiche oder verschiedene Rezeptoren und ein, zwei oder drei gleiche oder verschiedene Liganden durch wenigstens eine kovalente Bindung miteinander verbunden sind, und wobei die Rezeptoren ein Protein oder ein durch Lipide, Zucker, Ribonukleinsäure, Phosphate, Protoporphyrine, Flavinadeninnukleotide oder Metalle modifiziertes Protein und die Liganden ein Protein, Peptid, niedermolekulares Synthetikum, Glykosid, oder ein durch Lipide, Zucker, Ribonukleinsäuren, Phosphate, Protoporphyrin, Flavinadeninnukleotide oder Metall modifiziertes Protein sind.

Description

Beschreibung
B i nde o I ek ü I e gegen Rezeptor-L i gand-Komp I exe
Der Einsatz von B i ndemo I ek ü I en gegen Rezeptor-L i gand-Kom- plexe macht es mögl ich, Strukturen, die selektiv mit einer Erkrankung verbunden sind, als Angriffpunkt für Thera- peutika zu benützen.
Das Auffinden solcher Strukturen ist seit langem von der pharmazeutischen Fachwelt als Aufgabe erkannt worden. Viele bekannte Phar aka sind zum Beispiel niedermolekulare Inhibitoren von Enzymen, die mit bestimmten Pat homechan i smen in Verbindung gebracht werden. Häufig sind die inhibierten
Enzyme jedoch weder selektiv für die Erkrankung noch in der zu behandelnden Erkrankung überexpr i i ert . Dieser Mangel an Selektivität ruft oft unerwünschte Effekte auf Normalgewebe hervor, welche die Verträgl ichkeit des Phar aku s ( Enzym- Inhibitors) nachtei l ig beeinflussen.
Andere Pharmaka interagieren zum Beispiel mit Rezeptorstrukturen auf der Ze I l oberf I äche und hemmen die Interaktion des Rezeptors mit seinem natürl ichen Liganden ( Rezeptorantago- nisten). Hierdurch wird die Weitergabe eines Signals durch den Liganden über den Rezeptor in die Ze I le verhindert (Blockade der S i gna 11 ransdukt i on ) . Da die von den Rezeptor- antagonisten i nh i b 11 i erten Rezeptor / L i gand- I nterakt i onen ebenso wie die oben erwähnten Enzyme nicht nur in erkrank- ten, sondern auch gesunden Geweben vorkommen, ist auch die Verwendung von Rezeptorantagon i sten meist mit nachtei l igen Nebenwirkungen verbunden.
Es wurde daher erkannt, dass Nebenwirkungen höchstwahr- scheinl ich nicht oder nur in sehr eingeschränktem Ausmasse auftreten würden, wenn die Rezeptorantagon i sten den Rezep- tor aussch I i ess I i ch im erkrankten Gewebe inhibieren würden und die gesunden Gewebe unbee i nt räch i gt Messen.
Vielfach wurde versucht, Therapeutika zu entwickeln, die selektiv für pro I i f er i erende Endothelien in vitro und in vi o sein sollen. Diese Vorschläge finden sich beispielsweise in einigen Veröffentlichungen wie EP 0 696 456 A2 , Seite 3, Senger et al, October 24 1994 USP 08/327,709, Rockwell et al, February 10 1994, WO 95/21868, Thorpe and Burrows, 1992, WO 93/17715.
Die dort vorgeschlagenen potentiel len Therapeutika erkennen in vielen Fällen Antigene, die auf pro I i f er i erendem Endo- thel stärker exprimiert sind als auf ruhendem Endothel (Thorpe and Burrows, 1992 WO/ 93/ 17715 ) .
Bisher bekannte Antikörper sind spezifisch gegen einen Rezeptor auf der Ze I I oberf I äche oder einen Liganden gerichtet (z. B. EP 0 696 456; Mi llauer et al. (1993), Cell 72, 835- 846) und beeinflussen so einen Rezeptor oder seinen Ligan- den auch im ruhenden Zustand ( kovent i one I I e Rezeptor-Anta- gon i sten ) .
Die in der vorliegenden Erfindung beschriebenen Bindemoleküle reagieren jedoch mit Epitopen, die weder auf dem Rezep- tor noch dem Liganden a I I e i ne vorhanden sind, sondern an den Stel len entstehen, an denen ein Rezeptor mit seinem Liganden interagiert. Bindemoleküle, die spezifisch gegen den Rezeptor ( en ) -L i gand ( en ) -Komp I ex gerichtet sind, sind selektiv für den Rezeptor im aktivierten Zustand und damit selek- tiv für den Bereich des pro I i f er i erenden Gewebes.
Geeignete Bindemoleküle beinhalten Antikörper, Antikörperfragmente (scFV, DABs, CRABs, Diabodies, M i n i f I exant i bo- dies, M i n i ant i od i es , tetravalente mono- oder polyspezi- fische Antikörper), Peptide, zyklische Peptide, Pept i dorn i - metika und hieraus abgeleitete niedermole ulare Synthetika. Die beschriebenen ( Rezeptor ( en ) -L i gand ( en ) -Komp I exe sind aus den oben genannten Gründen besonders geeignete Zielstrukturen für die therapeutische Anwendung.
Gegenstände der Erfindung sind so it B i ndemo I ekü I e , die durch I munisierung bzw. Immunselektion mit einem Rezeptor- L i gand-Ko p I ex erhalten werden, wobei Rezeptor und Ligand durch mindestens eine kovalente Bindung miteinander verbunden sind, Verfahren zu deren Herstel lung sowie ferner deren Verwendung als Arneimittel oder D i agnost i k u . Ferner be- trifft die Erfindung Nuke i nsauremo I ek ü I e , die für die Antikörper kodieren, Vektoren oder Exypress i onsvektoren , die diese Nukleinsäuren enthalten, sowie Tiere, Zel len oder Zel l inien, durch welche die genannten Antikörper herstel lbar sind.
Die Erfindung betrifft B i ndemo I ek ü I e wie z.B. Antikörper oder Antikörperfragmente, die dadurch gekennzeichnet sind, dass sie spezifisch an den Rezeptor-L i ganden-Komp I ex binden. Zur Herstel lung bzw. Immunisierung und I m unse I ekt i on der Antikörper muss eine kovalente Bindung zwischen Rezeptor und Ligand geknüpft werden, wahrend diese für die Bindung des hergestel lten Antikörpers an sein Epitop nicht notwendig ist. Eine Assoziation des Rezeptors mit seinem Liganden durch nicht kovalente Interaktionen oder stabi l isieren- de Drittmoleküle, wie z.B. auf der Zel lmembran reicht hierzu aus. Es spielt für die Bindung ebenfal ls keine Rol le, ob der Rezeptor-L i gand-Komp I ex in lösl icher oder menbrangebun- dener Form vorl iegt.
Weitere B i ndemo I ek ύ I e mit Spezif ität für einen Rezeptor-Komplex können z. B. auch über das SELEX Verfahren (NeXstar Pharmaceut i ca I s Inc. ) gewonnen werden. Diese B i ndemo I ek u I e sind synthetische 0 I i gonuk I eot i de , sog. Aptamere. Eine Abwandlung dieser Amptamere sind die Spiegelmere (Nolte et al. (1996), Nature B i otechno I ogy 14, 1116-1119), die aus nicht natürl ich vorkommenden Nukleotiden bestehen und daher eine höhere Stabi I itat aufweisen. Unter dem Begriff Rezeptor werden folgende Strukturen verstanden :
Moleküle auf Ze I I oberf I ächen , die einen Liganden binden können, oder Tei le davon, die einen Liganden binden können. Dies sind beispielsweise Proteine, Glykol ipide oder durch Lipide, Zucker, Ribonukleinsäure, Phosphate, Protoporphyrine, F I a i nnuk I eot i de oder Metal le modifizierte Proteine. Rezeptoren sind z. B. Tyros i nphosphok i nasen wie Fit 1, KDR , Tie, Tek . Eine Zusammenfassung weiterer geeigneter Rezeptoren ist in Tabel le 1 und Anhang 1 gegeben.
Tabelle 1
CD number other names main main cellular tiie mein ligand furtcüσπ diitribution
CD 129 IL-9R gro t T* eeil», 64kDa 1 111--99 promotlng maασphages, activity for T ceU mcga aryoblaβtβ tunumra
CD 135 Flt3 Flk2 receptor tyiosinc CD 34 ceUs, 130-150 kDa F 3/F kinate carcinoma cells ligand
Unter dem Begriff "Ligand" werden folgende Strukturen verstanden :
Lösl iche Moleküle, die an einen Rezeptor binden. Dies sind beispielsweise Proteine, Glykol ipide, Peptide, Glykopep- tide, 0 I i gosacchar i de , n.i edermo I ek u I are Synthetika, Glyko- side oder durch Lipide, Zucker, Ribonukleinsäuren, Phosphate, Protoporphyrine, F I av i naden i nnuk I eot i de oder Metal l mo- difizierte Proteine. Liganden sind z. B. VEGF, VEGF-B, VEGF-C, Interleukin 12, PIGF, TEKL-1, TEKL-2.
Die kovalente Bindung zwischen Rezeptor und Ligand wird vorzugsweise durch ein Pept i d oder einen b i funkt i one I I en Ver- netzer gebi ldet. Im Fal le von Proteinrezeptoren und Kohlenhydrat I I ganden können aber auch andere kovalente Bindungen verwendet werden. Als Peptid können Aminosäurensequenzen von 1 bis 30 Aminosäuren verwendet werden, z. B. die Sequenz ( G I y * Ser ) 3.
Die kovalente Bindung zwischen Rezeptor und Ligand wird be i - spielsweise so hergestel lt, dass gereinigte und/oder ungereinigte Rezeptor- und L i gandmo I ek ü I e mit einem bifunktio- nel len Vernetzer wie B i s-Su I f osucc i n i i dy I suberat , N-5- Azido-2-nitrobenzoyloxysuccinimid, N-Hydroxysuccini idyl-4- Azidobenzoat, p-Nitrophenyl-2-diazo-3,3,3-trifluoro-propio- nat (Pierce, Rockford, I l l inois, USA) inkubiert werden und ansch I i essend der kovalent verbundene Rezeptor-L i gand-Kom- plex von den Einzelkomponenten abgetrennt wird.
Geeignete Immunogene bzw. Antigene sind auch rekombinante Fusionsproteine, enthaltend die Sequenzen eines Proteinrezeptors, Peptid - als Verbindung ( l inker) von Rezeptor und Ligand - sowie einen Protein- oder Pept i d I i ganden .
Geeignete Antigene zur Herstel lung der erfindungsgemässen Antikörper sind auch ein, zwei oder drei gleiche oder verschiedene Rezeptoren, die kovalent mit einem, zwei oder drei gleichen oder verschiedenen Liganden verbunden sein können. Dabei können sich folgende Rezeptor-L i gand-Komp I exe ergeben :
Ri-Lj-Ri; R,-L2-Rai Ri-Lj-R,;
Figure imgf000007_0001
Rj-LrR.-Lj-R,;
Rι- ι-R2Lι-Rι; Rι- ι-Ra-L R2; R ^-Ra-L^; R^L Lj-R,; R2-L,-L,-R2; Rι-L,-L,-R,.
R1 und R? stehen für zwei verschiedene Rezeptoren und L1 und Lz stehen für zwei verschiedene Liganden; "-" steht für eine kovalente Bindung zwischen Rezeptor und Ligand. Der Ligand kann auch ein Homo- oder Heterodimer sein.
Bevorzugt werden zwei gleiche Rezeptoren mit einem Liganden gekoppelt. Beispiel swe ise bindet ein vascular endothel ial growth factor ( VEGF ) -L i gand an zwei kinase do a i n insert re- ceptor ( KDR ) -Rezeptoren . Bevorzugt werden VEGF-b i ndende Domänen von einem KDR-Rezeptor oder einem fms-l ike tyrosine kinase receptor ( F I t-Rezeptor ) als lösl iche Komponente an einen VEGF-L i ganden gebunden. Weitere mögl iche und bevorzug- te Rezeptor-L i gand-Komp I exe enthalten die in Shawver et al, Drug Discovery Today, Vo I 2; 50-63, 1993 in Fig. 4 und 5 beschriebenen Rezeptoren und Liganden.
Dar über h i naus kann auch der nur auf pro I i f er i erenden Zel len vorkommende Komplex aus den Membranproteinen Fas -Antigen und Tumor-Nekrose Faktor Rezeptor (Yonehara et al., J. Exp. Med. 169, 1747-1756, 1989) als I mmunogen / An i gen verwendet werden .
Die Erfindung betrifft ferner die folgenden DNA Sequenzen eines single-chain Antikörperfragments (scFv), welcher die über einen Linker verbundenen variablen Domänen einer leichten (Vi) und schweren (VH) Antikörperkette darstellt (VH- Iinker-Vι). Der Linker hat die Sequenz:
GGA AGT TGC TCT GGC CGT GGC GGA TCG Gly Ser Gly Ser Gly Arg Gly Gly Ser
und durch Mutation entstandene Derivate hiervon
Die erf i ndungsgemässen DNA-Sequenzen 1 - 10 kodieren für scFV-Fragmente , die gegen den sFLT/ VEGF-Komp I ex (siehe Bei spiel 1) gerichtet sind..
SEQ I D NO.1
5'- TGG CCC AGG TGA AGC TGT AGC AGT CAG GGG GAG AGC TTG TGA ΛGC
CAG GGG CCT CAG TCA AGT TGT CCT GCΛ CAG CTT CTG GCT TCA ACΛ TTA
AΛG ACT CCT ATA TGC ACT GGG TGA AGC ΛGΛ GGC CTG AAC AGG GCC TGG
AGT GGA TTG GAA GGA TTG ΛTC CTG CGA ΛTG GTΛ ATA CTA AAT ATG ACC CGA AGT TCC AGG GCA AGG CCΛ CCΛ TAΛ CAG CAG ACA CAT CCT CCA CAC
ΛGC CTA CCT GCA GCT CAG CAG CCT GAC ATC TTΛ GGA CAC TGC CGT CTA
TTA CTG TGC TAG ATG CTA TGG TΛΛ CTA CGT GTA TTA CTA TGC TAT GGA
CTA CTG GGG GGC AAA GGA ACA CGG TCA CCG TTC TCC CCC AAT TGA AGC
CGT TCA GGG GAA GTT GCT CTG GCC GTG GCG GAT CGG ACA TCG AGC TCA CTC AGT CTC CAG GGA AGT TGC TCT GGC CGT GGC GGA TCG GΛC ΛTC
GAG CTC ACT CAG TCT CCΛ GCΛ ΛTC ATG TCT GCΛ TCT CCΛ TGG GAG ΛΛG GTC ACC ΛTG ΛCC TGC AGT GCC TGC TCA ΛGT GTΛ ΛGT TΛC ATG CAC TGG TΛC CΛG CΛG ΛΛG TCΛ GGC ACC TCC CCC AAA AGA TGG ATT TAT GΛC ΛCΛ TCC AAA CTG GCT TCT GGΛ TCC CΛG CTC GCT TCΛ GTG GCΛ GTG GΛT CTG GGA CCT CTT ΛCT CTC TCΛ CΛΛ TCΛ GCC GΛΛ TGG ΛGG CTG ΛΛG ΛTG CTG CCΛ CTT ATT ΛCT GCC AGC AAA GGA GTΛ GTT ACC CCC TCΛ CGT TCG GTG CTG GGA CΛA CTT GGΛ ΛTΛ ΛΛΛ CGG GCG GCC GCA GΛΛ ΛCT GTT GΛΛ ΛGT TGT- 3*
SE Q I D NO . 2
5'- ATG GCC CAG GTG AAA CTG CΛG GAG TCA GGA ACT ACC TTG TGA GTC CGT GGG CCG TGC TCT CΛT TTT CCT ACG GCT CAT CGG TCT TCA GΛC TGC
AGT AGG TCT GTG GAA CTG CCG TAA ACC ACA ΛCG CCT ACA GCA GGG TCT
GGΛ CTG GAA TTG ACC GAT TGA AGO CTG CAA CTG GTA TCC CTG GTT CTG
ΛTC CCA AGA TGC TGC GCT CCG ΛCΛ GTA CAA AAC CAA ACC CAT CCT CCA
ATA TCA ACG TAA CCG GΛC GGG TCA ACA GGA CCA ACG TCT CAG GΛC TCC TGC CGT CTA ATG CTG TTA CTG CAT GGΛ GΛT TGG TAC TTC CΛG TGT CTG
GΛT GCC AAC GGA CCΛ CGG TTA CCG TTT TCT TΛΛ TCT GGΛ GCG GTT
TCG GCG GGA GGT GGC TCT GGC GGT GGC GGA TCT GAC ΛTT GAG CTC
ACCCAGTCT CCΛ GCAATC ATGTCN GCA TCT CCA GGG GAG ΛAG GTC ACC
ATG ACC TGC AGT GNC AGC TCANGT GTA AGT TAC ATG CAC TGG TNC CAG
CΛG AAG TCA GGC ACT TCN CCC ΛΛΛ ΛTΛ TGG ΛTT TAT NAC ACΛ TCC ΛAN
CTG GCT TCT GGA GTC CCT GCT CGC TTC AGT GGC AGT GGΛ TCT GGG ΛCC
TCT TAC TCT CTC ACA ATC AGC NGC ATG GAG GCT GAΛ GAT GCT GCC ACT
TAT TAC TGC CAG CΛN NGG AGT AGT NAC CCN TAC ACG TTC GGN GGG GGG ACC AAGCTGGAGATG AAA CGG-3'
oder scFv mit partiell deletierter VH Domänei SEQ ID NO.3
5'- GAA GCT GCA GGA TTT TGG GCC CΛA GGG ACA ACG TTC CCT TTT TCT TCΛ '
ΛGT GGA GGC GTT TCA GGC GGΛ GGT GGT TCT GGC GGT GGC GGΛ TCG
GΛC AAC TAG CTC ΛCT CAG TCT CCA GCA ATC ATG TCT GCA TCT CCA GGG
GAG AAG GTC ACC ATA ACC TGC ΛGT GCC ΛGC TCΛ ΛGT GTΛ ΛGT TΛC ΛTG
CAC TGG TTC CAG CAG ΛΛG CCA GGC ACT TCT CCC AAΛ CTC TGG ATT TAT
AGC ACA TCC AAC CTG GCT TCT GGA GTC CCT GCT CGC TTC AGT GGC AGT GGATCT GGG ACC TCT TAC TCT CTC ΛCΛ ΛTC ΛGC CGA ATG GAG GCT GΛΛ
GAT GCT GCC ACT TAT TΛC TGC CAG CAA AGG ΛGT ΛGT TΛC CCG CTC ΛCG
TTC GGT GCT GGC ACC AAG CTG GΛΛ ΛTC ΛΛΛ CGG GCG GCC GCA GAA ACT
GTTGΛAAGTTGTTTTTCA- 3'
oder scFv mit partiell deletierter VH Domäne:
SEQ ID NO.4
5' - CGG TCG TGC CTT TCT ATG CGG CCC AGC CGG CCA TGG CCC AGG TGC AGC TGC AGG AGT CΛG GAC CAA GGG ACC ACG GTC ACC GTC TCC TCΛ GGT GGΛ GGG GGT TCA GGC GGA GGT GGC TCT GGC GGT GGC GGA TCG GAT CGA GCT CΛC TCA GTC TCC AAC AAT CΛT GTC TGC ATC TCC ΛGG GGΛ GΛΛ GGT CAC CAT AΛC CTG CAG TGC CAG CTC AAG AGT AΛG TTA CΛT GCΛ CTG GTT CCA GCA GΛΛ GCC ΛGG CAC TTC TCC CAA ACT CTG GAT TTA TAG CΛC ΛTC CAA CCT GGC TTC TGG AGT CCC TGC TCG CTT CAC TGG CAG TGG ATC TGG GAC CTC TTA CTC TCT CAC AAT CAG CCC GAA TGG ΛΛG CTG AAΛ ATG CTG CCA CTT ATT TAC TGC CAC. CTC GGG AΛT TAT TAT CCC CAA TGG TTC CCC TTT CGG AAG GGG GGΛ ΛCC AAC - 3'
oder scFv mit partiel l deletierter VH Domäne: SEQ I D NO . 5
5* - CCC CCC CTC TTT GGT TGG GCC TTG GAATTGTTG TTC CTT TCT ATG TTG CCC AGC CGG CCΛ TGG CCC AGC TGC ΛGC TGC ΛGC ΛGT CΛG GAC GGC CCT GCΛTCA TGG GGC AGC CGG GGΛ TGC TGG GGG CCA AGC ACC ACG GTC ΛCC GTC TCC TCA GGT GGA GGC GGT TCA GGC GGΛ GGT GGC TCT GGC GGT GGC GGG TCT GAT ΛTT GΛG CTC ACC CΛG TCT CCA GCA CTC ATG GCT GCA TCT CCΛ GGG GAG AAG GTC ACC ΛTC ACC TGC ΛGT GTC AGC TCΛ ΛGT ΛTΛ AGT TCC AGC AAC TTG CAC TGG TAC CAG CAG AAG TCA TAA ACC TCC CCC ΛΛA CCC TGG ATT TAT GGC ΛCA TCC AAΛ CCT GGC TTT CTG GGA GTT CCC TGTTTC GCTTCC AGT GGC CATTGGAAT CTG GGG- 3'
oder scFv mit partiell deletierter VH Domäne:
SEQ ID NO.6
5* - TGG AGG GGG GTG GGG CCA AGG GGA CCA CGG TTC ACC GTT TTC CTC ΛΛA GGG GAG GCG GGT TCA GGC GGA GGT GGT TCT GTC GGT GGC GGG ATC AGA CAT TGΛ GCT CΛC CCA GTC TCC AGC AAT CΛT GTC TGC ATC TCC AGG GGA ΛΛA AGG TCA CCA TGΛ CCT GCA GGG CCΛ GCT CAA GTG TAΛ GTT CCΛ GTT ACT TGC ACT GGT ΛCC ΛGC ΛGA AGT CAG GTG CCT CCC CCA AAC TGT GGA TTT ATA GCΛ CΛT CCA ACT TGG CTT CTG GAG TCC CTG CTC GCT TCΛ GTG GCA GTG GGT CTG GGΛ CCT CTT ΛCT CTC TCA CAΛ TCA GCΛ GTG TGG ΛGG CTG AAG ATG CTG CCA CTT ATT ACT GCC AGC AGT ACA GTG GTT ΛCC AAC TCA CGT TCG GCT CGG GGA CAA AGT TGG AAA TAA AAC GGG CGG CCGCΛGAAATTG-3'
SEQ ID NO.7
5*.- ATGGCCCAGGTGAAGCTGCAGGAGTCTGGC GCTGAGTTGGTGΛΛA CCTGGGGCTTCAGTG ΛAG ΛCATCCTGC AAGGCTTCT GGC TAC AAC TTC ΛTTGΛC CAT GTT ATT CAC TGGATA AAGGAG AAGCCT GAACAGGGC CTG GAATGGATT GGATAT ΛTΛTCT CCC GGΛΛΛT GGTGATATTΛΛGTΛCΛΛT GAGAATTTC AAG GGC ΛAGGCTACACTGACT GCΛΛAC ΛAΛTCC TCC AAC ΛCT GCCTAC ATGCAGCTC ΛΛC AGC CAC ATCTGAAGATTCTGC ΛGT GTΛ TTTTTGTAGGGATTACTACGGTAGGGCTAGGGACTACTGGGGCCΛΛGG GAC CΛC GGT CAC CGT CTC CTT CAGGTGGAG GCGGTTTCAGGC GGAGGT GGCTCT GGGCGGTGG CGG ATC GGΛCΛT CGAGCT CAC TCΛGTCTCC ΛGC 5 TTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCΛC CΛT CTC CTGCΛGAGC CAGCNGAAGTGTTGATAATTATGGCATTAGTTTTAT GAACTGGTT CCA ΛCAGAAACC AGGACA GCC ACC CAAACTCCT CAT CTATGC TGC ATC CΛA CCAAGG ATCCGGGGT CCC TGC CΛGGTTTAGTGGCAGTGGGTCTGGGAC AGACTTCAGCCT CAACAT CCATCCTAT GGAGGAGGATGΛTΛC TGC ΛΛT ° GTATTT CTGTCAGCAAAGTAΛGGAGGTTCCTTGGAC GTT CGGTGG AGG GAC CAΛGCT GGG GCT GAA ACGG - 3'
5 SEQ ID NO.8
5' - ATGGCC CAGGTC AAGCTC AGC AGT CAT GAC CTG AACTAGTGAAGC CTGGGGCTTCGGTGAAGATGT CCT GCAAGG CTT CTGGATACACAT TCΛ ° CTGACT ATGTTATAT CTT GGGTGAAGC AGAGAACTGGAC AGG GCC TTG AGT GGATTG GAGAGATTTATC CTG GΛΛGTGTTAATACTT ACT ACΛGTG AGAAGT TCAAGGACAAGGTCACAC TGACTGCΛGACAAAT CCT CCAΛCA CAGCCT ACATGC AGCTCAGCA GCCTGACAT CTGCGGACT CTGCGGTCT ATTTCT GTG CGAGAGGAGTGTACT ACGGGT ACTTCGATGTCT GGG GCC 5 AAGGCACCACGGTCACCGTCT CCTCAGGTGGΛΛGCGGTT CAG GCGGAG GTGGCT CTG GCGGTGGCGGAT CGGACΛTCGAGCTCACTCAGT CTC CΛG CAATCATGT CTGCAT CTCTAGGGΛΛGAAGATCACCC TAACCT GCAGTG CCAGCTCGAGTGTAA GTTACATGC ACT GGT ACC AGC AGΛΛGT CΛGGCΛ 0 CTTCTC CCAAACTCTTGATTT ATAGCACAT CCΛACC TGGCTT CTG GAG TCC CTT CTC GCTTCAGTGGCAGTGGGT CTGGGΛCCTTTT ATT CTC TCΛ CAATCAGCA GCATGGAGGCTGAAGΛTGCTGCCACTTATTACT GTC AAC AGT GGAGTAGTT ACC CGCTCACGTTCGGTG CTGGGΛCΛΛ ΛGTTGG AAA TΛAAΛCGG-3' 5 SE Q I D NO . 9
5 - ATGGCC CAGGTGAAG CTGCGGAGTCTGGAGGAGGCTTGGTGC AAC CTGGGGGGTCΛCGGGGΛCTCTCTTGTGΛΛGGCTCΛGGGTTTACTTTTA 5 GTGGCTTCT GGATGAGCT GGGTTC GAC AGACAC CTGGGAAGACCC TGG ΛGTGGΛTTGGΛGACΛTTΛATTCTGATGGCAGTGCAATAA ACTACGCΛC CAT CCATAAAGG ATC GATTCACTATCTTCAGAG ΛCAΛTG ΛCΛΛGΛGCΛ CCCTGT ACCTGC AGATGAGCΛΛTGTGCGAT CTGAGGΛCΛCΛGCCACGT ATTTCTGTATGAGAT ATGATGGTTACTACTGGT ACTTCGΛTGTCT GGG ° GCCΛAGGGΛCCACGGTCACCGTCT CCT CAGGGGAAGCTGTTCAGGCGG ΛΛGTGGCTCTGG CGGTGGCGGATC GGACATTCACCT GΛC CCAGTC TCC ΛTCCTC CAT GTATGC ATC GCT GGG ΛGAGAGΛGTCΛC TAT CΛCTTG CAA GGC GAGTCAGGACATTAAAΛGCTATTT AAGCTG GTACCAGCAGΛΛ ΛCC ΛTG GAAATC TCCTAΛGAC CCT GAT CTATTATGC AΛC AAGCTT GGC ΛGΛ 5 TGG GGT CCC ATC AΛGΛTT CΛGTGGCAGTGGATCTGG GCAΛGATTATTC TCT AAC CAT CAGCAG CCT GGAGTCTGACGATACΛGC ΛΛC TTΛTTΛCTG TCTACAGCATGGTGΛGΛG CCC GCT CAC GTT CGGTGCTGG GAC CAAGCT GGΛGCT GAA ACGG- 3' 0
oder scFv mit partiell deletierter VH Domäne:
5 SEQ ID 10
5' -ATGGCC CAGGTC CAGCTGCAGCAGTCAGGGGCC ΛΛGGGΛCCACGG
TCACCGTCTCCTCAGTTGGAGGCGGTTCAGGCGGAGGTGGCT CTG GCG
GTGGCGGAT CGGACATTGAGCTCACCCAGT CTC CAACAATCΛTGT CTA ° CATCTCCAGGGGAGAΛGGTCΛCCATGACCTGCΛGTGCCAGCTCAAGTG
TAΛATT ACATGT ACT GGT ACC AGC ΛGΛAGC CΛGAAT CCT CCC CCAGAC
TCCTGATTTATGACACAT CCΛΛCCTGGCTTCTGGΛGTCCCTGTTCGCT
TCΛGTGGCAGTGGGT CTGGGACCT CTT ACT CTCTCA CAATCAGCC GΛΛ
TGGΛGGCTGAAGATG CTGCCACTTΛTTACT GCCAGCAGTGGAGTAGTT 5
ΛCC CGCTCACGTTCGGTGCTGGGACCΛAGC TGG AAATAAΛΛC GG-3' Die Erfindung betrifft auch funktionell äquivalente Varianten der SEQ ID NO. 1 -10. Der Begriff "funktionel l äquivalente Varianten" steht für Modifikationen der DNA-Sequenzen und deren entsprechende Aminosäuresequenzen, die für die leichte und/oder schwere Antikörperkette stehen und die an den Rezeptor-L i gand-Komp I ex binden, aber im wesentl ichen nicht an den Rezeptor oder Liganden alleine, und deren entsprechend gebildeter Antikörper im Vergleich mit den von SEQ ID NO.1-10 kodierten Antikörpern ähnliche Affinität zum Rezeptor-L i gand-Komp I ex besitzt. Die Affinität zum sFLT-VEGF-Rezeptor-L i gand-Komp I ex (vgl. Beispiel 1, S. 18) bestimmt nach Scatchard-Ana I yse beträgt von 10 3 I/Mol bis 10-15 /Mol, bevorzugt von 10-7 I/Mol bis 10- Z I/Mol.
Ein weiterer Gegenstand der Erfindung ist ein molekulares Konstrukt, bestehend aus der Aminosäurekette, die durch die SEQ ID NO.1-10 oder deren Analoge kodiert wird und weiteren mit der genannten Sequenz verknüpften Aminosäureketten, wobei diese Aminosäureketten verschieden von den erf indungs- ge assen Sequenzen und vorzugsweise Te i le eines humanen
Antikörpers sind, beispielsweise Teile der konstanten Bereiche der schweren und leichten Ketten. Weitere molekulare Konstrukte sind beispielsweise "single domain" Fragmente oder "single chain" Fragmente.
Die vorliegende Erfindung umfasst auch humanisierte monoklo- nale Antikörper (humMAK) oder funktionell aktive Teile davon, die die erf i ndungsgemässen leichten Antikörperketten und schweren Antikörperketten enthalten. Funktionell aktive Teile davon sind beispielsweise F(ab)- oder F ( ab' ) 2-Fragmen- te mit einer oder mehreren H i nge-Reg i onen . Funktionell äquivalente Varianten sind auch die Comp I ementar i ty Determining Regions (CDRs) der Ant i körper Sequenzen , sowie von der CDRs abgeleitete Peptide oder Mimetika.
Ferner können die erf i dungsgemässen molekularen Konstrukte oder die erf i ndungsgemässen humMAK Effektor- oder Reporter- moleküie enthalten, beispielsweise ein Chelat zur Ko plexie- rung mit Metall Ionen (z.B. EDTA, DTPA), heterologe toxische Enzyme (z.B. Ricin), eine zweite Binderegion anderer Spez i - fität bzw. mit kata I yt i sehen Eigenschaften und/oder ein hu- anes oder von nicht humanen Primaten abgeleitetes toxisches oder untoxisches Enzym. Die erf i ndungsgemässen Konstrukte oder die erf i ndungsgemässen humMAK können beispielsweise auch nach der Methode von Schwarz (Schwarz, A. & Ste i nst rässe , A. (1987), A novel approach to Tc-99 labelled monoclonal antibodies. J. Nuc I . Med., 28, 721) mit Tc-99m oder gemäss allgemein bekannten Methoden mit Re oder Y markiert werden. Die Markierung it Tc-99m ist für den diagnostischen Bereich hierbei bevorzugt.
Die Erfindung schl iesst im allgemeinen auch jede beliebige andere Markierung mit Alpha-, Beta- oder Gamma-Strah I er n ein. Die Verknüpfung der erfindungsgemässen Sequenzen mit je nach Verwendung beliebigen Aminosäureresten kann entweder chemisch vorgenommen werden, oder mit Hi lfe gentech- nologischer Methoden, indem die erf i ndungsgemässe Sequenz oder die schweren oder leichten Ketten mit dem für das zu verknüpfende Molekül nach allgemein bekannten Verfahren chemisch oder gentechnologisch verbunden werden. Die erfindungsgemässen Sequenzen selbst können ebenso chemisch oder gentechnologisch hergestel lt werden. In dem Fall, dass der humMAK nicht aus einem intakten Antikörpermolekύl besteht, sondern aus einem Fab oder F ( a ' )2-Fragment oder scFv, werden bei der Konstruktion der Gene für die schweren Ketten die mit der Entfernung des Fc Teiks des Antikörpers verlo- ren gegangenen 3 ' Regu I at i onssequenzen (Stop Codon, 3' n i cht-t r ans I at i erter Bereich und Po I y-A Add 11 i onss i gna I ) durch das C3 Exon. den 3' n i cht-t rans l at i erten Bereich und das poly-A Add i t i onss i gna I eines menschl ichen MHC Klasse l Gens, vorzugsweise eines HLA B27 Gens, ersetzt. Die Herstel lung der erfindungsgemässen Sequenz kann wiederum entweder chemisch oder gentechnologisch nach für dem Fachmann bekannten Verfahren erfolgen. Die DNA Sequenzen, welche für die ieichten und schweren Ketten kodieren, bestehen entweder aus genomischen Sequenzen oder aus cDNA Sequenzen oder aus einer Mischung von beiden. Vorzugsweise bestehen die genannten DNA Sequenzen zumindest tei lweise aus genomischer DNA.
Die Wirtszel le, welche für die Expression des in dieser Erfindung beschriebenen humMAK verwendet wird, ist eine pro- karyotische oder eine eukaryot i sehe Zel le, im besonderen Escherichia col i , eine Hefe wie Saccharomyces oder CHO-Ze I - I en .
Weitere Gegenstände der vorl iegenden Erfindung sind daher auch Klonierungs- und Express i onsvektoren und transfizier- te Zel len, die die erfindungsgemässen Sequenzen oder funktionei le Äquivalente davon enthalten. Zudem umfasst die Erfindung therapeutische und diagnostische Formul ierungen, die die Antikörpersequenzen oder davon abgeleitete Sequenzen oder Mimetika enthalten und deren Herstel lung sowie die Verwendung solcher Kompostitionen in der Therapie und Diagnose von vorzugsweise Entzündungen, sol iden Tumoren, insbesondere Mammakar z i nom , Magenkarzinom, Prostatakarzinom, Lungenkarzinom, Colonkarzinom, Pankreaskarzinom, Kapos isar- kom etc. , sowie nicht sol iden Tumoren wie Leukämien etc.
Die generel len Methoden, mit denen die Vektoren konstruiert werden können, die Transformationstechnologie und die Kulturtechnologie sind dem Fachmann bekannt und zum Beispiel von Maniatis (Sambrook, Fritsch, Maniatis; Molecular Cloning, A Laboratory Manual, Second Edition; Cold Spring Harbor Press, S. 16.2 - 16.22, 16.30 - 16.40, 16.54 - 16.55, (1989)) beschrieben.
Zur Herstel lung der erfindungsgemässen Antikörper geht man beispielsweise so vor, dass man den kovalent gebundenen Rezeptor-L i gand-Komp I ex als solchen oder in Verbindung mit einem Adjuvans zur Immunisierung oder den Komplex zur Immun- Selektion von V-Regionen der naiven oder andersweit ig erzeugten Antikörper-Genbanken eingesetzt.
Die I munisie ung eines Wirbeltiers mit dem Rezeptor-Li- gand-Komp I ex oder mit dem car r i er-gebundenen Rezeptor-Li- gand-Komplex geschieht nach l i terat urbekannten Verfahren, beispielsweise durch subkutane oder i nt raper i tonea l e Injektion des Immunogens, gegebenenfal ls mit einem Adjuvans wie KFA (komplettes Freund'sches Adjuvans) oder IFA ( inkomplet- tes Freund'sches Adjuvans) oder Qu i I A. Sofern erforder- l ieh, kann zur Verstärkung der Immunantwort ein- oder mehrmals "geboostert" werden. Die Auswahl der Spezies ist nicht kritisch, beispielsweise eignen sich Mause, Ratten, Kaninchen, Affen (Macaca f asc i cu I ar i s ) , Schafe, Ziegen oder Ka- me I e .
Alternativ zu der oben beschriebenen Methode der Gewinnung polyklonaler Antikörper können natürl ich auch monok lonale Antikörper hergestel lt werden. Dies geschieht beispiels ei- se durch Immunisierung von Mausen, wie oben beschrieben und ansch I i essender Fusion der Mausern i I zze I I en beispielsweise mit NS 1 Myelomzel len und Klonierung von geeigneten Zel len. Gegebenenfal ls können die so gewonnenen monok lonalen Anti- korper beispielsweise durch Injektion der ant i körperprodu- zierenden Zel len in Nacktmäuse vermehrt werden. Prinzipiel l ist die Herstel lung solcher monok lonalen Antikörper dem Fachmann bekannt und in der Literatur beschrieben.
Alternativ kann auch mRNA aus den Mi lzzei len der im unisier- ten Tiere isol iert werden, ansch I i essend mit reverser Trans- kriptase cDNA hergestel lt werden und nach Amp I i f i kat i on mittels PCR (polymerase chain reaction) erfolgt eine Klonierung von Antikörpergenen in einen geeigneten Wirt. Mittels I munse I ekt i on unter Verwendung eines immobi l isierten Rezep- tor-L i gand-Komp I exes werden Wirtszel len selektiert, die nur an den Rezeptor-L i gand-Komp I ex binden. Ansch I i essend werden in einer geeigneten Wirtszel le die entsprechenden Antikόr- pe r ex p r i m i e rt .
Alternativ dazu kann auch eine naive humane, murine oder Pr i maten-V-Genbank aus mRNA von peripheralen B-Zellen im Phagen-Genbank-Syste hergestellt und daraus durch Immun- selektion geeignete Antikörper isol iert werden.
Bevorzugt wird alternativ zu obigen Verfahren nach Amp I i f i - kation mittels PCR eine Klonierung in eine Phagen-Genbank vorgenommen. Die Selektion der auf der Phagenoberf I äche ex- primierten Antikörperfragmente erfolgt mit dem immobilisierten Rezeptor-L i gand-Komp I ex . In einem Screening werden Phagenklone identifiziert, die den auf einer Festphase immobilisierten Komplex erkennen (positive Klone). Diese posi- tiven Klone werden in einem 2. Screening auf Bindung an die E i nze I ko ponenten des Komplexes getestet. Klone, die im 1. Screening positiv und i 2. Screening negativ sind, werden we i ter bear be i tet . Gene der so selektierten Klone werden in geeignete Vektoren subkloniert und in einem geeigneten Wirt expr i m i ert .
Die Erfindung betrifft ferner Antikörper ( Ak ) -Enzym-Fus i ons- proteine, beispielsweise Ak-RNase (Saxena, S.K. et al., J Biol. Chem. 267: 21982-6, 1992), Ak-DNase I (Kreuder V. et al. (1984), Eur. J. Biochem. 139, 389-400), Ak-Onconase
(Wu, Y. et al. J Biol Chem.268: 10686-93, 1993), Ak-Perfo- rin (Tschopp, J. & Nabholz, M. Annu. Rev. Immunol. 8: 279- 302,1990) oder Ak-TIA (Tian et al 1991, Ce I I 67, 629-39), wobei die Enzyme an das 3' Ende des Antikörpers angehängt werden. Weitere Fusionsproteine bestehen aus Ak und einem
Aktivatormolekül der Gerinnung, z. B. tPA (tissue plas ino- gen activator) oder aus Ak und einem Molekül der Gerinnungskaskade, z. B. tissue factor (TF) oder truncated tissue factor (WO 96/016533, 1994). Ein weiteres Enzym mit zyto- toxischer Funktion ist das rekombinante Mistel-Lektin (M. Langer et al., 1997. EJC Vol. 33, Suppl.5, 49). Zel lyse kann erreicht werden durch Kopplung von Antikörpern an z. B. Lymphotσx i n (Aggarval et al. (1984) J. Biol. Chem. 259, 686-691) oder an ein Leukalexin (z. B. das von Liu et al. beschriebene (Liu et al. (1987) Ce l I 51, 393-403)). Deswei- teren können die Antikörper auch an Toxine gekoppelt v/erden, z. B. an das rekombinante Pseudomonas Exotoxin A (ETA'; Barth et al. 1997. EJC Vol.33. Supp I . 5, S22, 39).
Herstellbar sind diese Fusionsproteine auch durch Subklonie- rung der scFv in pDN22 ( pUC119-Der i vat ) über Sf i I und Not l -Rest r i t i onsschn i tt ste I I en (D. Neri, pers. Mittei lung).
Dieser Vektor erlaubt die Expression von scFv mit C-termina-
I ein Cystein. Das Cystein kann benutzt werden zur chemischen
Modifikation von Ant i kόrperf agmenten mit t h i o I spez i f i sehen Substanzen, z. B. für Kopplung an ein zweites Protein über eine D i su I f i dbr ucke , oder mit einem kopp I ungsf äh i gen Kom- p I exb i l dner .
Ferner können die Antikörper nach Subk I on i er ung des Antikör- pergens in pDN 268 (Neri et al. (1996), Nature Biotechno-
I oqy 14, 4, 485-490) und Expression mit 32P radioaktiv markiert werden. Der Vektor pDN268 enthält C-terminal als Phos- phorvlierungssequenz die Erkennungssequenz für die humane Casemk inase II. Eine Variante ist die Herstellung von scFv mit radioaktiv markierbarem Pept i d I i nker . 32P wird für Diagnose und Therapie eingesetzt.
Die Einführung mehrerer Cysteine in die Pept i d I i nker-Se- quenz erlaubt die radioaktive Markierung mit 99mTc. Ein Beispiel für die Linker-Sequenz ist die Hinge-Region aus dem Maus I gG 1 Molekül, oder homologen humanen Ig Hinge-Re- gionen, die als ant i para I I e I e Pept i dsequenzen engineered werden können.
Ferner können b i spez i f i sehe Antikörper hergestellt werden, beispielsweise im Single chain diabody Format. Hierbei wird ein Antikörperfragment mit oben beschriebener Spezifität (im folgenden als Fragment A bezeichnet) mit einem zweiten Antikörperfragment (Fragment B) verbunden. Das zweite Fragment ist spezifisch gegen einen Faktor aus der Gerinnungskaskade (z. B. C1q) oder ein Oberflächenmolekül von T Zellen (CD8, CD24) oder TF oder TPA oder TNF oder ein anderes Effektormolekül gerichtet. Das erste und zweite Fragment werden als scFv Fragmente (VH-Domäne mit der VL-Domäne des jeweils anderen Fragments, z. B. VHB mit VLA und VHA mit V B, mit einem 5 AS langen linker) hintereinander als eine Kette kloniert und über einen 15 AS langen linker verbunden. Durch die Expression als eine Kette werden höhere Stabilität sowie höhere Ausbeuten erreicht.
Beispiel 1
Herstellung von Antikörpern spezifisch für einen sFLT-VEGF- Komp I ex
VEGF (vascular endothelial growth factor) ist ein von Tumor- zellen, aktivierten Makrophagen, aktivierten Granulozyten und transfor ierten Synoviocyten ausgesc iedener Wachstumsfaktor (Ligand), der hochselektiv an zwei auf der Cytoplas- mamembran von Endot he I ze I I en vorkommende Rezeptoren (human: KDR/Flt-1, Maus: Flk) bindet. Die Bindung des VEGF als Homo- dimer an KDR (VEGF-Rezeptor) führt zu einer Rezeptord i mer i - sierung auf der Cytop I asmamembran .
Zur Isol ierung und Reinigung von f unkt i one I I en Rezeptoren werden die extrazellulären ( VEGF-b i ndenden ) Domänen von Fit als lösliche Rezeptoren (sFIt = löslicher Fit) exprimiert und als funktionell aktive Moleküle isol iert (Kendall, R.L. & Thomas, K.A. 1993. Proc. Nat I . Acad. Sei. USA 90, 10705- 10709; Kendall, R.L: et al. 1994, Biochem. Biophys. Res. Commun. 201, 326-330).
84 μg sFIt werden mit 1,94 μg VEGF in PBS pH 7,4 zwei Stunden bei Raumtemperatur inkubiert. Danach wird der Vernetzer BS3 ( B i s-Su I f osucc i n i m i dy I suberat ) in einer Endkonzentration von 1 M zugegeben und 15 min bei Raumtemperatur inku- biert. Die Reaktion wird mit 1 M Tris-HCL, pH7,4 (Endkonzentration 5mM) gestoppt. Freier Vernetzer und nicht kom- plexiertes VEGF werden durch U 11 r af i 11 r at i on (Filter-Poren- grösse: 30kD) aus der Lösung entfernt und die Lösung auf ein für die Immunisierung geeignetes Volumen eingeengt.
Nach Immunisierung von Balb/c Mäusen mit 3x25 μg des VEGF- sF I t-Komp I exes in Qu i I A wird mRNA aus den Mi Izzel len der immunisierten Tiere isoliert (E. Hornes S L. Korsnes, 1990, Genet. Anan. Tech. App I . 7: 145-150). Ansch I i essend wird mit der reversen Trankriptase cDNA synthetisiert (Sambrook, Fritsch, Maniatis 1990; Molecular Cloning, A Laboratory Manual, Second Edition; Cold Spring Harbor Press). Amp I i f i - kation mittels PCR unter Verwendung geeigneter Pπnier, gefolgt von einer Klonierung unter Verwendung des Vektors pCANTAB 5E (Cambridge Ant i body Technology; Pharmacia Biotech Europe GmbH; Freiburg; Recombinat Phage Ant i body System) und des Helferphagen M13K07 (Vieira, J. & Messing, J., Methods in Enzymol. 153, 3, 1987) in Escheπchia col i (E. co I i ) führt zu einer Phagen-Genbank , welche die V-Re- giongene aus den Mi Izzel len der oben immunisierten Mäuse im scFv Format als Fusionsgene mit dem Gen MI ( Hü II prote i ne ) des Phagen enthält. Mittels I mmunse I ekt i on unter Verwendung von auf Festphase immobil isiertem sFLT-VEGF-Komp I ex werden Phagen selektiert, die nur mit dem sFLT-VEGF-Komp I ex reagieren. Dazu werden die Phagen und/oder lösl ichen Antikörper- Fragmente in einem ELISA-Assay auf Bindung an den immobil i- sierten VEGF-sFLT-Komp I ex getestet. Bindende Antikörper werden auf Bindung gegen den Rezeptor (sFLT) oder Ligand (VEGF) al leine getestet. (Phagen-) Antikörper, die im zweiten Test negativ sind, werden we i t er bear be i tet . Im Western- blot zeigen diese Antikörper keine Bindung an VEGF.sFLT oder sKDR al leine. Die so i mmunse I ekt i erten spezifischen
Phagen werden in E.col i durch Ko-Infektion mit dem Helferphagen vermehrt. Die auf der Oberfläche der Phagenklone exprimierten scFv werden durch Infektion von E.col i HB2151 als lösl iche Antikörper produziert.

Claims

Patentansprüche
1. Bindemoleküle gegen Rezeptor-L i gand-Komp l exe , dadurch gekennzeichnet, dass sie durch Immunisierung bzw. I mun- selektion mit einem Rezeptor-L i gand-Komp I ex , wobei Rezeptor und Ligand durch mindestens eine kovalente Bindung iteinan- der verbunden sind, erhalten werden.
2. Bindemoleküle nach Anspruch 1, dadurch gekennzeichnet, dass sie durch I munisierung bzw. durch I munselektion mit einem Rezeptor-L i gand-Komp I ex erhalten werden, wobei ein, zwei oder drei gleiche oder verschiedene Rezeptoren und ein, zwei oder drei gleiche oder verschiedene Liganden durch wenigstens eine kovalente Bindung miteinander verbunden sind.
3. Bindemoleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rezeptoren ein Protein oder ein durch Lipide, Zucker, Ribonukleinsäure, Phosphate, Protoporphyrine, F I a i naden i nnuk I eot i de oder Metal le modifiziertes Prote in sind.
4. Bindemoleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Liganden ein Protein, Peptid, niedermolekulares Synthetikum, Glykosid, oder ein durch Lipide, Zucker, Ribonukleinsäuren, Phosphate, Protoporphyr i n , F I a i naden i nnuk I eot i de oder Metall modifiziertes Protein sind.
5. Bindemoleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass wenigstens einer der Rezeptoren ein un- modifizierter oder modifizierter Tei l eines natürl ich vorkommenden Rezeptors ist.
6. Bindemole üle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass wenigstens einer der Liganden ein unmodifizierter oder modifizierter Teil eines natürlich vorkommenden Liganden oder ein niedermolekulares Synthetiku i st .
7. Bindemoleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie nur an den Rezeptor-Ligand-Komplex binden, nicht aber an den Rezeptor und/oder den Liganden allein.
8. Bindemoleküle nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass wenigstens einer der Rezeptoren ein K i nase-do a i n i nsert-conta i n i ng Rezeptor (KDR), fms-l ike tyrosine kinase Rezeptor (Fit), ein lösl icher K i nase-doma i n i nsert-conta i n i ng Rezeptor (sKDR) oder ein löslicher fms-like tyrosine kinase Rezeptor (sFIt) ist.
9. Bindemoleküle nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass wenigstens einer der
Liganden ein vaseuiar endothel iai growth factor (VEGF) ist.
10. Bindemoleküle nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die kovalente Bindung durch B i s-Su I fosucc i n i m i dy I suberat gebildet wird.
11. Bindemoleküle nach wen i gstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie durch rekombi- nante Methoden erhältl ich sind.
12. Bindemoleküle nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass wenigstens eines ein chi äres, humanisiertes, bi- oder o I i gospez i f i sches Bin- de o i ek ü I ist.
13. Bindemoleküle nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie mit dem natür- liehen Rezeptor / L i ganden Komplex auf Zellen oder in Lösung reag i eren .
14. Bindemoleküle nach wenigstens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sie von einem
Tier, einer Zelle oder einer Ze I I i n i e herstellbar sind.
15. Verfahren zur Herstellung eines Antikörpers nach einem oder mehreren der Ansprüche 1 bis 14 durch
a) Immunisieren eines immunkompetenten Wirbeltieres mit einem Rezeptor-L i gand-Komp I ex und ansch li essendes Isolieren des Antikörpers aus dem Serum,
oder
b) Immunisieren eines immunkompetenten Wirbeltieres mit einem Rezeptor-L i gand-Komp I ex , Isolieren der Immunzel len aus dem Wirbeltier und I mmorta I i s i er ung durch Fusion mit Myelomzellen und Isolieren der geeigneten spezifischen Hybr i domze I I en ,
oder
c) durch Isolieren der mRNA aus Mi lzzellen von gemäss der Lehre b) immunisierten Tieren, ansch l i essender cDNA- Synthese, Amp I i f i ka i on der cDNA mitteis PCR, Klonieren der amp I i f i z i erten Sequenzen in einen geeigneten Wirt und Immunselektion der Zellen, die nur an den Rezeptor- Liganden-Komplex binden, mit Hi lfe eines immobil isierten Rezeptor-L i gand-Komp I exes , und ansch li essendem Exprimieren der Antiköroer in einer geeigneten Wirtszel- I e.
16. Verfahren zur Herstellung eines Bindemole üls nach einem oder mehreren der Ansprüche 1 - 15 unter Verwendung einer Phagen-Genbank, die aus der mRNA von Milzzellen der mit dem Rezeptor-L i gand-Komp I ex immunisierten Tiere gewonnen wurde.
17. Bindemolekül nach einem oder mehreren der Ansprüche 1 - 16, das ganz oder tei Iweise durch ein Polynu- k l eot i d mit der Sequenz ID No. 1,2,7,8 oder 9 für ein Anti- körperf ragment aus V-Regionen der schweren oder leichten Antikörperketten (scFv) kodiert wird.
18. Bindemoleküle nach einem oder mehreren der Ansprüche 1 - 16, das ganz oder teilweise durch ein Polynukleo- tid mit der Sequenz ID No. 3,4,5,6 oder 10 für ein Antikörperfragment aus V-Regionen der schweren oder leichten Antikörperketten mit partiell deletierter VH-Domäne (scFv) ko- d i ert wird.
19. Bindemoleküle nach Anspruch 19 oder 20, das ganz oder tei lweise durch ein Po I ynuk I eot i d kodiert wird, das zwischen 80 und 99,9% Sequenzhomologie zu den Polynukleo- tiden No. 1 - 10 aufweist.
20. Verfahren zur Herstellung eines Bindemoleküls nach Anspruch 17 - 19 unter Verwendung eines Klonierungs- oder Express i onsvektors oder einer Wirtszelle, die eine der Sequenzen No. 1 - 10 oder funktioneile Äquivalente davon enthä I t .
PCT/EP1998/006386 1997-10-09 1998-10-08 Bindemoleküle gegen rezeptor-ligand-komplexe WO1999019361A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU11518/99A AU1151899A (en) 1997-10-09 1998-10-08 Bonding molecules against receptor-ligand-complexes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19744531.4 1997-10-09
DE1997144531 DE19744531A1 (de) 1997-10-09 1997-10-09 Bindemoleküle gegen Rezeptor-Ligand-Komplexe

Publications (1)

Publication Number Publication Date
WO1999019361A1 true WO1999019361A1 (de) 1999-04-22

Family

ID=7845003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006386 WO1999019361A1 (de) 1997-10-09 1998-10-08 Bindemoleküle gegen rezeptor-ligand-komplexe

Country Status (3)

Country Link
AU (1) AU1151899A (de)
DE (1) DE19744531A1 (de)
WO (1) WO1999019361A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068895A1 (en) 2005-12-15 2007-06-21 Astrazeneca Ab Combination of angiopoietin-2 antagonist and of vegf-a, kdr and/or flt1 antagonist for treating cancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10016877A1 (de) 2000-04-05 2001-10-18 Scintec Diagnostics Gmbh Zug (Glyko-)Proteine mit hoher Immunreaktivität sowie ein Verfahren zu ihrer Herstellung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010202A1 (en) * 1992-10-28 1994-05-11 Genentech, Inc. Vascular endothelial cell growth factor antagonists
WO1995015341A1 (en) * 1993-12-03 1995-06-08 Cancer Research Campaign Technology Limited Antibody against carcinoembryonic antigen (cea)
WO1995025167A1 (en) * 1994-03-17 1995-09-21 Merck Patent Gmbh Anti-egfr single-chain fvs and anti-egfr antibodies
US5480792A (en) * 1990-09-14 1996-01-02 Biosite Diagnostics, Inc. Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays
WO1996030046A1 (en) * 1995-03-30 1996-10-03 Genentech, Inc. Vascular endothelial cell growth factor antagonists
WO1997034634A1 (en) * 1996-03-20 1997-09-25 Sloan-Kettering Institute For Cancer Research Single chain fv constructs of anti-ganglioside gd2 antibodies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480792A (en) * 1990-09-14 1996-01-02 Biosite Diagnostics, Inc. Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays
WO1994010202A1 (en) * 1992-10-28 1994-05-11 Genentech, Inc. Vascular endothelial cell growth factor antagonists
WO1995015341A1 (en) * 1993-12-03 1995-06-08 Cancer Research Campaign Technology Limited Antibody against carcinoembryonic antigen (cea)
WO1995025167A1 (en) * 1994-03-17 1995-09-21 Merck Patent Gmbh Anti-egfr single-chain fvs and anti-egfr antibodies
WO1996030046A1 (en) * 1995-03-30 1996-10-03 Genentech, Inc. Vascular endothelial cell growth factor antagonists
WO1997034634A1 (en) * 1996-03-20 1997-09-25 Sloan-Kettering Institute For Cancer Research Single chain fv constructs of anti-ganglioside gd2 antibodies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL 1996, BEJCEK ET AL.: "Anti-CD19 antibody BLY3 single chain variable region cDNA", XP002097237 *
DATABASE EMBL NEWSTED ET AL.: "Engineering resistance to trypsin inactivation into L-asparaginase through the production of a chimeric protein between the enzyme and a protective single-chain antibody", XP002097238 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068895A1 (en) 2005-12-15 2007-06-21 Astrazeneca Ab Combination of angiopoietin-2 antagonist and of vegf-a, kdr and/or flt1 antagonist for treating cancer
EP2518083A2 (de) 2005-12-15 2012-10-31 Medimmune Limited Kombination eines Angiopoetin-2-Antagonisten und eines VEGF-A, KDR- und/oder FLTL-Antagonisten zur Behandlung von Krebs

Also Published As

Publication number Publication date
DE19744531A1 (de) 1999-05-27
AU1151899A (en) 1999-05-03

Similar Documents

Publication Publication Date Title
DE60127143T2 (de) Bispezifische Antikörper gegen CD19 und CD16 und deren Verwendung
DE69734109T2 (de) Humanisierung von anti-carcinoembryonalen Antigen anti-idiotypischen Antikörper und dessen Verwendung als Tumorvakzin und zur Markierung
DE69936927T2 (de) Polyspezifische bindemoleküle und deren verwendung
DE102016123859B3 (de) Neue T-Zellrezeptoren und deren Verwendung in Immuntherapie
EP1078004B1 (de) Tetravalente Antikörperkonstrukte
EP0983302B1 (de) Mutiertes ScFv-Fragment des OKT-3 Antikörpers
EP0517024B1 (de) Tetravalente bispezifische Rezeptoren, ihre Herstellung und Verwendung
DE69429095T2 (de) Humanisierte antikoerper
EP1566442B1 (de) Herstellung und Verwendung von Genbanken menschlicher Antikörper("Human-Antikörper-Bibliotheken")
DE69327229T2 (de) Multivalente einkettige Antikörper
DE69226990T2 (de) Tumorantigen-spezifischer Antikörper
US6071515A (en) Dimer and multimer forms of single chain polypeptides
DE69330523T2 (de) Immunoglobuline ohne leichte ketten
JP4056543B2 (ja) 非抗原性即素複合体およびインターナライジング受容体システムの融合タンパク
DE69026844T2 (de) Lösliches Molekül, das mit ICAM-1 verwandt, aber davon verschieden ist
JP2000502562A (ja) 細胞活性化プロセスおよびそのための試薬
DE69331175T2 (de) Interleukin-2 Rezeptor Gamma-Kette
DE69320336T2 (de) Isolierung, Charakterisierung und Verwendung der menschlichen Beta-Einheit des Immunglobulin E-Hochaffinitätsrezeptors
DE102011118022B4 (de) Antikörper gegen das Prostata-spezifische Stammzellenantigen und dessen Verwendung
DE69233652T2 (de) Nukleotidsequenzen, die für die veränderlichen bereiche der alpha-ketten menschlicher t-zell-rezeptoren kodieren sowie ihre verwendungen
DE69420251T2 (de) Löslicher Interferon-Rezeptor, seine Herstellung und Anwendung
DE69734141T2 (de) PROTEIN, DAS FÜR MENSCHLICHE Th2-ZELLEN SPEZIFISCH IST, DAFÜR KODIERENDES GEN UND KORRESPONDIERENDE TRANSFORMANTE, REKOMBINANTER VEKTOR UND MONOKLONALER ANTKÖRPER
DE69031914T2 (de) Rezeptor für granulozyten-macrophagen-koloniestimulierungsfaktor und seine derivate
HUP0300942A2 (hu) Ellenanyag és/vagy kemokin konstrukciók és használatuk immunológiai rendellenességekben
DE60132221T2 (de) Reagenzien zur zellselektion und verfahren zur anwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ EE GE HU ID IL IS JP KP KR LC LK LT LV MD MG MK MX NO NZ PL RO RU SG SI SK TR UA US YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载