WO1999016370A1 - Dispositif d'ablation interstitiel orientable - Google Patents
Dispositif d'ablation interstitiel orientable Download PDFInfo
- Publication number
- WO1999016370A1 WO1999016370A1 PCT/US1998/020099 US9820099W WO9916370A1 WO 1999016370 A1 WO1999016370 A1 WO 1999016370A1 US 9820099 W US9820099 W US 9820099W WO 9916370 A1 WO9916370 A1 WO 9916370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elongated housing
- electrode
- deflectable
- ablation device
- interstitial ablation
- Prior art date
Links
- 238000002679 ablation Methods 0.000 title claims abstract description 94
- 238000003384 imaging method Methods 0.000 claims abstract description 33
- 238000004891 communication Methods 0.000 claims abstract description 31
- 230000007246 mechanism Effects 0.000 claims abstract description 13
- 239000012530 fluid Substances 0.000 claims description 31
- 238000009413 insulation Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 28
- 210000001519 tissue Anatomy 0.000 claims description 25
- 239000013307 optical fiber Substances 0.000 claims description 18
- 210000003708 urethra Anatomy 0.000 claims description 12
- 210000002307 prostate Anatomy 0.000 claims description 10
- 238000005286 illumination Methods 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 2
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 230000035515 penetration Effects 0.000 abstract description 7
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 6
- 206010036940 Prostatic adenoma Diseases 0.000 description 4
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
- A61N1/403—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
- A61B2018/00083—Electrical conductivity low, i.e. electrically insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00547—Prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00982—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
Definitions
- the invention relates to an interstitial ablation device and method for performing tissue ablation, and in particular, to an improved interstitial ablation device providing enhanced electrode placement and control.
- Ablation devices can be used to treat tumors in the body.
- ablation devices can be used to treat benign prostatic hypertrophy or hyperplasia (BPH), a condition resulting in an enlargement of the prostate gland.
- BPH benign prostatic hypertrophy or hyperplasia
- An ablating needle can be used with a cystoscope to treat BPH by ablating a prostatic adenoma, which is a benign tumor inside the prostate.
- a physician inserts a distal end of the cystoscope into the urethra of a patient while viewing the advance through an eye piece of the cystoscope.
- the needle electrode is also introduced into the urethra through a working channel of the cystoscope.
- the cystoscope and the needle electrode are typically introduced inside the urethra sequentially.
- the distal end of the needle electrode is positioned adjacent the prostate near the prostatic adenoma.
- the physician then causes the needle electrode to penetrate the urethral wall, such that it is positioned inside the prostatic adenoma.
- Radiofrequency (RF) energy is applied to the needle electrode to coagulate tissue surrounding the electrode.
- Coagulation causes necrosis of the prostatic adenoma, resulting in atrophy of the prostate and a reduction in the compressive forces that interfere with urine flow through the urethra.
- RF Radiofrequency
- Visualization is typically provided by inserting the needle electrode through a cystoscope.
- One disadvantage of the ablation device insertable through a cystoscope is that it is difficult to feed the device through a working channel of the cystoscope and requires a lot of juggling which can make accurate placement of the needle electrode difficult.
- the invention features a deflectable interstitial ablation device.
- the device includes an elongated housing, an electrode mounted within the elongated housing, a driver coupled to the electrode, an imaging device integrally mounted within the elongated housing, and a deflection system disposed within the elongated housing.
- the elongated housing has a proximal end, a distal end, and a deflectable segment.
- the electrode is deployable from a first position within the elongated housing to a second position a predetermined distance beyond the distal end of the elongated housing, and has a flexible portion capable of deflecting with the deflectable segment of the elongated housing.
- the driver exerts a force sufficient to drive the electrode from the first position to the second position in a single motion.
- the imaging device has a flexible portion capable of deflecting with the deflectable segment of the elongated housing.
- the deflection system controllably deflects the deflectable segment of the elongated housing to a desired angle.
- the deflection system has a proximal end in communication with a steering mechanism.
- the imaging device includes a plurality of illumination optical fibers and a plurality of viewing optical fibers extending from the proximal end to the distal end of the elongated housing.
- the viewing optical fibers can comprise a fused bundle of viewing optical fibers surrounded by illumination optical fibers, wherein the viewing optical fibers are in communication with a lens disposed at the distal end of the elongated housing.
- the electrode is a hollow needle electrode and an insulation sheath surrounds the needle electrode. The needle electrode and the insulation sheath are individually and slidably mounted inside the elongated housing, such that the insulation sheath is capable of covering a proximal portion of the needle electrode which extends beyond the distal end of the elongated housing.
- the driver coupled to the electrode can exert a force within the range of 1/4 lb to 1 lb to drive the electrode from the first position to the second position in a single motion.
- the device in another embodiment, includes an elongated housing, an electrode mounted within the elongated housing, an imaging device integrally mounted with the elongated housing, a deflection system disposed within the elongated housing, and a foot pedal for deploying the electrode.
- the invention features a method for treating tissue. A deflectable interstitial ablation device is inserted into a body lumen which provides access to the tissue to be treated.
- the deflectable interstitial ablation device includes an elongated housing having a deflectable segment, a deployable electrode mounted within the elongated housing, a driver coupled to the electrode for exerting a force to drive the electrode, an imaging device integrally mounted with the elongated housing, and a deflection system disposed within the elongated housing.
- the distal end of the elongated housing is positioned near the tissue.
- the deflectable segment of the elongated housing is deflected toward the tissue, thereby deflecting the electrode and the imaging device toward the tissue along with the deflectable segment.
- the electrode is deployed to penetrate a wall of the lumen and to position a distal end of the electrode adjacent the tissue. Radio frequency energy is applied to the electrode in an amount and for a duration sufficient to ablate the tissue.
- an insulation sheath is deployed to cover a proximal portion of the deployed electrode to protect the wall of the lumen from directly contacting the needle electrode during the treatment.
- a balloon disposed on a body of the elongated housing of the deflectable interstitial ablation device is inflated to secure the position of the elongated housing inside the lumen.
- a basket disposed on a body of the elongated housing of the deflectable interstitial ablation device is expanded to secure a position.
- the distal end of the elongated housing is connected to an actuator in communication with a foot pedal and the foot pedal is depressed to deploy the electrode.
- Fig. IB shows a portion of the deflectable insterstital ablation device having a basket for maintaining the placement of the device in a body lumen, according to one embodiment of the invention.
- Fig. 2 illustrates a deflecting segment of the deflectable interstitial ablation device of Fig.
- Fig. 3 shows a cross sectional view of the deflectable interstitial ablation device of Fig. 1 A cut through lines 3'-3".
- Fig. 4 shows a cross sectional view of a distal end of the deflectable interstitial ablation device of Fig. 1 A cut through lines 4'-4" .
- Fig. 5 A is a side view of a kinetically deployable needle electrode according to one embodiment of the invention.
- Fig. 5B is a cross sectional view of the kinetically deployable needle electrode of Fig. 5 A prior to deployment.
- Fig. 5C is a cross sectional view of the kinetically deployable needle electrode of Fig. 5 A in a loaded position.
- Fig. 5D is a cross sectional view of the kinetically deployable needle electrode of Fig. 5 A with the needle electrode deployed.
- Fig. 5E is a cross sectional view of the kinetically deployable needle electrode of Fig. 5 A with the needle electrode and the insulation sheath deployed.
- Fig. 6 shows a transurethral interstitial ablation system employing a foot pedal according to one embodiment of the invention.
- a deflectable interstitial ablation device 10 includes an elongated housing 12, an electrode 14 extending within the elongated housing 12, an imaging device 16 integrally mounted with the elongated housing 12 and a deflection system 18 disposed within the elongated housing 12.
- the electrode 14 can comprise a needle electrode having a sharpened tip, or an electrode having a blunt tip.
- the elongated housing 12 has a proximal end, a distal end and a deflectable segment 22 further as further shown in Fig. 2.
- the elongated housing 12 can be constructed to be flexible so that the housing 12 may be inserted into the urethra without much discomfort.
- the housing 12, can be, for example, a flexible multi-lumen catheter.
- the housing 12, can be, for example, a substantially rigid, single lumen catheter having a deflectable segment 22.
- the housing 12 can have a diameter from about 15 to 16 French. It is to appreciated that the diameter of the housing 12 can vary depending on the intended use of the ablation device 10.
- the present invention further provides means for stabilizing the position of the device 10 before deploying the electrode 14.
- the elongated housing 12 of the invention includes a balloon 24 for securing the position of the device 10 while the electrode 14 is deployed at the ablation site.
- the elongated housing 12 includes a fluid port with a luer fitting 26 for introducing a fluid such as, for example, air or water for inflating the balloon 24.
- the fluid enters the balloon 24 through an inflation sleeve further shown in Fig. 2 to inflate the balloon 24.
- Another advantage provided by the balloon 24 is that the balloon 24 can block the blood vessels on the urethral wall and slow down heat conduction provided by the blood vessels.
- the balloon 24 is compliant enough to fit inside the urethra.
- the balloon is constructed of latex or silicone.
- the diameter of the inflated balloon in one embodiment, can be about 30 French.
- the elongated housing 12 can include a basket 25 to stabilize the device 10 position during deployment of the electrode 14.
- the basket 25 can comprise a wire mesh attached to an outer surface of the housing 12 surrounding the electrode 14, the imaging device 16 and the deflection system 18.
- the housing 12 can further be surrounded by an elongated sheath or catheter 27 such that the wire mesh comprising the basket 25 remains retracted during placement of the device and expands into the basket 25 shown in Fig. IB to secure the position and placement of the electrode 14 after the electrode 14 has been exposed.
- the proximal end of the elongated body 12 is in communication with a detachable eye piece coupler 28.
- a detachable eye piece 30 is coupled to the eye piece coupler 28, and the physician observes insertion of the device 10 into the urethra and the electrode 14 deployment by looking into the eye piece 30.
- the proximal end of the elongated body 12 is also in communication with a handle 32.
- the handle 32 includes a slide member 34 for controlling deployment of the electrode 14.
- the handle 32 can include two slide members (not shown), one for controlling the movement of the electrode 14 and the other for controlling the movement of the insulation sheath 40.
- the slide member 34 can control the movement of the electrode 14 and the insulation sheath 40 secured to the electrode 14, to expose a predetermined amount of the electrode 14.
- the handle 32 also includes an electrical connector 38 for coupling the proximal end of the electrode 14 to a power source (not shown).
- the power source is an RF generator, however it is to be appreciated that other energy sources can be used, such as a microwave generator.
- the handle 32 further includes a luer port 36 for injecting fluid and an irrigation port 31 for removing fluid.
- the fluid can be a conductive fluid for improving ablation procedures.
- Conductive fluids can include, for example, saline and lydocaine. The use of a conducting fluid prevents desiccation of tissue and prevents an increase in the impedance during the ablation procedure.
- the electrode 14 can be deployable from a first position within the elongated housing 12 to a second position beyond the distal end of the elongated housing 12 as shown. In one embodiment, the electrode 14 deploys to a predetermined distance beyond the distal end of the elongated housing 12. It is to be appreciated that the distance the electrode 14 deploys can vary depending on the intended application. As shown, the electrode 14 also has a flexible portion 40a which deflects along with the deflectable segment 22 of the elongated housing 12. In one detailed embodiment, the deflectable segment 22 is located at the distal end of the elongated housing 12 and has a dimension of from about 2.5 cm to about 4.5 cm measured from the distal end of the housing 12.
- the length of the deflectable segment 22 can fall outside of the above range, depending on the intended application of the device 10.
- the dimension and position of the flexible portion 40a of the electrode 14 corresponds to that of the deflectable segment 22 of the elongated housing 12. Referring to Fig. 2, illustrated in phantom in a deflected position, is the deflectable segment 22 and electrode's flexible portion 40a at the distal tip of the elongated housing 12.
- the electrode 14 can be a needle electrode surrounded by an insulation sheath 40.
- the needle electrode 14 and the insulation sheath 40 are placed inside an electrode guide tube 41 disposed inside the elongated housing 12.
- the insulation sheath 40 may be constructed from an insulating polymer material such as polyimide.
- the needle electrode 14 can be coated with an insulator, such as Teflon or ceramic.
- the needle electrode 14 and the insulation sheath 40 can be individually and slidably mounted inside the elongated housing 12, such that the insulation sheath 40 is capable of covering a proximal portion of the needle electrode 14 extending beyond the distal end of the elongated housing 12.
- the physician can control the amount of electrode 14 that is exposed, and thus control the conductive region and consequently, the size of the ablation area. This feature is important in transurethral interstitial ablation of prostate tissue, because urethral walls can be protected from being ablated during the procedure.
- the insulation sheath 40 can be fixed to a proximal portion of the needle electrode 14 and the needle electrode 14 can be slidably mounted inside the elongated housing 12.
- the electrode 14 can comprise a hollow electrode 14 including a passageway 43.
- the hollow electrode 14 has an inner diameter of approximately 0.011 inches and an outer diameter of approximately 0.02 inches.
- the insulation sheath 40 has an outer diameter of approximately 0.03 inches and an inner diameter of about 0.025 inches.
- the electrode guide tube 41 has an inner diameter of about 0.039 inches. It is to be appreciated that the above dimensions are illustrative, and are not intended to be restrictive, as other dimensions can be used depending in whole or in part, on the intended application of the device.
- the imaging device 16 disposed inside the elongated housing 12 includes a illumination region 44 and a viewing region 42. Both regions 42 and 44 can include a plurality of optical fibers 46 extending from the proximal end to the distal end of the elongated housing 12.
- the illumination region 44 includes a plurality of optical fibers 46 in communication with a light source (not shown) at a proximal end.
- the plurality of optical fibers 46 surrounds the viewing region 42.
- the viewing region 42 can include a fused bundle of optical fibers 48 in communication with an objective lens 50 at the distal end for focusing an image.
- An example of the objective lens 50 is a gradient index (GRIN- self) objective lens having a diameter of about 0.039 inches.
- the illumination region 44 and the viewing region 42 may be arranged in other ways and may comprise optical components other than or in addition to those described above.
- other imaging devices can be used for viewing the area of tissue in question.
- the imaging device 16 is surrounded by an outer sheath comprising a polymeric material 47.
- the imaging device 16 is disposed inside the elongated housing 12 without an outer sheath.
- the imaging device 16 has a viewing angle 13 of about 70 degrees, as shown in Figs. 1 and 2. It is to be appreciated that the viewing angle 13 can be greater or less than 70 degrees depending in whole or in part, on the intended application of the device.
- the deflection system 18 controllably deflects the deflectable segment 22 by an angle of up to 180 degrees in one direction and 180 degrees in the opposite direction with respect to the longitudinal axis of the elongated housing 12.
- the deflection system 18 includes a flexible wire 54 extending from the proximal end to the distal end of the elongated housing 12 and a flat spring 56 in communication with the flexible wire 54 disposed at the distal end of the elongated housing 12.
- the proximal end of the flexible wire 54 is in communication with a steering mechanism 52, shown in Fig. 1 A as mounted on the handle 32.
- the steering mechanism 52 can pull the flexible wire 54 and cause the flat spring 56 to gradually deflect toward a direction to which the wire 54 is pulled. Details of the steering mechanism are described in U.S. Patent No. 5,273,535, which is incorporated herein by reference.
- the deflection system 18 has an outer diameter of approximately 0.02 inches. It is to be appreciated that the diameter of the deflection system 18 can vary depending in whole or in part, on the intended application of the device.
- the deflectable interstitial ablation device 10 further includes a driver 75 located in the handle 32 and coupled to the electrode 14 for kinetically deploying the electrode 14.
- the electrode 14 can be a needle electrode having a sharpened tip.
- the driver 75 exerts a force sufficient to deploy the electrode 14 from inside the elongated housing 12 to a position beyond the distal end of the elongated housing 12 in a single motion.
- the force of deployment can range from about 1/4 lb to about 1 lb. A force in this range is sufficient to cause the electrode 14 to penetrate the urethral wall in a single motion.
- Kinetic deployment which permits sudden and high speed deployment facilitates electrode penetration through the urethral wall, reducing patient discomfort and improving the accuracy and control of needle deployment.
- kinetic deployment is achieved by employing a driver 75 comprising a spring- operated actuating mechanism.
- the handle 32' includes slots 60 and 61 having levers 62 and 63, respectively, and a recess 64 having an actuator 66 on an outer surface of the handle 32'.
- slide members 68 and 69 contained within the housing 32' are slide members 68 and 69.
- the slide member 68 is connected to the insulation sheath 40, and the slide member 69 is connected to the electrode 14.
- the lever 62 is connected to the slide member 68 and the lever 63 is connected to the slide member 69.
- Reduced proximal sections 70 and 71 of the slide members 68 and 69 are received within spring coils 72 and 73, respectively.
- the actuator 66 is operatively coupled to the slide member 69. In this embodiment, the electrode 14 and the insulation sheath 40 are sequentially propelled.
- the device 10 prior to inserting the elongated sheath 12 inside the body, the device 10 is loaded by pulling the levers 62 and 63 in the proximal direction. As the lever 62 is pulled in the proximal direction, a projection 74 on the slide member 68 slides over and catches the distal surface of a catch or stop 76, and as the lever 63 is pulled, a projection 78 of the slide member 69 catches on a stop 80.
- the needle electrode 14 and the insulation sheath 40 are deployed by pulling the actuator 66 proximally and then down. Referring to Fig.
- the insulation sheath 40 propels beyond the distal end of the elongated housing 12 covering a pre-determined portion of the needle electrode 14.
- the needle electrode 14 is propelled with a spring operated actuating mechanism, while the insulation sheath 40 is glided over the needle electrode 14. Once the needle electrode 14 has penetrated the urethral wall, gliding the insulation sheath 40 over the needle electrode 14 can be easily achieved without causing much discomfort to the patient.
- depth of needle electrode 14 penetration is controllable, such that different locations within the prostate can be reached by the needle electrode 14.
- the steering mechanism 52 described above can provide depth control. For deeper penetration, the electrode 14 tip can be deflected closer to 90 degrees, whereas for shallow penetration, the needle electrode 14 tip can be deflected by a smaller angle, such as. for example, 45 degrees.
- depth of electrode 14 penetration is adjustable using a slide member on the handle 32, which controls movement of the needle electrode 14 relative to the elongated housing 12. In this embodiment, maximum penetration depth may be fixed by placing a stop inside the handle 32.
- the electrode 14 can be kinetically deployed using a foot pedal.
- the interstitial ablation system 89 includes a foot pedal 90, a control and power source module 92, an actuator, a light source 98, the deflectable interstitial ablation device 10, and a return electrode 91.
- the light source 98 supplies light to the illumination region 44 of the imaging device 16, described above in Fig.'s 3 and 4.
- the return electrode 91 is placed on the patient 110.
- the foot pedal 90 is coupled to the control and power source module via a cable 94, and the control and power source module 92 is coupled to the actuator 96 via a cable 99.
- a physician performing an ablation procedure properly places the ablation device 10 inside the patient's body, then steps on the foot pedal 90 to deploy electrode 14, leaving his or her hands free to perform other functions. Additional features such as application of fluid to a treatment site, application of energy to the electrode 14, and the triggering temperature measurement means at the distal end of the electrode 14 may also be activated using the pedal 90.
- the interstitial ablation system 89 can include several foot pedal actuators for performing each of these functions. In .another embodiment, the interstitial ablation system 89 can include only one foot pedal used to activate multiple functions.
- the control module 92 may be programmed to control the order of the performance of each function.
- the actuator 96 which controls electrode deployment.
- the actuator 96 can comprise a solenoid 100.
- the solenoid 100 is coupled to the control and power module 92 at a proximal end via a cable 105, and coupled to the proximal end of the electrode 14 at a distal end via a luer fitting 104.
- the actuator 100 is held within an actuator housing 102, which is coupled to the luer fitting 104.
- the luer fitting 104 is sized and shaped to attach to the proximal end of the elongated housing 12 of the deflectable interstitial ablation device 10.
- the luer fitting 104 may be sized and shaped to attach to a working channel of a flexible cystoscope for those applications in which cystoscopes are used.
- current from the power source 92 is applied to the solenoid 100, which forces the electrode 14 to deploy beyond the distal end of the elongated housing 12.
- actuators such as a rotary motors and linear motors, as well as other electromechanical devices can be used to perform these functions as well. It is to be appreciated that, a number of foot pedals and actuators for activating a mechanical event can be interchangeably used to actuate the electrode 14, or provide fluid delivery and temperature sensing at the treatment site.
- the deflectable interstitial ablation device 10 of the invention provides many other features typically performed in ablation procedures.
- the deflectable interstitial ablation device 10 can be coupled to a fluid source to permits delivery of fluid to the housing 12 or to an internal bore (not shown) formed in the electrode 14 such that fluid is dispensed near the treatment site for providing cooling or for enhancing ablation.
- the fluid can be for example, an electrolytic fluid which increases the ablation area, or a fluid that provides therapeutic effects.
- the elongated housing 12 can include a separate passageway suitable for fluid delivery. In both embodiments, fluid can be introduced through the luer port 36 (Fig. 1 A).
- the solenoid can be coupled to a syringe for introducing fluid inside the elongated housing 12.
- Application of current to the solenoid in this case would cause the syringe to discharge the fluid held within a fluid source into the elongated housing 12.
- the deflectable interstitial ablation device 10 can include a temperature sensing system for measuring tissue temperature during the ablation procedure.
- the temperature sensing system can include a thermocouple disposed near the distal end of the electrode 14, such as by being fixed at the distal end of the insulation sheath 40 that is fixed to the electrode 14.
- the device 10 can include an impedance monitoring system in communication with the proximal end of the electrode 14. The impedance monitoring system can measure impedance near the distal end of the electrode 14.
- the interstitial ablation device can further employ a feedback system that uses the temperature and or the impedance data to control the delivery of RF energy to the electrode 14.
- the control module 92 can, for example, include means for automatically adjusting the magnitude and duration of the ablation energy delivered to the electrode in response to one or both of these parameters.
- the interstitial ablation system can also include a safety feature which cuts off the delivery of energy when the temperature or the impedance value exceeds a threshold value.
- the deflectable interstitial ablation device 10 of the present invention does not require the use of an endoscope and therefore can be entirely disposable.
- the disposable device can attach to reusable eye piece and other equipment such as a light source, and a control and power source module.
- the imaging system 16 can be removed from the device 10 for subsequent reuse.
- the present invention features an improved transurethral interstitial ablation apparatus and method for performing transurethral ablation. While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Otolaryngology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
- Escalators And Moving Walkways (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69829300T DE69829300T2 (de) | 1997-09-30 | 1998-09-25 | Biegungsfähiges interstitielles ablationsgerät |
IL13535398A IL135353A (en) | 1997-09-30 | 1998-09-25 | Deflectable interstitial tissue ablation device |
EP98948543A EP1018959B1 (fr) | 1997-09-30 | 1998-09-25 | Dispositif d'ablation interstitiel orientable |
AU95092/98A AU738287B2 (en) | 1997-09-30 | 1998-09-25 | Deflectable interstitial ablation device |
CA002304739A CA2304739C (fr) | 1997-09-30 | 1998-09-25 | Dispositif d'ablation interstitiel orientable |
JP2000513516A JP2001517528A (ja) | 1997-09-30 | 1998-09-25 | 偏向可能間質切除装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/940,519 US6238389B1 (en) | 1997-09-30 | 1997-09-30 | Deflectable interstitial ablation device |
US08/940,519 | 1997-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999016370A1 true WO1999016370A1 (fr) | 1999-04-08 |
Family
ID=25474962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/020099 WO1999016370A1 (fr) | 1997-09-30 | 1998-09-25 | Dispositif d'ablation interstitiel orientable |
Country Status (8)
Country | Link |
---|---|
US (4) | US6238389B1 (fr) |
EP (1) | EP1018959B1 (fr) |
JP (2) | JP2001517528A (fr) |
AU (1) | AU738287B2 (fr) |
CA (1) | CA2304739C (fr) |
DE (1) | DE69829300T2 (fr) |
IL (1) | IL135353A (fr) |
WO (1) | WO1999016370A1 (fr) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9579149B2 (en) | 2014-03-13 | 2017-02-28 | Medtronic Ardian Luxembourg S.A.R.L. | Low profile catheter assemblies and associated systems and methods |
US9757193B2 (en) | 2002-04-08 | 2017-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatus for renal neuromodulation |
US9827040B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for intravascularly-induced neuromodulation |
US9919144B2 (en) | 2011-04-08 | 2018-03-20 | Medtronic Adrian Luxembourg S.a.r.l. | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10350004B2 (en) | 2004-12-09 | 2019-07-16 | Twelve, Inc. | Intravascular treatment catheters |
US10543037B2 (en) | 2013-03-15 | 2020-01-28 | Medtronic Ardian Luxembourg S.A.R.L. | Controlled neuromodulation systems and methods of use |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
Families Citing this family (276)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6120520A (en) | 1997-05-27 | 2000-09-19 | Angiotrax, Inc. | Apparatus and methods for stimulating revascularization and/or tissue growth |
US6051008A (en) | 1996-12-02 | 2000-04-18 | Angiotrax, Inc. | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
US6102926A (en) * | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US8079982B1 (en) | 1998-06-04 | 2011-12-20 | Biosense Webster, Inc. | Injection catheter with needle electrode |
US6575931B1 (en) * | 1998-06-04 | 2003-06-10 | Biosense Webster, Inc. | Catheter with injection needle |
US7416547B2 (en) | 1999-03-29 | 2008-08-26 | Biosense Webster Inc. | Injection catheter |
US6540725B1 (en) * | 1998-06-04 | 2003-04-01 | Biosense Webster, Inc. | Injection catheter with controllably extendable injection needle |
US6905476B2 (en) * | 1998-06-04 | 2005-06-14 | Biosense Webster, Inc. | Catheter with injection needle |
US6623473B1 (en) * | 1998-06-04 | 2003-09-23 | Biosense Webster, Inc. | Injection catheter with multi-directional delivery injection needle |
US6022362A (en) * | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6440147B1 (en) | 1998-09-03 | 2002-08-27 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6936014B2 (en) * | 2002-10-16 | 2005-08-30 | Rubicor Medical, Inc. | Devices and methods for performing procedures on a breast |
US7517348B2 (en) * | 1998-09-03 | 2009-04-14 | Rubicor Medical, Inc. | Devices and methods for performing procedures on a breast |
US7329253B2 (en) * | 2003-12-09 | 2008-02-12 | Rubicor Medical, Inc. | Suction sleeve and interventional devices having such a suction sleeve |
US6852120B1 (en) * | 1999-08-10 | 2005-02-08 | Biosense Webster, Inc | Irrigation probe for ablation during open heart surgery |
US6394956B1 (en) * | 2000-02-29 | 2002-05-28 | Scimed Life Systems, Inc. | RF ablation and ultrasound catheter for crossing chronic total occlusions |
ATE290827T1 (de) * | 2000-06-13 | 2005-04-15 | Atrionix Inc | Chirurgische ablationssonde zum formen einer ringförmigen läsion |
US7588554B2 (en) * | 2000-06-26 | 2009-09-15 | Boston Scientific Scimed, Inc. | Method and apparatus for treating ischemic tissue |
WO2002005866A2 (fr) * | 2000-07-13 | 2002-01-24 | Bioheart, Inc. | Systeme de deploiement destine a un materiau cellulaire du myocarde |
US6726700B1 (en) * | 2000-08-21 | 2004-04-27 | Counter Clockwise, Inc. | Manipulatable delivery catheter for occlusive devices |
US6482221B1 (en) * | 2000-08-21 | 2002-11-19 | Counter Clockwise, Inc. | Manipulatable delivery catheter for occlusive devices (II) |
US6416523B1 (en) * | 2000-10-03 | 2002-07-09 | Scimed Life Systems, Inc. | Method and apparatus for creating channels through vascular total occlusions |
US6676657B2 (en) | 2000-12-07 | 2004-01-13 | The United States Of America As Represented By The Department Of Health And Human Services | Endoluminal radiofrequency cauterization system |
US20020072739A1 (en) | 2000-12-07 | 2002-06-13 | Roberta Lee | Methods and devices for radiofrequency electrosurgery |
US20020183739A1 (en) | 2001-03-30 | 2002-12-05 | Long Gary L. | Endoscopic ablation system with sealed sheath |
US20020177847A1 (en) * | 2001-03-30 | 2002-11-28 | Long Gary L. | Endoscopic ablation system with flexible coupling |
US7097644B2 (en) | 2001-03-30 | 2006-08-29 | Ethicon Endo-Surgery, Inc. | Medical device with improved wall construction |
EP1420702B1 (fr) * | 2001-08-31 | 2005-04-20 | Boston Scientific Limited | Dispositif d'occlusion percutanee de type pringle |
US12121289B2 (en) * | 2008-05-09 | 2024-10-22 | Atricure, Inc. | Conduction block systems and methods |
US7749157B2 (en) * | 2001-12-04 | 2010-07-06 | Estech, Inc. (Endoscopic Technologies, Inc.) | Methods and devices for minimally invasive cardiac surgery for atrial fibrillation |
US7399300B2 (en) * | 2001-12-04 | 2008-07-15 | Endoscopic Technologies, Inc. | Cardiac ablation devices and methods |
US7226448B2 (en) * | 2001-12-04 | 2007-06-05 | Estech, Inc. (Endoscopic Technologies, Inc.) | Cardiac treatment devices and methods |
US7591818B2 (en) | 2001-12-04 | 2009-09-22 | Endoscopic Technologies, Inc. | Cardiac ablation devices and methods |
US7137981B2 (en) | 2002-03-25 | 2006-11-21 | Ethicon Endo-Surgery, Inc. | Endoscopic ablation system with a distally mounted image sensor |
US6974455B2 (en) * | 2002-04-10 | 2005-12-13 | Boston Scientific Scimed, Inc. | Auto advancing radio frequency array |
US6875179B2 (en) | 2002-06-17 | 2005-04-05 | Board Of Trustees Of The University Of Arkansas | Ultrasonic guided catheter deployment system |
US20040006355A1 (en) * | 2002-07-03 | 2004-01-08 | Rubicor Medical, Inc. | Methods and devices for cutting and collecting soft tissue |
US7044956B2 (en) * | 2002-07-03 | 2006-05-16 | Rubicor Medical, Inc. | Methods and devices for cutting and collecting soft tissue |
US7029451B2 (en) * | 2002-11-06 | 2006-04-18 | Rubicor Medical, Inc. | Excisional devices having selective cutting and atraumatic configurations and methods of using same |
US7039450B2 (en) * | 2002-11-15 | 2006-05-02 | Biosense Webster, Inc. | Telescoping catheter |
US7682305B2 (en) * | 2002-12-06 | 2010-03-23 | Endoscopic Technologies, Inc. | Methods and devices for cardiac surgery |
US8021359B2 (en) | 2003-02-13 | 2011-09-20 | Coaptus Medical Corporation | Transseptal closure of a patent foramen ovale and other cardiac defects |
US7257450B2 (en) | 2003-02-13 | 2007-08-14 | Coaptus Medical Corporation | Systems and methods for securing cardiovascular tissue |
US20040199179A1 (en) * | 2003-04-02 | 2004-10-07 | Elliott Christopher J. | Steerable ablation probe |
FR2854052A1 (fr) * | 2003-04-25 | 2004-10-29 | Medtronic Inc | Distribution de fluide au cours du traitement transuretral de la prostate |
US20040215181A1 (en) * | 2003-04-25 | 2004-10-28 | Medtronic, Inc. | Delivery of fluid during transurethral prostate treatment |
US7615003B2 (en) * | 2005-05-13 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Track for medical devices |
US7615005B2 (en) * | 2003-05-16 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Medical apparatus for use with an endoscope |
US7815565B2 (en) | 2003-05-16 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Endcap for use with an endoscope |
US7122011B2 (en) * | 2003-06-18 | 2006-10-17 | Rubicor Medical, Inc. | Methods and devices for cutting and collecting soft tissue |
US8308708B2 (en) * | 2003-07-15 | 2012-11-13 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
US7569052B2 (en) * | 2003-09-12 | 2009-08-04 | Boston Scientific Scimed, Inc. | Ablation catheter with tissue protecting assembly |
WO2005113051A2 (fr) | 2004-05-14 | 2005-12-01 | Ethicon Endo-Surgery, Inc. | Instrument médical avec guide métallique médical |
US7785269B2 (en) | 2004-05-14 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Medical instrument having a guidewire and an add-to catheter |
US7533439B2 (en) * | 2004-06-25 | 2009-05-19 | Healthy Gain Investments Limited | Handle assembly for a cleaning apparatus |
US7232438B2 (en) | 2004-07-09 | 2007-06-19 | Ethicon Endo-Surgery, Inc. | Ablation device with clear probe |
NL1026884C2 (nl) * | 2004-08-19 | 2006-02-21 | Univ Delft Tech | Instrument omvattende een kabel of slang voorzien van een voortstuwingsorgaan. |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
JP2008514271A (ja) * | 2004-09-27 | 2008-05-08 | ビブラテック・アクチボラゲット | 腫瘍の治療のための機構 |
US7473252B2 (en) | 2004-10-07 | 2009-01-06 | Coaptus Medical Corporation | Systems and methods for shrinking and/or securing cardiovascular tissue |
US7753907B2 (en) * | 2004-10-29 | 2010-07-13 | Boston Scientific Scimed, Inc. | Medical device systems and methods |
US7918795B2 (en) | 2005-02-02 | 2011-04-05 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US20060258903A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Method of inserting a feeding tube |
US7905830B2 (en) * | 2005-05-13 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Sheath for use with an endoscope |
US20060258904A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Feeding tube and track |
US7857754B2 (en) | 2005-05-13 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Apparatus useful for positioning a device on an endoscope |
US7648457B2 (en) * | 2005-05-13 | 2010-01-19 | Ethicon Endo-Surgery, Inc. | Method of positioning a device on an endoscope |
US20060264832A1 (en) * | 2005-05-20 | 2006-11-23 | Medtronic, Inc. | User interface for a portable therapy delivery device |
CA2611477C (fr) * | 2005-06-10 | 2012-01-17 | Wilson-Cook Medical, Inc. | Catheter de cauterisation |
US20070060988A1 (en) | 2005-07-18 | 2007-03-15 | Grenon Stephen M | Melting meibomian gland obstructions |
US7981146B2 (en) * | 2006-05-15 | 2011-07-19 | Tearscience Inc. | Inner eyelid treatment for treating meibomian gland dysfunction |
US7981095B2 (en) * | 2005-07-18 | 2011-07-19 | Tearscience, Inc. | Methods for treating meibomian gland dysfunction employing fluid jet |
US7981145B2 (en) | 2005-07-18 | 2011-07-19 | Tearscience Inc. | Treatment of meibomian glands |
US20070016256A1 (en) * | 2005-07-18 | 2007-01-18 | Korb Donald R | Method and apparatus for treating gland dysfunction |
US8950405B2 (en) * | 2006-05-15 | 2015-02-10 | Tearscience, Inc. | Treatment of obstructive disorders of the eye or eyelid |
US20080114423A1 (en) | 2006-05-15 | 2008-05-15 | Grenon Stephen M | Apparatus for inner eyelid treatment of meibomian gland dysfunction |
WO2013003594A2 (fr) | 2011-06-28 | 2013-01-03 | Tearscience, Inc. | Procédés et systèmes de traitement de dysfonctionnement de la glande de meibomius à l'aide d'énergie radiofréquence |
US20090043365A1 (en) | 2005-07-18 | 2009-02-12 | Kolis Scientific, Inc. | Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma |
US8550743B2 (en) * | 2005-09-30 | 2013-10-08 | Medtronic, Inc. | Sliding lock device |
US20070100324A1 (en) * | 2005-10-17 | 2007-05-03 | Coaptus Medical Corporation | Systems and methods for applying vacuum to a patient, including via a disposable liquid collection unit |
US20080249525A1 (en) * | 2005-11-08 | 2008-10-09 | U & I Corporation | Radio Frequency Ablation Electrode for Selected Tissue Removal |
US20070142699A1 (en) * | 2005-12-16 | 2007-06-21 | Acoustx Corporation | Methods and implantable apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease |
US20070142884A1 (en) * | 2005-12-16 | 2007-06-21 | Acoustx Corporation | Methods and apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease |
US9357977B2 (en) | 2006-01-12 | 2016-06-07 | Gynesonics, Inc. | Interventional deployment and imaging system |
US10058342B2 (en) | 2006-01-12 | 2018-08-28 | Gynesonics, Inc. | Devices and methods for treatment of tissue |
US11259825B2 (en) | 2006-01-12 | 2022-03-01 | Gynesonics, Inc. | Devices and methods for treatment of tissue |
US7815571B2 (en) | 2006-04-20 | 2010-10-19 | Gynesonics, Inc. | Rigid delivery systems having inclined ultrasound and needle |
US7874986B2 (en) | 2006-04-20 | 2011-01-25 | Gynesonics, Inc. | Methods and devices for visualization and ablation of tissue |
US20070179491A1 (en) * | 2006-01-31 | 2007-08-02 | Medtronic, Inc. | Sensing needle for ablation therapy |
US20070179496A1 (en) * | 2006-01-31 | 2007-08-02 | Medtronic, Inc. | Flexible catheter for ablation therapy |
CA2642568C (fr) * | 2006-02-22 | 2015-11-24 | Custom Medical Applications, Inc. | Instruments d'ablation et methodes en rapport |
US8206300B2 (en) | 2008-08-26 | 2012-06-26 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US10595819B2 (en) | 2006-04-20 | 2020-03-24 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US8007524B2 (en) * | 2006-05-15 | 2011-08-30 | Tearscience, Inc. | Heat treatment and heat loss reduction for treating meibomian gland dysfunction |
US7976573B2 (en) * | 2006-05-15 | 2011-07-12 | Tearscience, Inc. | Inner eyelid heat and pressure treatment for treating meibomian gland dysfunction |
US9314369B2 (en) * | 2006-05-15 | 2016-04-19 | Tearscience, Inc. | System for inner eyelid treatment of meibomian gland dysfunction |
US8128674B2 (en) | 2006-05-15 | 2012-03-06 | Tearscience, Inc. | System for outer eyelid heat and pressure treatment for treating meibomian gland dysfunction |
US8137390B2 (en) * | 2006-05-15 | 2012-03-20 | Tearscience, Inc. | System for providing heat treatment and heat loss reduction for treating meibomian gland dysfunction |
US7981147B2 (en) * | 2006-05-15 | 2011-07-19 | Tearscience, Inc. | Outer eyelid heat and pressure treatment for treating meibomian gland dysfunction |
US8128673B2 (en) * | 2006-05-15 | 2012-03-06 | Tearscience, Inc. | System for inner eyelid heat and pressure treatment for treating meibomian gland dysfunction |
US20080045863A1 (en) * | 2006-08-17 | 2008-02-21 | Ethicon Endo-Surgery, Inc. | Guidewire structure including a medical guidewire |
US8002714B2 (en) * | 2006-08-17 | 2011-08-23 | Ethicon Endo-Surgery, Inc. | Guidewire structure including a medical guidewire and method for using a medical instrument |
WO2008027069A1 (fr) * | 2006-08-21 | 2008-03-06 | Tearscience, Inc. | Procédé et appareil de traitement du dysfonctionnement de la glande de meibomius au moyen d'un fluide |
US20080097331A1 (en) * | 2006-09-05 | 2008-04-24 | Ethicon Endo-Surgery, Inc. | Guidewire structure including a medical guidewire and method for using |
US20080064920A1 (en) * | 2006-09-08 | 2008-03-13 | Ethicon Endo-Surgery, Inc. | Medical drive system for providing motion to at least a portion of a medical apparatus |
US8048069B2 (en) | 2006-09-29 | 2011-11-01 | Medtronic, Inc. | User interface for ablation therapy |
US7785289B2 (en) * | 2006-10-17 | 2010-08-31 | Boston Scientific Scimed, Inc. | Catheter with flexible, non-kinking elongate member |
WO2008063621A2 (fr) * | 2006-11-21 | 2008-05-29 | Bridgepoint Medical, Inc. | Dispositifs endovasculaires et méthodes d'exploitation de l'espace intramural |
US9561053B2 (en) | 2007-04-25 | 2017-02-07 | Medtronic, Inc. | Implant tool to facilitate medical device implantation |
US9399130B2 (en) | 2007-04-25 | 2016-07-26 | Medtronic, Inc. | Cannula configured to deliver test stimulation |
US8945114B2 (en) * | 2007-04-26 | 2015-02-03 | Medtronic, Inc. | Fluid sensor for ablation therapy |
US8814856B2 (en) * | 2007-04-30 | 2014-08-26 | Medtronic, Inc. | Extension and retraction mechanism for a hand-held device |
US20080275440A1 (en) * | 2007-05-03 | 2008-11-06 | Medtronic, Inc. | Post-ablation verification of lesion size |
US8216221B2 (en) * | 2007-05-21 | 2012-07-10 | Estech, Inc. | Cardiac ablation systems and methods |
US9186207B2 (en) * | 2007-06-14 | 2015-11-17 | Medtronic, Inc. | Distal viewing window of a medical catheter |
US20090093726A1 (en) * | 2007-10-04 | 2009-04-09 | Olympus Medical Systems Corp. | Cardiovascular ultrasound probe and ultrasound image system |
US8192353B2 (en) * | 2007-10-05 | 2012-06-05 | Tyco Healthcare Group Lp | Visual obturator |
US8308763B2 (en) | 2007-10-05 | 2012-11-13 | Coaptus Medical Corporation | Systems and methods for transeptal cardiac procedures, including separable guidewires |
US8088072B2 (en) | 2007-10-12 | 2012-01-03 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US10136909B2 (en) * | 2007-12-20 | 2018-11-27 | Atricure, Inc. | Magnetic introducer systems and methods |
USD613408S1 (en) | 2008-02-06 | 2010-04-06 | Tearscience, Inc. | Eye treatment head gear |
USD617443S1 (en) | 2008-02-06 | 2010-06-08 | Tearscience, Inc. | Eye treatment goggles |
US9782566B1 (en) * | 2008-05-01 | 2017-10-10 | Annex Medical, Inc. | Bend limiting access sheath |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
CN102238920B (zh) * | 2008-10-06 | 2015-03-25 | 维兰德.K.沙马 | 用于组织消融的方法和装置 |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US9079028B2 (en) | 2008-10-09 | 2015-07-14 | Virender K. Sharma | Method and apparatus for stimulating the vascular system |
US10603489B2 (en) | 2008-10-09 | 2020-03-31 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
SMT201800248T1 (it) | 2008-11-06 | 2018-07-17 | Nxthera Inc | Sistemi e metodi per il trattamento di tessuto prostatico |
JP2012508068A (ja) | 2008-11-06 | 2012-04-05 | エヌエックスセラ インコーポレイテッド | 前立腺組織の治療のためのシステム及び方法 |
CN102271595A (zh) | 2008-11-06 | 2011-12-07 | 恩克斯特拉公司 | 用于bph的治疗的系统和方法 |
US8808345B2 (en) * | 2008-12-31 | 2014-08-19 | Medtronic Ardian Luxembourg S.A.R.L. | Handle assemblies for intravascular treatment devices and associated systems and methods |
US8388611B2 (en) * | 2009-01-14 | 2013-03-05 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
US20100179416A1 (en) * | 2009-01-14 | 2010-07-15 | Michael Hoey | Medical Systems and Methods |
WO2010093603A1 (fr) | 2009-02-11 | 2010-08-19 | Boston Scientific Scimed, Inc. | Dispositifs de cathéters d'ablation isolés et procédés d'utilisation |
US8262574B2 (en) | 2009-02-27 | 2012-09-11 | Gynesonics, Inc. | Needle and tine deployment mechanism |
US8292879B2 (en) * | 2009-04-17 | 2012-10-23 | Domain Surgical, Inc. | Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool |
US9833277B2 (en) | 2009-04-27 | 2017-12-05 | Nxthera, Inc. | Systems and methods for prostate treatment |
US8430875B2 (en) | 2009-05-19 | 2013-04-30 | Estech, Inc. (Endoscopic Technologies, Inc.) | Magnetic navigation systems and methods |
US8954161B2 (en) | 2012-06-01 | 2015-02-10 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation |
US9226791B2 (en) | 2012-03-12 | 2016-01-05 | Advanced Cardiac Therapeutics, Inc. | Systems for temperature-controlled ablation using radiometric feedback |
US8926605B2 (en) | 2012-02-07 | 2015-01-06 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for radiometrically measuring temperature during tissue ablation |
US9277961B2 (en) | 2009-06-12 | 2016-03-08 | Advanced Cardiac Therapeutics, Inc. | Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated |
US20100331838A1 (en) * | 2009-06-25 | 2010-12-30 | Estech, Inc. (Endoscopic Technologies, Inc.) | Transmurality clamp systems and methods |
JP5490235B2 (ja) | 2009-06-30 | 2014-05-14 | ボストン サイエンティフィック サイムド,インコーポレイテッド | マップ及び切除のための開放洗浄ハイブリッドカテーテル |
US9572624B2 (en) | 2009-08-05 | 2017-02-21 | Atricure, Inc. | Bipolar belt systems and methods |
US10123821B2 (en) | 2009-09-10 | 2018-11-13 | Atricure, Inc. | Scope and magnetic introducer systems and methods |
USD638128S1 (en) | 2009-10-06 | 2011-05-17 | Tearscience, Inc. | Ocular device design |
AU2011230568B2 (en) * | 2010-03-25 | 2016-02-18 | Boston Scientific Scimed, Inc. | Systems and methods for prostate treatment |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US9089340B2 (en) | 2010-12-30 | 2015-07-28 | Boston Scientific Scimed, Inc. | Ultrasound guided tissue ablation |
WO2012100095A1 (fr) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Cathéter à grande électrode compatible avec un guide pour ablation de nerf rénal à lésion artérielle réduite |
EP2701623B1 (fr) | 2011-04-25 | 2016-08-17 | Medtronic Ardian Luxembourg S.à.r.l. | Appareil relatifs au déploiement restreint de ballonnets cryogéniques pour une ablation cryogénique limitée de parois de vaisseaux |
JP2014516723A (ja) | 2011-06-01 | 2014-07-17 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 超音波映像性能を備えた切除プローブ |
CN103619566B (zh) | 2011-06-22 | 2017-04-05 | 帝斯曼知识产权资产管理有限公司 | 用于箔从材料层分离的设备和方法 |
CN103813745B (zh) | 2011-07-20 | 2016-06-29 | 波士顿科学西美德公司 | 用以可视化、对准和消融神经的经皮装置及方法 |
AU2012287189B2 (en) | 2011-07-22 | 2016-10-06 | Boston Scientific Scimed, Inc. | Nerve modulation system with a nerve modulation element positionable in a helical guide |
WO2013036900A1 (fr) | 2011-09-10 | 2013-03-14 | Cook Medical Technologies Llc | Poignées de commande pour dispositifs médicaux |
CN103917200B (zh) | 2011-09-13 | 2016-03-30 | 恩克斯特拉公司 | 用于前列腺治疗的系统和方法 |
AU2012308557B2 (en) | 2011-09-14 | 2017-03-09 | Boston Scientific Scimed, Inc. | Ablation device with multiple ablation modes |
US9603659B2 (en) | 2011-09-14 | 2017-03-28 | Boston Scientific Scimed Inc. | Ablation device with ionically conductive balloon |
EP2757933B1 (fr) | 2011-09-22 | 2019-02-06 | The George Washington University | Systèmes visualisation de tissu enlevé |
AU2012312066C1 (en) | 2011-09-22 | 2016-06-16 | 460Medical, Inc. | Systems and methods for visualizing ablated tissue |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
WO2013055815A1 (fr) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Dispositif d'électrode hors paroi pour une modulation nerveuse |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
EP2775948B1 (fr) | 2011-11-08 | 2018-04-04 | Boston Scientific Scimed, Inc. | Ablation ostiale du nerf rénal |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9037259B2 (en) | 2011-12-23 | 2015-05-19 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
WO2013102072A1 (fr) | 2011-12-28 | 2013-07-04 | Boston Scientific Scimed, Inc. | Sonde d'ablation ayant une capacité d'imagerie ultrasonore |
CN104135958B (zh) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | 用有聚合物消融元件的新消融导管调变神经的装置和方法 |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
AU2013207994B2 (en) | 2012-01-10 | 2015-05-07 | Boston Scientific Scimed, Inc. | Electrophysiology system |
JP5830614B2 (ja) | 2012-01-31 | 2015-12-09 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 超音波組織撮像のための流体に基づいた音響結合を有するアブレーションプローブ、および、アブレーションおよび超音波撮像システム |
US9782583B2 (en) | 2012-02-21 | 2017-10-10 | Virender K. Sharma | System and method for electrical stimulation of anorectal structures to treat urinary dysfunction |
US8706234B2 (en) | 2012-02-21 | 2014-04-22 | Virender K. Sharma | System and method for electrical stimulation of anorectal structures to treat anal dysfunction |
US10576278B2 (en) | 2012-02-21 | 2020-03-03 | Virender K. Sharma | System and method for electrical stimulation of anorectal structures to treat urinary dysfunction |
US9010320B2 (en) | 2012-03-12 | 2015-04-21 | Furman Medical Llc | Manually articulated intubation stylet, intubation device and intubation method |
US10349958B2 (en) | 2012-03-27 | 2019-07-16 | Cook Medical Technologies Llc | Lithotripsy probes and methods for performing lithotripsy |
EP2833815B1 (fr) | 2012-04-03 | 2020-11-11 | Boston Scientific Scimed, Inc. | Générateur de vapeur à bobine d'induction |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US9192426B2 (en) * | 2012-06-26 | 2015-11-24 | Covidien Lp | Ablation device having an expandable chamber for anchoring the ablation device to tissue |
WO2014031857A2 (fr) | 2012-08-22 | 2014-02-27 | Tearscience, Inc. | Appareils et méthodes de diagnostic et/ou de traitement du déficit en transport des lipides dans des films de larmes oculaires, et composants et dispositifs afférents |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
CN104780859B (zh) | 2012-09-17 | 2017-07-25 | 波士顿科学西美德公司 | 用于肾神经调节的自定位电极系统及方法 |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
WO2014047411A1 (fr) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | Système de modulation des nerfs et blocage des nerfs par gradient thermique inoffensif |
EP2906135A2 (fr) | 2012-10-10 | 2015-08-19 | Boston Scientific Scimed, Inc. | Dispositifs et procédés de modulation de nerf rénal |
EP3964151A3 (fr) | 2013-01-17 | 2022-03-30 | Virender K. Sharma | Appareil d'ablation de tissu |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
EP2967503A4 (fr) | 2013-03-14 | 2017-01-18 | Nxthera, Inc. | Systèmes et procédés pour le traitement du cancer de la prostate |
CN105473090B (zh) | 2013-03-15 | 2019-05-03 | 波士顿科学国际有限公司 | 重建身体通道的组织或邻近身体通道的组织的方法及装置 |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
WO2014149690A2 (fr) | 2013-03-15 | 2014-09-25 | Boston Scientific Scimed, Inc. | Dispositifs médicaux et méthodes de traitement de l'hypertension à l'aide d'une compensation d'impédance |
US20140309524A1 (en) | 2013-04-16 | 2014-10-16 | Transmed7, Llc | Methods, devices and therapeutic platform for automated, selectable, soft tissue resection |
US9763827B2 (en) | 2013-04-30 | 2017-09-19 | Tear Film Innovations, Inc. | Systems and methods for the treatment of eye conditions |
ES2942724T3 (es) | 2013-04-30 | 2023-06-06 | Alcon Inc | Sistemas para el tratamiento de enfermedades del ojo |
JP2016523147A (ja) | 2013-06-21 | 2016-08-08 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 同乗型電極支持体を備えた腎除神経バルーンカテーテル |
JP2016524949A (ja) | 2013-06-21 | 2016-08-22 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 回転可能シャフトを有する腎神経アブレーション用医療装置 |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
CN105377169B (zh) | 2013-07-11 | 2019-04-19 | 波士顿科学国际有限公司 | 用于神经调制的装置和方法 |
WO2015010074A1 (fr) | 2013-07-19 | 2015-01-22 | Boston Scientific Scimed, Inc. | Ballonnet de dénervation rénale à électrode bipolaire en spirale |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
EP3024405A1 (fr) | 2013-07-22 | 2016-06-01 | Boston Scientific Scimed, Inc. | Cathéter d'ablation de nerf rénal ayant un ballonnet de torsion |
JP6159888B2 (ja) | 2013-08-22 | 2017-07-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 腎神経変調バルーンへの接着性を向上させたフレキシブル回路 |
CN105555218B (zh) | 2013-09-04 | 2019-01-15 | 波士顿科学国际有限公司 | 具有冲洗和冷却能力的射频(rf)球囊导管 |
EP3043733A1 (fr) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ballonnet d'ablation à couche de revêtement déposée en phase vapeur |
CN105592778B (zh) | 2013-10-14 | 2019-07-23 | 波士顿科学医学有限公司 | 高分辨率心脏标测电极阵列导管 |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
EP3057520A1 (fr) | 2013-10-15 | 2016-08-24 | Boston Scientific Scimed, Inc. | Ballonnet de dispositif médical |
CN105636538B (zh) | 2013-10-18 | 2019-01-15 | 波士顿科学国际有限公司 | 具有柔性导线的球囊导管及其使用和制造的相关方法 |
WO2015061457A1 (fr) | 2013-10-25 | 2015-04-30 | Boston Scientific Scimed, Inc. | Thermocouple intégré dans un circuit souple d'énervation |
EP3068280B1 (fr) * | 2013-11-14 | 2021-06-02 | Clph, Llc | Appareil et systèmes pour l'imagerie et l'injection épicardiques |
US11096584B2 (en) | 2013-11-14 | 2021-08-24 | The George Washington University | Systems and methods for determining lesion depth using fluorescence imaging |
CN105744883B (zh) | 2013-11-20 | 2022-03-01 | 乔治华盛顿大学 | 用于心脏组织高光谱分析的系统和方法 |
WO2015089190A1 (fr) | 2013-12-10 | 2015-06-18 | Nxthera, Inc. | Systèmes et procédés d'ablation à la vapeur |
US9968395B2 (en) | 2013-12-10 | 2018-05-15 | Nxthera, Inc. | Systems and methods for treating the prostate |
WO2015103617A1 (fr) | 2014-01-06 | 2015-07-09 | Boston Scientific Scimed, Inc. | Ensemble circuit souple résistant aux déchirures |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
EP3102136B1 (fr) | 2014-02-04 | 2018-06-27 | Boston Scientific Scimed, Inc. | Variante de placement de capteurs thermiques sur une électrode bipolaire |
US10524684B2 (en) | 2014-10-13 | 2020-01-07 | Boston Scientific Scimed Inc | Tissue diagnosis and treatment using mini-electrodes |
CN106604675B (zh) | 2014-10-24 | 2020-01-10 | 波士顿科学医学有限公司 | 具有耦接到消融尖头的柔性电极组件的医疗设备 |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
JP6825789B2 (ja) | 2014-11-19 | 2021-02-03 | エピックス セラピューティクス,インコーポレイテッド | 組織の高分解能マッピングのためのシステムおよび方法 |
CN107148249B (zh) | 2014-11-19 | 2022-02-22 | Epix 疗法公司 | 使用高分辨率电极组件的消融装置、系统和方法 |
WO2016081611A1 (fr) | 2014-11-19 | 2016-05-26 | Advanced Cardiac Therapeutics, Inc. | Cartographie haute résolution de tissus avec stimulation cardiaque |
EP3223735A4 (fr) * | 2014-11-25 | 2018-07-11 | Luxcath, LLC | Cathéters de visualisation |
CN106999080B (zh) | 2014-12-18 | 2020-08-18 | 波士顿科学医学有限公司 | 针对病变评估的实时形态分析 |
US10342593B2 (en) | 2015-01-29 | 2019-07-09 | Nxthera, Inc. | Vapor ablation systems and methods |
US9636164B2 (en) | 2015-03-25 | 2017-05-02 | Advanced Cardiac Therapeutics, Inc. | Contact sensing systems and methods |
CN113197661B (zh) | 2015-05-13 | 2024-08-20 | 波士顿科学医学有限公司 | 用于使用可冷凝蒸气治疗膀胱的系统和方法 |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US10328271B2 (en) | 2015-11-12 | 2019-06-25 | Medtronic, Inc. | Implantable electrical stimulator with deflecting tip lead |
US10252035B2 (en) | 2015-12-07 | 2019-04-09 | Cook Medical Techonologies Llc | Rotatable control handles for medical devices and methods of using rotatable control handles |
AU2017235224A1 (en) | 2016-03-15 | 2018-11-08 | Epix Therapeutics, Inc. | Improved devices, systems and methods for irrigated ablation |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
US10974063B2 (en) | 2016-06-30 | 2021-04-13 | Alcon Inc. | Light therapy for eyelash growth |
ES2927968T3 (es) | 2016-11-11 | 2022-11-14 | Gynesonics Inc | Tratamiento controlado del tejido e interacción dinámica con datos del tejido y/o tratamiento y comparación de datos del tejido y/o tratamiento |
CN110177508B (zh) | 2016-12-21 | 2022-10-28 | 波士顿科学医学有限公司 | 蒸汽消融系统及方法 |
JP7193463B2 (ja) | 2017-01-06 | 2022-12-20 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 経腹膜蒸気焼灼システム及び方法 |
EP3614946B1 (fr) | 2017-04-27 | 2024-03-20 | EPiX Therapeutics, Inc. | Détermination de la nature d'un contact entre une pointe de cathéter et un tissu |
AU2019279011B2 (en) | 2018-06-01 | 2025-04-03 | Santa Anna Tech Llc | Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems |
EP4061240A4 (fr) * | 2019-11-18 | 2024-01-24 | CIRCA Scientific, Inc. | Passage d'instrument pour ablation épicardique avec structures épicardiques anatomiques et dispositif de traitement d'image de lésion en temps réel |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
WO2022261639A1 (fr) * | 2021-06-08 | 2022-12-15 | Promedica Health System, Inc. | Dispositif d'injection de bloc robinet |
CN118415745B (zh) * | 2024-05-23 | 2025-01-21 | 上海澍能医疗科技有限公司 | 一种用于调整消融位置的消融导管 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273535A (en) | 1991-11-08 | 1993-12-28 | Ep Technologies, Inc. | Catheter with electrode tip having asymmetric left and right curve configurations |
WO1994017856A1 (fr) * | 1993-02-02 | 1994-08-18 | Vidamed, Inc. | Procede et dispositif d'ablation a aiguille transuretrale |
EP0629382A1 (fr) * | 1992-08-12 | 1994-12-21 | Vidamed, Inc. | Sonde médicale et procédé associé |
US5403311A (en) * | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
WO1997000049A1 (fr) * | 1995-06-19 | 1997-01-03 | Vidamed, Inc. | Dispositif electrochirurgical comportant un ensemble de declenchement d'actionnement et son procede |
WO1997033524A1 (fr) * | 1996-03-15 | 1997-09-18 | Rita Medical Systems, Inc. | Appareil et procede d'ablation a antennes multiples a element de refroidissement |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5675131A (en) | 1979-11-22 | 1981-06-22 | Olympus Optical Co | Endoscope apparatus |
US4565200A (en) | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US5421819A (en) | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5435805A (en) | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US4770654A (en) | 1985-09-26 | 1988-09-13 | Alcon Laboratories Inc. | Multimedia apparatus for driving powered surgical instruments |
US4699463A (en) | 1985-11-01 | 1987-10-13 | Circon Corporation | Multidirectional viewing borescope |
JPS6397154A (ja) | 1986-10-13 | 1988-04-27 | オリンパス光学工業株式会社 | 内視鏡用処置具 |
US4765331A (en) | 1987-02-10 | 1988-08-23 | Circon Corporation | Electrosurgical device with treatment arc of less than 360 degrees |
US4748969A (en) | 1987-05-07 | 1988-06-07 | Circon Corporation | Multi-lumen core deflecting endoscope |
US4936842A (en) | 1987-05-08 | 1990-06-26 | Circon Corporation | Electrosurgical probe apparatus |
US4823791A (en) | 1987-05-08 | 1989-04-25 | Circon Acmi Division Of Circon Corporation | Electrosurgical probe apparatus |
US4745908A (en) | 1987-05-08 | 1988-05-24 | Circon Corporation | Inspection instrument fexible shaft having deflection compensation means |
US4776840A (en) | 1987-09-28 | 1988-10-11 | Alteron, Inc. | Hand-held medical evacuator and irrigation device |
US4917082A (en) | 1988-06-02 | 1990-04-17 | Circon Corporation | Resectoscope electrode |
US4921484A (en) | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
US4911148A (en) | 1989-03-14 | 1990-03-27 | Intramed Laboratories, Inc. | Deflectable-end endoscope with detachable flexible shaft assembly |
US4917100A (en) | 1989-05-08 | 1990-04-17 | Nottke James E | Biopsy needle for use with spring-operated actuating mechanism |
US5007908A (en) | 1989-09-29 | 1991-04-16 | Everest Medical Corporation | Electrosurgical instrument having needle cutting electrode and spot-coag electrode |
US5091656A (en) | 1989-10-27 | 1992-02-25 | Storz Instrument Company | Footswitch assembly with electrically engaged detents |
US5069223A (en) | 1990-02-14 | 1991-12-03 | Georgetown University | Method of evaluating tissue changes resulting from therapeutic hyperthermia |
US5431645A (en) * | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
US5195958A (en) | 1990-05-25 | 1993-03-23 | Phillips Edward H | Tool for laparoscopic surgery |
US5199417A (en) | 1990-12-21 | 1993-04-06 | Circon Corporation | Endoscope having a deflectable distal section and a semi-rigid proximal section |
US5409453A (en) * | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5271379A (en) * | 1991-07-26 | 1993-12-21 | The Regents Of The University Of California | Endoscopic device actuator and method |
US5562703A (en) | 1994-06-14 | 1996-10-08 | Desai; Ashvin H. | Endoscopic surgical instrument |
EP0566731A4 (fr) * | 1991-11-08 | 1995-02-22 | Ep Technologies | Systeme d'ablation a haute frequence a detection de puissance sensible a la phase. |
US5197963A (en) | 1991-12-02 | 1993-03-30 | Everest Medical Corporation | Electrosurgical instrument with extendable sheath for irrigation and aspiration |
US5902272A (en) * | 1992-01-07 | 1999-05-11 | Arthrocare Corporation | Planar ablation probe and method for electrosurgical cutting and ablation |
MX9300607A (es) | 1992-02-06 | 1993-10-01 | American Med Syst | Aparato y metodo para tratamiento intersticial. |
US5186714A (en) | 1992-05-18 | 1993-02-16 | Yab Revo-Tech Inc. | Multifunctional surgical instrument |
US5281218A (en) | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
WO1994000178A1 (fr) | 1992-06-26 | 1994-01-06 | Schneider (Usa) Inc. | Catheter pourvu d'une pointe a treillis en fil metallique extensible |
US5667488A (en) * | 1992-08-12 | 1997-09-16 | Vidamed, Inc. | Transurethral needle ablation device and method for the treatment of the prostate |
US5486161A (en) * | 1993-02-02 | 1996-01-23 | Zomed International | Medical probe device and method |
US5720719A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Ablative catheter with conformable body |
US5324311A (en) * | 1992-09-04 | 1994-06-28 | Siemens Pacesetter, Inc. | Coaxial bipolar connector assembly for implantable medical device |
US5636634A (en) * | 1993-03-16 | 1997-06-10 | Ep Technologies, Inc. | Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes |
US5921982A (en) * | 1993-07-30 | 1999-07-13 | Lesh; Michael D. | Systems and methods for ablating body tissue |
US5456689A (en) | 1993-10-13 | 1995-10-10 | Arnold J. Kresch | Method and device for tissue resection |
US5599346A (en) | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment system |
US5458597A (en) | 1993-11-08 | 1995-10-17 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US5595185A (en) | 1994-08-11 | 1997-01-21 | N.M.B. Medical Applications Ltd. | Single puncture multi-biopsy gun |
US5885278A (en) * | 1994-10-07 | 1999-03-23 | E.P. Technologies, Inc. | Structures for deploying movable electrode elements |
WO1997017027A1 (fr) | 1995-11-08 | 1997-05-15 | Femrx, Inc. | Dispositif electrochirurgical a rouleaux pour l'ablation et la segmentation de tissus |
WO1996011638A1 (fr) | 1994-10-13 | 1996-04-25 | Femrx | Procede et dispositif pour la resection de tissus |
DE69635933T2 (de) * | 1995-01-30 | 2006-09-07 | Boston Scientific Corp., Natick | Elektrochirurgische Entfernung von Geweben |
WO1996026675A1 (fr) | 1995-02-28 | 1996-09-06 | Boston Scientific Corporation | Catheter a deflexion pour l'ablation d'un tissu cardiaque |
US5704899A (en) | 1995-10-10 | 1998-01-06 | Conceptus, Inc. | Protective sheath for a fiberoptic image guide within an articulated endoscope |
WO1997017028A1 (fr) | 1995-11-07 | 1997-05-15 | Femrx, Inc. | Dispositif de resection de tissus a pince retirable d'ablation/coagulation |
US6096053A (en) | 1996-05-03 | 2000-08-01 | Scimed Life Systems, Inc. | Medical retrieval basket |
NL1003497C2 (nl) | 1996-07-03 | 1998-01-07 | Cordis Europ | Katheter met tijdelijk vena-cava filter. |
US6066158A (en) | 1996-07-25 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot encasing and removal wire |
NL1004721C2 (nl) | 1996-12-06 | 1998-06-09 | Ideamed N V | Beademingsinrichting. |
US5871481A (en) * | 1997-04-11 | 1999-02-16 | Vidamed, Inc. | Tissue ablation apparatus and method |
US5891138A (en) * | 1997-08-11 | 1999-04-06 | Irvine Biomedical, Inc. | Catheter system having parallel electrodes |
US6179809B1 (en) * | 1997-09-24 | 2001-01-30 | Eclipse Surgical Technologies, Inc. | Drug delivery catheter with tip alignment |
WO1999039648A1 (fr) | 1998-02-10 | 1999-08-12 | Dubrul William R | Appareil de capture et procede d'utilisation |
JP3733580B2 (ja) | 1998-04-06 | 2006-01-11 | ニプロ株式会社 | 欠損閉塞用閉鎖栓回収具 |
US6905476B2 (en) * | 1998-06-04 | 2005-06-14 | Biosense Webster, Inc. | Catheter with injection needle |
US6030406A (en) | 1998-10-05 | 2000-02-29 | Origin Medsystems, Inc. | Method and apparatus for tissue dissection |
US6179859B1 (en) | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
US6213976B1 (en) | 1999-07-22 | 2001-04-10 | Advanced Research And Technology Institute, Inc. | Brachytherapy guide catheter |
US6168579B1 (en) | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US6443926B1 (en) | 2000-02-01 | 2002-09-03 | Harold D. Kletschka | Embolic protection device having expandable trap |
-
1997
- 1997-09-30 US US08/940,519 patent/US6238389B1/en not_active Expired - Lifetime
-
1998
- 1998-09-25 DE DE69829300T patent/DE69829300T2/de not_active Expired - Lifetime
- 1998-09-25 JP JP2000513516A patent/JP2001517528A/ja not_active Withdrawn
- 1998-09-25 CA CA002304739A patent/CA2304739C/fr not_active Expired - Fee Related
- 1998-09-25 AU AU95092/98A patent/AU738287B2/en not_active Ceased
- 1998-09-25 WO PCT/US1998/020099 patent/WO1999016370A1/fr active IP Right Grant
- 1998-09-25 IL IL13535398A patent/IL135353A/en not_active IP Right Cessation
- 1998-09-25 EP EP98948543A patent/EP1018959B1/fr not_active Expired - Lifetime
-
2000
- 2000-09-14 US US09/661,835 patent/US6352534B1/en not_active Expired - Lifetime
-
2001
- 2001-12-04 US US10/004,759 patent/US6482203B2/en not_active Expired - Fee Related
-
2002
- 2002-09-30 US US10/261,056 patent/US7909821B2/en not_active Expired - Fee Related
-
2006
- 2006-12-07 JP JP2006331153A patent/JP4460567B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273535A (en) | 1991-11-08 | 1993-12-28 | Ep Technologies, Inc. | Catheter with electrode tip having asymmetric left and right curve configurations |
EP0629382A1 (fr) * | 1992-08-12 | 1994-12-21 | Vidamed, Inc. | Sonde médicale et procédé associé |
WO1994017856A1 (fr) * | 1993-02-02 | 1994-08-18 | Vidamed, Inc. | Procede et dispositif d'ablation a aiguille transuretrale |
US5403311A (en) * | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
WO1997000049A1 (fr) * | 1995-06-19 | 1997-01-03 | Vidamed, Inc. | Dispositif electrochirurgical comportant un ensemble de declenchement d'actionnement et son procede |
WO1997033524A1 (fr) * | 1996-03-15 | 1997-09-18 | Rita Medical Systems, Inc. | Appareil et procede d'ablation a antennes multiples a element de refroidissement |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10420606B2 (en) | 2002-04-08 | 2019-09-24 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US10376311B2 (en) | 2002-04-08 | 2019-08-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravascularly-induced neuromodulation |
US10105180B2 (en) | 2002-04-08 | 2018-10-23 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravascularly-induced neuromodulation |
US9827041B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatuses for renal denervation |
US9827040B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for intravascularly-induced neuromodulation |
US9757193B2 (en) | 2002-04-08 | 2017-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatus for renal neuromodulation |
US9510901B2 (en) | 2003-09-12 | 2016-12-06 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US10188457B2 (en) | 2003-09-12 | 2019-01-29 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US10350004B2 (en) | 2004-12-09 | 2019-07-16 | Twelve, Inc. | Intravascular treatment catheters |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US9486355B2 (en) | 2005-05-03 | 2016-11-08 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US10213252B2 (en) | 2006-10-18 | 2019-02-26 | Vessix, Inc. | Inducing desirable temperature effects on body tissue |
US12161392B2 (en) | 2006-10-18 | 2024-12-10 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US10413356B2 (en) | 2006-10-18 | 2019-09-17 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US9327100B2 (en) | 2008-11-14 | 2016-05-03 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9919144B2 (en) | 2011-04-08 | 2018-03-20 | Medtronic Adrian Luxembourg S.a.r.l. | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US10543037B2 (en) | 2013-03-15 | 2020-01-28 | Medtronic Ardian Luxembourg S.A.R.L. | Controlled neuromodulation systems and methods of use |
US9579149B2 (en) | 2014-03-13 | 2017-02-28 | Medtronic Ardian Luxembourg S.A.R.L. | Low profile catheter assemblies and associated systems and methods |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
Also Published As
Publication number | Publication date |
---|---|
CA2304739C (fr) | 2005-01-11 |
DE69829300D1 (de) | 2005-04-14 |
JP4460567B2 (ja) | 2010-05-12 |
IL135353A (en) | 2004-02-19 |
US6482203B2 (en) | 2002-11-19 |
US7909821B2 (en) | 2011-03-22 |
US6238389B1 (en) | 2001-05-29 |
US6352534B1 (en) | 2002-03-05 |
EP1018959A1 (fr) | 2000-07-19 |
CA2304739A1 (fr) | 1999-04-08 |
AU738287B2 (en) | 2001-09-13 |
JP2001517528A (ja) | 2001-10-09 |
JP2007117753A (ja) | 2007-05-17 |
AU9509298A (en) | 1999-04-23 |
US20020040221A1 (en) | 2002-04-04 |
US20030028188A1 (en) | 2003-02-06 |
IL135353A0 (en) | 2001-05-20 |
DE69829300T2 (de) | 2006-04-13 |
EP1018959B1 (fr) | 2005-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6352534B1 (en) | Deflectable interstitial ablation device | |
CN103917200B (zh) | 用于前列腺治疗的系统和方法 | |
US6241702B1 (en) | Radio frequency ablation device for treatment of the prostate | |
JP3299792B2 (ja) | 電気外科装置 | |
EP0667126B1 (fr) | Sonde médicale guidable avec des stylets | |
EP0637436B1 (fr) | Sonde médicale avec possibilité d'observation optique | |
US6607529B1 (en) | Electrosurgical device | |
AU3613293A (en) | Apparatus and method for interstitial treatment | |
EP1987794B1 (fr) | Instrument de traitement endoscopique | |
KR101524738B1 (ko) | 잼 방지 전기 결합 부재를 구비한 rf 절제 장치 | |
WO1994017856A9 (fr) | Procede et dispositif d'ablation a aiguille transuretrale | |
WO1996022742A1 (fr) | Instrument d'ablation a aiguille transurethrale et procede pour le traitement de la prostate | |
WO1997001988A1 (fr) | Catheter pour imagerie ultrasonique, avec un element coupant | |
KR20220002893A (ko) | 전기 수술 시스템 | |
JP2022506184A (ja) | 電気外科用機器 | |
WO1994020037A1 (fr) | Appareil et procede pour effectuer des traitements interstitiels | |
JPH11332880A (ja) | 穿刺治療装置 | |
CA2484853C (fr) | Dispositif d'ablation interstitiel orientable | |
WO1998030160A1 (fr) | Dispositif intraluminal hf pour ablation | |
KR20220002906A (ko) | 전기 수술 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 135353 Country of ref document: IL |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2304739 Country of ref document: CA Ref country code: CA Ref document number: 2304739 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 513516 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 95092/98 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998948543 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998948543 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 95092/98 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1998948543 Country of ref document: EP |